1
|
Patra S, Everhart Nunn SL, Levent G, Chelikani PK. Prebiotics pectin and resistant starch-type 4 stimulate peptide YY and cholecystokinin to promote satiety, and improve gut microbiota composition. FASEB J 2025; 39:e70457. [PMID: 40085424 DOI: 10.1096/fj.202403239r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Dietary prebiotics pectin and resistant starch type-4 (RS-4) promote satiety and alter gut microbiota; however, the underlying neurohormonal mechanisms of satiety remain poorly understood. We determined the effects of pectin, RS-4, and their combination on energy balance and gut microbiota composition, and assessed whether the gut hormones peptide YY (PYY) and cholecystokinin (CCK) play a role in fiber-induced satiety. High-fat diet -induced obese male rats (n = 7-8/group) were fed either control, pectin, RS-4, or a combination of pectin and RS-4 diet. We found that pectin, RS-4, and their combination decreased food intake. Pectin alone, or combined with RS-4, shifted substrate utilization towards fat and reduced gains in weight and adiposity. Pectin alone or combined with RS-4 enhanced the expression and plasma concentrations of PYY and CCK. Importantly, systemic blockade of PYY-Y2 and CCK-1 receptors attenuated the hypophagic effects of pectin, and CCK-1 receptor blockade partly attenuated the hypophagia from RS-4. The prebiotics significantly altered fecal β-diversity metrics, suggestive of improvements in gut microbiota composition. Pectin and RS-4 alone, or in combination, were associated with increased relative abundance of phylum Bacteroidota, decreased Firmicutes, and increased concentrations of amino acids and biogenic amines in feces. Collectively, these findings suggest that dietary pectin and RS-4 improved energy balance and gut microbiota composition, and importantly, demonstrated that the satiety effects of these diets were mediated, in part, via enhanced endogenous PYY and CCK signaling.
Collapse
Affiliation(s)
- Souvik Patra
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA
| | - Savana L Everhart Nunn
- Department of Agricultural and Human Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Gizem Levent
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
2
|
Tappiban P, Sraphet S, Srisawad N, Ahmed S, Bao J, Triwitayakorn K. Cutting-edge progress in green technologies for resistant starch type 3 and type 5 preparation: An updated review. Food Chem X 2024; 23:101669. [PMID: 39139492 PMCID: PMC11321431 DOI: 10.1016/j.fochx.2024.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Resistant starch (RS) is a dietary fiber that resists starch hydrolysis in the small intestine, and is fermented in the colon by microorganisms. RS not only has a broad range of benefits in the food and non-food industries but also has a significance impact on health promotion and prevention of non-communicable diseases. RS types 3 and 5 have been the focus of research from an environment-friendly perspective. RS3 is normally formed by recrystallization after physical modification, whereas RS5 is obtained by the complexation of starch and fatty acids through the thermomechanical methods. This review provides updates and approaches to RS3 and RS5 preparations that promote RS content based on green technologies. This information will be useful for future research on RS development and for identifying preparation methods for functional food.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhorn Pathom, 73170, Thailand
| | - Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhorn Pathom, 73170, Thailand
| | - Nattaya Srisawad
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhorn Pathom, 73170, Thailand
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China
| | - Kanokporn Triwitayakorn
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhorn Pathom, 73170, Thailand
| |
Collapse
|
3
|
Warwate SI, Awana M, Thakare SS, Krishnan V, Kumar S, Bollinedi H, Arora A, Sevanthi AM, Ray M, Praveen S, Singh A. Exploring the synergy of enzymes, nutrients, and gene networks in rice starch granule biogenesis. Front Nutr 2024; 11:1448450. [PMID: 39507902 PMCID: PMC11538003 DOI: 10.3389/fnut.2024.1448450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Rice is a primary food source almost for more than 50% of the total world's population. Glycemic index (GI) is high in most of the rice varieties, limiting their consumption by diabetic and obese people. As a result, developing new rice varieties with low GI necessitates a thorough understanding of starch biogenesis gene expression and its interrelationship. Methods A total 200 rice genotypes were analyzed for total starch content (TSC), amylopectin content (APC), and amylose content (AC). The clustering of these rice genotypes was done based on their AC. Further, these genotypes were categorized into three groups up to 10% amylose-low, 10-26% amylose-medium, and more than 26% amylose-high. Among them, six genotypes 1 from low AC (NJ-72), 2 from medium AC (UPRI-2003-18, PRR-126), and 3 from high AC (RNRM-7, Urvashi and Ananga) were selected. The genotypes selected from the medium and high AC groups were having 2% amylose variation among themselves respectively and they were further used to study the level of RS, protein content (PC), fatty acid (FA) profiles, and granule morphology along with low group sample. Results Resistant starch (RS) content ranged from 0.33-2.75%, and fatty acid profiling revealed high levels of palmitic, linoleic, and oleic acids. The degree of crystallinity and APC% were found to be positively correlated. Ananga, the genotype with the highest RS, displayed compact starch granules. Further, NJ-72 showing low RS and Ananga with high RS were selected for investigation of enzymatic activities of starch biosynthesis, metabolites accumulation, and expressions of 20 starch biogenesis genes in developing endosperm. Starch branching enzymes (SBE) and starch synthase (SS) activities peaked at 13 days after anthesis (DAA), while starch debranching enzymes (DBE) were most active at 18 DAA. In Ananga, TSC, AC, APC, and RS levels progressively increased from 3 to 23 DAA. Ananga showed 1.25-fold upregulation of granule-bound starch synthase I (GBSSI) at 18DAA. Higher expressions of SSI and SBEIIb were observed in NJ-72 at 13DAA. PUL2 was predominantly expressed followed by ISA1. GBSSI was positively correlated with both AC and RS while SS, SBE, and DBE were positively related to APC. Conclusion This research could lead to the development of rice varieties with improved nutritional qualities, such as higher RS content, which is beneficial for human health due to its role in lowering glycemic response and promoting gut health. Additionally, the study provides insights into how the modulation of key genes and enzymes can affect starch composition, offering strategies to breed rice varieties tailored for specific dietary needs or industrial applications.
Collapse
Affiliation(s)
| | - Monika Awana
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Swapnil S. Thakare
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Haritha Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Mrinmoy Ray
- Division of Forecasting and Agricultural Systems Modeling, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Bush JR, Iwuamadi I, Han J, Schibli DJ, Goodlett DR, Deehan EC. Resistant Potato Starch Supplementation Reduces Serum Free Fatty Acid Levels and Influences Bile Acid Metabolism. Metabolites 2024; 14:536. [PMID: 39452917 PMCID: PMC11510092 DOI: 10.3390/metabo14100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Resistant starches, such as high-amylose maize starch and resistant potato starch (RPS), have prebiotic effects that are linked to improved metabolism at >15 g/day, but the effects at lower doses have not been reported. Methods: We performed an exploratory post hoc analysis of free fatty acids (FFAs), bile acids (BAs), and ketone bodies in serum previously collected from a randomized, double-blind, placebo-controlled clinical trial evaluating the effects of one- and four-week consumption of 3.5 g/day RPS versus a placebo using two-way ANOVA adjusted by pFDR. Associations between week 4 changes in FFAs, BAs, and ketone bodies were assessed by Pearson's correlations. Results: RPS consumption reduced total FFAs relative to the placebo, including multiple unsaturated FFAs and octanedioic acid, with reductions in taurine- and glycine-conjugated secondary BAs also detected (q < 0.05). No changes in ketone bodies were observed (q > 0.05). Changes in 7-ketodeoxycholic acid (r = -0.595) and glycolithocholic acid (r = -0.471) were inversely correlated with treatment-induced reductions in FFAs for RPS but not the placebo, suggesting the effects were from the prebiotic. Shifts in β-hydroxybutyrate were further correlated with FFA changes in both treatments (q < 0.05). Conclusions: These findings demonstrate that low doses of RPS positively influence fatty acid metabolism in humans, reducing circulating levels of FFA and conjugated BAs.
Collapse
Affiliation(s)
- Jason R. Bush
- MSP Starch Products Inc., Carberry, MB R0K 0H0, Canada
| | - Izuchukwu Iwuamadi
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA; (I.I.); (E.C.D.)
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Jun Han
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - David J. Schibli
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - David R. Goodlett
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - Edward C. Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA; (I.I.); (E.C.D.)
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
5
|
Mondal D, Awana M, Mandal S, Pandit K, Singh A, Syeunda CO, Thandapilly SJ, Krishnan V. Functional foods with a tailored glycemic response based on food matrix and its interactions: Can it be a reality? Food Chem X 2024; 22:101358. [PMID: 39669664 PMCID: PMC11637215 DOI: 10.1016/j.fochx.2024.101358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 12/14/2024] Open
Abstract
Functional foods are considered the future of nutrition because they benefit human health and environmental sustainability. They offer natural solutions for managing post-prandial glycemia and its long-term consequences. Therefore, understanding the composition and inherent dynamics of the functional food matrix (FM) is crucial. Within the FM, components like proteins, fats, carbohydrates, phenolic compounds, fibres, and minor elements interact dynamically, highlighting how individual components within the system behave. This review highlights the significance of diverse FM interactions in modulating inherent glycemic potential (IGP). These interactions comprise major binary, ternary, quaternary interactions, and minor interactions, in contemporary functional food formulations that include starch-derived additives, biopeptides, and flavouring agents. The starch quality matrix (SQM), a prediction model for customised functional foods with low IGP, has been briefed as a pilot concept. We also investigate the impact of these interactions on gut health, fill in the knowledge gaps, and provide recommendations for further study.
