1
|
Bestgen B, Jones S, Thathy V, Kuemmerle A, Barcelo C, Haouala A, Gossen D, Marx MW, Di Resta I, Szramowska M, Webster RA, Llewellyn S, Ritacco DA, Yeo T, Leroy D, Barber BE, Fidock DA, Griffin P, Lickliter J, Chalon S. Safety, tolerability, pharmacokinetics, and antimalarial activity of MMV533: a phase 1a first-in-human, randomised, ascending dose and food effect study, and a phase 1b Plasmodium falciparum volunteer infection study. THE LANCET. INFECTIOUS DISEASES 2025; 25:507-518. [PMID: 39708824 DOI: 10.1016/s1473-3099(24)00664-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Novel antimalarials are needed to address emerging resistance to artemisinin and partner drugs. We did two trials to evaluate safety, tolerability, pharmacokinetics, and activity against blood stage Plasmodium falciparum for the drug candidate MMV533. METHODS A phase 1a first-in-human (FIH) trial was conducted at Nucleus Network (Melbourne, VIC, Australia). Part 1 was a double-blind, randomised, placebo-controlled, sequential ascending dose study and part 2 was an open-label, randomised, two-period crossover, pilot food effect study. A phase 1b, open-label, volunteer infection study (VIS) was conducted at Nucleus Network (Herston, QLD, Australia). Eligible participants were adults aged 18-55 years, with a bodyweight of at least 50 kg and BMI of 18-32 kg/m2 and participants in the VIS were malaria-naive. In part 1 of the FIH study, six cohorts of up to eight participants were randomly assigned (3:1) to a single oral MMV533 dose (5, 10, 20, 50, 100, and 160 mg) or placebo using an automated system, with study staff and participants masked to treatment allocation, and follow-up until day 28. In part 2, MMV533 30 mg was administered open-label to one cohort of nine participants assigned by simple randomisation (1:1) to the fasted-fed (n=4) or fed-fasted (n=5) groups. After a 21-day washout period, fed and fasted groups crossed over with follow-up until day 42. In the VIS, seven participants were assigned using simple randomisation (1:1:1) to three dosing groups of 20 mg (n=3), 35 mg (n=2), or 100 mg (n=2) after parasitaemia was detected, with follow-up until day 28. The primary outcomes were treatment emergent adverse events and relationship to MMV533 for the FIH study assessed in the safety population, and in the VIS primary outcomes were parasite reduction ratio over 48 h (log10PRR48), parasite clearance half-life (PCT1/2), and lag phase assessed in the pharmacodynamic population. MMV533 pharmacokinetics was a secondary outcome for both studies, evaluated in the pharmacokinetic population. The studies are registered with ClinicalTrials.gov, NCT04323306 and NCT05205941 (completed). FINDINGS The FIH study was conducted between July 31, 2020, and Sept 27, 2022, and the VIS between March 31 and Aug 9, 2022. 335 adults were assessed for eligibility, 71 enrolled, and 69 randomly assigned (53 in part 1 and nine in part 2 of the FIH study, and seven in the VIS). 32 (45%) of 71 participants were female and 39 (55%) were male. In part 1, 24 (63%) of 38 participants had an adverse event after MMV533 administration with no apparent relationship to dose versus six (50%) of 12 after placebo. Treatment-related adverse events were reported for four (11%) participants receiving MMV533 and one (8%) receiving placebo, with no relationship to dose. In part 2, adverse events were reported for three (38%) of eight participants when fasted and four (44%) of nine when fed, with no apparent influence of food. Time to maximum plasma concentration was 4·0-6·0 h, and apparent half-life was 103·8-127·2 h. After a high-fat meal, the geometric mean ratio (fed:fasted) of MMV533 AUC0-last was 112·0 (90% CI 89·6-140·0). In the VIS for MMV533 100 mg, log10PRR48 was 2·27 (1·99-2·56), PCT1/2 was 6·36 h (5·64-7·28), and lag phase was 2 h. INTERPRETATION An acceptable safety and tolerability profile, confirmed parasiticidal activity, and a long half-life support progression of MMV533 into clinical trials in patients with malaria as a component of new antimalarial combination therapies. FUNDING MMV Medicines for Malaria Venture and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
| | - Sam Jones
- MMV Medicines for Malaria Venture, Geneva, Switzerland
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Centre, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Amina Haouala
- MMV Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | | | | | | | - Dominic A Ritacco
- Department of Microbiology and Immunology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Centre, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Didier Leroy
- MMV Medicines for Malaria Venture, Geneva, Switzerland
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Centre, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Paul Griffin
- The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
2
|
Robert A, Paloque L, Augereau JM, Nardella F, Nguyen M, Meunier B, Benoit-Vical F. Hybrid Molecules as Efficient Drugs against Multidrug-Resistant Malaria Parasites. ChemMedChem 2025:e2500086. [PMID: 40227011 DOI: 10.1002/cmdc.202500086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Indexed: 04/15/2025]
Abstract
This review is focused on hybrid molecules defined as chemical entities with two or more structural domains, as antimalarial drug-candidates, over the past 25 years. Due to their different pharmacophores, such hybrids can interact with a single biological target by different and complementary mechanisms; they can also act simultaneously on several targets having complementary biological functions (dual mode of action), and can theoretically reduce the selection of parasite drug-resistance. This review is not an exhaustive report of all hybrid drugs tested on malaria parasites but a selection of hybrids with pharmacologically relevant antiplasmodial properties and original chemical structures. The choice of pharmacophore synthons and junction arms is obviously decisive. Among the large varieties of hybrid drugs published, emoquine-1 appears at the moment as a promising antimalarial drug candidate, considering 1) its high activities on several multidrug-resistant Plasmodium lab strains and field isolates, 2) its capacity to eliminate the quiescent forms of the artemisinin-resistant parasites, and 3) its curative properties in a malaria mouse model. Such molecules confirm the synergistic effect of hybrid compounds compared to the combination of the pharmacophores leading to novel chemical structures that meet the critical parameters for new antimalarial drugs.
Collapse
Affiliation(s)
- Anne Robert
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Lucie Paloque
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Jean-Michel Augereau
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Flore Nardella
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Michel Nguyen
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Bernard Meunier
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Françoise Benoit-Vical
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| |
Collapse
|
3
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2025; 23:178-191. [PMID: 39367132 PMCID: PMC11832322 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Beattie KA, Verma M, Brennan RJ, Clausznitzer D, Damian V, Leishman D, Spilker ME, Boras B, Li Z, Oziolor E, Rieger TR, Sher A. Quantitative systems toxicology modeling in pharmaceutical research and development: An industry-wide survey and selected case study examples. CPT Pharmacometrics Syst Pharmacol 2024; 13:2036-2051. [PMID: 39412216 PMCID: PMC11646944 DOI: 10.1002/psp4.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 12/17/2024] Open
Abstract
Quantitative systems toxicology (QST) models are increasingly being applied for predicting and understanding toxicity liabilities in pharmaceutical research and development. A European Federation of Pharmaceutical Industries and Associations (EFPIA)-wide survey was completed by 15 companies. The results provide insights into the current use of QST models across the industry. 73% of responding companies with more than 10,000 employees utilize QST models. The most applied QST models are for liver, cardiac electrophysiology, and bone marrow/hematology. Responders indicated particular interest in QST models for the central nervous system (CNS), kidney, lung, and skin. QST models are used to support decisions in both preclinical and clinical stages of pharmaceutical development. The survey suggests high demand for QST models and resource limitations were indicated as a common obstacle to broader use and impact. Increased investment in QST resources and training may accelerate application and impact. Case studies of QST model use in decision-making within EFPIA companies are also discussed. This article aims to (i) share industry experience and learnings from applying QST models to inform decision-making in drug discovery and development programs, and (ii) share approaches taken during QST model development and validation and compare these with recommendations for modeling best practices and frameworks proposed in the literature. Discussion of QST-specific applications in relation to these modeling frameworks is relevant in the context of the recently proposed International Council for Harmonization (ICH) M15 guideline on general principles for Model-Informed Drug Development (MIDD).
Collapse
Affiliation(s)
| | - Meghna Verma
- Systems Medicine, Clinical Pharmacology and Quantitative PharmacologyR&D BioPharmaceuticals, AstraZenecaGaithersburgMarylandUSA
| | | | - Diana Clausznitzer
- Quantitative, Translational and ADME SciencesAbbVie DeutschlandLudwigshafenGermany
| | - Valeriu Damian
- Computational SciencesGSKUpper ProvidencePennsylvaniaUSA
| | - Derek Leishman
- Translational and Quantitative ToxicologyEli Lilly and CompanyIndianapolisIndianaUSA
| | - Mary E. Spilker
- Pharmacokinetics, Dynamics and MetabolismPfizer Research and Development, Pfizer Inc.La JollaCaliforniaUSA
| | - Britton Boras
- Pharmacokinetics, Dynamics and MetabolismPfizer Research and Development, Pfizer Inc.La JollaCaliforniaUSA
| | - Zhenhong Li
- Translational Modeling and SimulationPfizer Research and Development, Pfizer Inc.CambridgeMassachusettsUSA
| | - Elias Oziolor
- Drug Safety Research and DevelopmentPfizer Research and Development, Pfizer Inc.GrotonConnecticutUSA
| | - Theodore R. Rieger
- Pharmacometrics and Systems PharmacologyPfizer Research and Development, Pfizer Inc.CambridgeMassachusettsUSA
| | - Anna Sher
- Clinical Pharmacology Modeling and SimulationGSKWalthamMassachusettsUSA
| |
Collapse
|
5
|
Ferreira LT, Cassiano GC, Alvarez LCS, Okombo J, Calit J, Fontinha D, Gil-Iturbe E, Coyle R, Andrade CH, Sunnerhagen P, Bargieri DY, Prudêncio M, Quick M, Cravo PV, Lee MCS, Fidock DA, Costa FTM. A novel 4-aminoquinoline chemotype with multistage antimalarial activity and lack of cross-resistance with PfCRT and PfMDR1 mutants. PLoS Pathog 2024; 20:e1012627. [PMID: 39471233 PMCID: PMC11521309 DOI: 10.1371/journal.ppat.1012627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the mainstay of effective treatment of Plasmodium falciparum malaria. However, the long-term utility of ACTs is imperiled by widespread partial artemisinin resistance in Southeast Asia and its recent emergence in parts of East Africa. This underscores the need to identify chemotypes with new modes of action (MoAs) to circumvent resistance to ACTs. In this study, we characterized the asexual blood stage antiplasmodial activity and resistance mechanisms of LDT-623, a 4-aminoquinoline (4-AQ). We also detected LDT-623 activity against multiple stages (liver schizonts, stage IV-V gametocytes, and ookinetes) of Plasmodium's life cycle, a feature unlike other 4-AQs such as chloroquine (CQ) and piperaquine (PPQ). Using heme fractionation profiling and drug uptake studies in PfCRT-containing proteoliposomes, we observed inhibition of hemozoin formation and PfCRT-mediated transport, which constitute characteristic features of 4-AQs' MoA. We also found minimal cross-resistance to LDT-623 in a panel of mutant pfcrt or pfmdr1 lines, but not the PfCRT F145I mutant that is highly resistant to PPQ resistance yet is very unfit. No P. falciparum parasites were recovered in an in vitro resistance selection study, suggesting a high barrier for resistance to emerge. Finally, a competitive growth assay comprising >50 barcoded parasite lines with mutated resistance mediators or major drug targets found no evidence of cross-resistance. Our findings support further exploration of this promising 4-AQ.
Collapse
Affiliation(s)
- Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets, School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence, Institute of Informatics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, Area Neuroscience – Molecular Therapeutics, New York, New York, United States of America
| | - Pedro V. Cravo
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Barber BE, Webster R, Potter AJ, Llewellyn S, Sahai N, Leelasena I, Mathison S, Kuritz K, Flynn J, Chalon S, Marrast AC, Gobeau N, Moehrle JJ. Characterising the blood-stage antimalarial activity of pyronaridine in healthy volunteers experimentally infected with Plasmodium falciparum. Int J Antimicrob Agents 2024; 64:107196. [PMID: 38734217 DOI: 10.1016/j.ijantimicag.2024.107196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
With the spread of artemisinin resistance throughout Southeast Asia and now in Africa, the antimalarial drug pyronaridine is likely to become an increasingly important component of new antimalarial drug regimens. However, the antimalarial activity of pyronaridine in humans has not been completely characterised. This volunteer infection study aimed to determine the pharmacokinetic/pharmacodynamic (PK/PD) relationship of pyronaridine in malaria naïve adults. Volunteers were inoculated with Plasmodium falciparum-infected erythrocytes on day 0 and administered different single oral doses of pyronaridine on day 8. Parasitaemia and concentrations of pyronaridine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 47 ± 2. Outcomes were parasite clearance kinetics, PK and PK/PD parameters from modelling. Ten participants were inoculated and administered 360 mg (n = 4), 540 mg (n = 4) or 720 mg (n = 1) pyronaridine. One participant was withdrawn without receiving pyronaridine. The time to maximum pyronaridine concentration was 1-2 h, the elimination half-life was 8-9 d, and the parasite clearance half-life was approximately 5 h. Parasite regrowth occurred with 360 mg (4/4 participants) and 540 mg (2/4 participants). Key efficacy parameters including the minimum inhibitory concentration (5.5 ng/mL) and minimum parasiticidal concentration leading to 90% of maximum effect (MPC90: 8 ng/mL) were derived from the PK/PD model. Adverse events considered related to pyronaridine were predominantly mild to moderate gastrointestinal symptoms. There were no serious adverse events. Data obtained in this study will support the use of pyronaridine in new antimalarial combination therapies by informing partner drug selection and dosing considerations.
