1
|
Ai H, Nie R, Wang X. Pathway Enrichment-Based Unsupervised Learning Identifies Novel Subtypes of Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma. Interdiscip Sci 2025; 17:477-495. [PMID: 40272703 DOI: 10.1007/s12539-025-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 05/28/2025]
Abstract
Existing single-cell clustering methods are based on gene expressions that are susceptible to dropout events in single-cell RNA sequencing (scRNA-seq) data. To overcome this limitation, we proposed a pathway-based clustering method for single cells (scPathClus). scPathClus first transforms the single-cell gene expression matrix into a pathway enrichment matrix and generates its latent feature matrix. Based on the latent feature matrix, scPathClus clusters single cells using the method of community detection. Applying scPathClus to pancreatic ductal adenocarcinoma (PDAC) scRNA-seq datasets, we identified two types of cancer-associated fibroblasts (CAFs), termed csCAFs and gapCAFs, which highly expressed complement system and gap junction-related pathways, respectively. Spatial transcriptome analysis revealed that gapCAFs and csCAFs are located at cancer and non-cancer regions, respectively. Pseudotime analysis suggested a potential differentiation trajectory from csCAFs to gapCAFs. Bulk transcriptome analysis showed that gapCAFs-enriched tumors are more endowed with tumor-promoting characteristics and worse clinical outcomes, while csCAFs-enriched tumors confront stronger antitumor immune responses. Compared to established CAF subtyping methods, this method displays better prognostic relevance.
Collapse
Affiliation(s)
- Hongjing Ai
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongfang Nie
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Mo X, He J, Shen X, Li C, Mo X, Liang K, He L, Li T, Pan X, Cao S, Mao N, Xing S, Chen Z, Luo Z, Yang J. Connexin43 Promotes the Invasion and Metastasis of Lung Squamous Cell Carcinoma via GJIC-Dependent Ca 2+/ERK Signaling Activation. Cancer Sci 2025. [PMID: 40449992 DOI: 10.1111/cas.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 06/03/2025] Open
Abstract
Lung squamous cell carcinoma (LUSC) is an extremely metastatic cancer with limited available treatment and poor outcomes. Connexin43 (Cx43) is frequently overactivated and positively correlated with tumorigenesis in many cancers, including breast cancer and lung adenocarcinoma, but its role in LUSC remains elusive. In this study, we demonstrated that Cx43 was highly expressed in LUSC tissues as compared to matching normal lung tissues (n = 103) and negatively related to prognosis. Through the 3D spheroid cell invasion assay, zCDX (zebrafish cell line-derived xenograft), and orthotopic lung cancer xenograft model, we further revealed that Cx43 promotes LUSC invasion and migration via forming GJIC. Knockdown of Cx43 reduced the Ca2+ transmission and ERK phosphorylation, whereas the addition of Ca2+ enhanced ERK phosphorylation and promoted LUSC invasion and migration. Furthermore, verapamil (40 μM and 80 μM), a calcium channel inhibitor, significantly inhibited ERK phosphorylation as well as the invasion and migration of LUSC cells. Mechanistically, Cx43 promoted the invasion and metastasis of LUSC via activating the Ca2+/ERK signaling pathway by gap junctional intracellular communication (GJIC). Our findings provide a novel mechanism insight for LUSC invasion and migration and a proof of concept for a new therapeutic strategy to tackle this disease.