Collapse
Affiliation(s)
- Debarati Mondal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Monika Awana
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Shreya Mandal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Kangkan Pandit
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Cyprian Omondi Syeunda
- Department of Food Science and Technology, College of Agriculture and Life Science, Texas A&M University, TX, USA
| | - Sijo Joseph Thandapilly
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 6C5, Canada
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
6
|
Romero‐Marco P, Chicharro C, Verde Z, Miguel‐Tobal F, Fernández‐Araque A. Effect on blood lipids and body composition of a high-fat (MUFA) and high-fiber diet: A case-control study. Food Sci Nutr 2024; 12:3863-3871. [PMID: 38873480 PMCID: PMC11167160 DOI: 10.1002/fsn3.4042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 06/15/2024] Open
Abstract
Metabolic Syndrome (MetS) is a constellation of risk factors including abdominal obesity, high triglycerides, low HDL cholesterol (HDL-C), elevated blood pressure, and elevated fasting glucose. In Spain, according to WHO criteria, the MetS prevalence is shown to be 32% in men and 29% in women. The role of dietary habits is one of the main therapeutic strategies for the management of MetS but the most effective dietary pattern has not been established yet. This study aimed to analyze the effect of on body composition, serum lipids, and MetS components of a high-MUFA and high-fiber diet (HMFD). A case-control study was performed considering 40 cohabiting women. Participants were randomly assigned to HMFD group or high mono-unsaturated diet (HMD) group to receive one of the two proposed dietary interventions. All data (serum lipids, blood pressure, height, weight, body composition, and waist circumference) were collected fasting at baseline, 55, 98, and 132 days. The HMFD group showed higher decrease in waist circumference than in the HMD group. LDL-C dropped in both groups. Triglycerides in the HMFD group dropped during the intervention, but once the intervention was over, they returned to baseline values. The mean systolic blood pressure was lower in HMFD group. A HMFD from a weekly consumption of processed meat (Torrezno de Soria) deeply fried in extra virgin olive oil in combination with vegetables logged in a Mediterranean diet can improve MetS risk factors in healthy overweight women.
Collapse
Affiliation(s)
- Patricia Romero‐Marco
- Department of Nursing, Faculty of Health SciencesUniversity of ValladolidSoriaSpain
- Pharmacogenetics, Cancer Genetics, Genetic Polymorphisms and Pharmacoepidemiology, Center for Drug Safety Studies, Department of Nursing, Health Sciences, Molecular Genetics of Disease – IBGMUniversity of ValladolidSoriaSpain
| | - Celia Chicharro
- Department of Legal Medicine, Psychiatry and Pathology, Biopathology‐Toxicology Laboratory, Faculty of MedicineUniversity Complutense of MadridMadridSpain
- Centro de Estudios Gregorio MarañónFundación Ortega‐MarañónMadridSpain
| | - Zoraida Verde
- Pharmacogenetics, Cancer Genetics, Genetic Polymorphisms and Pharmacoepidemiology, Center for Drug Safety Studies, Department of Nursing, Health Sciences, Molecular Genetics of Disease – IBGMUniversity of ValladolidSoriaSpain
- Centro de Estudios Gregorio MarañónFundación Ortega‐MarañónMadridSpain
- Department of Biochemistry and Molecular Biology, Faculty of Health SciencesUniversity of ValladolidSoriaSpain
| | - Francisco Miguel‐Tobal
- Department of Radiology, Rehabilitation and Physiotherapy; School of Medicine of Physical Education and Sport; Faculty of MedicineUniversity Complutense of MadridMadridSpain
| | - Ana Fernández‐Araque
- Department of Nursing, Faculty of Health SciencesUniversity of ValladolidSoriaSpain
- Pharmacogenetics, Cancer Genetics, Genetic Polymorphisms and Pharmacoepidemiology, Center for Drug Safety Studies, Department of Nursing, Health Sciences, Molecular Genetics of Disease – IBGMUniversity of ValladolidSoriaSpain
| |
Collapse
|
7
|
Kadyan S, Park G, Hochuli N, Miller K, Wang B, Nagpal R. Resistant starches from dietary pulses improve neurocognitive health via gut-microbiome-brain axis in aged mice. Front Nutr 2024; 11:1322201. [PMID: 38352704 PMCID: PMC10864001 DOI: 10.3389/fnut.2024.1322201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Cognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear. Methods Accordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome. Results and discussion Following 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis.
Collapse
Affiliation(s)
- Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Katelyn Miller
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
8
|
Zhang W, Bao Y, Li HT. Altering structure and enzymatic resistance of high-amylose maize starch by irradiative depolymerization and annealing with palmitic acid as V-type inclusion compound. Carbohydr Polym 2023; 322:121343. [PMID: 37839846 DOI: 10.1016/j.carbpol.2023.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
This study explored a new physical modification approach to regulate enzymatic resistance of high-amylose starch for potentially better nutritional outcomes. High-amylose maize starch (HAMS) was subjected to chain depolymerization by electron beam irradiation (EBI), followed by inducing ordered structure through annealing in palmitic acid solution (APAS). APAS treatment significantly promotes the formation of ordered structure. Starch after the combinative modification showed up to 5.2 % increase in total crystallinity and up to 1.2 % increase in V-type fraction. The EBI-APAS modification led to increased gelatinization temperature (from 66.1 to 87.6 °C) and reduced final digested percentage under in vitro stimulated digestion conditions. The moderate extent of depolymerization resulted in higher enzymatic resistance, indicating that the extent of depolymerization is crucial in EBI-APAS modification. Pearson analysis showed a significant correlation between gelatinization onset temperature and digestion kinetic parameter (k1, rate constant of fast-phase digestion). Overall, the result suggests that ordered structures of degraded molecules induced by the combinative modification contribute to the enzymatic resistance of starch. This study sheds lights on future applications of EBI-APAS approach to regulate multi-scale structures and nutritional values of high-amylose starch.
Collapse
Affiliation(s)
- Wenyu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hai-Teng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Maiya M, Adorno A, Toulabi SB, Tucker WJ, Patterson MA. Resistant starch improves cardiometabolic disease outcomes: A narrative review of randomized trials. Nutr Res 2023; 114:20-40. [PMID: 37149926 DOI: 10.1016/j.nutres.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/09/2023]
Abstract
Healthy dietary patterns with adequate fiber improve cardiometabolic (CM) outcomes and attenuate disease progression. Resistant starch (RS) is a fermentable fiber that affects CM outcomes; however, studies are heterogeneous and inconsistent. Thus, the purpose of this narrative review is to assess the impact of RS intake by type and amount on CM outcomes while considering subject characteristics and trial duration. Randomized crossover or parallel studies (n = 31) were selected and compared according to acute (1 day; n = 12), medium (>1-30 days; n = 8), or long (>30 days; n = 11) duration. Most acute trials in healthy adults showed improvements in postprandial glycemic outcomes irrespective of RS type or amount. However, a more pronounced reduction occurred when test meals did not match for available carbohydrate. Daily RS intake had a minimal effect on CM outcomes in medium duration trials, but insulin resistant adults had better glycemic control at 4 weeks. Several longer duration trials (8-12 weeks) showed favorable CM outcomes with daily RS intake in adults with type 2 diabetes (T2D), but not in those at risk for T2D. Furthermore, some studies reported improved lipids, inflammatory biomarkers, and heart rate. Future studies should consider matching for available carbohydrates between the RS and control groups to understand the gut microbiome's role. Furthermore, energy and fiber should be considered. Overall, the acute intake of RS improves glycemic outcomes, and consuming RS at for least 4 and up to 8 to 12 weeks in adults with prediabetes and T2D, respectively, appears to improve CM outcomes.
Collapse
Affiliation(s)
- Madhura Maiya
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Andrew Adorno
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA
| | - Sahar B Toulabi
- College of Agriculture Science, Colorado State University, Fort Collins, Colorado, USA
| | - Wesley J Tucker
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA; Institute for Women's Health, Texas Woman's University, Houston, Texas USA
| | - Mindy A Patterson
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA; Institute for Women's Health, Texas Woman's University, Houston, Texas USA.
| |
Collapse
|
10
|
Bastings JJAJ, Venema K, Blaak EE, Adam TC. Influence of the gut microbiota on satiety signaling. Trends Endocrinol Metab 2023; 34:243-255. [PMID: 36870872 DOI: 10.1016/j.tem.2023.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023]
Abstract
Recent studies show a link between the gut microbiota and the regulation of satiety and energy intake, processes that contribute to the development and pathophysiology of metabolic diseases. However, this link is predominantly established in animal and in vitro studies, whereas human intervention studies are scarce. In this review we focus on recent evidence linking satiety and the gut microbiome, with specific emphasis on gut microbial short-chain fatty acids (SCFAs). Based on a systematic search we provide an overview of human studies linking the intake of prebiotics with gut microbial alterations and satiety signaling. Our outcomes highlight the importance of in-depth examination of the gut microbiota in relation to satiety and provide insights into recent and future studies in this field.
Collapse
Affiliation(s)
- Jacco J A J Bastings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Koen Venema
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; Centre for Healthy Eating and Food Innovation, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
11
|
Song EJ, Lee ES, So YS, Lee CY, Nam YD, Lee BH, Seo DH. Modulation of gut microbiota by rice starch enzymatically modified using amylosucrase from Deinococcus geothermalis. Food Sci Biotechnol 2023; 32:565-575. [PMID: 36911326 PMCID: PMC9992496 DOI: 10.1007/s10068-022-01238-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/28/2023] Open
Abstract
Amylosucrase can increase the amount of resistant starch (RS) in starch by transferring glucose from sucrose to amylopectin. Here, rice starch was modified using amylosucrase from Deinococcus geothermalis (DgAS). DgAS-modified rice starch (DMRS) increased the side-chain length of amylopectin and appeared in the form of B-type crystals. In vitro digestion analyses revealed that DMRS had a higher RS contents and lower digestion rate than native rice starch. When high-fat diet (HFD)-induced C57BL/6 mice were orally administered DMRS, body weight and white fat tissues of DMRS-fed HFD mice were not significantly different. However, serum leptin and glucose levels were significantly decreased and serum glucagon like peptide-1was increased in these mice. The cecal microbiome in DMRS-fed HFD mice was identified to investigate the role of DMRS in gut microbiota regulation. DMRS supplementation increased the relative abundance of Bacteroides, Faecalibaculum, and Ruminococcus in mouse gut microbiota. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01238-1.