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia; Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Adam J Potter
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stacey Llewellyn
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nischal Sahai
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | - Indika Leelasena
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | - Susan Mathison
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | | | - Julia Flynn
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Kushwaha R, Upadhyay A, Peters S, Yadav AK, Mishra A, Bera A, Sadhukhan T, Banerjee S. Visible and Red Light-Triggered Anticancer Profile of a Ferrocene-Re(I)-Tricarbonyl Conjugate: Experimental and Theoretical Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12226-12238. [PMID: 38814099 DOI: 10.1021/acs.langmuir.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We have red-shifted the light absorbance property of a Re(I)-tricarbonyl complex via distant conjugation of a ferrocene moiety and developed a novel complex ReFctp, [Re(Fctp)(CO)3Cl], where Fctp = 4'-ferrocenyl-2,2':6',2″-terpyridine. ReFctp showed green to red light absorption ability and blue emission, indicating its potential for photodynamic therapy (PDT) application. The conjugation of ferrocene introduced ferrocene-based transitions, which lie at a higher wavelength within the PDT therapeutic window. The time-dependent density functional theory and excited state calculations revealed an efficient intersystem crossing for ReFctp, which is helpful for PDT. ReFctp elicited both PDT type I and type II pathways for reactive oxygen species (ROS) generation and facilitated NADH (1,4-dihydro-nicotinamide adenine dinucleotide) oxidation upon exposure to visible light. Importantly, ReFctp showed effective penetration through the layers of clinically relevant 3D multicellular tumor spheroids and localized primarily in mitochondria (Pearson's correlation coefficient, PCC = 0.65) of A549 cancer cells. ReFctp produced more than 20 times higher phototoxicity (IC50 ∼1.5 μM) by inducing ROS generation and altering mitochondrial membrane potential in A549 cancer cells than the nonferrocene analogue Retp, [Re(CO)3(tp)Cl], where tp = 2,2':6',2″-terpyridine. ReFctp induced apoptotic mode of cell death with a notable photocytotoxicity index (PI, PI = IC50dark/IC50light) and selectivity index (SI, SI = normal cell's IC50dark/cancer cell's IC50light) in the range of 25-33.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arya Mishra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
8
|
Achan J, Barry A, Leroy D, Kamara G, Duparc S, Kaszubska W, Gandhi P, Buffet B, Tshilab P, Ogutu B, Taylor T, Krishna S, Richardson N, Ramachandruni H, Rietveld H. Defining the next generation of severe malaria treatment: a target product profile. Malar J 2024; 23:174. [PMID: 38835069 DOI: 10.1186/s12936-024-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Collapse
Affiliation(s)
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - George Kamara
- Médecins Sans Frontières, Magburaka District Hospital, Freetown, Sierra Leone
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bénédicte Buffet
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Terrie Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sanjeev Krishna
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (Dzif), Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| | - Hans Rietveld
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| |
Collapse
|
9
|
Nandal R, Kumar D, Aggarwal N, Kumar V, Narasimhan B, Marwaha RK, Sharma PC, Kumar S, Bansal N, Chopra H, Deep A. Recent advances, challenges and updates on the development of therapeutics for malaria. EXCLI JOURNAL 2024; 23:672-713. [PMID: 38887396 PMCID: PMC11180964 DOI: 10.17179/excli2023-6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/03/2024] [Indexed: 06/20/2024]
Abstract
Malaria has developed as a serious worldwide health issue as a result of the introduction of resistant Plasmodium species strains. Because of the common chemo resistance to most of the existing drugs on the market, it poses a severe health problem and significant obstacles in drug research. Malaria treatment has evolved during the last two decades in response to Plasmodium falciparum drug sensitivity and a return of the disease in tropical areas. Plasmodium falciparum is now highly resistant to the majority of antimalarial drugs. The parasite resistance drew focus to developing novel antimalarials to combat parasite resistance. The requirement for many novel antimalarial drugs in the future year necessitates adopting various drug development methodologies. Different innovative strategies for discovering antimalarial drugs are now being examined here. This review is primarily concerned with the description of newly synthesized antimalarial compounds, i.e. Tafenoquine, Cipargamin, Ferroquine, Artefenomel, DSM265, MMV390048 designed to improve the activity of pure antimalarial enantiomers. In this review, we selected the representative malarial drugs in clinical trials, classified them with detailed targets according to their action, discussed the relationship within the human trials, and generated a summative discussion with prospective expectations.
Collapse
Affiliation(s)
- Rimmy Nandal
- Shri Baba MastNath Institute of Pharmaceutical Sciences and Research, Baba Mast Nath University, Asthal Bohar, Rohtak-124001, Haryana, India
| | - Davinder Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Virender Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | | | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak 124001 Haryana, India
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| |
Collapse
|
10
|
Gilbert IH, Vinayak S, Striepen B, Manjunatha UH, Khalil IA, Van Voorhis WC. Safe and effective treatments are needed for cryptosporidiosis, a truly neglected tropical disease. BMJ Glob Health 2023; 8:e012540. [PMID: 37541693 PMCID: PMC10407372 DOI: 10.1136/bmjgh-2023-012540] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/25/2023] [Indexed: 08/06/2023] Open
Affiliation(s)
| | - Sumiti Vinayak
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Boris Striepen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ujjini H Manjunatha
- Global Health, Novartis Institutes for BioMedical Research, Inc, Emeryville, California, USA
| | - Ibrahim A Khalil
- Department of Health, State of Washington, Seattle, Washington, USA
| | | |
Collapse
|
11
|
Nguyen TD, Tran TNA, Parker DM, White NJ, Boni MF. Antimalarial mass drug administration in large populations and the evolution of drug resistance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002200. [PMID: 37494337 PMCID: PMC10370688 DOI: 10.1371/journal.pgph.0002200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Mass drug administration (MDA) with antimalarials has been shown to reduce prevalence and interrupt transmission in small populations, in populations with reliable access to antimalarial drugs, and in populations where sustained improvements in diagnosis and treatment are possible. In addition, when MDA is effective it eliminates both drug-resistant parasites and drug-sensitive parasites, which has the long-term benefit of extending the useful therapeutic life of first-line therapies for all populations, not just the focal population where MDA was carried out. However, in order to plan elimination measures effectively, it is necessary to characterize the conditions under which failed MDA could exacerbate resistance. We use an individual-based stochastic model of Plasmodium falciparum transmission to evaluate this risk for MDA using dihydroartemisinin-piperaquine (DHA-PPQ), in populations where access to antimalarial treatments may not be uniformly high and where re-importation of drug-resistant parasites may be common. We find that artemisinin-resistance evolution at the kelch13 locus can be accelerated by MDA when all three of the following conditions are met: (1) strong genetic bottlenecking that falls short of elimination, (2) re-importation of artemisinin-resistant genotypes, and (3) continued selection pressure during routine case management post-MDA. Accelerated resistance levels are not immediate but follow the rebound of malaria cases post-MDA, if this is allowed to occur. Crucially, resistance is driven by the selection pressure during routine case management post-MDA and not the selection pressure exerted during the MDA itself. Second, we find that increasing treatment coverage post-MDA increases the probability of local elimination in low-transmission regions (prevalence < 2%) in scenarios with both low and high levels of drug-resistance importation. This emphasizes the importance of planning for and supporting high coverage of diagnosis and treatment post-MDA.
Collapse
Affiliation(s)
- Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, Department of Epidemiology and Biostatistics, University of California, Irvine, Irvine, CA, United States of America
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Research Unit, Wellcome Trust Major Overseas Programme, Mahidol University, Bangkok, Thailand
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
13
|
Sharma B, Chowdhary S, Legac J, Rosenthal PJ, Kumar V. Quinoline-based heterocyclic hydrazones: Design, synthesis, anti-plasmodial assessment, and mechanistic insights. Chem Biol Drug Des 2023; 101:829-836. [PMID: 36418231 DOI: 10.1111/cbdd.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
A library of quinoline-based hydrazones bearing 1H-1,2,3-triazole core was designed, synthesized, and evaluated for their antiplasmodial activity against the drug-resistant Plasmodium falciparum W2 strain. The inclusion of pyrazine-2-carboxylic acid with a flexible propyl spacer afforded the most active scaffold with an IC50 value of 0.26 μM. Mechanistically, the compound inhibited heme to hemozoin formation, as demonstrated by UV-vis and mass spectral studies.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | | | - Jenny Legac
- Department of Medicine, University of California, San Francisco, California, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California, USA
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
14
|
Pandey SK, Anand U, Siddiqui WA, Tripathi R. Drug Development Strategies for Malaria: With the Hope for New Antimalarial Drug Discovery—An Update. Adv Med 2023; 2023:5060665. [PMID: 36960081 PMCID: PMC10030226 DOI: 10.1155/2023/5060665] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Malaria continued to be a deadly situation for the people of tropical and subtropical countries. Although there has been a marked reduction in new cases as well as mortality and morbidity rates in the last two decades, the reporting of malaria caused 247 million cases and 619000 deaths worldwide in 2021, according to the WHO (2022). The development of drug resistance and declining efficacy against most of the antimalarial drugs/combination in current clinical practice is a big challenge for the scientific community, and in the absence of an effective vaccine, the problem becomes worse. Experts from various research organizations worldwide are continuously working hard to stop this disaster by employing several strategies for the development of new antimalarial drugs/combinations. The current review focuses on the history of antimalarial drug discovery and the advantages, loopholes, and opportunities associated with the common strategies being followed for antimalarial drug development.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- 1Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uttpal Anand
- 2Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Waseem A. Siddiqui
- 3Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Renu Tripathi
- 4Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
15
|
Sharma A, Apte A, Rajappa M, Vaz M, Vaswani V, Goenka S, Malhotra S, Sangoram R, Lakshminarayanan S, Jayaram S, Mathaiyan J, Farseena K, Mukerjee P, Jaswal S, Dongre A, Timms O, Shafiq N, Aggarwal R, Kaur M, Juvekar S, Sekhar A, Kang G. Perceptions about controlled human infection model (CHIM) studies among members of ethics committees of Indian medical institutions: A qualitative exploration. Wellcome Open Res 2023; 7:209. [PMID: 36969719 PMCID: PMC10031138 DOI: 10.12688/wellcomeopenres.17968.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Introduction: Controlled Human Infection Model (CHIM) studies provide a unique platform for studying the pathophysiology of infectious diseases and accelerated testing of vaccines and drugs in controlled settings. However, ethical issues shroud them as the disease-causing pathogen is intentionally inoculated into healthy consenting volunteers, and effective treatment may or may not be available. We explored the perceptions of the members of institutional ethics committees (IECs) in India about CHIM studies. Methods: This qualitative exploratory study, conducted across seven sites in India, included 11 focused group discussions (FGD) and 31 in-depth interviews (IDI). A flexible approach was used with the aid of a topic guide. The data were thematically analyzed using grounded theory and an inductive approach. Emerging themes and sub-themes were analyzed, and major emergent themes were elucidated. Results: Seventy-two IEC members participated in the study including 21 basic medical scientists, 29 clinicians, 9 lay people, 6 legal experts and 7 social scientists. Three major themes emerged from this analysis-apprehensions about conduct of CHIM studies in India, a perceived need for CHIM studies in India and risk mitigation measures needed to protect research participants and minimize the associated risks. Conclusion: Development of a specific regulatory and ethical framework, training of research staff and ethics committee members, and ensuring specialized research infrastructure along with adequate community sensitization were considered essential before initiation of CHIM studies in India.