Collapse
Affiliation(s)
- Xiaocheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingchuan He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Department of Pharmacy, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Changsheng Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Kai Liang
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Liangjun He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tingting Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoqin Pan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sisi Cao
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Naiquan Mao
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shangping Xing
- Department of Chinese Materia Medica, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhuo Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
3
|
Buchberger C, Kameritsch P, Mannell H, Beck H, Pohl U, Pogoda K. Gap Junctional Interaction of Endothelial Progenitor Cells (EPC) with Endothelial Cells Induces Angiogenic Network Formation In Vitro. Int J Mol Sci 2025; 26:4827. [PMID: 40429968 PMCID: PMC12112054 DOI: 10.3390/ijms26104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Endothelial progenitor cells (EPC) are considered to support neovascularization and endothelial repair by being incorporated into newly formed or injured vessels and by improving vascularization in a paracrine manner by secreting proangiogenic factors. Here, we studied the role of gap junctional communication between EPC and endothelial cells in long-term co-cultures in vitro. The cultivation of endothelial cells together with mouse embryonic EPC (E 7.5) induced the spontaneous formation of angiogenic networks after 3-6 days consisting of both cell types, but not in the respective monocultures, whereas their respective cultivation on a basement matrix induced the formation of tube-like structures, as expected. The angiogenic network formation could not be mimicked by the incubation of endothelial cells with supernatants of EPC only. We therefore hypothesized that direct interaction and cell-cell communication is required to induce the angiogenic network formation in co-cultures with endothelial cells. Expression analysis demonstrated expression of the gap junctional protein connexin 43 (Cx43) in EPC. Moreover, dye injection studies as well as FACS analysis identified gap junctional communication between endothelial cells and EPC. The inhibition of gap junctions by pharmacological blockers significantly reduced the angiogenic network formation, confirming that gap junctional communication between both cell types is required for this process.
Collapse
Affiliation(s)
- Christina Buchberger
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany; (C.B.); (H.M.)
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany;
| | - Hanna Mannell
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany; (C.B.); (H.M.)
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Biomedical Center Munich, Ludwig-Maximilians-University, 82152 Planegg, Germany; (H.B.); (U.P.)
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, Biomedical Center Munich, Ludwig-Maximilians-University, 82152 Planegg, Germany; (H.B.); (U.P.)
| | - Kristin Pogoda
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany; (C.B.); (H.M.)
| |
Collapse
|
4
|
Chen Y, Li K, Du H, Yao Y, Xie D, Zhou Z. Breaking Barriers in Oncology: Harnessing Sonodynamic Therapy for Enhanced Tumor Metabolism Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502323. [PMID: 40317653 DOI: 10.1002/smll.202502323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Indexed: 05/07/2025]
Abstract
The recent booming development of sonometabolism regulation in controlling the tumor microenvironment (TME) has opened a new research area to identify innovative approaches against cancer. The aim of this review is to highlight the potentials and advantages of sonodynamic therapy (SDT) in antitumor nanotherapies, specifically, delineating the progress made in SDT concerning the regulation of TME metabolism which encompasses factors such as hypoxia, redox balance, autophagy, immunosuppression, ion homeostasis, and other metabolic processes. By focusing on both tumor cell metabolism and TME dynamics, a wide range of SDT strategies that have demonstrated great therapeutic effectiveness by targeting the metabolic functions inherent to TME are summarized. In conclusion, this review offers valuable insights for researchers involved in SDT-based antitumor therapeutic strategies, with the aim of advancing the development of antitumor SDT methodologies in future research.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Hao Du
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangcheng Yao
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zongke Zhou