Collapse
Affiliation(s)
- Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Yun-Sang So
- Department of Food Science and Technology, College of Agriculture and Life Sciences Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Chang-Young Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
- Department of Food Science and Technology, College of Agriculture and Life Sciences Jeonbuk National University, Jeonju, 54896 Republic of Korea
| |
Collapse
|
12
|
Unlocking the Potential of High-Amylose Starch for Gut Health: Not All Function the Same. FERMENTATION 2023. [DOI: 10.3390/fermentation9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
High-amylose starch has unique functional properties and nutritional values in food applications. This type of starch is generally resistant to enzymatic digestion in the gastrointestinal tract, and contains an increased fraction of resistant starch (RS), which is a type of dietary fiber. The digestion and fermentation of high-amylose starch in the gut are of current research interest, as the processes are related to its nutritional functionality. This review summarizes recent in vitro and in vivo studies on the digestion and fermentation of high-amylose starches from different botanical sources and those that have been obtained by modifications. The RS content and fermentation properties are compared among high-amylose starches. This review aims to provide a current understanding of the relationship between high-amylose starch structures and fermentation-related nutritional properties. The results of these studies suggest that both modifications and food processing of high-amylose starch result in distinct fermentation products and nutritional properties. The review provides insight into the potential future applications of diverse high-amylose starches as bioactive compounds to modulate colonic fermentation.
Collapse
|
13
|
Fidianingsih I, Aryandono T, Widyarini S, Herwiyanti S, Sunarti. Arrowroot (Maranta arundinacea L.) as a new potential functional food: A scoping review. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maranta arundinacea L. (MA) is a food that contains phytochemicals such as phenols, saponins, and flavanones that are beneficial to the body. Several studies have also reported that MA contains soluble fibre. These indicate its potential use to prevent and treat diseases. The present review explored the literature on the potential benefits of MA. Published MA-related studies were searched for up to October 2018 using the PubMed, ProQuest, EBSCO, and Scopus databases, as well as Google Scholar up to October 2020. The keywords used were ‘Maranta arundinacea’ OR ‘arrowroot’ OR ‘maranta’ OR ‘West Indian arrowroot’ OR ‘obedience plant’ OR ‘Bermuda arrowroot’ OR ‘araru’ OR ‘ararao’ OR ‘hulankeeriya’ OR ‘Marantaceae’ OR ‘garut’ OR ‘ararut’ OR ‘irut’. The present review included ten in vitro studies, nine of which involved experimental animals, and eight studies in humans. In vitro and in vivo studies in animals show that MA has antioxidative, anti-inflammatory, prebiotic, antibacterial, immunomodulatory, anti-ulcerative, anti-diarrhoeal, hypoglycaemic, hypocholesterolaemic, and antihypertensive properties. However, studies involving humans were quasi experimental, without control and non-randomised, with a small number of subjects. The results of human studies have not shown a significant change in health effects. In the future, MA may increase food diversity by serving as a functional foodstuff. However, additional human research must be conducted.
Collapse
|
14
|
Thompson MS, Hui Yan T, Saari N, Sarbini SR. A review: Resistant starch, a promising prebiotic for obesity and weight management. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Ahmed AA, Musa HH, Essa MEA, Mollica A, Zengin G, Ahmad H, Adam SY. Inhibition of obesity through alterations of C/EBP- α gene expression by gum Arabic in mice with a high-fat feed diet. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
16
|
Kabisch S, Weickert MO, Pfeiffer AFH. The role of cereal soluble fiber in the beneficial modulation of glycometabolic gastrointestinal hormones. Crit Rev Food Sci Nutr 2022; 64:4331-4347. [PMID: 36382636 DOI: 10.1080/10408398.2022.2141190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
According to cohort studies, cereal fiber, and whole-grain products might decrease risk for type 2 diabetes (T2DM), inflammatory processes, cancer, and cardiovascular diseases. These associations, mainly affect insoluble, but not soluble cereal fiber. In intervention studies, soluble fiber elicit anti-hyperglycemic and anti-inflammatory short-term effects, partially explained by fermentation to short-chain fatty acids, which acutely counteract insulin resistance and inflammation. ß-glucans lower cholesterol levels and possibly reduce liver fat. Long-term benefits are not yet shown, maybe caused by T2DM heterogeneity, as insulin resistance and fatty liver disease - the glycometabolic points of action of soluble cereal fiber - are not present in every patient. Thus, only some patients might be susceptive to fiber. Also, incretin action in response to fiber could be a relevant factor for variable effects. Thus, this review aims to summarize the current knowledge from human studies on the impact of soluble cereal fiber on glycometabolic gastrointestinal hormones. Effects on GLP-1 appear to be highly contradictory, while these fibers might lower GIP and ghrelin, and increase PYY and CCK. Even though previous results of specific trials support a glycometabolic benefit of soluble fiber, larger acute, and long-term mechanistic studies are needed in order to corroborate the results.
Collapse
Affiliation(s)
- Stefan Kabisch
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V, Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism; The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V, Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| |
Collapse
|
17
|
Research Progress on Hypoglycemic Mechanisms of Resistant Starch: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207111. [PMID: 36296704 PMCID: PMC9610089 DOI: 10.3390/molecules27207111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
In recent years, the prevalence of diabetes is on the rise, globally. Resistant starch (RS) has been known as a kind of promising dietary fiber for the prevention or treatment of diabetes. Therefore, it has become a hot topic to explore the hypoglycemic mechanisms of RS. In this review, the mechanisms have been summarized, according to the relevant studies in the recent 15 years. In general, the blood glucose could be regulated by RS by regulating the intestinal microbiota disorder, resisting digestion, reducing inflammation, regulating the hypoglycemic related enzymes and some other mechanisms. Although the exact mechanisms of the beneficial effects of RS have not been fully verified, it is indicated that RS can be used as a daily dietary intervention to reduce the risk of diabetes in different ways. In addition, further research on hypoglycemic mechanisms of RS impacted by the RS categories, the different experimental animals and various dietary habits of human subjects, have also been discussed in this review.
Collapse
|
18
|
Takahashi K, Fujita H, Fujita N, Takahashi Y, Kato S, Shimizu T, Suganuma Y, Sato T, Waki H, Yamada Y. A Pilot Study to Assess Glucose, Insulin, and Incretin Responses Following Novel High Resistant Starch Rice Ingestion in Healthy Men. Diabetes Ther 2022; 13:1383-1393. [PMID: 35708892 PMCID: PMC9240163 DOI: 10.1007/s13300-022-01283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION A newly developed resistant starch (RS) rice line with double mutation of starch synthase IIIa and branching enzyme IIb (ss3a/be2b) exhibits a tenfold greater percentage RS value than the wild-type rice line. Currently, the effects of cooked rice with such high RS content on secretion and action of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are unclear. Therefore, we conducted a pilot study to assess postprandial responses of GLP-1 and GIP along with glucose and insulin and also gastric emptying after ingestion of the high-RS cooked rice with ss3a/be2b in healthy subjects. METHODS In a non-randomized crossover design, five healthy men ingested two test foods, control (low-RS) and high-RS cooked rice, with at least 1-week washout period between testing days. Plasma glucose, serum insulin, plasma total GLP-1, plasma total GIP, and also gastric emptying rate were measured after ingestion of each test food, and the incremental area under the curves (iAUC) was calculated for each biochemical parameter using the values from 0 to 180 min after ingestion. RESULTS The high-RS cooked rice ingestion tended to reduce iAUC-glucose (p = 0.06) and significantly reduced iAUC-insulin (p < 0.01) and iAUC-GLP-1 (p < 0.05) but not iAUC-GIP (p = 0.21) relative to control cooked rice ingestion. In addition, the high-RS cooked rice ingestion did not affect gastric emptying. CONCLUSIONS The present results indicate that the suppressive effects of the high-RS cooked rice ingestion on postprandial responses of glucose and insulin may be provided through attenuation in GLP-1 secretion along with its low digestibility into glucose. We suggest that the high-RS rice with ss3a/be2b may serve as a better carbohydrate source and also as a novel functional food for dietary interventions to improve postprandial hyperglycemia and hyperinsulinemia without both enhancing GLP-1 secretion and affecting gastric emptying in patients with diabetes.
Collapse
Affiliation(s)
- Kazuyuki Takahashi
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiroki Fujita
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Naoko Fujita
- Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Yuya Takahashi
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shunsuke Kato
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tatsunori Shimizu
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yumi Suganuma
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Takehiro Sato
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hironori Waki
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuichiro Yamada
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
- Kansai Electric Power Medical Research Institute, Osaka, Japan
| |
Collapse
|
19
|
Effects of high-amylose maize starch on the glycemic index of Chinese steamed buns (CSB). Heliyon 2022; 8:e09375. [PMID: 35574202 PMCID: PMC9096677 DOI: 10.1016/j.heliyon.2022.e09375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
The incorporation of resistant starch (RS) in food has gained importance to be a good replacement for digestible carbohydrate. This study examined the effect of compositing RS (high-amylose maize starch (HM)) as wheat flour substitute (30%) in Chinese steamed bun (CSB) formulation on postprandial glycemic response in healthy human subject. In this single-blind and cross-over experimental trial, a total of 15 female participants (mean age = 31.5 ± 3.9) were randomly assigned to receive CSB containing 30% HM (HM30) or control CSB (without HM) with their blood glucose were recorded throughout the test. The blood glucose concentrations recorded for HM30 were significantly lower than control CSB at 15 min (6.03 vs. 7.04 mmol/L, p = 0.041), 30 min (6.93 vs. 7.76 mmol/L, p = 0.021), 45 min (6.21 vs. 7.55 mmol/L, p = 0.032), 60 min (5.68 vs. 6.26 mmol/L, p = 0.038), and 90 min (5.08 vs. 5.73 mmol/L, p = 0.022). The 2-h postprandial glucose was significantly lower in HM30 (iAUC = 105.2 mmol x min/L) than the control (186.1 mmol x min/L). The low GI property of HM30 (GI = 39.11 ± 5.6) did not cause sudden rapid increase in blood glucose concentration as observed in medium-GI control CSB (GI = 69.18 ± 9.8). This study suggests that adding 30g of HM decreased the glycemic index of CSB in healthy female adult.