Collapse
Affiliation(s)
- Abhishek Sharma
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Aditi Apte
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Medha Rajappa
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Manjulika Vaz
- St John's Medical College, Bengaluru, Karnataka, 560034, India
| | - Vina Vaswani
- Yenepoya University, Mangalore, Karnataka, 575018, India
| | - Shifalika Goenka
- Centre for Chronic Disease Control (CCDC), Delhi, Delhi, 110016, India
| | - Samir Malhotra
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Rashmi Sangoram
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Subitha Lakshminarayanan
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Suganya Jayaram
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Jayanthi Mathaiyan
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | | | - Prarthna Mukerjee
- Centre for Chronic Disease Control (CCDC), Delhi, Delhi, 110016, India
| | - Surinder Jaswal
- Tata Institute of Social Sciences, Mumbai, Maharashtra, 400088, India
| | - Amol Dongre
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | - Olinda Timms
- St John's Medical College, Bengaluru, Karnataka, 560034, India
| | - Nusrat Shafiq
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Rakesh Aggarwal
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Manmeet Kaur
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Sanjay Juvekar
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Amrita Sekhar
- Translational Health Science and Technology Institute, Faridabad, Haryana, 101213, India
| | - Gagandeep Kang
- Christian Medical College, Vellore, Tamil Nadu, 632004, India
| |
Collapse
|
16
|
Yan J, Yue K, Fan X, Xu X, Wang J, Qin M, Zhang Q, Hou X, Li X, Wang Y. Synthesis and bioactivity evaluation of ferrocene-based hydroxamic acids as selective histone deacetylase 6 inhibitors. Eur J Med Chem 2023; 246:115004. [PMID: 36516583 DOI: 10.1016/j.ejmech.2022.115004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 6 (HDAC6) is involved in multiple regulatory processes and emerges as a promising target for treating cancer and neurodegenerative diseases. Benefited from the unique sandwich conformation of ferrocene, a series of ferrocene-based hydroxamic acids have been developed as novel HDAC6 inhibitors in this paper, especially the two ansa-ferrocenyl complexes with IC50s at the nanomolar level. [3]-Ferrocenophane hydroxamic acid analog II-5 displays the most potent inhibitory activity on HDAC6 and establishes remarkable selectivity towards other HDAC isoforms. Compound II-5 dose-dependently induces accumulation of acetylated α-tubulin while having a negligible effect on the level of acetylated Histone H3, confirming its isoform selectivity. Further biological evaluation of II-5 on cancer cells corroborates its antiproliferative effect, which mainly contributed to the induction of cellular apoptosis. It is worth noting that compound II-5 demonstrates an optimal profile on human plasma stability. These results strengthen ferrocene's unique role in developing selective protein inhibitors and indicate that compound II-5 may be a suitable lead for further evaluation and development for treating HDAC6-associated disorders and diseases.
Collapse
Affiliation(s)
- Jiangkun Yan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Ximing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Mengting Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China
| | - Qianer Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xiaohan Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| |
Collapse
|
17
|
Gansane A, Lingani M, Yeka A, Nahum A, Bouyou-Akotet M, Mombo-Ngoma G, Kaguthi G, Barceló C, Laurijssens B, Cantalloube C, Macintyre F, Djeriou E, Jessel A, Bejuit R, Demarest H, Marrast AC, Debe S, Tinto H, Kibuuka A, Nahum D, Mawili-Mboumba DP, Zoleko-Manego R, Mugenya I, Olewe F, Duparc S, Ogutu B. Randomized, open-label, phase 2a study to evaluate the contribution of artefenomel to the clinical and parasiticidal activity of artefenomel plus ferroquine in African patients with uncomplicated Plasmodium falciparum malaria. Malar J 2023; 22:2. [PMID: 36597076 PMCID: PMC9809015 DOI: 10.1186/s12936-022-04420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The contribution of artefenomel to the clinical and parasiticidal activity of ferroquine and artefenomel in combination in uncomplicated Plasmodium falciparum malaria was investigated. METHODS This Phase 2a, randomized, open-label, parallel-group study was conducted from 11th September 2018 to 6th November 2019 across seven centres in Benin, Burkina Faso, Gabon, Kenya, and Uganda. Patients aged ≥ 14-69 years with microscopically confirmed infection (≥ 3000 to ≤ 50,000 parasites/µL blood) were randomized 1:1:1:1 to 400 mg ferroquine, or 400 mg ferroquine plus artefenomel 300, 600, or 1000 mg, administered as a single oral dose. The primary efficacy analysis was a logistic regression evaluating the contribution of artefenomel exposure to Day 28 PCR-adjusted adequate clinical and parasitological response (ACPR). Safety was also evaluated. RESULTS The randomized population included 140 patients. For the primary analysis in the pharmacokinetic/pharmacodynamic efficacy population (N = 121), the contribution of artefenomel AUC0-∞ to Day 28 PCR-adjusted ACPR was not demonstrated when accounting for ferroquine AUC0-d28, baseline parasitaemia, and other model covariates: odds ratio 1.1 (95% CI 0.98, 1.2; P = 0.245). In the per-protocol population, Day 28 PCR-adjusted ACPR was 80.8% (21/26; 95% CI 60.6, 93.4) with ferroquine alone and 90.3% (28/31; 95% CI 74.2, 98.0), 90.9% (30/33; 95% CI 75.7, 98.1) and 87.1% (27/31; 95% CI 70.2, 96.4) with 300, 600, and 1000 mg artefenomel, respectively. Median time to parasite clearance (Kaplan-Meier) was 56.1 h with ferroquine, more rapid with artefenomel, but similar for all doses (30.0 h). There were no deaths. Adverse events (AEs) of any cause occurred in 51.4% (18/35) of patients with ferroquine 400 mg alone, and 58.3% (21/36), 66.7% (24/36), and 72.7% (24/33) with 300, 600, and 1000 mg artefenomel, respectively. All AEs were of mild-to-moderate severity, and consistent with the known profiles of the compounds. Vomiting was the most reported AE. There were no cases of QTcF prolongation ≥ 500 ms or > 60 ms from baseline. CONCLUSION The contribution of artefenomel exposure to the clinical and parasitological activity of ferroquine/artefenomel could not be demonstrated in this study. Parasite clearance was faster with ferroquine/artefenomel versus ferroquine alone. All treatments were well tolerated. TRIAL REGISTRATION ClinicalTrials.gov, NCT03660839 (7 September, 2018).
Collapse
Affiliation(s)
- Adama Gansane
- grid.507461.10000 0004 0413 3193Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 220801 BP 2208 Ouagadougou, Burkina Faso
| | - Moussa Lingani
- grid.457337.10000 0004 0564 0509Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Ouagadougou, Burkina Faso
| | - Adoke Yeka
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration (IDRC), Kampala, Uganda
| | - Alain Nahum
- Centre de Recherches Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Marielle Bouyou-Akotet
- grid.502965.dDépartement de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine – Université des Sciences de la Santé, Libreville, Gabon
| | - Ghyslain Mombo-Ngoma
- grid.452268.fCentre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon ,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.10392.390000 0001 2190 1447Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Grace Kaguthi
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute-Centre for Respiratory Diseases Research (KEMRI-CRDR), Nairobi, Kenya
| | - Catalina Barceló
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | - Fiona Macintyre
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | - Helen Demarest
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Anne Claire Marrast
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Siaka Debe
- grid.507461.10000 0004 0413 3193Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 220801 BP 2208 Ouagadougou, Burkina Faso
| | - Halidou Tinto
- grid.457337.10000 0004 0564 0509Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Ouagadougou, Burkina Faso
| | - Afizi Kibuuka
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration (IDRC), Kampala, Uganda
| | - Diolinda Nahum
- Centre de Recherches Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Denise Patricia Mawili-Mboumba
- grid.502965.dDépartement de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine – Université des Sciences de la Santé, Libreville, Gabon
| | - Rella Zoleko-Manego
- grid.452268.fCentre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon ,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.10392.390000 0001 2190 1447Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Irene Mugenya
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute-Centre for Respiratory Diseases Research (KEMRI-CRDR), Nairobi, Kenya
| | - Frederick Olewe
- grid.33058.3d0000 0001 0155 5938Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya ,grid.442494.b0000 0000 9430 1509Centre for Research in Therapeutic Sciences (CREATES), Strathmore University, Nairobi, Kenya
| | - Stephan Duparc
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Bernhards Ogutu
- grid.33058.3d0000 0001 0155 5938Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya ,grid.442494.b0000 0000 9430 1509Centre for Research in Therapeutic Sciences (CREATES), Strathmore University, Nairobi, Kenya
| |
Collapse
|
18
|
Kumari G, Gupta A, Sah RK, Gautam A, Saini M, Gupta A, Kushawaha AK, Singh S, Sasmal PK. Development of Mitochondria Targeting AIE-Active Cyclometalated Iridium Complexes as Potent Antimalarial Agents. Adv Healthc Mater 2022; 12:e2202411. [PMID: 36515128 DOI: 10.1002/adhm.202202411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/10/2022] [Indexed: 12/15/2022]
Abstract
The emergence of resistance to conventional antimalarial treatments remains a major cause for concern. New drugs that target the distinct development stages of Plasmodium parasites are required to address this risk. Herein, water-soluble aggregation-induced emission active cyclometalated iridium(III) polypyridyl complexes (Ir1-Ir12) are developed for the elimination of malaria parasites. Remarkably, these complexes show potent antimalarial activity in low nanomolar range against 3D7 (chloroquine and artemisinin sensitive strain), RKL9 (chloroquine resistant strain), and R539T (artemisinin resistant strains) strains of Plasmodium falciparum with faster killing rate of malaria parasites. Concomitantly, these complexes exhibit efficient in vivo antimalarial activity against both the asexual and gametocyte stages of Plasmodium berghei malaria parasite, suggesting promising transmission-blocking potential. The complexes tend to localize into mitochondria of P. falciparum determined by image and cell-based assay. The mechanistic studies reveal that these complexes exert their antimalarial activity by increasing reactive oxygen species levels and disrupting its mitochondrial membrane potential. Furthermore, the mitochondrial-dependent antimalarial activity of these complexes is confirmed in yeast model. Thus, this study for the first time highlights the potential role of targeting P. falciparum mitochondria by iridium complexes in discovering and developing the next-generation antimalarial agents for treating multidrug resistant malaria parasites.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aryan Gautam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Budhha Nagar, Uttar Pradesh, 201314, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akhilesh K Kushawaha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
19
|
Synthesis of Novel Ferrocene-Benzofuran Hybrids via Palladium- and Copper-Catalyzed Reactions. INORGANICS 2022. [DOI: 10.3390/inorganics10110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combination of the ferrocene skeleton with pharmacophores often leads to molecules with interesting biological properties. Five ferrocene-benzofuran hybrids of different structures were synthesized by transition metal catalyzed reactions. The efficiency of both homogeneous and heterogeneous catalytic methods was tested. The products were characterized using 1H, 13C NMR and FTIR spectroscopy, HRMS and cyclic voltammetry. The structure of one of the new compounds was also proved with X-ray crystallography. The new hybrids showed moderate cytotoxicity on MCF-7 and MDA-MB-231 cell lines. It is remarkable that the less curable MDA-MB-231 cell line was more sensitive to treatment with three ferrocene derivatives.
Collapse
|
20
|
Cortopassi WA, Gunderson E, Annunciato Y, Silva A, dos Santos Ferreira A, Garcia Teles CB, Pimentel AS, Ramamoorthi R, Gazarini ML, Meneghetti MR, Guido R, Pereira DB, Jacobson MP, Krettli AU, Caroline C Aguiar A. Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues. Int J Parasitol Drugs Drug Resist 2022; 20:121-128. [PMID: 36375339 PMCID: PMC9771834 DOI: 10.1016/j.ijpddr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Malaria is among the tropical diseases that cause the most deaths in Africa. Around 500,000 malaria deaths are reported yearly among African children under the age of five. Chloroquine (CQ) is a low-cost antimalarial used worldwide for the treatment of Plasmodium vivax malaria. Due to resistance mechanisms, CQ is no longer effective against most malaria cases caused by P. falciparum. The World Health Organization recommends artemisinin combination therapies for P. falciparum malaria, but resistance is emerging in Southeast Asia and some parts of Africa. Therefore, new medicines for treating malaria are urgently needed. Previously, our group identified the 4-aminoquinoline DAQ, a CQ analog containing an acetylenic bond in its side chain, which overcomes CQ resistance in K1 P. falciparum strains. In this work, the antiplasmodial profile, drug-like properties, and pharmacokinetics of DAQ were further investigated. DAQ showed no cross-resistance against standard CQ-resistant strains (e.g., Dd2, IPC 4912, RF12) nor against P. falciparum and P. vivax isolates from patients in the Brazilian Amazon. Using drug pressure assays, DAQ showed a low propensity to generate resistance. DAQ showed considerable solubility but low metabolic stability. The main metabolite was identified as a mono N-deethylated derivative (DAQM), which also showed significant inhibitory activity against CQ-resistant P. falciparum strains. Our findings indicated that the presence of a triple bond in CQ-analogues may represent a low-cost opportunity to overcome known mechanisms of resistance in the malaria parasite.