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Cen YY, Gao XL, Feng YH, Zhou C, Li CJ, Liu F, Shen JF, Zhang YY. The Double-Edged Effect of Connexins and Pannexins of Glial Cells in Central and Peripheral Nervous System After Nerve Injury. Mol Neurobiol 2025:10.1007/s12035-025-04991-6. [PMID: 40310549 DOI: 10.1007/s12035-025-04991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Glial cells play pivotal roles in homeostatic regulation and driving reactive pathologic changes after nerve injury. Connexins (Cxs) and pannexins (Panxs) have emerged as seminal proteins implicated in cell-cell communication, exerting a profound impact on the response processes of glial cell activation, proliferation, protein synthesis and secretion, as well as apoptosis following nerve injury. These influences are mediated through various forms, including protein monomers, hemichannel (HC), and gap junction (GJ), mainly by regulating intercellular or intracellular signaling pathways. Multiple Cx and Panx isoforms have been detected in central nervous system (CNS) or peripheral nervous system (PNS). Each isoform exhibits distinct cellular and subcellular localization, and the differential regulation and functional roles of various protein isoforms are observed post-injury. The quantitative and functional alterations of the same protein isoform in different studies remain inconsistent, attributable to factors such as the predominant mode of protein polymerization, the specific injury model, and the injury site. Similarly, the same protein isoforms have different roles in regulating the response processes after nerve injury, thus exerting a double-edged sword effect. This review describes the regulatory mechanisms and bidirectional effects of Cxs and Panxs. Additionally, it surveys the current status of research and application of drugs as therapeutic targets for neuropathic injuries. We summarize comprehensive and up-to-date information on these proteins in the glial cell response to nerve injury, providing new perspectives for future mechanistic exploration and development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yue-Yan Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Xin-Lin Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
6
|
Tan F, Chen J, Sun L, Zhang L, Zhou R. Cx58 is associated with the metastasis of non-small cell lung cancer via MEF2B/Cx58 axis. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40285453 DOI: 10.3724/abbs.2025049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025] Open
Abstract
Connexins (Cxs), also known as gap junction proteins, are structurally related transmembrane proteins and have been implicated in carcinogenesis. Although some evidence suggests that these proteins are tumor suppressors due to their reduced expression in cancers, recent research indicates their complicated roles in tumor progression during different stages, including metastasis. Here, we show that Cx58, which is upregulated in non-small cell lung cancer (NSCLC), is modulated by myocyte-enhancer binding factor 2B (MEF2B). Either Cx58 or MEF2B knockdown attenuates the migration and invasion of NSCLC cells by inducing cytoskeleton rearrangement. Additionally, the prometastatic role of Cx58 in NSCLC is demonstrated in vivo. In conclusion, our findings suggest that Cx58 is transcriptionally activated by MEF2B and is involved in the metastasis of NSCLC by regulating cytoskeleton organization. Targeting the MEF2B/Cx58 axis may be exploited as a modality for improving NSCLC therapy.
Collapse
Affiliation(s)
- Fen Tan
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy,,Shanghai 200030, China
| | - Rui Zhou
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
7
|
Huai W, Yang K, Xing C, Song K, Lyu H, Williams NS, Wu J, Yan N. OAS cross-activates RNase L intercellularly through cell-to-cell transfer of 2-5A to spread innate immunity. Immunity 2025; 58:797-810.e6. [PMID: 40010341 PMCID: PMC11981853 DOI: 10.1016/j.immuni.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
The 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway is a classical antiviral innate immune pathway. Upon sensing dsRNA, OAS produces 2',5'-oligoadenylate (2-5A) as a second messenger to activate RNase L. Whether 2-5A can be transported to extend the reach of innate immune signaling has not been established. Here, we showed that 2-5A was transferred from cell to cell through connexin (CX43/CX45) gap junctions. 2-5A was also transferred through importers and exporters, allowing OAS to remotely activate RNase L and protect neighboring cells from viral infection. We identified ABCC10 as a 2-5A exporter. Loss of ABCC10 had no effect on 2-5A production but reduced 2-5A export and protection of neighboring cells. Furthermore, OAShi tumors such as MC38 naturally produced 2-5A in vivo, which was secreted via ABCC10 to activate host-not tumor-RNase L-mediated antitumor response. Therefore, 2-5A is an immunotransmitter that mediates short-range communication between cells in infection and cancer.