Collapse
|
20
|
Sobh M, Montroy J, Daham Z, Sibbald S, Lalu M, Stintzi A, Mack D, Fergusson DA. Tolerability and SCFA production after resistant starch supplementation in humans: a systematic review of randomized controlled studies. Am J Clin Nutr 2022; 115:608-618. [PMID: 34871343 DOI: 10.1093/ajcn/nqab402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistant starches (RSs) have been advocated as a dietary supplement to address microbiota dysbiosis. They are postulated to act through the production of SCFAs. Their clinical tolerability and effect on SCFA production has not been systematically evaluated. OBJECTIVES We conducted a systematic review of RS supplementation as an intervention in adults (healthy individuals and persons with medical conditions) participating in randomized controlled trials. The primary outcome was tolerability of RS supplementation, the secondary outcome was SCFA production. METHODS MEDLINE, Embase, and the Cochrane Central Register were searched. Articles were screened, and data extracted, independently and in duplicate. RESULTS A total of 39 trials met eligibility criteria, including a total of 2263 patients. Twenty-seven (69%) studies evaluated the impact of RS supplementation in healthy subjects whereas 12 (31%) studies included individuals with an underlying medical condition (e.g., obesity, prediabetes). Type 2 RS was most frequently investigated (29 studies). Of 12 studies performed in subjects with health conditions, 11 reported on tolerability. All studies showed that RS supplementation was tolerated; 9 of these studies used type 2 RS with doses of 20-40 g/d for >4 wk. Of 27 studies performed in healthy subjects, 20 reported on tolerability. In 14 studies, RS supplementation was tolerated, and the majority used type 2 RS with a dose between 20 and 40 g/d. Twenty-one (78%) studies reporting SCFAs used type 2 RS with a dose of 20-40 g/d for 1-4 wk. In 16 of 23 studies (70%), SCFA production was increased, in 7 studies there was no change in SCFA concentration before and after RS supplementation, and in 1 study SCFA concentration decreased. CONCLUSIONS Available evidence suggests that RS supplementation is tolerated in both healthy subjects and in those with an underlying medical condition. In addition, SCFA production was increased in most of the studies.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zeinab Daham
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephanie Sibbald
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Manoj Lalu
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David Mack
- Inflammatory Bowel Disease Centre, Children's Hospital of Eastern Ontario, CHEO Research Institute, Ottawa, Ontario, Canada.,Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Hong YS, Jung DH, Chung WH, Nam YD, Kim YJ, Seo DH, Park CS. Human gut commensal bacterium Ruminococcus species FMB-CY1 completely degrades the granules of resistant starch. Food Sci Biotechnol 2022; 31:231-241. [PMID: 35186353 PMCID: PMC8818079 DOI: 10.1007/s10068-021-01027-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/12/2023] Open
Abstract
Resistant starch (RS) in the diet reaches the large intestine and is fermented by the gut microbiota, providing beneficial effects on human health. The human gut bacterium FMB-CY1 was isolated and identified as a new species closest to Ruminococcus bromii. Ruminococcus sp. FMB-CY1 completely degraded RS including commercial RS types 2, 3, and 4, and generated glucose and maltose; however, it did not assimilate glucose. Genome analysis revealed 15 amylolytic enzymes (Amy) present in FMB-CY1. The evolutionary trees revealed that the Amys were well divided each other. All Amys (4, 9, 10, 12, and 16) containing cohesin and/or dockerin and scaffolding proteins known to be involved in constituting the amylosome, were identified. A new species of Ruminococcus, strain FMB-CY1, was considered to have the ability to form amylosomes for the degradation of RS. This new RS-degrading Ruminococcus species provides insights into the mechanism(s) underlying RS degradation in the human gut. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-01027-2.
Collapse
Affiliation(s)
- Yeong-Sik Hong
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689 Republic of Korea
| | - Won-Hyong Chung
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, 34113 Republic of Korea
| | - Ye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
22
|
Precision Nutrition Model Predicts Glucose Control of Overweight Females Following the Consumption of Potatoes High in Resistant Starch. Nutrients 2022; 14:nu14020268. [PMID: 35057449 PMCID: PMC8779142 DOI: 10.3390/nu14020268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
Individual glycemic responses following dietary intake result from complex physiological processes, and can be influenced by physical properties of foods, such as increased resistant starch (RS) from starch retrogradation. Predictive equations are needed to provide personalized dietary recommendations to reduce chronic disease development. Therefore, a precision nutrition model predicting the postprandial glucose response (PPGR) in overweight women following the consumption of potatoes was formulated. Thirty overweight women participated in this randomized crossover trial. Participants consumed 250 g of hot (9.2 g RS) or cold (13.7 g RS) potatoes on two separate occasions. Baseline characteristics included demographics, 10-day dietary records, body composition, and the relative abundance (RA) and α-diversity of gut microbiota. Elastic net regression using 5-fold cross-validation predicted PPGR after potato intake. Most participants (70%) had a favorable PPGR to the cold potato. The model explained 32.2% of the variance in PPGR with the equation: 547.65 × (0 [if cold, high-RS potato], ×1, if hot, low-RS potato]) + (BMI [kg/m2] × 40.66)—(insoluble fiber [g] × 49.35) + (Bacteroides [RA] × 8.69)—(Faecalibacterium [RA] × 73.49)—(Parabacteroides [RA] × 42.08) + (α-diversity × 110.87) + 292.52. This model improves the understanding of baseline characteristics that explain interpersonal variation in PPGR following potato intake and offers a tool to optimize dietary recommendations for a commonly consumed food.
Collapse
|
23
|
Kleftaki SA, Simati S, Amerikanou C, Gioxari A, Tzavara C, Zervakis GI, Kalogeropoulos N, Kokkinos A, Kaliora AC. Pleurotus eryngii improves postprandial glycaemia, hunger and fullness perception, and enhances ghrelin suppression in people with metabolically unhealthy obesity. Pharmacol Res 2021; 175:105979. [PMID: 34798266 DOI: 10.1016/j.phrs.2021.105979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to examine potential postprandial benefits of Pleurotus eryngii in nineteen volunteers with metabolically unhealthy obesity. An acute, randomized, crossover-designed trial comparing a meal with Pleurotus eryngii and a control meal was performed. The two meals matched in macronutrient and caloric content. Participants consumed both meals in random order after an overnight fast. Blood samples were drawn before and 30, 60, 90, 120, 150 and 180 min after meal consumption (in total 266 samples) to determine glucose, insulin, ghrelin, peptide YY, glucagon-like peptide-1 and glicentin. Visual analog scales measuring the subjective perception of hunger and fullness were completed at the same time points. The test meal resulted in lower glucose incremental area under the curve (iAUC). Additionally, the iAUC of the ghrelin response over time was substantially lower after the test meal (p = 0.033). Lower desire to eat and higher fullness was reflected by significantly lower hunger iAUC (p = 0.046) and higher fullness iAUC (p = 0.042) after the test meal. No differences in insulin, PYY, GLP-1 and glicentin were observed. Pleurotus eryngii can ameliorate postprandial glycaemia, appetite and regulate ghrelin levels at the postprandial state. This effect is attributed to the bioactive polysaccharides that inhibit the activity of enzymes catalysing carbohydrate hydrolysis, cause a delayed gastric emptying and glucose absorption.
Collapse
Affiliation(s)
- Stamatia-Angeliki Kleftaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Stamatia Simati
- First Department of Propaedeutic Internal Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Aristea Gioxari
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Chara Tzavara
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Georgios I Zervakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Nick Kalogeropoulos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andriana C Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece.
| |
Collapse
|
24
|
Resistant starch wheat increases PYY and decreases GIP but has no effect on self-reported perceptions of satiety. Appetite 2021; 168:105802. [PMID: 34774669 DOI: 10.1016/j.appet.2021.105802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/22/2023]
Abstract
Dietary fiber has numerous health benefits, such as increasing satiety, and is regularly included in healthy dietary recommendations. However, different types and sources of fiber vary in their chemical properties and biological effects. This double-blind, randomized, placebo-controlled, crossover study investigated the effects of resistant starch type 2 (RS2) from wheat on self-reported perceptions of satiety and associated gut hormones in 30 healthy adults ages 40-65 years of age. Participants consumed rolls made using either RS2-enriched wheat flour or a wild-type flour for one week before a test day during which they ate a mixed meal containing the same roll type. Both self-reported perceptions of satiety and plasma concentrations of gut hormones were measured following the meal to assess whether the RS2-enriched wheat enhanced satiety and suppressed hunger for a longer period than the control wheat. Exploratory analysis indicated that fasting and peak concentration of peptide YY3-36 (PYY3-36; qfast = 0.02, qpeak = 0.02) increased, while peak concentration and iAUC of glucose-dependent insulinotropic peptide (GIP; qpeak < 0.001, qiAUC < 0.001) decreased after ingesting RS2-enriched wheat. However, self-reported perceptions of hunger or fullness using visual analog scales (VAS) did not differ following the test meal.
Collapse
|
25
|
Gum Arabic modifies anti-inflammatory cytokine in mice fed with high fat diet induced obesity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2020.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Teichmann J, Cockburn DW. In vitro Fermentation Reveals Changes in Butyrate Production Dependent on Resistant Starch Source and Microbiome Composition. Front Microbiol 2021; 12:640253. [PMID: 33995299 PMCID: PMC8117019 DOI: 10.3389/fmicb.2021.640253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
One of the primary benefits associated with dietary resistant starch (RS) is the production of butyrate by the gut microbiome during fermentation of this fiber in the large intestine. The ability to degrade RS is a relatively rare trait among microbes in the gut, seemingly confined to only a few species, none of which are butyrate producing organisms. Thus, production of butyrate during RS fermentation requires a network of interactions between RS degraders and butyrate producers. This is further complicated by the fact that there are multiple types of RS that differ in their structural properties and impacts on the microbiome. Human dietary intervention trials with RS have shown increases in fecal butyrate levels at the population level but with individual to individual differences. This suggests that interindividual differences in microbiome composition dictate butyrate response, but the factors driving this are still unknown. Furthermore, it is unknown whether a lack of increase in butyrate production upon supplementation with one RS is indicative of a lack of butyrate production with any RS. To shed some light on these issues we have undertaken an in vitro fermentation approach in an attempt to mimic RS fermentation in the colon. Fecal samples from 10 individuals were used as the inoculum for fermentation with 10 different starch sources. Butyrate production was heterogeneous across both fecal inocula and starch source, suggesting that a given microbiome is best suited to produce butyrate only from a subset of RS sources that differs between individuals. Interestingly, neither the total amount of RS degraders nor butyrate producers seemed to be limiting for any individual, rather the membership of these sub-populations was more important. While none of the RS degrading organisms were correlated with butyrate levels, Ruminococcus bromii was strongly positively correlated with many of the most important butyrate producers in the gut, though total butyrate production was strongly influenced by factors such as pH and lactate levels. Together these results suggest that the membership of the RS degrader and butyrate producer communities rather than their abundances determine the RS sources that will increase butyrate levels for a given microbiome.