Collapse
Affiliation(s)
- Wilian A. Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Emma Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Yasmin Annunciato
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Antony.E.S. Silva
- Group of Catalysis and Chemical Reactivity Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | | | - Andre S. Pimentel
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, RJ, Brazil
| | | | - Marcos L Gazarini
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Mario R. Meneghetti
- Group of Catalysis and Chemical Reactivity Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Rafael.V.C. Guido
- São Carlos Institute of Physics, University of Sao Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Dhelio B. Pereira
- Research Center in Tropical Medicine of Rondônia, Porto Velho, Rondônia, Brazil
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Antoniana U. Krettli
- Malaria Laboratory, René Rachou Research Center, FIOCRUZ, Belo Horizonte, MG, Brazil,Corresponding author.
| | - Anna Caroline C Aguiar
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil,São Carlos Institute of Physics, University of Sao Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13563-120, Brazil,Corresponding author.Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|
21
|
Sharma A, Apte A, Rajappa M, Vaz M, Vaswani V, Goenka S, Malhotra S, Sangoram R, Lakshminarayanan S, Jayaram S, Mathaiyan J, Farseena K, Mukerjee P, Jaswal S, Dongre A, Timms O, Shafiq N, Aggarwal R, Kaur M, Juvekar S, Sekhar A, Kang G. Perceptions about controlled human infection model (CHIM) studies among members of ethics committees of Indian medical institutions: A qualitative exploration. Wellcome Open Res 2022; 7:209. [PMID: 36969719 PMCID: PMC10031138 DOI: 10.12688/wellcomeopenres.17968.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction: Controlled Human Infection Model (CHIM) studies provide a unique platform for studying the pathophysiology of infectious diseases and accelerated testing of vaccines and drugs in controlled settings. However, ethical issues shroud them as the disease-causing pathogen is intentionally inoculated into healthy consenting volunteers, and effective treatment may or may not be available. We explored the perceptions of the members of institutional ethics committees (IECs) in India about CHIM studies. Methods: This qualitative exploratory study, conducted across seven sites in India, included 11 focused group discussions (FGD) and 31 in-depth interviews (IDI). A flexible approach was used with the aid of a topic guide. The data were thematically analyzed using grounded theory and an inductive approach. Emerging themes and sub-themes were analyzed, and major emergent themes were elucidated. Results: Seventy-two IEC members participated in the study including 21 basic medical scientists, 29 clinicians, 9 lay people, 6 legal experts and 7 social scientists. Three major themes emerged from this analysis-apprehensions about conduct of CHIM studies in India, a perceived need for CHIM studies in India and risk mitigation measures needed to protect research participants and minimize the associated risks. Conclusion: Development of a specific regulatory and ethical framework, training of research staff and ethics committee members, and ensuring specialized research infrastructure along with adequate community sensitization were considered essential before initiation of CHIM studies in India.
Collapse
Affiliation(s)
- Abhishek Sharma
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Aditi Apte
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Medha Rajappa
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Manjulika Vaz
- St John's Medical College, Bengaluru, Karnataka, 560034, India
| | - Vina Vaswani
- Yenepoya University, Mangalore, Karnataka, 575018, India
| | - Shifalika Goenka
- Centre for Chronic Disease Control (CCDC), Delhi, Delhi, 110016, India
| | - Samir Malhotra
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Rashmi Sangoram
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Subitha Lakshminarayanan
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Suganya Jayaram
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Jayanthi Mathaiyan
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | | | - Prarthna Mukerjee
- Centre for Chronic Disease Control (CCDC), Delhi, Delhi, 110016, India
| | - Surinder Jaswal
- Tata Institute of Social Sciences, Mumbai, Maharashtra, 400088, India
| | - Amol Dongre
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | - Olinda Timms
- St John's Medical College, Bengaluru, Karnataka, 560034, India
| | - Nusrat Shafiq
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Rakesh Aggarwal
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, Puducherry, 605006, India
| | - Manmeet Kaur
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, 160014, India
| | - Sanjay Juvekar
- KEM Hospital Research Centre, Pune, Maharashtra, 411011, India
| | - Amrita Sekhar
- Translational Health Science and Technology Institute, Faridabad, Haryana, 101213, India
| | - Gagandeep Kang
- Christian Medical College, Vellore, Tamil Nadu, 632004, India
| |
Collapse
|
22
|
Barber BE, Fernandez M, Patel HB, Barcelo C, Woolley SD, Patel H, Llewellyn S, Abd-Rahman AN, Sharma S, Jain M, Ghoghari A, Di Resta I, Fuchs A, Deni I, Yeo T, Mok S, Fidock DA, Chalon S, Möhrle JJ, Parmar D, McCarthy JS, Kansagra K. Safety, pharmacokinetics, and antimalarial activity of the novel triaminopyrimidine ZY-19489: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study, pilot food-effect study, and volunteer infection study. THE LANCET INFECTIOUS DISEASES 2022; 22:879-890. [DOI: 10.1016/s1473-3099(21)00679-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023]
|
23
|
Biancalana L, Kubeil M, Schoch S, Zacchini S, Marchetti F. Switching on Cytotoxicity of Water-Soluble Diiron Organometallics by UV Irradiation. Inorg Chem 2022; 61:7897-7909. [PMID: 35537207 PMCID: PMC9951222 DOI: 10.1021/acs.inorgchem.2c00504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diiron compounds [Fe2Cp2(CO)2(μ-CO)(μ-CSEt)]CF3SO3, [1]CF3SO3, K[Fe2Cp2(CO)3(CNCH2CO2)], K[2], [Fe2Cp2(CO)2(μ-CO)(μ-CNMe2)]NO3, [3]NO3, [Fe2Cp2(CO)2(PTA){μ-CNMe(Xyl)}]CF3SO3, [4]CF3SO3, and [Fe2Cp2(CO)(μ-CO){μ-η:1η3-C(4-C6H4CO2H)CHCNMe2}]CF3SO3, [5]CF3SO3, containing a bridging carbyne, isocyanoacetate, or vinyliminium ligand, were investigated for their photoinduced cytotoxicity. Specifically, the novel water-soluble compounds K[2], [3]NO3, and [4]CF3SO3 were synthesized and characterized by elemental analysis and IR and multinuclear NMR spectroscopy. Stereochemical aspects concerning [4]CF3SO3 were elucidated by 1H NOESY NMR and single-crystal X-ray diffraction. Cell proliferation studies on human skin cancer (A431) and nontumoral embryonic kidney (HEK293) cells, with and without a 10-min exposure to low-power UV light (350 nm), highlighted the performance of the aminocarbyne [3]NO3, nicknamed NIRAC (Nitrate-Iron-Aminocarbyne), which is substantially nontoxic in the dark but shows a marked photoinduced cytotoxicity. Spectroscopic (IR, UV-vis, NMR) measurements and the myoglobin assay indicated that the release of one carbon monoxide ligand represents the first step of the photoactivation process of NIRAC, followed by an extensive disassembly of the organometallic scaffold.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy,
| | - Manja Kubeil
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Silvia Schoch
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Zacchini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Fabio Marchetti
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
24
|
Abd-Rahman AN, Zaloumis S, McCarthy JS, Simpson JA, Commons RJ. Scoping Review of Antimalarial Drug Candidates in Phase I and II Drug Development. Antimicrob Agents Chemother 2022; 66:e0165921. [PMID: 34843390 PMCID: PMC8846400 DOI: 10.1128/aac.01659-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and spread of parasite resistance to currently available antimalarials has highlighted the importance of developing novel antimalarials. This scoping review provides an overview of antimalarial drug candidates undergoing phase I and II studies between 1 January 2016 and 28 April 2021. PubMed, Web of Science, Embase, clinical trial registries, and reference lists were searched for relevant studies. Information regarding antimalarial compound details, clinical trial characteristics, study population, and drug pharmacokinetics and pharmacodynamics (PK-PD) were extracted. A total of 50 studies were included, of which 24 had published their results and 26 were unpublished. New antimalarial compounds were evaluated as monotherapy (28 studies, 14 drug candidates) and combination therapy (9 studies, 10 candidates). Fourteen active compounds were identified in the current antimalarial drug development pipeline together with 11 compounds that are inactive, 6 due to insufficient efficacy. PK-PD data were available from 24 studies published as open-access articles. Four unpublished studies have made their results publicly available on clinical trial registries. The terminal elimination half-life of new antimalarial compounds ranged from 14.7 to 483 h. The log10 parasite reduction ratio over 48 h and parasite clearance half-life for Plasmodium falciparum following a single-dose monotherapy were 1.55 to 4.1 and 3.4 to 9.4 h, respectively. The antimalarial drug development landscape has seen a number of novel compounds, with promising PK-PD properties, evaluated in phase I and II studies over the past 5 years. Timely public disclosure of PK-PD data is crucial for informative decision-making and drug development strategy.
Collapse
Affiliation(s)
| | - Sophie Zaloumis
- Biostatistics Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - James S. McCarthy
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and the Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Julie A. Simpson
- Biostatistics Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Robert J. Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Internal Medical Services, Ballarat Health Services, Ballarat, Victoria, Australia
| |
Collapse
|
25
|
Woolley SD, Marquart L, Woodford J, Chalon S, Moehrle JJ, McCarthy JS, Barber BE. Haematological response in experimental human Plasmodium falciparum and Plasmodium vivax malaria. Malar J 2021; 20:470. [PMID: 34930260 PMCID: PMC8685492 DOI: 10.1186/s12936-021-04003-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background Malaria-associated anaemia, arising from symptomatic, asymptomatic and submicroscopic infections, is a significant cause of morbidity worldwide. Induced blood stage malaria volunteer infection studies (IBSM-VIS) provide a unique opportunity to evaluate the haematological response to early Plasmodium falciparum and Plasmodium vivax infection. Methods This study was an analysis of the haemoglobin, red cell counts, and parasitaemia data from 315 participants enrolled in IBSM-VIS between 2012 and 2019, including 269 participants inoculated with the 3D7 strain of P. falciparum (Pf3D7), 15 with an artemisinin-resistant P. falciparum strain (PfK13) and 46 with P. vivax. Factors associated with the fractional fall in haemoglobin (Hb-FF) were evaluated, and the malaria-attributable erythrocyte loss after accounting for phlebotomy-related losses was estimated. The relative contribution of parasitized erythrocytes to the malaria-attributable erythrocyte loss was also estimated. Results The median peak parasitaemia prior to treatment was 10,277 parasites/ml (IQR 3566–27,815), 71,427 parasites/ml [IQR 33,236–180,213], and 34,840 parasites/ml (IQR 13,302–77,064) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. The median Hb-FF was 10.3% (IQR 7.8–13.3), 14.8% (IQR 11.8–15.9) and 11.7% (IQR 8.9–14.5) in those inoculated with Pf3D7, PfK13 and P. vivax, respectively, with the haemoglobin nadir occurring a median 12 (IQR 5–21), 15 (IQR 7–22), and 8 (IQR 7–15) days following inoculation. In participants inoculated with P. falciparum, recrudescence was associated with a greater Hb-FF, while in those with P. vivax, the Hb-FF was associated with a higher pre-treatment parasitaemia and later day of anti-malarial treatment. After accounting for phlebotomy-related blood losses, the estimated Hb-FF was 4.1% (IQR 3.1–5.3), 7.2% (IQR 5.8–7.8), and 4.9% (IQR 3.7–6.1) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. Parasitized erythrocytes were estimated to account for 0.015% (IQR 0.006–0.06), 0.128% (IQR 0.068–0.616) and 0.022% (IQR 0.008–0.082) of the malaria-attributable erythrocyte loss in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. Conclusion Early experimental P. falciparum and P. vivax infection resulted in a small but significant fall in haemoglobin despite parasitaemia only just at the level of microscopic detection. Loss of parasitized erythrocytes accounted for < 0.2% of the total malaria-attributable haemoglobin loss. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04003-7.