Collapse
Affiliation(s)
- Wanwan Huai
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Song
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heng Lyu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianjun Wu
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Pérez-Moreno P, Muñoz JP, Retamal MA. Molecular Interplay Between Non-Coding RNAs and Connexins and Its Possible Role in Cancer. Int J Mol Sci 2025; 26:2538. [PMID: 40141179 PMCID: PMC11942031 DOI: 10.3390/ijms26062538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are sequences that do not encode for proteins and play key roles in different cellular processes, including cell proliferation and differentiation. On the other hand, connexins (Cxs) are transmembrane proteins that principally allow intercellular communication. In pathological conditions such as cancer, there is a deregulation in the expression and/or function of ncRNAs and Cxs, which in turn leads to an enhancement in the aggressive phenotype, such as a greater proliferative and invasive capacity. This suggests a plausible interplay between ncRNAs and Cxs. Based on that, this review aims to summarize the current knowledge regarding this relationship and to analyze how it may influence the development of aggressive traits in cancer cells and the clinicopathological features of cancer patients. Finally, we discuss the potential of ncRNAs and Cxs as promising clinical biomarkers for cancer diagnosis, prognosis, and therapeutic targeting.
Collapse
Affiliation(s)
- Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
9
|
Vitale R, Marzocco S, Popolo A. Simvastatin Enhances the Cytotoxic Effects of Doxorubicin in a Mammary Adenocarcinoma Cell Model by Involving Connexin 43. J Biochem Mol Toxicol 2025; 39:e70214. [PMID: 40067747 PMCID: PMC11896016 DOI: 10.1002/jbt.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Gap Junctions channels formed by Connexins (Cx) provide intercellular communication enabling the coordination of cell growth, differentiation, and metabolism, and their reduction has been shown in many tumor types. Expression levels of Cx43, the most extensively studied Gap Junctions forming protein, are reduced or completely absent in breast cancer cells, while their overexpression correlates with increased cellular permeability to anticancer agents and, consequently, reduced resistance to drug treatments. So, drug associations targeting Cx43 are being considered to overcome chemoresistance. Previous studies demonstrated that Simvastatin (Sim) interferes with Cx43 expression and localization, and chemo-sensitizing effects of Sim in several tumor cell lines treated with antineoplastic chemotherapeutics have been shown. This study aimed to evaluate whether Sim cotreatment enhances Doxorubicin-induced cytotoxicity by affecting Cx43 expression and/or phosphorylation, so MCF-7 cells were treated with Sim (10 µM) for 4 h and then coexposed to Sim and Doxorubicin (1 µM) for 20 h. In Sim cotreated cells, increased membrane levels of Cx43 have been shown; moreover, decreased levels of Cx43 phosphorylated on Ser368 and Ser262 residues, involved in channel closure and disruption of cell-cell communication, have been demonstrated in these cells. In Sim cotreated cells increased Doxorubicin uptake and enhanced Doxorubicin-induced cytotoxic effects have been demonstrated together with reduced migratory capacity. Our data support the notion that Sim cotreatment could be a possible strategy to overcome chemoresistance, since the observed increase in Cx43 membrane levels, and the concomitant reduction of Cx43 phosphorylation, could be responsible for increased sensitization of cells to Doxorubicin treatment.