Collapse
Affiliation(s)
- June Teichmann
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Darrell W Cockburn
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
27
|
Yang Y, Chen Q, Yu A, Tong S, Gu Z. Study on structural characterization, physicochemical properties and digestive properties of euryale ferox resistant starch. Food Chem 2021; 359:129924. [PMID: 33964663 DOI: 10.1016/j.foodchem.2021.129924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
At present, the raw materials for industrialized RS3 products are relatively simple and its purity is low. In addition, the correlation between structure and digestion characteristics of RS3 are rarely studied. In this study, euryale ferox, a kind of annual aquatic herb crop with high content of starch was used as a raw material to prepare RS3 by different methods, including autoclaving, enzymolysis-autoclaving and dual enzymolysis, respectively. The results showed that there were significant differences in the structure and physicochemical properties of the different euryale ferox resistant-enhanced and purified resistant starches (p < 0.05). Purified euryale ferox resistant starches belonged to B + V type crystal and had high thermal stability. After digestion, the structure and thermal properties of euryale ferox resistant-enhanced starches changed a lot. The digestion rate and estimated glycemic index (eGI) of the three kinds of purified euryale ferox RS3 were lower than 20% and 50%, respectively.
Collapse
Affiliation(s)
- Yuexi Yang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Qing Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Anzhen Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shu Tong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhenyu Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
28
|
Starch in aquafeeds: the benefits of a high amylose to amylopectin ratio and resistant starch content in diets for the carnivorous fish, largemouth bass ( Micropterus salmoides). Br J Nutr 2020; 124:1145-1155. [PMID: 32624026 DOI: 10.1017/s0007114520002214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aquafeeds for carnivorous species face a nutritional-technological conundrum: containing sufficient starch to meet specific manufacturing requirements for binding, extrusion and expansion, but ideally containing as little starch as possible owing to their limited ability to utilise carbohydrates. The present study evaluated the effects of dietary starch with different amylose to amylopectin ratios and resistant starch contents on growth performance, hepatic glycogen accumulation and glucose metabolism of an important cultured carnivorous finfish, largemouth bass (Micropterus salmoides). A common starch source (α-cassava starch (CS)) was tested as is or after being enzymatically de-branched at three different inclusion levels in diets for largemouth bass. Results showed that the increased dietary starch levels compromised performance and high dietary α-CS content led to obvious liver damage. However, the growth performances of fish fed the diets with de-branched starch (DS) were improved, and no manifest liver damages were observed even at the higher inclusion level. The increasing dietary starch contents significantly increased hepatic glycogen accumulation, but not when DS was used. High dietary starch content, without regard to starch sources, had no effect on the expression of glucose metabolism-related genes, except for down-regulation of insulin receptor expression. However, the use of dietary DS promoted the expression of genes involved in the insulin pathway and glycolysis. In conclusion, this study showed that the use of starch sources with a high amylose to amylopectin ratio and resistant starch in the feed for cultured carnivorous finfish could alleviate the hepatic glycogen deposition through regulating the insulin pathway and glycolysis.
Collapse
|
29
|
Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. J Nutr Biochem 2020; 89:108561. [PMID: 33249183 DOI: 10.1016/j.jnutbio.2020.108561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/11/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
In obesity, an elevated accumulation and dysregulation of adipose tissue, due to an imbalance between energy intake and energy expenditure, usually coexists with the loss of responsiveness to leptin in central nervous system, and subsequently with hyperleptinemia. Leptin, a peptide hormone mainly produced by white adipose tissue, regulates energy homeostasis by stimulating energy expenditure and inhibiting food intake. Human obesity is characterized by increased plasma leptin levels, which have been related with different obesity-associated complications, such as chronic inflammatory state (risk factor for diabetes, cardiovascular and autoimmune diseases), as well as infertility and different types of cancer. Besides, leptin is also produced by placenta, and high leptin levels during pregnancy may be related with some pathological conditions such as gestational diabetes. This review focuses on the current insights and emerging concepts on potentially valuable nutrients and food components that may modulate leptin metabolism. Notably, several dietary food components, such as phenols, peptides, and vitamins, are able to decrease inflammation and improve leptin sensitivity by up- or down-regulation of leptin signaling molecules. On the other hand, some food components, such as saturated fatty acids may worsen chronic inflammation increasing the risk for pathological complications. Future research into nutritional mechanisms that restore leptin metabolism and signals of energy homeostasis may inspire new treatment options for obesity-related disorders.
Collapse
|
30
|
Wan J, Wu Y, Pham Q, Yu L, Chen MH, Boue SM, Yokoyama W, Li B, Wang TTY. Effects of Rice with Different Amounts of Resistant Starch on Mice Fed a High-Fat Diet: Attenuation of Adipose Weight Gain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13046-13055. [PMID: 31642669 DOI: 10.1021/acs.jafc.9b05505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing the amount of resistant starch (RS) in the diet may confer protective effects against chronic diseases. Rice, a good dietary source of carbohydrates, also contains RS. However, it remains unclear if RS at the amount consumed in cooked rice has a health benefit. To address the question, we examined the effects of cooked rice containing different levels of RS in a diet-induced obesity rodent model. Rice containing RS as low as 1.07% attenuated adipose weight and adipocyte size gain, induced by a moderately high-fat (HF) diet, which correlated with lower leptin levels in plasma and adipose tissue. Rice with 8.61% RS increased fecal short-chain fatty acid levels, modulated HF-diet-induced adipose triacylglycerol metabolism and inflammation-related gene expression, and increased fecal triglyceride excretion. Hence, including rice with RS level at ≥1.07% may attenuate risks associated with the consumption of a moderately HF diet.
Collapse
Affiliation(s)
- Jiawei Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Yanbei Wu
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100084, People's Republic of China
| | - Quynhchi Pham
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Stuttgart, Arkansas 72160, United States
| | - Stephen M Boue
- Southern Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), New Orleans, Louisiana 70124, United States
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, Western Regional Research Center (WRRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Albany, California 94710, United States
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Thomas T Y Wang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
| |
Collapse
|
31
|
Miketinas DC, Shankar K, Maiya M, Patterson MA. Usual Dietary Intake of Resistant Starch in US Adults from NHANES 2015-2016. J Nutr 2020; 150:2738-2747. [PMID: 32840627 DOI: 10.1093/jn/nxaa232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Resistant starch (RS) confers many health benefits, mostly due to nonenzymatic human digestion and gut microbiota fermentation capacity. The usual intake of naturally occurring dietary RS in US adults is unclear. OBJECTIVES This study estimated usual daily RS intake in grams per 1000 kcal in US adults by sex, age, and ethnic group, as well as the most frequent food category contributing to RS intake using data from the NHANES 2015-2016. METHODS RS content of foods consumed was matched with Food and Nutrient Database for Dietary Studies food codes. The National Cancer Institute method was used to estimate adults' usual RS intake from 2 24-h dietary recalls. Day 1 RS contribution from food groups to overall RS intake was ranked for the total sample, across age-sex categories, and across ethnic groups. RESULTS In total, 5139 US adults (48.4% male) had a mean daily usual intake of RS of 1.9 ± 0.0 g/(1000 kcal⋅d). Males and females had a similar intake of RS [2.0 ± 0.0 g compared with 1.9 ± 0.0 g/(1000 kcal⋅d)] with no differences between sexes within the same age category. When comparing ethnic groups within each age category, the non-Hispanic white males and females had significantly lower RS intake than all other ethnic groups [range: 1.7-1.8 compared with 2.1-2.3 g RS/(1000 kcal⋅d), respectively], with no differences among the other ethnic groups. French fries and other fried white potatoes, rice, and beans, peas, and legumes were the most frequently consumed food categories contributing to RS intake in all adults. CONCLUSIONS US adults should improve the intake of natural RS food sources. Increasing RS intake will improve gastrointestinal health as a prebiotic and potentially increase insulin sensitivity with adequate consumption (e.g., ∼15 g/d).
Collapse
Affiliation(s)
- Derek C Miketinas
- Department of Nutrition and Food Sciences, Texas Woman's University Institute for Health Sciences, Houston, TX, USA
| | - Kavitha Shankar
- Department of Nutrition and Food Sciences, Texas Woman's University Institute for Health Sciences, Houston, TX, USA
| | - Madhura Maiya
- Department of Nutrition and Food Sciences, Texas Woman's University Institute for Health Sciences, Houston, TX, USA.,Office of Research and Sponsored Programs, Texas Woman's University, Houston, TX, USA
| | - Mindy A Patterson
- Department of Nutrition and Food Sciences, Texas Woman's University Institute for Health Sciences, Houston, TX, USA.,Institute for Women's Health, Texas Woman's University Institute for Health Sciences, Houston, TX, USA
| |
Collapse
|
32
|
Patterson MA, Maiya M, Stewart ML. Resistant Starch Content in Foods Commonly Consumed in the United States: A Narrative Review. J Acad Nutr Diet 2020; 120:230-244. [PMID: 32040399 DOI: 10.1016/j.jand.2019.10.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
Resistant starch (RS; types 1 to 5) cannot be digested in the small intestine and thus enters the colon intact, with some types capable of being fermented by gut microbes. As a fiber, types 1, 2, 3, and 5 are found naturally in foods, while types 2, 3, and 4 can be added to foods as a functional ingredient. This narrative review identifies RS content in whole foods commonly consumed in the United States. Scientific databases (n=3) were searched by two independent researchers. Ninety-four peer-reviewed articles published between 1982 and September 2018 were selected in which the RS was quantified and the food preparation method before analysis was suitable for consumption. The RS from each food item was adjusted for moisture if the RS value was provided as percent dry weight. Each food item was entered into a database according to food category, where the weighted mean±weighted standard deviation was calculated. The range of RS values and overall sample size for each food category were identified. Breads, breakfast cereals, snack foods, bananas and plantains, grains, pasta, rice, legumes, and potatoes contain RS. Foods that have been cooked then chilled have higher RS than cooked foods. Foods with higher amylose concentrations have higher RS than native varieties. The data from this database will serve as a resource for health practitioners to educate and support patients and clients interested in increasing their intake of RS-rich foods and for researchers to formulate dietary interventions with RS foods and examine associated health outcomes.