Collapse
|
26
|
Sharma B, Kumar V. Has Ferrocene Really Delivered Its Role in Accentuating the Bioactivity of Organic Scaffolds? J Med Chem 2021; 64:16865-16921. [PMID: 34792350 DOI: 10.1021/acs.jmedchem.1c00390] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ferrocene is an important structural core in bioorganometallic chemistry because of its inherent stability, excellent redox properties, and low toxicity. Ferroquine and ferrocifen are two of the most notable contributions of ferrocene to medicinal chemistry with remarkable antimalarial and anticancer properties. The improved medicinal properties of these drug candidates highlight the impact that ferrocene can have on the molecular and biological properties of the bioactive compounds. In this Perspective, we investigate the scope and limitations of ferrocene incorporation into organic compounds/natural products on their mode of action and biological activities. We have also discussed the detailed role of ferrocene modifications in influencing the anticancer, antimalarial, and antimicrobial properties of various bioactive moieties to design safer and promising ferrocene-based drugs.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
27
|
McCarthy JS, Yalkinoglu Ö, Odedra A, Webster R, Oeuvray C, Tappert A, Bezuidenhout D, Giddins MJ, Dhingra SK, Fidock DA, Marquart L, Webb L, Yin X, Khandelwal A, Bagchus WM. Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1713-1724. [PMID: 34715032 PMCID: PMC8612936 DOI: 10.1016/s1473-3099(21)00252-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND M5717 is the first plasmodium translation elongation factor 2 inhibitor to reach clinical development as an antimalarial. We aimed to characterise the safety, pharmacokinetics, and antimalarial activity of M5717 in healthy volunteers. METHODS This first-in-human study was a two-part, single-centre clinical trial done in Brisbane, QLD, Australia. Part one was a double-blind, randomised, placebo-controlled, single ascending dose study in which participants were enrolled into one of nine dose cohorts (50, 100, 200, 400, 600, 1000, 1250, 1800, or 2100 mg) and randomly assigned (3:1) to M5717 or placebo. A sentinel dosing strategy was used for each dose cohort whereby two participants (one assigned to M5717 and one assigned to placebo) were initially randomised and dosed. Randomisation schedules were generated electronically by independent, unblinded statisticians. Part two was an open-label, non-randomised volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model in which participants were enrolled into three dose cohorts. Healthy men and women of non-childbearing potential aged 18-55 years were eligible for inclusion; individuals in the volunteer infection study were required to be malaria naive. Safety and tolerability (primary outcome of the single ascending dose study and secondary outcome of the volunteer infection study) were assessed by frequency and severity of adverse events. The pharmacokinetic profile of M5717 was also characterised (primary outcome of the volunteer infection study and secondary outcome of the single ascending dose study). Parasite clearance kinetics (primary outcome of the volunteer infection study) were assessed by the parasite reduction ratio and the corresponding parasite clearance half-life; the incidence of recrudescence up to day 28 was determined (secondary outcome of the volunteer infection study). Recrudescent parasites were tested for genetic mutations (exploratory outcome). The trial is registered with ClinicalTrials.gov (NCT03261401). FINDINGS Between Aug 28, 2017, and June 14, 2019, 221 individuals were assessed for eligibility, of whom 66 men were enrolled in the single ascending dose study (eight per cohort for 50-1800 mg cohorts, randomised three M5717 to one placebo, and two in the 2100 mg cohort, randomised one M5717 to one placebo) and 22 men were enrolled in the volunteer infection study (six in the 150 mg cohort and eight each in the 400 mg and 800 mg cohorts). No adverse event was serious; all M5717-related adverse events were mild or moderate in severity and transient, with increased frequency observed at doses above 1250 mg. In the single ascending dose study, treatment-related adverse events occurred in three of 17 individuals in the placebo group; no individual in the 50 mg, 100 mg, or 200 mg groups; one of six individuals in each of the 400 mg, 1000 mg, and 1250 mg groups; two of six individuals in the 600 mg group; and in all individuals in the 1800 mg and 2100 mg groups. In the volunteer infection study, M5717-related adverse events occurred in no participants in the 150 mg or 800 mg groups and in one of eight participants in the 400 mg group. Transient oral hypoesthesia (in three participants) and blurred vision (in four participants) were observed in the 1800 mg or 2100 mg groups and constituted an unknown risk; thus, further dosing was suspended after dosing of the two sentinel individuals in the 2100 mg cohort. Maximum blood concentrations occurred 1-7 h after dosing, and a long half-life was observed (146-193 h at doses ≥200 mg). Parasite clearance occurred in all participants and was biphasic, characterised by initial slow clearance lasting 35-55 h (half-life 231·1 h [95% CI 40·9 to not reached] for 150 mg, 60·4 h [38·6 to 138·6] for 400 mg, and 24·7 h [20·4 to 31·3] for 800 mg), followed by rapid clearance (half-life 3·5 h [3·1 to 4·0] for 150 mg, 3·9 h [3·3 to 4·8] for 400 mg, and 5·5 h [4·8 to 6·4] for 800 mg). Recrudescence occurred in three (50%) of six individuals dosed with 150 mg and two (25%) of eight individuals dosed with 400 mg. Genetic mutations associated with resistance were detected in four cases of parasite recrudescence (two individuals dosed with 150 mg and two dosed with 400 mg). INTERPRETATION The safety, pharmacokinetics, and antimalarial activity of M5717 support its development as a component of a single-dose antimalarial combination therapy or for malaria prophylaxis. FUNDING Wellcome Trust and the healthcare business of Merck KGaA, Darmstadt, Germany.
Collapse
Affiliation(s)
- James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and the Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Claude Oeuvray
- The Global Health Institute of Merck (an affiliate of Merck KGaA), Eysin, Switzerland
| | - Aliona Tappert
- the healthcare business of Merck KGaA, Darmstadt, Germany
| | | | - Marla J Giddins
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiaoyan Yin
- Global Statistics for NDD, Immunology, Endocrinology, Fertility & Others, EMD Serono, Billerica, MA, USA
| | | | | |
Collapse
|
28
|
Nordmann T, Borrmann S, Ramharter M. Drug-induced hypersensitivity to artemisinin-based therapies for malaria. Trends Parasitol 2021; 38:136-146. [PMID: 34561157 DOI: 10.1016/j.pt.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
In the early 2000s, artemisinin-based combination therapy (ACT) was introduced as first-line treatment for uncomplicated Plasmodium falciparum malaria in virtually all endemic countries. However, despite the well-known excellent tolerability of ACTs, hypersensitivity to artemisinin derivatives remains a repeatedly documented adverse drug reaction of still unknown frequency. The clinical features of an artemisinin-induced hypersensitivity reaction range from mild to life-threatening severity, and a significant number of cases may pass unnoticed. In this review, we discuss the medical importance of hypersensitivity to artemisinin derivatives and we review data on the presumed frequency and its potential underlying mechanisms. Furthermore, we advocate to make alternative non-artemisinin-based drugs available for patients who do not tolerate artemisinin derivatives and to continue investing in the development of novel non-artemisinin-based combination regimens.
Collapse
Affiliation(s)
- Tamara Nordmann
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Steffen Borrmann
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany; Centre de Recherches Médicale de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Michael Ramharter
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany; Centre de Recherches Médicale de Lambaréné (CERMEL), Lambaréné, Gabon.
| |
Collapse
|
29
|
Koepfli C, Nguitragool W, de Almeida ACG, Kuehn A, Waltmann A, Kattenberg E, Ome-Kaius M, Rarau P, Obadia T, Kazura J, Monteiro W, Darcy AW, Wini L, Bassat Q, Felger I, Sattabongkot J, Robinson LJ, Lacerda M, Mueller I. Identification of the asymptomatic Plasmodium falciparum and Plasmodium vivax gametocyte reservoir under different transmission intensities. PLoS Negl Trop Dis 2021; 15:e0009672. [PMID: 34449764 PMCID: PMC8428688 DOI: 10.1371/journal.pntd.0009672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 09/09/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Understanding epidemiological variables affecting gametocyte carriage and density is essential to design interventions that most effectively reduce malaria human-to-mosquito transmission. Methodology/Principal findings Plasmodium falciparum and P. vivax parasites and gametocytes were quantified by qPCR and RT-qPCR assays using the same methodologies in 5 cross-sectional surveys involving 16,493 individuals in Brazil, Thailand, Papua New Guinea, and Solomon Islands. The proportion of infections with detectable gametocytes per survey ranged from 44–94% for P. falciparum and from 23–72% for P. vivax. Blood-stage parasite density was the most important predictor of the probability to detect gametocytes. In moderate transmission settings (prevalence by qPCR>5%), parasite density decreased with age and the majority of gametocyte carriers were children. In low transmission settings (prevalence<5%), >65% of gametocyte carriers were adults. Per survey, 37–100% of all individuals positive for gametocytes by RT-qPCR were positive by light microscopy for asexual stages or gametocytes (overall: P. falciparum 178/348, P. vivax 235/398). Conclusions/Significance Interventions to reduce human-to-mosquito malaria transmission in moderate-high endemicity settings will have the greatest impact when children are targeted. In contrast, all age groups need to be included in control activities in low endemicity settings to achieve elimination. Detection of infections by light microscopy is a valuable tool to identify asymptomatic blood stage infections that likely contribute most to ongoing transmission at the time of sampling. Plasmodium vivax and Plasmodium falciparum cause the vast majority of all human malaria cases. Across all transmission settings, a large proportion of infections of the two species remain asymptomatic. These infections are not diagnosed and treated by control programs focusing on clinical cases. They can carry gametocytes, the sexual stage of the parasite that establishes infections in mosquitos, thus asymptomatic infections contribute to transmission. In order to determine who is likely to contribute to transmission, gametocyte densities were measured by sensitive molecular methods in afebrile individuals in four countries. The proportion of infections with gametocytes varied greatly among surveys, and was higher in regions that had experienced low transmission for extended periods of time. In moderate-high transmission settings, gametocyte densities were particularly high in children below six years, highlighting the importance that interventions to reduce transmission include this age group. The majority of gametocyte carriers was positive by light microscopy. The comprehensive data on gametocyte carriage presented here lays the foundation for the development of more effective screen and treat activities to reduce malaria transmission.
Collapse
Affiliation(s)
- Cristian Koepfli
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- University of Notre Dame, Eck Institute for Global Health, Department of Biological Sciences, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anne Cristine Gomes de Almeida
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Universidade do Estado do Amazonas, Manaus, Brazil
| | - Andrea Kuehn
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Andreea Waltmann
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Eline Kattenberg
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Maria Ome-Kaius
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Patricia Rarau
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Thomas Obadia
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Unité Malaria: parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - James Kazura
- Centre for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wuelton Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Universidade do Estado do Amazonas, Manaus, Brazil
| | - Andrew W. Darcy
- National Health Training and Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Lyndes Wini
- Vector Borne Diseases Program, Ministry of Health, Honiara, Solomon Islands
| | - Quique Bassat
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Leanne J. Robinson
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Ivo Mueller
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Unité Malaria: parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
30
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
31
|
Abstract
Metal complexes have been widely used for applications in the chemical and physical sciences due to their unique electronic and stereochemical properties. For decades the use of metal complexes for medicinal applications has been postulated and demonstrated. The distinct characteristics of metal complexes, including their molecular geometries (that are not readily accessed by organic molecules), as well as their ligand exchange, redox, catalytic, and photophysical reactions, give these compounds the potential to interact and react with biomolecules in unique ways and by distinct mechanisms of action. Herein, the potential of metal complexes to act as components bioactive therapeutic compounds is discussed.
Collapse
Affiliation(s)
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
32
|
A randomized, double-blind, phase 2b study to investigate the efficacy, safety, tolerability and pharmacokinetics of a single-dose regimen of ferroquine with artefenomel in adults and children with uncomplicated Plasmodium falciparum malaria. Malar J 2021; 20:222. [PMID: 34011358 PMCID: PMC8135182 DOI: 10.1186/s12936-021-03749-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background For uncomplicated Plasmodium falciparum malaria, highly efficacious single-dose treatments are expected to increase compliance and improve treatment outcomes, and thereby may slow the development of resistance. The efficacy and safety of a single-dose combination of artefenomel (800 mg) plus ferroquine (400/600/900/1200 mg doses) for the treatment of uncomplicated P. falciparum malaria were evaluated in Africa (focusing on children ≤ 5 years) and Asia. Methods The study was a randomized, double-blind, single-dose, multi-arm clinical trial in patients aged > 6 months to < 70 years, from six African countries and Vietnam. Patients were followed up for 63 days to assess treatment efficacy, safety and pharmacokinetics. The primary efficacy endpoint was the polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) at Day 28 in the Per-Protocol [PP] Set comprising only African patients ≤ 5 years. The exposure–response relationship for PCR-adjusted ACPR at Day 28 and prevalence of kelch-13 mutations were explored. Results A total of 373 patients were treated: 289 African patients ≤ 5 years (77.5%), 64 African patients > 5 years and 20 Asian patients. None of the treatment arms met the target efficacy criterion for PCR-adjusted ACPR at Day 28 (lower limit of 95% confidence interval [CI] > 90%). PCR-adjusted ACPR at Day 28 [95% CI] in the PP Set ranged from 78.4% [64.7; 88.7%] to 91.7% [81.6; 97.2%] for the 400 mg to 1200 mg ferroquine dose. Efficacy rates were low in Vietnamese patients, ranging from 20 to 40%. A clear relationship was found between drug exposure (artefenomel and ferroquine concentrations at Day 7) and efficacy (primary endpoint), with higher concentrations of both drugs resulting in higher efficacy. Six distinct kelch-13 mutations were detected in parasite isolates from 10/272 African patients (with 2 mutations known to be associated with artemisinin resistance) and 18/20 Asian patients (all C580Y mutation). Vomiting within 6 h of initial artefenomel administration was common (24.6%) and associated with lower drug exposures. Conclusion The efficacy of artefenomel/ferroquine combination was suboptimal in African children aged ≤ 5 years, the population of interest, and vomiting most likely had a negative impact on efficacy. Trial registration ClinicalTrials.gov, NCT02497612. Registered 14 Jul 2015, https://clinicaltrials.gov/ct2/show/NCT02497612?term=NCT02497612&draw=2&rank=1 Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03749-4.