Collapse
Affiliation(s)
- Roberta Vitale
- Department of PharmacyUniversity of SalernoFiscianoSalernoItaly
| | | | - Ada Popolo
- Department of PharmacyUniversity of SalernoFiscianoSalernoItaly
| |
Collapse
|
10
|
Gutierrez-Camacho JR, Avila-Carrasco L, Garza-Veloz I, Monárrez-Espino J, Martinez-Vazquez MC, Araujo-Espino R, Trejo-Ortiz PM, Martinez-Flores RB, Gurrola-Carlos R, Troncoso-Vazquez L, Martinez-Fierro ML. Connexin 43 Expression as Biomarker of Oral Squamous Cell Carcinoma and Its Association with Human Papillomavirus 16 and 18. Int J Mol Sci 2025; 26:1232. [PMID: 39941000 PMCID: PMC11818288 DOI: 10.3390/ijms26031232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the main form of head and neck cancer. Gap junctions (GJs) are communication channels involved in cell proliferation control; they consist of hemichannels formed by connexin (Cx) proteins. The abnormal expression/function of Cx43 has been associated with tumor progression. Also, some human papillomaviruses (HPVs) have been linked to squamous cell cancer. Therefore, this study aimed at assessing Cx43 as a potential OSCC biomarker and exploring its association with histopathological differentiation and HPV infection. OSCC samples were inspected using hematoxylin and eosin staining, and Cx43 expression and HPV 16/18 were tested by immunofluorescence. Pearson correlation tests, ANOVA, and Kaplan-Meier curves were used in the analysis. Samples from 39 patients with OSCC were studied. Most had well-differentiated histology and 61.5% were HPV+. Cx43 expression was significantly associated with HPV infection (p = 0.047), differentiation (p < 0.001), and survival (p = 0.009), and HPV positivity was also associated with the degree of differentiation (p = 0.012). Cx43 shows potential as a prognostic biomarker for OSCC. Lower Cx43 expression, correlated with poorer differentiation, is associated with an unfavorable prognosis. Further studies are needed to confirm its clinical utility.
Collapse
Affiliation(s)
| | - Lorena Avila-Carrasco
- Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (I.G.-V.); (J.M.-E.); (M.C.M.-V.); (R.A.-E.); (P.M.T.-O.); (R.B.M.-F.); (R.G.-C.); (L.T.-V.)
| | | | | | | | | | | | | | | | | | - Margarita L. Martinez-Fierro
- Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (I.G.-V.); (J.M.-E.); (M.C.M.-V.); (R.A.-E.); (P.M.T.-O.); (R.B.M.-F.); (R.G.-C.); (L.T.-V.)
| |
Collapse
|
11
|
Asencio C, Véliz L, Flores-Faúndez E, Azócar L, Echeverría CE, Torres-Estay V, Orellana V, Ramírez-Santelices C, Sotomayor P, Cancino J, Kerr B, Fernandez-Olivares A, Retamal MA, Sáez JC, Godoy AS. Lack of canonical activities of connexins in highly aggressive human prostate cancer cells. Biol Res 2024; 57:97. [PMID: 39695787 DOI: 10.1186/s40659-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Connexins (Cxs) have the ability to form channels that allow the exchange of ions/metabolites between adjacent cells (gap junction channels, GJC) or between the intra- and extra-cellular compartments (hemichannels, HC). Cxs were initially classified as tumor suppressors. However, more recently, it has been shown that Cxs exert anti- and pro-tumorigenic effects depending on the cell and tissue context. In prostate cancer (PCa), the expression and functionality of Cxs remain highly controversial. Here, we analyzed the expression pattern of Cx26, Cx32, Cx37, Cx40, Cx43 and Cx45 in PCa cell lines with increasing levels of tumor aggressiveness (LNCaP < LNCaP-C4-2 < Du-145 < PC-3). In addition, GJ and HC activities were evaluated in the PCa cell lines using dye coupling and dye uptake assays, respectively. Lastly, the cellular localization of Cx26, Cx32, and Cx43 was analyzed in LNCaP and PC-3 cell lines using immunofluorescence analyses. Our results showed a positive association between the mRNA levels of Cx26, Cx37 and Cx45 and the degree of aggressiveness of PCa cells, a negative association in the case of Cx32 and Cx43, and no clear pattern for Cx40. At the protein level, a negative relationship between the expression of Cx26, Cx32 and Cx43 and the degree of aggressiveness of PCa cell lines was observed. No significant differences were observed for the expression of Cx37, Cx40, and Cx45 in PCa cell lines. At the functional level, only LNCaP cells showed moderate GJ activity and LNCaP and LNCaP-C4-2 cells showed HC activity. Immunofluorescence analyses confirmed that the majority of Cx26, Cx32, and Cx43 expression was localized in the cytoplasm of both LNCaP and PC3 cell lines. This data indicated that GJ and HC activities were moderately detected only in the less aggressive PCa cells, which suggest that Cxs expression in highly aggressive PCa cells could be associated to channel-independent roles.