Collapse
|
33
|
Ang K, Bourgy C, Fenton H, Regina A, Newberry M, Diepeveen D, Lafiandra D, Grafenauer S, Hunt W, Solah V. Noodles Made from High Amylose Wheat Flour Attenuate Postprandial Glycaemia in Healthy Adults. Nutrients 2020; 12:nu12082171. [PMID: 32707905 PMCID: PMC7468775 DOI: 10.3390/nu12082171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023] Open
Abstract
Previous research has not considered the effect of high amylose wheat noodles on postprandial glycaemia. The aim of the study is to investigate the effect of consumption of high amylose noodles on postprandial glycaemia over 2-h periods by monitoring changes in blood glucose concentration and calculating the total area under the blood glucose concentration curve. Twelve healthy young adults were recruited to a repeated measure randomised, single-blinded crossover trial to compare the effect of consuming noodles (180 g) containing 15%, 20% and 45% amylose on postprandial glycaemia. Fasting blood glucose concentrations were taken via finger-prick blood samples. Postprandial blood glucose concentrations were taken at 15, 30, 45, 60, 90 and 120 min. Subjects consuming high amylose noodles made with flour containing 45% amylose had significantly lower blood glucose concentration at 15, 30 and 45 min (5.5 ± 0.11, 6.1 ± 0.11 and 5.6 ± 0.11 mmol/L; p = 0.01) compared to subjects consuming low amylose noodles with 15% amylose (5.8 ± 0.12, 6.6 ± 0.12 and 5.9 ± 0.12 mmol/L). The total area under the blood glucose concentration curve after consumption of high amylose noodles with 45% amylose was 640.4 ± 9.49 mmol/L/min, 3.4% lower than consumption of low amylose noodles with 15% amylose (662.9 ± 9.49 mmol/L/min), p = 0.021. Noodles made from high amylose wheat flour attenuate postprandial glycaemia in healthy young adults, as characterised by the significantly lower blood glucose concentration and a 3.4% reduction in glycaemic response.
Collapse
Affiliation(s)
- Kim Ang
- School Public Health, Curtin University, Perth 6845, Western Australia, Australia; (K.A.); (C.B.); (H.F.); (W.H.)
| | - Carla Bourgy
- School Public Health, Curtin University, Perth 6845, Western Australia, Australia; (K.A.); (C.B.); (H.F.); (W.H.)
| | - Haelee Fenton
- School Public Health, Curtin University, Perth 6845, Western Australia, Australia; (K.A.); (C.B.); (H.F.); (W.H.)
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia
| | - Ahmed Regina
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra 2601, ACT, Australia; (A.R.); (M.N.)
| | - Marcus Newberry
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra 2601, ACT, Australia; (A.R.); (M.N.)
| | - Dean Diepeveen
- Department of Primary Industries and Regional Development, South Perth 6151, Western Australia; Australia;
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Domenico Lafiandra
- Department Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Sara Grafenauer
- Grains and Legumes Nutrition Council, North Ryde 2113, Australia;
| | - Wendy Hunt
- School Public Health, Curtin University, Perth 6845, Western Australia, Australia; (K.A.); (C.B.); (H.F.); (W.H.)
- Australian Export Grains Innovation Centre, South Perth 6151, Western Australia, Australia
| | - Vicky Solah
- School Public Health, Curtin University, Perth 6845, Western Australia, Australia; (K.A.); (C.B.); (H.F.); (W.H.)
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
- Correspondence:
| |
Collapse
|
34
|
Guo J, Tan L, Kong L. Impact of dietary intake of resistant starch on obesity and associated metabolic profiles in human: a systematic review of the literature. Crit Rev Food Sci Nutr 2020; 61:889-905. [PMID: 32321291 DOI: 10.1080/10408398.2020.1747391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a global public health issue with an increasing prevalence, obesity is related to several metabolic disorders, but is largely preventable. Resistant starch (RS), the indigestible portion of starch, has been studied for its potential effects on reducing obesity. This systematic review aimed to investigate the effect of dietary intake of RS on obesity development and related metabolic profiles in human, including body weight and composition, energy intake and satiety, lipid profiles, blood glucose and insulin, and other blood biomarkers. Eleven peer-reviewed articles published in English between 2000 and 2019 were identified after screening using CENTRAL, MEDLINE, and CINAHL Plus. Based on the results, RS intake had no direct effect on body weight and body composition. Evidence for its effect on reducing energy intake and increasing satiety, as well as improving lipid profiles was inconsistent. Beneficial effects of RS intake on several blood biomarkers were supported, indicating its regulatory roles in blood glucose homeostasis, insulin sensitivity, and gut hormone concentrations. Specifically, five out of the eight articles measuring blood glucose reported a decrease in either fasting or postprandial glucose levels; two out of the three articles measuring insulin sensitivity indicated a significant improvement after RS supplementation; studies measuring gut hormone concentrations including glucagon-like peptide 1 (GLP-1), and peptide YY (PYY) also showed significant improvements after RS interventions. In conclusion, the effect of dietary intake of RS on obesity and its related metabolic complications was not conclusive. Further research with larger sample sizes and longer duration is warranted.
Collapse
Affiliation(s)
- Jiayue Guo
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, Alabama, USA
| | - Libo Tan
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, Alabama, USA
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
35
|
Resistant Starch Has No Effect on Appetite and Food Intake in Individuals with Prediabetes. J Acad Nutr Diet 2020; 120:1034-1041. [PMID: 32280055 DOI: 10.1016/j.jand.2020.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Type 2 resistant starch (RS2) has been shown to improve metabolic health outcomes and may increase satiety and suppress appetite and food intake in humans. OBJECTIVE This study assessed whether 12 weeks of daily RS2 supplementation could influence appetite perception, food intake, and appetite-related gut hormones in adults with prediabetes, relative to the control (CTL) group. DESIGN The study was a randomized controlled trial and analysis of secondary study end points. PARTICIPANTS/SETTING Sixty-eight adults (body mass index ≥27) aged 35 to 75 years with prediabetes were enrolled in the study at Pennington Biomedical Research Center (2012 to 2016). Fifty-nine subjects were included in the analysis. INTERVENTION Participants were randomized to consume 45 g/day of high-amylose maize (RS2) or an isocaloric amount of the rapidly digestible starch amylopectin (CTL) for 12 weeks. MAIN OUTCOME MEASURES Subjective appetite measures were assessed via visual analogue scale and the Eating Inventory; appetite-related gut hormones (glucagon-like peptide 1, peptide YY, and ghrelin) were measured during a standard mixed-meal test; and energy and macronutrient intake were assessed by a laboratory food intake (buffet) test, the Remote Food Photography Method, and SmartIntake app. STATISTICAL ANALYSES PERFORMED Data were analyzed using linear mixed models, adjusting for treatment group and time as fixed effects, with a significance level of α=.05. RESULTS RS2 had no effect on subjective measures of appetite, as assessed by visual analogue scale (P>0.05) and the Eating Inventory (P≥0.24), relative to the CTL group. There were no effects of RS2 supplementation on appetite-related gut hormones, including glucagon-like peptide 1 (P=0.61), peptide YY (P=0.34), and both total (P=0.26) and active (P=0.47) ghrelin compared with the CTL. RS2 had no effect on total energy (P=0.30), carbohydrate (P=0.11), protein (P=0.64), or fat (P=0.37) consumption in response to a buffet meal test, relative to the CTL. In addition, total energy (P=0.40), carbohydrate (P=0.15), protein (P=0.46), and fat (P=0.53) intake, as quantified by the Remote Food Photography Method, were also unaffected by RS2, relative to the CTL. CONCLUSIONS RS2 supplementation did not increase satiety or reduce appetite and food intake in adults with prediabetes.
Collapse
|
36
|
Yemenicioğlu A, Farris S, Turkyilmaz M, Gulec S. A review of current and future food applications of natural hydrocolloids. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14363] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ahmet Yemenicioğlu
- Department of Food Engineering Izmir Institute of Technology 35430 Urla, İzmir Turkey
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences Packaging Division University of Milan Via Celoria 2 20133 Milan Italy
| | - Meltem Turkyilmaz
- Institute of Food Safety Ankara University 06110 Dışkapı, Ankara Turkey
| | - Sukru Gulec
- Department of Food Engineering Izmir Institute of Technology 35430 Urla, İzmir Turkey
- Department of Molecular Nutrition and Human Physiology Laboratory Izmir Institute of Technology 35430 Urla, İzmir Turkey
| |
Collapse
|
37
|
Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol 2020; 61:66-71. [DOI: 10.1016/j.copbio.2019.10.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
|
38
|
Hassanzadeh-Rostami Z, Faghih S. Effect of Dietary Fiber on Serum Leptin Level: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Exp Clin Endocrinol Diabetes 2019; 129:322-333. [PMID: 31860117 DOI: 10.1055/a-0998-3883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Dietary fibers may induce satiety through affecting gastro-intestinal and peripheral appetite regulating hormones. Thus, we aimed to investigate the effect of dietary fiber consumption on serum leptin level compared to control diet, in short- and long- term trials, through a systematic review and meta-analysis. METHODS We searched PubMed, web of science, Scopus, ProQuest, EMBASE, and Cochrane Library to find randomized controlled clinical trials that evaluated effect of any type of dietary fiber on serum leptin level compared to control diet, until April 2019. Both short-term (1-4 days) and long-term (longer than 2 weeks) studies were selected. Mean differences (MD) of changes in serum leptin level and 95% confidence intervals were extracted from eligible studies, and random effects model was used to analyze data. RESULTS Thirteen studies included the systematic review and 11 entered in the meta-analysis. No significant change was seen in serum leptin level in short-term (MD=0.02, 95% CI; -0.15, 0.20, Tau2=0.0) and long-term studies (MD=-0.10, 95% CI; -0.28, 0.08, Tau2=0.0), followed by fiber consumption. However, this effect was statistically significant in obese participants (MD=-0.36, 95% CI; -0.71, -0.02, Tau2=0.0) in long-term studies. Moreover, we found no significant results in subgroups of baseline serum leptin level, intervention duration, fiber dose, and fiber type. CONCLUSIONS This meta-analysis found that taking dietary fiber for long term could lower serum leptin level, just in obese persons. However, further clinical trials are needed in this field to clarify this issue.