Collapse
|
33
|
McCarthy JS, Donini C, Chalon S, Woodford J, Marquart L, Collins KA, Rozenberg FD, Fidock DA, Cherkaoui-Rbati MH, Gobeau N, Möhrle JJ. A Phase 1, Placebo-controlled, Randomized, Single Ascending Dose Study and a Volunteer Infection Study to Characterize the Safety, Pharmacokinetics, and Antimalarial Activity of the Plasmodium Phosphatidylinositol 4-Kinase Inhibitor MMV390048. Clin Infect Dis 2021; 71:e657-e664. [PMID: 32239164 PMCID: PMC7744986 DOI: 10.1093/cid/ciaa368] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023] Open
Abstract
Background MMV390048 is the first Plasmodium phosphatidylinositol 4-kinase inhibitor to reach clinical development as a new antimalarial. We aimed to characterize the safety, pharmacokinetics, and antimalarial activity of a tablet formulation of MMV390048. Methods A 2-part, phase 1 trial was conducted in healthy adults. Part 1 was a double-blind, randomized, placebo-controlled, single ascending dose study consisting of 3 cohorts (40, 80, 120 mg MMV390048). Part 2 was an open-label volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model consisting of 2 cohorts (40 mg and 80 mg MMV390048). Results Twenty four subjects were enrolled in part 1 (n = 8 per cohort, randomized 3:1 MMV390048:placebo) and 15 subjects were enrolled in part 2 (40 mg [n = 7] and 80 mg [n = 8] cohorts). One subject was withdrawn from part 2 (80 mg cohort) before dosing and was not included in analyses. No serious or severe adverse events were attributed to MMV390048. The rate of parasite clearance was greater in subjects administered 80 mg compared to those administered 40 mg (clearance half-life 5.5 hours [95% confidence interval {CI}, 5.2–6.0 hours] vs 6.4 hours [95% CI, 6.0–6.9 hours]; P = .005). Pharmacokinetic/pharmacodynamic modeling estimated a minimum inhibitory concentration of 83 ng/mL and a minimal parasiticidal concentration that would achieve 90% of the maximum effect of 238 ng/mL, and predicted that a single 120-mg dose would achieve an adequate clinical and parasitological response with 92% certainty. Conclusions The safety, pharmacokinetics, and pharmacodynamics of MMV390048 support its further development as a partner drug of a single-dose combination therapy for malaria. Clinical Trials Registration NCT02783820 (part 1); NCT02783833 (part 2).
Collapse
Affiliation(s)
- James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | | | - John Woodford
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Felix D Rozenberg
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | | |
Collapse
|
34
|
Parasite-Host Dynamics throughout Antimalarial Drug Development Stages Complicate the Translation of Parasite Clearance. Antimicrob Agents Chemother 2021; 65:AAC.01539-20. [PMID: 33526486 PMCID: PMC8097426 DOI: 10.1128/aac.01539-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
Ensuring continued success against malaria depends on a pipeline of new antimalarials. Antimalarial drug development utilizes preclinical murine and experimental human malaria infection studies to evaluate drug efficacy. Ensuring continued success against malaria depends on a pipeline of new antimalarials. Antimalarial drug development utilizes preclinical murine and experimental human malaria infection studies to evaluate drug efficacy. A sequential approach is typically adapted, with results from each stage informing the design of the next stage of development. The validity of this approach depends on confidence that results from murine malarial studies predict the outcome of clinical trials in humans. Parasite clearance rates following treatment are key parameters of drug efficacy. To investigate the validity of forward predictions, we developed a suite of mathematical models to capture parasite growth and drug clearance along the drug development pathway and estimated parasite clearance rates. When comparing the three infection experiments, we identified different relationships of parasite clearance with dose and different maximum parasite clearance rates. In Plasmodium berghei-NMRI mouse infections, we estimated a maximum parasite clearance rate of 0.2 (1/h); in Plasmodium falciparum-SCID mouse infections, 0.05 (1/h); and in human volunteer infection studies with P. falciparum, we found a maximum parasite clearance rate of 0.12 (1/h) and 0.18 (1/h) after treatment with OZ439 and MMV048, respectively. Sensitivity analysis revealed that host-parasite driven processes account for up to 25% of variance in parasite clearance for medium-high doses of antimalarials. Although there are limitations in translating parasite clearance rates across these experiments, they provide insight into characterizing key parameters of drug action and dose response and assist in decision-making regarding dosage for further drug development.
Collapse
|
35
|
Woolley SD, Fernandez M, Rebelo M, Llewellyn SA, Marquart L, Amante FH, Jennings HE, Webster R, Trenholme K, Chalon S, Moehrle JJ, McCarthy JS, Barber BE. Development and evaluation of a new Plasmodium falciparum 3D7 blood stage malaria cell bank for use in malaria volunteer infection studies. Malar J 2021; 20:93. [PMID: 33593375 PMCID: PMC7885253 DOI: 10.1186/s12936-021-03627-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND New anti-malarial therapeutics are required to counter the threat of increasing drug resistance. Malaria volunteer infection studies (VIS), particularly the induced blood stage malaria (IBSM) model, play a key role in accelerating anti-malarial drug development. Supply of the reference 3D7-V2 Plasmodium falciparum malaria cell bank (MCB) is limited. This study aimed to develop a new MCB, and compare the safety and infectivity of this MCB with the existing 3D7-V2 MCB, in a VIS. A second bank (3D7-V1) developed in 1995 was also evaluated. METHODS The 3D7-V2 MCB was expanded in vitro using a bioreactor to produce a new MCB designated 3D7-MBE-008. This bank and 3D7-V1 were then evaluated using the IBSM model, where healthy participants were intravenously inoculated with blood-stage parasites. Participants were treated with artemether-lumefantrine when parasitaemia or clinical thresholds were reached. Safety, infectivity and parasite growth and clearance were evaluated. RESULTS The in vitro expansion of 3D7-V2 produced 200 vials of the 3D7-MBE-008 MCB, with a parasitaemia of 4.3%. This compares to 0.1% in the existing 3D7-V2 MCB, and < 0.01% in the 3D7-V1 MCB. All four participants (two per MCB) developed detectable P. falciparum infection after inoculation with approximately 2800 parasites. For the 3D7-MBE-008 MCB, the parasite multiplication rate of 48 h (PMR48) using non-linear mixed effects modelling was 34.6 (95% CI 18.5-64.6), similar to the parental 3D7-V2 line; parasitaemia in both participants exceeded 10,000/mL by day 8. Growth of the 3D7-V1 was slower (PMR48 of 11.5 [95% CI 8.5-15.6]), with parasitaemia exceeding 10,000 parasites/mL on days 10 and 8.5. Rapid parasite clearance followed artemether-lumefantrine treatment in all four participants, with clearance half-lives of 4.01 and 4.06 (weighted mean 4.04 [95% CI 3.61-4.57]) hours for 3D7-MBE-008 and 4.11 and 4.52 (weighted mean 4.31 [95% CI 4.16-4.47]) hours for 3D7-V1. A total of 59 adverse events occurred; most were of mild severity with three being severe in the 3D7-MBE-008 study. CONCLUSION The safety, growth and clearance profiles of the expanded 3D7-MBE-008 MCB closely resemble that of its parent, indicating its suitability for future studies. TRIAL REGISTRATION Australian New Zealand Clinical Trials registry numbers: P3487 (3D7-V1): ACTRN12619001085167. P3491 (3D7-MBE-008): ACTRN12619001079134.
Collapse
Affiliation(s)
- Stephen D Woolley
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Defence Pathology, Royal Centre for Defence Medicine, Joint Hospital Group, ICT Building, Birmingham Research Park, Vincent Drive, Birmingham, UK
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | | | - Maria Rebelo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helen E Jennings
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Katharine Trenholme
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Stephan Chalon
- Medicines for Malaria Venture, 20 Route de Pre-Bois, PO Box 1826, 1215, Geneva 15, Switzerland
| | - Joerg J Moehrle
- Medicines for Malaria Venture, 20 Route de Pre-Bois, PO Box 1826, 1215, Geneva 15, Switzerland
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
36
|
Defining the Antimalarial Activity of Cipargamin in Healthy Volunteers Experimentally Infected with Blood-Stage Plasmodium falciparum. Antimicrob Agents Chemother 2021; 65:AAC.01423-20. [PMID: 33199389 PMCID: PMC7849011 DOI: 10.1128/aac.01423-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022] Open
Abstract
The spiroindolone cipargamin, a new antimalarial compound that inhibits Plasmodium ATP4, is currently in clinical development. This study aimed to characterize the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum. The spiroindolone cipargamin, a new antimalarial compound that inhibits Plasmodium ATP4, is currently in clinical development. This study aimed to characterize the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum. Eight subjects were intravenously inoculated with parasite-infected erythrocytes and received a single oral dose of 10 mg cipargamin 7 days later. Blood samples were collected to monitor the development and clearance of parasitemia and plasma cipargamin concentrations. Parasite regrowth was treated with piperaquine monotherapy to clear asexual parasites, while allowing gametocyte transmissibility to mosquitoes to be investigated. An initial rapid decrease in parasitemia occurred in all participants following cipargamin dosing, with a parasite clearance half-life of 3.99 h. As anticipated from the dose selected, parasite regrowth occurred in all 8 subjects 3 to 8 days after dosing and allowed the pharmacokinetic/pharmacodynamic relationship to be determined. Based on the limited data from the single subtherapeutic dose cohort, a MIC of 11.6 ng/ml and minimum parasiticidal concentration that achieves 90% of maximum effect of 23.5 ng/ml were estimated, and a single 95-mg dose (95% confidence interval [CI], 50 to 270) was predicted to clear 109 parasites/ml. Low gametocyte densities were detected in all subjects following piperaquine treatment, which did not transmit to mosquitoes. Serious adverse liver function changes were observed in three subjects, which led to premature study termination. The antimalarial activity characterized in this study supports the further clinical development of cipargamin as a new treatment for P. falciparum malaria, although the hepatic safety profile of the compound warrants further evaluation. (This study has been registered at ClinicalTrials.gov under identifier NCT02543086.)
Collapse
|
37
|
Andrews KA, Owen JS, McCarthy J, Wesche D, Gobeau N, Grasela TH, Möhrle JJ. Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development. Clin Transl Sci 2020; 14:712-719. [PMID: 33326705 PMCID: PMC7993277 DOI: 10.1111/cts.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 01/23/2023] Open
Abstract
Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single-dose cohorts, as many as necessary to obtain the dose-response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose-response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive-cohort data for OZ439 (mixing the data of the three single-dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three-compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug-induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single-cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single-cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies.
Collapse
Affiliation(s)
- Kayla Ann Andrews
- Cognigen Corporation, a SimulationsPlus Company, Buffalo, New York, USA.,Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Joel S Owen
- Cognigen Corporation, a SimulationsPlus Company, Buffalo, New York, USA
| | - James McCarthy
- The Royal Melbourne Hospital, The University of Melbourne at the Doherty Institute, Melbourne, Australia
| | - David Wesche
- Certara Strategic Consulting, Princeton, New Jersey, USA
| | | | | | | |
Collapse
|
38
|
Ong YC, Gasser G. Organometallic compounds in drug discovery: Past, present and future. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:117-124. [PMID: 34895650 DOI: 10.1016/j.ddtec.2019.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 06/14/2023]
Abstract
In this review, we present an overview of some of the medicinally-relevant organometallic drugs that have been used in the past or that are currently in clinical trials as well as an example of compounds that are currently in the initial stage of drug development. Three main classes of organometallic complexes have been chosen for discussion: antimicrobial organoarsenicals, antimalarial and anticancer ferrocene-containing compounds and anticancer catalytic organometallic complexes. The purpose of this review is to provide readers with a focus on the significant progress that has been made for each of these respective fields of medicine.
Collapse
Affiliation(s)
- Yih Ching Ong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France.
| |
Collapse
|
39
|
Odedra A, Webb L, Marquart L, Britton LJ, Chalon S, Moehrle JJ, Anstey NM, William T, Grigg MJ, Lalloo DG, Barber BE, McCarthy JS. Liver Function Test Abnormalities in Experimental and Clinical Plasmodium vivax Infection. Am J Trop Med Hyg 2020; 103:1910-1917. [PMID: 32815508 PMCID: PMC7646782 DOI: 10.4269/ajtmh.20-0491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5–8 days post-treatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26–14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91–27.47; P = 0.06), this risk disappeared when corrected for PCB. Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory.