Collapse
Affiliation(s)
| | - Shiva Faghih
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Gabriel FC, Fantuzzi G. The association of short-chain fatty acids and leptin metabolism: a systematic review. Nutr Res 2019; 72:18-35. [DOI: 10.1016/j.nutres.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
|
40
|
Larsen MA, Isaksen VT, Paulssen EJ, Goll R, Florholmen JR. Postprandial leptin and adiponectin in response to sugar and fat in obese and normal weight individuals. Endocrine 2019; 66:517-525. [PMID: 31605363 DOI: 10.1007/s12020-019-02102-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Adipokines produced by white adipose tissue are central in the development of lifestyle diseases. Individuals in industrialized countries spend a substantial part of life in the non-fasting, postprandial state, which is associated with increased oxidation and inflammation. The aim was to study postprandial adiponectin and leptin levels after an oral fat tolerance test (OFTT) and an oral glucose tolerance test (OGTT) in obese (OB) and healthy, normal weight individuals (NW). METHODS Fifty adults with obesity (BMI ≥ 30) and 17 healthy, NW were included. Postprandial triglyceride (TG), adiponectin, and leptin levels were measured every second hour during an 8 h OFTT, and every half hour during a 2 h OGTT. RESULTS Compared with the basal level, postprandial levels of adiponectin following OFTT showed a slight initial peak, followed by a significant decrease at 8 h, in the NW. In the OB these changes were abolished. Postprandial levels of leptin decreased significantly from basal levels in the OFTT, in the NW, whereas in the OB, leptin was unchanged except for a slight increase from 2 to 8 h. During the OGTT both adiponectin and leptin levels remained unchanged in the NW, but decreased significantly in the OB. In addition, the OB had delayed TG clearance at 6 h. CONCLUSIONS A fatty meal gives postprandial changes in the secretion of adiponectin and leptin in NW, but not in OB. Our observations indicate that a potential postprandial regulatory role of adiponectin and leptin is impaired in OB, and of importance in a more comprehensive understanding of the delayed postprandial TG clearance in obese individuals.
Collapse
Affiliation(s)
- M A Larsen
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| | - V T Isaksen
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - E J Paulssen
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Nephrology and Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - R Goll
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Nephrology and Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - J R Florholmen
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Nephrology and Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
41
|
Gao C, Rao M, Huang W, Wan Q, Yan P, Long Y, Guo M, Xu Y, Xu Y. Resistant starch ameliorated insulin resistant in patients of type 2 diabetes with obesity: a systematic review and meta-analysis. Lipids Health Dis 2019; 18:205. [PMID: 31760943 PMCID: PMC6875042 DOI: 10.1186/s12944-019-1127-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistant starch (RS) is a starch that can be fermented by the microbial flora within gut lumen. Insulin resistance (IR) is a pathophysiological condition related to diabetes and obesity. RS could reduce blood glucose and ameliorate IR in animals, but its effect in human population is controversial. OBJECTIVE The authors conducted a systematic literature review to evaluate the effect of RS diet supplement on ameliorating IR in patients with T2DM and simple obesity. METHODS Databases that supplemented with RS in ameliorating IR in T2DM and simple obesity were queried for studies on or before August 15, 2018. Parameters including fasting insulin, fasting glucose, body mass index (BMI), homeostatic model assessment (HOMA) etc. were extracted from studies to systemically evaluate effects of RS. RESULTS The database search yielded 14 parallel or crossover studies that met the inclusion criteria. The results indicated that there was no significant difference in the amelioration of BMI, HOMA-%S and HOMA-%B in T2DM patients between RS and the non-RS supplementation. However, the fasting blood glucose, fasting insulin and HOMA-IR in T2DM with obesity who supplemented RS were lower than control group, and the subgroup analysis according to the dose of RS supplementation was inconsistency. There was no significant difference between RS and non-RS supplements in patients with simple obesity. CONCLUSION RS supplementation can ameliorate IR in T2DM, especially for the patients of T2DM with obesity, but not in simple obesity.
Collapse
Affiliation(s)
- Chenlin Gao
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Mingyue Rao
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qin Wan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pijun Yan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Long
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Man Guo
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Youhua Xu
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Yong Xu
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
42
|
Harris KF. An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutr Rev 2019; 77:748-764. [PMID: 31343688 PMCID: PMC6786898 DOI: 10.1093/nutrit/nuz040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Refined carbohydrates result from milling techniques that remove the outer layers of a cereal grain and grind the endosperm into a flour ingredient that is devoid of dietary fiber. Technologies have been developed to produce high-amylose cereal grains that have a significantly higher resistant starch type 2 and thus dietary fiber content in the endosperm of the cereal grain, which has positive implications for human health. A review of the literature was conducted to study the effects of resistant starch type 2 derived from high-amylose grains on glucose and insulin response. While thousands of articles have been published on resistant starch, only 30 articles have focused on how resistant starch type 2 from high-amylose grains affects acute and long-term responses of glucose and insulin control. The findings showed that resistant starch has the ability to attenuate acute postprandial responses when replacing rapidly digestible carbohydrate sources, but there is insufficient evidence to conclude that resistant starch can improve insulin resistance and/or sensitivity.
Collapse
Affiliation(s)
- Kathryn F Harris
- Research and Development Department, Bay State Milling Company, Quincy, Massachusetts, USA
| |
Collapse
|
43
|
Patterson MA, Fong JN, Maiya M, Kung S, Sarkissian A, Nashef N, Wang W. Chilled Potatoes Decrease Postprandial Glucose, Insulin, and Glucose-dependent Insulinotropic Peptide Compared to Boiled Potatoes in Females with Elevated Fasting Glucose and Insulin. Nutrients 2019; 11:E2066. [PMID: 31484331 PMCID: PMC6769955 DOI: 10.3390/nu11092066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Resistant starch (RS) has been shown to improve postprandial glycemia and insulin sensitivity in adults with metabolic syndrome. RS is found naturally in potatoes, where the amount varies based on cooking method and serving temperature. Thirty females with a mean BMI of 32.8 ± 3.7 kg/m2, fasting glucose of 110.5 mg/dL, and insulin of 10.3 µIU/L, completed this randomized, crossover study. A quantity of 250 g of boiled (low RS) and baked then chilled (high RS) russet potatoes were consumed on two separate occasions. Glycemic (glucose and insulin) and incretin response, subjective satiety, and dietary intake were measured. Results showed that the chilled potato elicited significant reductions at 15 and 30 min in glucose (4.8% and 9.2%), insulin (25.8% and 22.6%), and glucose-dependent insulinotropic peptide (GIP) (41.1% and 37.6%), respectively. The area under the curve for insulin and GIP were significantly lower after the chilled potato, but no differences were seen in glucose, glucagon-like peptide-1, and peptide YY, or overall subjective satiety. A higher carbohydrate and glycemic index but lower fat diet was consumed 48-hours following the chilled potato than the boiled potato. This study demonstrates that consuming chilled potatoes higher in RS can positively impact the glycemic response in females with elevated fasting glucose and insulin.
Collapse
Affiliation(s)
- Mindy A Patterson
- Department of Nutrition and Food Services, Texas Woman's University, 6700 Fannin Street, Houston, TX 77030, USA.
| | - Joy Nolte Fong
- Department of Nutrition and Food Services, Texas Woman's University, 6700 Fannin Street, Houston, TX 77030, USA
| | - Madhura Maiya
- Department of Nutrition and Food Services, Texas Woman's University, 6700 Fannin Street, Houston, TX 77030, USA
- Office of Research and Sponsored Programs, Texas Woman's University, 6700 Fannin Street, Houston, TX 77030, USA
| | - Stephanie Kung
- Department of Nutrition and Food Services, Texas Woman's University, 6700 Fannin Street, Houston, TX 77030, USA
| | - Araz Sarkissian
- Department of Nutrition and Food Services, Texas Woman's University, 6700 Fannin Street, Houston, TX 77030, USA
| | - Nezar Nashef
- Department of Nutrition and Food Services, Texas Woman's University, 6700 Fannin Street, Houston, TX 77030, USA
| | - Wanyi Wang
- Center for Design and Research, Texas Woman's University, 6700 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
44
|
Snelson M, Jong J, Manolas D, Kok S, Louise A, Stern R, Kellow NJ. Metabolic Effects of Resistant Starch Type 2: A Systematic Literature Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:nu11081833. [PMID: 31398841 PMCID: PMC6723691 DOI: 10.3390/nu11081833] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Published evidence exploring the effects of dietary resistant starch (RS) on human cardiometabolic health is inconsistent. This review aimed to investigate the effect of dietary RS type 2 (RS2) supplementation on body weight, satiety ratings, fasting plasma glucose, glycated hemoglobin (HbA1c), insulin resistance and lipid levels in healthy individuals and those with overweight/obesity, the metabolic syndrome (MetS), prediabetes or type 2 diabetes mellitus (T2DM). Five electronic databases were searched for randomized controlled trials (RCTs) published in English between 1982 and 2018, with trials eligible for inclusion if they reported RCTs involving humans where at least one group consumed ≥ 8 g of RS2 per day and measured body weight, satiety, glucose and/or lipid metabolic outcomes. Twenty-two RCTs involving 670 participants were included. Meta-analyses indicated that RS2 supplementation significantly reduced serum triacylglycerol concentrations (mean difference (MD) = -0.10 mmol/L; 95% CI -0.19, -0.01, P = 0.03) in healthy individuals (n = 269) and reduced body weight (MD = -1.29 kg; 95% CI -2.40, -0.17, P = 0.02) in people with T2DM (n = 90). However, these outcomes were heavily influenced by positive results from a small number of individual studies which contradicted the conclusions of the majority of trials. RS2 had no effects on any other metabolic outcomes. All studies ranged from 1-12 weeks in duration and contained small sample sizes (10-60 participants), and most had an unclear risk of bias. Short-term RS2 supplementation in humans is of limited cardiometabolic benefit.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jessica Jong
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Deanna Manolas
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Smonda Kok
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Audrey Louise
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Romi Stern
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
45
|
Luo J, Qi J, Wang W, Luo Z, Liu L, Zhang G, Zhou Q, Liu J, Peng X. Antiobesity Effect of Flaxseed Polysaccharide via Inducing Satiety due to Leptin Resistance Removal and Promoting Lipid Metabolism through the AMP-Activated Protein Kinase (AMPK) Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7040-7049. [PMID: 31199141 DOI: 10.1021/acs.jafc.9b02434] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Obesity is a metabolic syndrome worldwide that causes many chronic diseases. Recently, we found an antiobesity effect of flaxseed polysaccharide (FP), but the mechanism remains to be elucidated. In this study, rats were first induced to develop obesity by being fed a high-fat diet. The obese rats were then fed a control diet, AIN-93M (group HFD), or a 10% FP diet (group FPD). The body weight, body fat, adipose tissue and liver sections, serous total triglycerides, levels of fasting blood glucose in serum, serous insulin, inflammatory cytokines in serum, and serous proteins within the leptin-neuropeptide Y (NPY) and AMP-activated protein kinase (AMPK) signaling pathway were determined and analyzed. FP intervention significantly reduced body weight and abdominal fat from 530 ± 16 g and 2.15% ± 0.30% in group HFD to 478 ± 10 g and 1.38% ± 0.48% in group FPD, respectively. This effect was achieved by removing leptin resistance possibly by inhibiting inflammation and recovering satiety through the significant downregulation of NPY and the upregulation of glucagon-like peptide 1. Adiponectin was then significantly upregulated probably via the gut-brain axis and further activated the AMPK signaling pathway to improve lipid metabolism including the improvement of lipolysis and fatty acid oxidation and the suppression of lipogenesis. This is the first report of the proposed antiobesity mechanism of FP, thereby providing a comprehensive understanding of nonstarch polysaccharides and obesity.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Jiamei Qi
- College of Life Science and Technology , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Wenjun Wang
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Zhenhuan Luo
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Liu Liu
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Guangwen Zhang
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Qinghua Zhou
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Jiesheng Liu
- College of Life Science and Technology , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Xichun Peng
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| |
Collapse
|
46
|
Martínez-Maqueda D, Zapatera B, Gallego-Narbón A, Vaquero MP, Saura-Calixto F, Pérez-Jiménez J. A 6-week supplementation with grape pomace to subjects at cardiometabolic risk ameliorates insulin sensitivity, without affecting other metabolic syndrome markers. Food Funct 2019; 9:6010-6019. [PMID: 30382274 DOI: 10.1039/c8fo01323c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Grape polyphenols have shown a promising role in the modulation of metabolic syndrome (MetS), mostly in animal models. However, clinical studies are scarce and they usually only consider a fraction of polyphenols, ignoring the non-extractable polyphenols (high molecular weight compounds or associated with macromolecules such as dietary fibre). This study aimed at evaluating the effect of grape pomace, rich in both extractable and non-extractable polyphenols, on markers of MetS. Fifty subjects (22 women) aged 20-65 with at least two MetS factors were randomly assigned to the product (daily dose of 8 g of dried grape pomace) or to the control group in a 6 week crossover design with a 4 week wash-out. Samples were collected at the beginning and at the end of both periods; half of the participants were subjected to an oral glucose tolerance test at the beginning and the end of the supplementation period. Grape pomace supplementation significantly improved fasting insulinaemia (p < 0.01), without affecting other cardiometabolic risk parameters. A tendency towards an improvement in postprandial insulinaemia was observed, particularly in those subjects with higher fasting insulin levels. Therefore, supplementation with grape pomace may be a strategy for improving insulin sensitivity in subjects at high cardiometabolic risk.
Collapse
Affiliation(s)
- Daniel Martínez-Maqueda
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Snelson M, Kellow NJ, Coughlan MT. Modulation of the Gut Microbiota by Resistant Starch as a Treatment of Chronic Kidney Diseases: Evidence of Efficacy and Mechanistic Insights. Adv Nutr 2019; 10:303-320. [PMID: 30668615 PMCID: PMC6416045 DOI: 10.1093/advances/nmy068] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/17/2018] [Accepted: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) has been associated with changes in gut microbial ecology, or "dysbiosis," which may contribute to disease progression. Recent studies have focused on dietary approaches to favorably alter the composition of the gut microbial communities as a treatment method in CKD. Resistant starch (RS), a prebiotic that promotes proliferation of gut bacteria such as Bifidobacteria and Lactobacilli, increases the production of metabolites including short-chain fatty acids, which confer a number of health-promoting benefits. However, there is a lack of mechanistic insight into how these metabolites can positively influence renal health. Emerging evidence shows that microbiota-derived metabolites can regulate the incretin axis and mitigate inflammation via expansion of regulatory T cells. Studies from animal models and patients with CKD show that RS supplementation attenuates the concentrations of uremic retention solutes, including indoxyl sulfate and p-cresyl sulfate. Here, we present the current state of knowledge linking the microbiome to CKD, we explore the efficacy of RS in animal models of CKD and in humans with the condition, and we discuss how RS supplementation could be a promising dietary approach for slowing CKD progression.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicole J Kellow
- Be Active Sleep & Eat (BASE) Facility, Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Heart Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
A Plant-Based Meal Increases Gastrointestinal Hormones and Satiety More Than an Energy- and Macronutrient-Matched Processed-Meat Meal in T2D, Obese, and Healthy Men: A Three-Group Randomized Crossover Study. Nutrients 2019; 11:nu11010157. [PMID: 30642053 PMCID: PMC6357017 DOI: 10.3390/nu11010157] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
Gastrointestinal hormones are involved in regulation of glucose metabolism and satiety. We tested the acute effect of meal composition on these hormones in three population groups. A randomized crossover design was used to examine the effects of two energy- and macronutrient-matched meals: a processed-meat and cheese (M-meal) and a vegan meal with tofu (V-meal) on gastrointestinal hormones, and satiety in men with type 2 diabetes (T2D, n = 20), obese men (O, n = 20), and healthy men (H, n = 20). Plasma concentrations of glucagon-like peptide -1 (GLP-1), amylin, and peptide YY (PYY) were determined at 0, 30, 60, 120 and 180 min. Visual analogue scale was used to assess satiety. We used repeated-measures Analysis of variance (ANOVA) for statistical analysis. Postprandial secretion of GLP-1 increased after the V-meal in T2D (by 30.5%; 95%CI 21.2 to 40.7%; p < 0.001) and H (by 15.8%; 95%CI 8.6 to 23.5%; p = 0.01). Postprandial plasma concentrations of amylin increased in in all groups after the V-meal: by 15.7% in T2D (95%CI 11.8 to 19.6%; p < 0.001); by 11.5% in O (95%CI 7.8 to 15.3%; p = 0.03); and by 13.8% in H (95%CI 8.4 to 19.5%; p < 0.001). An increase in postprandial values of PYY after the V-meal was significant only in H (by 18.9%; 95%CI 7.5 to 31.3%; p = 0.03). Satiety was greater in all participants after the V-meal: by 9% in T2D (95%CI 4.4 to 13.6%; p = 0.004); by 18.7% in O (95%CI 12.8 to 24.6%; p < 0.001); and by 25% in H (95%CI 18.2 to 31.7%; p < 0.001). Our results indicate there is an increase in gut hormones and satiety, following consumption of a single plant-based meal with tofu when compared with an energy- and macronutrient-matched processed-meat meat and cheese meal, in healthy, obese and diabetic men.
Collapse
|
49
|
Zeng H, Zheng Y, Lin Y, Huang C, Lin S, Zheng B, Zhang Y. Effect of fractionated lotus seed resistant starch on proliferation of Bifidobacterium longum and Lactobacillus delbrueckii subsp. bulgaricus and its structural changes following fermentation. Food Chem 2018; 268:134-142. [DOI: 10.1016/j.foodchem.2018.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
|
50
|
Peterson CM, Beyl RA, Marlatt KL, Martin CK, Aryana KJ, Marco ML, Martin RJ, Keenan MJ, Ravussin E. Effect of 12 wk of resistant starch supplementation on cardiometabolic risk factors in adults with prediabetes: a randomized controlled trial. Am J Clin Nutr 2018; 108:492-501. [PMID: 30010698 PMCID: PMC6134290 DOI: 10.1093/ajcn/nqy121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background Type 2 resistant starch (RS2) has been shown to improve glycemic control and some cardiovascular endpoints in rodent and human studies. Objective The aim of this study was to perform one of the first randomized clinical trials in adults with prediabetes and one of the longest trials to test whether RS2 can improve cardiometabolic health. Design 68 overweight [body mass index (BMI) ≥27 kg/m2] adults aged 35-75 y with prediabetes were randomized to consume 45 g/d of high-amylose maize (RS2) or an isocaloric amount of the rapidly digestible starch amylopectin (control) for 12 wk. At baseline and postintervention, ectopic fat depots (visceral adipose tissue, intrahepatic lipids, and intramyocellular lipids) were measured by magnetic resonance imaging/spectroscopy, energy metabolism by respiratory chamber, and carbohydrate metabolism by glycated hemoglobin (HbA1c), an intravenous glucose tolerance test, and a meal tolerance test. Cardiovascular risk factors-serum lipids, blood pressure, heart rate, and inflammatory markers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6, and tumor necrosis factor [TNF]-α)-were also measured. The primary endpoints were insulin sensitivity, insulin secretion, ectopic fat, and markers of inflammation. Data were primarily analyzed as treatment effects via a linear mixed model both with and without the addition of covariates. Results Relative to the control group, RS2 lowered HbA1c by a clinically insignificant 0.1 ± 0.2% (Δ = -1 ± 2 mmol/mol; P = 0.05) but did not affect insulin secretion, insulin sensitivity, the disposition index, or glucose or insulin areas under the curve relative to baseline (P ≥ 0.23). RS2 decreased heart rate by 5 ± 9 beats/min (P = 0.02) and TNF-α concentrations by 2.1 ± 2.7 pg/mL (P = 0.004), relative to the control group. Ectopic fat, energy expenditure, substrate oxidation, and all other cardiovascular risk factors were unaffected (P ≥ 0.06). Conclusions 12 wk of supplementation with resistant starch reduced the inflammatory marker TNF-α and heart rate, but it did not significantly improve glycemic control and other cardiovascular disease risk factors, in adults with prediabetes. This trial was registered at clinicaltrials.gov as NCT01708694.
Collapse
Affiliation(s)
- Courtney M Peterson
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Robbie A Beyl
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Kara L Marlatt
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Corby K Martin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Kayanush J Aryana
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Maria L Marco
- Food Science and Technology, University of California-Davis, Davis, CA
| | - Roy J Martin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA
| | - Michael J Keenan
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA
| | - Eric Ravussin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,Address correspondence to ER (e-mail: )
| |
Collapse
|