Collapse
Affiliation(s)
- Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Laurence J Britton
- School of Medicine, The University of Queensland, Brisbane, Australia.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia
| | | | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Timothy William
- Gleneagles Hospital, Kota Kinabalu, Malaysia.,Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - David G Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | |
Collapse
|
40
|
Wockner LF, Hoffmann I, Webb L, Mordmüller B, Murphy SC, Kublin JG, O'Rourke P, McCarthy JS, Marquart L. Growth Rate of Plasmodium falciparum: Analysis of Parasite Growth Data From Malaria Volunteer Infection Studies. J Infect Dis 2020; 221:963-972. [PMID: 31679015 PMCID: PMC7198127 DOI: 10.1093/infdis/jiz557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Growth rate of malaria parasites in the blood of infected subjects is an important
measure of efficacy of drugs and vaccines. Methods We used log-linear and sine-wave models to estimate the parasite growth rate of the 3D7
strain of Plasmodium falciparum using data from 177 subjects from 14
induced blood stage malaria (IBSM) studies conducted at QIMR Berghofer. We estimated
parasite multiplication rate per 48 hour (PMR48), PMR per life-cycle
(PMRLC), and parasite life-cycle duration. We compared these parameters to
those from studies conducted elsewhere with infections induced by IBSM (n=66),
sporozoites via mosquito bite (n=336) or injection (n=51). Results The parasite growth rate of 3D7 in QIMR Berghofer studies was 0.75/day (95% CI:
0.73–0.77/day), PMR48 was 31.9 (95% CI: 28.7–35.4),
PMRLC was 16.4 (95% CI: 15.1–17.8) and parasite life-cycle was 38.8
hour (95% CI: 38.3–39.2 hour). These parameters were similar to estimates from
IBSM studies elsewhere (0.71/day, 95% CI: 0.67–0.75/day; PMR48 26.6,
95% CI: 22.2–31.8), but significantly higher (P < 0.001)
than in sporozoite studies (0.47/day, 95% CI: 0.43–0.50/day; PMR48
8.6, 95% CI: 7.3–10.1). Conclusions Parasite growth rates were similar across different IBSM studies and higher than
infections induced by sporozoite.
Collapse
Affiliation(s)
- Leesa F Wockner
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Isabell Hoffmann
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Sean C Murphy
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - James G Kublin
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter O'Rourke
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Huang G, Murillo Solano C, Melendez J, Shaw J, Collins J, Banks R, Arshadi AK, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Synthesis, Structure-Activity Relationship, and Antimalarial Efficacy of 6-Chloro-2-arylvinylquinolines. J Med Chem 2020; 63:11756-11785. [PMID: 32959656 DOI: 10.1021/acs.jmedchem.0c00858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is an urgent need to develop new efficacious antimalarials to address the emerging drug-resistant clinical cases. Our previous phenotypic screening identified styrylquinoline UCF501 as a promising antimalarial compound. To optimize UCF501, we herein report a detailed structure-activity relationship study of 2-arylvinylquinolines, leading to the discovery of potent, low nanomolar antiplasmodial compounds against a Plasmodium falciparum CQ-resistant Dd2 strain, with excellent selectivity profiles (resistance index < 1 and selectivity index > 200). Several metabolically stable 2-arylvinylquinolines are identified as fast-acting agents that kill asexual blood-stage parasites at the trophozoite phase, and the most promising compound 24 also demonstrates transmission blocking potential. Additionally, the monophosphate salt of 24 exhibits excellent in vivo antimalarial efficacy in the murine model without noticeable toxicity. Thus, the 2-arylvinylquinolines represent a promising class of antimalarial drug leads.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Justin Shaw
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Jennifer Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Robert Banks
- Research Program Services, University of Central Florida, Orlando, Florida 32816, United States
| | - Arash Keshavarzi Arshadi
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States.,Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
42
|
Peatey C, Chen N, Gresty K, Anderson K, Pickering P, Watts R, Gatton ML, McCarthy J, Cheng Q. Dormant Plasmodium falciparum Parasites in Human Infections Following Artesunate Therapy. J Infect Dis 2020; 223:1631-1638. [PMID: 32901248 DOI: 10.1093/infdis/jiaa562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Artemisinin monotherapy of Plasmodium falciparum infection is frequently ineffective due to recrudescence. Artemisinin-induced dormancy, shown in vitro and in animal models, provides a plausible explanation. To date, direct evidence of artemisinin-induced dormancy in humans is lacking. METHODS Blood samples were collected from Plasmodium falciparum 3D7- or K13-infected participants before and 48-72 hours after single-dose artesunate (AS) treatment. Parasite morphology, molecular signature of dormancy, capability and dynamics of seeding in vitro cultures, and genetic mutations in the K13 gene were investigated. RESULTS Dormant parasites were observed in post-AS blood samples of 3D7- and K13-infected participants. The molecular signature of dormancy, an up-regulation of acetyl CoA carboxylase, was detected in 3D7 and K13 samples post-AS, but not in pre-AS samples. Posttreatment samples successfully seeded in vitro cultures, with a significant delay in time to reach 2% parasitemia compared to pretreatment samples. CONCLUSIONS This study provides strong evidence for the presence of artemisinin-induced dormant parasites in P. falciparum infections. These parasites are a likely reservoir for recrudescent infection following artemisinin monotherapy and artemisinin combination therapy (ACT). Combination regimens that target dormant parasites or remain at therapeutic levels for a sufficient time to kill recovering parasites will likely improve efficacy of ACTs.
Collapse
Affiliation(s)
- Christopher Peatey
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Nanhua Chen
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Karryn Gresty
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia.,ADFMIDI laboratory, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karen Anderson
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia.,ADFMIDI laboratory, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paul Pickering
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Rebecca Watts
- Clinical Tropical Medicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle L Gatton
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James McCarthy
- Clinical Tropical Medicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia.,ADFMIDI laboratory, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Gendrot M, Andreani J, Boxberger M, Jardot P, Fonta I, Le Bideau M, Duflot I, Mosnier J, Rolland C, Bogreau H, Hutter S, La Scola B, Pradines B. Antimalarial drugs inhibit the replication of SARS-CoV-2: An in vitro evaluation. Travel Med Infect Dis 2020; 37:101873. [PMID: 32916297 PMCID: PMC7477610 DOI: 10.1016/j.tmaid.2020.101873] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
In December 2019, a new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China. African countries see slower dynamic of COVID-19 cases and deaths. One of the assumptions that may explain this later emergence in Africa, and more particularly in malaria endemic areas, would be the use of antimalarial drugs. We investigated the in vitro antiviral activity against SARS-CoV-2 of several antimalarial drugs. Chloroquine (EC50 = 2.1 μM and EC90 = 3.8 μM), hydroxychloroquine (EC50 = 1.5 μM and EC90 = 3.0 μM), ferroquine (EC50 = 1.5 μM and EC90 = 2.4 μM), desethylamodiaquine (EC50 = 0.52 μM and EC90 = 1.9 μM), mefloquine (EC50 = 1.8 μM and EC90 = 8.1 μM), pyronaridine (EC50 = 0.72 μM and EC90 = 0.75 μM) and quinine (EC50 = 10.7 μM and EC90 = 38.8 μM) showed in vitro antiviral effective activity with IC50 and IC90 compatible with drug oral uptake at doses commonly administered in malaria treatment. The ratio Clung/EC90 ranged from 5 to 59. Lumefantrine, piperaquine and dihydroartemisinin had IC50 and IC90 too high to be compatible with expected plasma concentrations (ratio Cmax/EC90 < 0.05). Based on our results, we would expect that countries which commonly use artesunate-amodiaquine or artesunate-mefloquine report fewer cases and deaths than those using artemether-lumefantrine or dihydroartemisinin-piperaquine. It could be necessary now to compare the antimalarial use and the dynamics of COVID-19 country by country to confirm this hypothesis.
Collapse
Affiliation(s)
- Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Julien Andreani
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Priscilla Jardot
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence Du Paludisme, Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Isabelle Duflot
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence Du Paludisme, Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Hervé Bogreau
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence Du Paludisme, Marseille, France
| | - Sébastien Hutter
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence Du Paludisme, Marseille, France.
| |
Collapse
|
44
|
Watts RE, Odedra A, Marquart L, Webb L, Abd-Rahman AN, Cascales L, Chalon S, Rebelo M, Pava Z, Collins KA, Pasay C, Chen N, Peatey CL, Möhrle JJ, McCarthy JS. Safety and parasite clearance of artemisinin-resistant Plasmodium falciparum infection: A pilot and a randomised volunteer infection study in Australia. PLoS Med 2020; 17:e1003203. [PMID: 32822347 PMCID: PMC7444516 DOI: 10.1371/journal.pmed.1003203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Artemisinin resistance is threatening malaria control. We aimed to develop and test a human model of artemisinin-resistant (ART-R) Plasmodium falciparum to evaluate the efficacy of drugs against ART-R malaria. METHODS AND FINDINGS We conducted 2 sequential phase 1, single-centre, open-label clinical trials at Q-Pharm, Brisbane, Australia, using the induced blood-stage malaria (IBSM) model, whereby healthy participants are intravenously inoculated with blood-stage parasites. In a pilot study, participants were inoculated (Day 0) with approximately 2,800 viable P. falciparum ART-R parasites. In a comparative study, participants were randomised to receive approximately 2,800 viable P. falciparum ART-R (Day 0) or artemisinin-sensitive (ART-S) parasites (Day 1). In both studies, participants were administered a single approximately 2 mg/kg oral dose of artesunate (AS; Day 9). Primary outcomes were safety, ART-R parasite infectivity, and parasite clearance. In the pilot study, 2 participants were enrolled between April 27, 2017, and September 12, 2017, and included in final analyses (males n = 2 [100%], mean age = 26 years [range, 23-28 years]). In the comparative study, 25 participants were enrolled between October 26, 2017, and October 18, 2018, of whom 22 were inoculated and included in final analyses (ART-R infected participants: males n = 7 [53.8%], median age = 22 years [range, 18-40 years]; ART-S infected participants: males n = 5 [55.6%], median age = 28 years [range, 22-35 years]). In both studies, all participants inoculated with ART-R parasites became parasitaemic. A total of 36 adverse events were reported in the pilot study and 277 in the comparative study. Common adverse events in both studies included headache, pyrexia, myalgia, nausea, and chills; none were serious. Seven participants experienced transient severe falls in white cell counts and/or elevations in liver transaminase levels which were considered related to malaria. Additionally, 2 participants developed ventricular extrasystoles that were attributed to unmasking of a predisposition to benign fever-induced tachyarrhythmia. In the comparative study, parasite clearance half-life after AS was significantly longer for ART-R infected participants (n = 13, 6.5 hours; 95% confidence interval [CI] 6.3-6.7 hours) compared with ART-S infected participants (n = 9, 3.2 hours; 95% CI 3.0-3.3 hours; p < 0.001). The main limitation of this study was that the ART-R and ART-S parasite strains did not share the same genetic background. CONCLUSIONS We developed the first (to our knowledge) human model of ART-R malaria. The delayed clearance profile of ART-R parasites after AS aligns with field study observations. Although based on a relatively small sample size, results indicate that this model can be safely used to assess new drugs against ART-R P. falciparum. TRIAL REGISTRATION The studies were registered with the Australian New Zealand Clinical Trials Registry: ACTRN12617000244303 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372357) and ACTRN12617001394336 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373637).
Collapse
Affiliation(s)
| | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Laura Cascales
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Maria Rebelo
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Cielo Pasay
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nanhua Chen
- Australian Army Malaria Institute, Brisbane, Australia
| | | | | | - James S. McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail:
| |
Collapse
|
45
|
Collins KA, Abd-Rahman AN, Marquart L, Ballard E, Gobeau N, Griffin P, Chalon S, Möhrle JJ, McCarthy JS. Antimalarial activity of artefenomel against asexual parasites and transmissible gametocytes during experimental blood-stage Plasmodium vivax infection. J Infect Dis 2020; 225:1062-1069. [PMID: 32479608 PMCID: PMC8922009 DOI: 10.1093/infdis/jiaa287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Interventions that effectively target Plasmodium vivax are critical for the future control and elimination of malaria. We conducted a P. vivax volunteer infection study to characterize the antimalarial activity of artefenomel, a new drug candidate. Methods Eight healthy, malaria-naive participants were intravenously inoculated with blood-stage P. vivax and subsequently received a single oral 200-mg dose of artefenomel. Blood samples were collected to monitor the development and clearance of parasitemia, and plasma artefenomel concentration. Mosquito feeding assays were conducted before artefenomel dosing to investigate parasite transmissibility. Results Initial parasite clearance occurred in all participants after artefenomel administration (log10 parasite reduction ratio over 48 hours, 1.67; parasite clearance half-life, 8.67 hours). Recrudescence occurred in 7 participants 11–14 days after dosing. A minimum inhibitory concentration of 0.62 ng/mL and minimum parasiticidal concentration that achieves 90% of maximum effect of 0.83 ng/mL were estimated, and a single 300-mg dose was predicted to clear 109 parasites per milliliter with 95% certainty. Gametocytemia developed in all participants and was cleared 4–8 days after dosing. At peak gametocytemia, 75% of participants were infectious to mosquitoes. Conclusions The in vivo antimalarial activity of artefenomel supports its further clinical development as a treatment for P. vivax malaria. Clinical Trials Registration NCT02573857.
Collapse
Affiliation(s)
| | | | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Emma Ballard
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Nathalie Gobeau
- Medicine for Malaria Venture, Route de Pré-Bois, Meyrin, Switzerland
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia.,The University of Queensland, Brisbane QLD, Australia.,Department of Medicine and Infectious Diseases, Mater Hospital and Mater Research, Raymond Terrace, South Brisbane QLD, Australia
| | - Stephan Chalon
- Medicine for Malaria Venture, Route de Pré-Bois, Meyrin, Switzerland
| | - Jörg J Möhrle
- Medicine for Malaria Venture, Route de Pré-Bois, Meyrin, Switzerland
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia.,The University of Queensland, Brisbane QLD, Australia
| |
Collapse
|
46
|
Abstract
Organometallic compounds are molecules that contain at least one metal-carbon bond. Due to resistance of the Plasmodium parasite to traditional organic antimalarials, the use of organometallic compounds has become widely adopted in antimalarial drug discovery. Ferroquine, which was developed due to the emergence of chloroquine resistance, is currently the most advanced organometallic antimalarial drug and has paved the way for the development of new organometallic antimalarials. In this review, a general overview of organometallic antimalarial compounds and their antimalarial activity in comparison to purely organic antimalarials are presented. Furthermore, recent developments in the field are discussed, and future applications of this emerging class of therapeutics in antimalarial drug discovery are suggested.
Collapse
|
47
|
Gaur AH, McCarthy JS, Panetta JC, Dallas RH, Woodford J, Tang L, Smith AM, Stewart TB, Branum KC, Freeman BB, Patel ND, John E, Chalon S, Ost S, Heine RN, Richardson JL, Christensen R, Flynn PM, Van Gessel Y, Mitasev B, Möhrle JJ, Gusovsky F, Bebrevska L, Guy RK. Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:964-975. [PMID: 32275867 DOI: 10.1016/s1473-3099(19)30611-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/11/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND (+)-SJ000557733 (SJ733) is a novel, orally bioavailable inhibitor of Plasmodium falciparum ATP4. In this first-in-human and induced blood-stage malaria phase 1a/b trial, we investigated the safety, tolerability, pharmacokinetics, and antimalarial activity of SJ733 in humans. METHODS The phase 1a was a single-centre, dose-escalation, first-in-human study of SJ733 allowing modifications to dose increments and dose-cohort size on the basis of safety and pharmacokinetic results. The phase 1a took place at St Jude Children's Research Hospital and at the University of Tennessee Clinical Research Center (Memphis, TN, USA). Enrolment in more than one non-consecutive dose cohort was allowed with at least 14 days required between doses. Participants were fasted in seven dose cohorts and fed in one 600 mg dose cohort. Single ascending doses of SJ733 (75, 150, 300, 600, 900, or 1200 mg) were administered to participants, who were followed up for 14 days after SJ733 dosing. Phase 1a primary endpoints were safety, tolerability, and pharmacokinetics of SJ733, and identification of an SJ733 dose to test in the induced blood-stage malaria model. The phase 1b was a single-centre, open-label, volunteer infection study using the induced blood-stage malaria model in which fasted participants were intravenously infected with blood-stage P falciparum and subsequently treated with a single dose of SJ733. Phase 1b took place at Q-Pharm (Herston, QLD, Australia) and was initiated only after phase 1a showed that exposure exceeding the threshold minimum exposure could be safely achieved in humans. Participants were inoculated on day 0 with P falciparum-infected human erythrocytes (around 2800 parasites in the 150 mg dose cohort and around 2300 parasites in the 600 mg dose cohort), and parasitaemia was monitored before malaria inoculation, after inoculation, immediately before SJ733 dosing, and then post-dose. Participants were treated with SJ733 within 24 h of reaching 5000 parasites per mL or at a clinical score higher than 6. Phase 1b primary endpoints were calculation of a parasite reduction ratio (PRR48) and parasite clearance half-life, and safety and tolerability of SJ733 (incidence, severity, and drug-relatedness of adverse events). In both phases of the trial, SJ733 hydrochloride salt was formulated as a powder blend in capsules containing 75 mg or 300 mg for oral administration. Healthy men and women (of non-childbearing potential) aged 18-55 years were eligible for both studies. Both studies are registered with ClinicalTrials.gov (NCT02661373 for the phase 1a and NCT02867059 for the phase 1b). FINDINGS In the phase 1a, 23 healthy participants were enrolled and received one to three non-consecutive doses of SJ733 between March 14 and Dec 7, 2016. SJ733 was safe and well tolerated at all doses and in fasted and fed conditions. 119 adverse events were recorded: 54 (45%) were unrelated, 63 (53%) unlikely to be related, and two (2%) possibly related to SJ733. In the phase 1b, 17 malaria-naive, healthy participants were enrolled. Seven participants in the 150 mg dose cohort were inoculated and dosed with SJ733. Eight participants in the 600 mg dose cohort were inoculated, but two participants could not be dosed with SJ733. Two additional participants were subsequently inoculated and dosed with SJ733. SJ733 exposure increased proportional to the dose through to the 600 mg dose, then was saturable at higher doses. Fasted participants receiving 600 mg exceeded the target area under the concentration curve extrapolated to infinity (AUC0-∞) of 13 000 μg × h/L (median AUC0-∞ 24 283 [IQR 16 135-31 311] μg × h/L, median terminal half-life 17·4 h [IQR 16·1-24·0], and median timepoint at which peak plasma concentration is reached 1·0 h [0·6-1·3]), and this dose was tested in the phase 1b. All 15 participants dosed with SJ733 had at least one adverse event. Of the 172 adverse events recorded, 128 (74%) were mild. The only adverse event attributed to SJ733 was mild bilateral foot paraesthesia that lasted 3·75 h and resolved spontaneously. The most common adverse events were related to malaria. Based on parasite clearance half-life, the derived log10PRR48 and corresponding parasite clearance half-lives were 2·2 (95% CI 2·0-2·5) and 6·47 h (95% CI 5·88-7·18) for 150 mg, and 4·1 (3·7-4·4) and 3·56 h (3·29-3·88) for 600 mg. INTERPRETATION The favourable pharmacokinetic, tolerability, and safety profile of SJ733, and rapid antiparasitic effect support its development as a fast-acting component of combination antimalarial therapy. FUNDING Global Health Innovative Technology Fund, Medicines for Malaria Venture, and the American Lebanese Syrian Associated Charities.
Collapse
Affiliation(s)
- Aditya H Gaur
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - James S McCarthy
- Department of Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - John C Panetta
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ronald H Dallas
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - John Woodford
- Department of Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Li Tang
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Amber M Smith
- University of Tennessee Health Science Center, University of Tennessee, Memphis, TN, USA
| | - Tracy B Stewart
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristen C Branum
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Burgess B Freeman
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Nehali D Patel
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Shelley Ost
- University of Tennessee Health Science Center, University of Tennessee, Memphis, TN, USA
| | - Ryan N Heine
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Julie L Richardson
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robbin Christensen
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Patricia M Flynn
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | - R Kiplin Guy
- University of Kentucky College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
48
|
A Phase II Pilot Trial to Evaluate CoBaT-Y017 Safety and Efficacy against Uncomplicated Falciparum Malaria versus Artemether-Lumefantrine in Benin Subjects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8715021. [PMID: 32215047 PMCID: PMC7048912 DOI: 10.1155/2020/8715021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 11/18/2022]
Abstract
Background Considering the promising results of Phase I clinical trials with herbal medicine CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods. A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017 or Artemether-Lumefantrine. The first group received 35 ml of CoBaT-Y017 in 1.5 L mineral water administered daily for four consecutive days; the second group received oral Artemether-Lumefantrine, using WHO-recommended therapeutic dose regimens. For both drugs, efficacy for parasite clearance and safety were evaluated clinically, haematologically, and biochemically on days 1-4, 7, 14, 21, and 28. Clinical- and laboratory-adverse events (AEs) were recorded until day 28. Results 13 and 12 patients were randomized into CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods. A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017 or Artemether-Lumefantrine. The first group received 35 ml of CoBaT-Y017 in 1.5 L mineral water administered daily for four consecutive days; the second group received oral Artemether-Lumefantrine, using WHO-recommended therapeutic dose regimens. For both drugs, efficacy for parasite clearance and safety were evaluated clinically, haematologically, and biochemically on days 1-4, 7, 14, 21, and 28. Clinical- and laboratory-adverse events (AEs) were recorded until day 28. Results. 13 and 12 patients were randomized into CoBaT-Y017 arm and Artemether-Lumefantrine arm, respectively. In all patients, parasitaemia was adequately neutralized with CoBaT-Y017 group patients' parasite clearance lagging slightly behind that of Artemether-Lumefantrine's group, but without a statistically significant difference (HR = 1.08, 95% CI 0.47-2.51, P=0.85). Physical and laboratory examinations did not show any significant changes in vital signs, biochemical, and haematological parameters. In the Artemether-Lumefantrine arm, 100% (12/12) of patients experienced, at least, one adverse event versus 61.5% (8/13) in the CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods. A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017 or Artemether-Lumefantrine. The first group received 35 ml of CoBaT-Y017 in 1.5 L mineral water administered daily for four consecutive days; the second group received oral Artemether-Lumefantrine, using WHO-recommended therapeutic dose regimens. For both drugs, efficacy for parasite clearance and safety were evaluated clinically, haematologically, and biochemically on days 1-4, 7, 14, 21, and 28. Clinical- and laboratory-adverse events (AEs) were recorded until day 28. Results. 13 and 12 patients were randomized into CoBaT-Y017 arm and Artemether-Lumefantrine arm, respectively. In all patients, parasitaemia was adequately neutralized with CoBaT-Y017 group patients' parasite clearance lagging slightly behind that of Artemether-Lumefantrine's group, but without a statistically significant difference (HR = 1.08, 95% CI 0.47-2.51, P=0.85). Physical and laboratory examinations did not show any significant changes in vital signs, biochemical, and haematological parameters. In the Artemether-Lumefantrine arm, 100% (12/12) of patients experienced, at least, one adverse event versus 61.5% (8/13) in the CoBaT-Y017 arm. Conclusion CoBaT-Y017, a Phase II study was conducted with Plasmodium falciparum malaria-infected patients, for efficacy and safety evaluation of CoBaT-Y017 compared with Artemether-Lumefantrine used as a positive control. Methods. A single-blind randomized trial was conducted on 25 eligible males aged 18-40 years randomly assigned to two treatment groups: CoBaT-Y017 or Artemether-Lumefantrine. The first group received 35 ml of CoBaT-Y017 in 1.5 L mineral water administered daily for four consecutive days; the second group received oral Artemether-Lumefantrine, using WHO-recommended therapeutic dose regimens. For both drugs, efficacy for parasite clearance and safety were evaluated clinically, haematologically, and biochemically on days 1-4, 7, 14, 21, and 28. Clinical- and laboratory-adverse events (AEs) were recorded until day 28. Results. 13 and 12 patients were randomized into CoBaT-Y017 arm and Artemether-Lumefantrine arm, respectively. In all patients, parasitaemia was adequately neutralized with CoBaT-Y017 group patients' parasite clearance lagging slightly behind that of Artemether-Lumefantrine's group, but without a statistically significant difference (HR = 1.08, 95% CI 0.47-2.51, P=0.85). Physical and laboratory examinations did not show any significant changes in vital signs, biochemical, and haematological parameters. In the Artemether-Lumefantrine arm, 100% (12/12) of patients experienced, at least, one adverse event versus 61.5% (8/13) in the CoBaT-Y017 arm. Conclusion. CoBaT-Y017 exhibited similar antimalarial efficacy against P. falciparum to that of Artemether-Lumefantrine, with good tolerability and safety.P. falciparum.
Collapse
|
49
|
Khoury DS, Zaloumis SG, Grigg MJ, Haque A, Davenport MP. Malaria Parasite Clearance: What Are We Really Measuring? Trends Parasitol 2020; 36:413-426. [PMID: 32298629 DOI: 10.1016/j.pt.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Antimalarial drugs are vital for treating malaria and controlling transmission. Measuring drug efficacy in the field requires large clinical trials and thus we have identified proxy measures of drug efficacy such as the parasite clearance curve. This is often assumed to measure the rate of drug activity against parasites and is used to predict optimal treatment regimens required to completely clear a blood-stage infection. We discuss evidence that the clearance curve is not measuring the rate of drug killing. This has major implications for how we assess optimal treatment regimens, as well as how we prioritise new drugs in the drug development pipeline.
Collapse
Affiliation(s)
- David S Khoury
- Kirby Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
50
|
Odedra A, McCarthy JS. Safety Considerations for Malaria Volunteer Infection Studies: A Mini-Review. Am J Trop Med Hyg 2020; 102:934-939. [PMID: 32189610 DOI: 10.4269/ajtmh.19-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malaria clinical studies entailing the experimental infection of healthy volunteers with Plasmodium parasites by bites from infected mosquitos, injection of cryopreserved sporozoites, or injection of blood-stage parasites provide valuable information for vaccine and drug development. Success of these studies depends on maintaining safety. In this mini-review, we discuss the safety risks and associated mitigation strategies of these three types of experimental malaria infection. We aimed to inform researchers and regulators who are currently involved in or are planning to establish experimental malaria infection studies in endemic or non-endemic settings.
Collapse
Affiliation(s)
- Anand Odedra
- QIMR Berghofer Medical Research Institute, Herston, Australia.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - James S McCarthy
- The University of Queensland, St Lucia, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|