Collapse
Affiliation(s)
- Catalina Asencio
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Véliz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilia Flores-Faúndez
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | - Lorena Azócar
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | | | - Verónica Torres-Estay
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana Orellana
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7610634, Chile
| | - Catalina Ramírez-Santelices
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | - Paula Sotomayor
- Department of Urology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | - Ainoa Fernandez-Olivares
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7610634, Chile
| | - Mauricio A Retamal
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7610634, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro S Godoy
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile.
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
12
|
Paunikar S, Tamagnone L. Connexin-43 in Cancer: Above and Beyond Gap Junctions! Cancers (Basel) 2024; 16:4191. [PMID: 39766090 PMCID: PMC11674308 DOI: 10.3390/cancers16244191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Connexin-43 (Cx43) is the most characterized gap junction protein, primarily involved in the Gap Junctional Intercellular Communication (GJIC) between adjacent cells to facilitate molecule exchange and the formation of a signaling network. It is increasingly evident that the importance of Cx43 is not only limited to its GJIC function, but rather includes its role in connecting the intracellular and extracellular environment by forming membrane hemichannels, as well as its intracellular signaling function mediated by its C-terminal tail (Cx43-CT). Notably, Cx43 has been implicated in a variety of cancers, with earlier notions suggesting a tumor-suppressor function, whereas new studies shed light on its pro-tumorigenic role. Moreover, apart from GJIC-based activities, the relevance of the non-canonical functions of Cx43 in tumor progression is being actively studied. This review provides an analysis of the current research on the pro-tumorigenic roles of Cx43, with a focus on Cx43-CT interactions and the function of hemichannels in cancer progression. A better understanding of the multifaceted functions of Cx43 in cancer biology could foster its recognition as a pivotal target for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Shishir Paunikar
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Tamagnone
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A.Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
13
|
Ganina A, Askarov M, Kozina L, Karimova M, Shayakhmetov Y, Mukhamedzhanova P, Brimova A, Berikbol D, Chuvakova E, Zaripova L, Baigenzhin A. Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities. Adv Respir Med 2024; 92:504-525. [PMID: 39727496 PMCID: PMC11673795 DOI: 10.3390/arm92060045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
This review explores the significance and prospects of using diverse T-cell variants in the context of combined therapy for lung cancer treatment. Recently, there has been an increase in research focused on understanding the critical role of tumor-specific T lymphocytes and the potential benefits of autologous T-cell-based treatments for individuals with lung cancer. One promising approach involves intravenous administration of ex vivo-activated autologous lymphocytes to improve the immune status of patients with cancer. Investigations are also exploring the factors that influence the success of T-cell therapy and the methods used to stimulate them. Achieving a comprehensive understanding of the characteristics of activated lymphocytes and deciphering the mechanisms underlying their activation of innate anti-tumor immunity will pave the way for numerous clinical trials and the development of innovative strategies for cancer therapy like combined immunotherapy and radiation therapy.
Collapse
Affiliation(s)
- Anastasia Ganina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Manarbek Askarov
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Larissa Kozina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Madina Karimova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Yerzhan Shayakhmetov
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Perizat Mukhamedzhanova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Aigul Brimova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Daulet Berikbol
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Elmira Chuvakova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Lina Zaripova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Abay Baigenzhin
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| |
Collapse
|
14
|
Xiang Y, Zhao Z, Yao EJ, Balayan A, Fiering SN, Steinmetz NF, Chen S. Multifaceted cancer alleviation by cowpea mosaic virus in a bioprinted ovarian cancer peritoneal spheroid model. Biomaterials 2024; 311:122663. [PMID: 38878481 PMCID: PMC11729462 DOI: 10.1016/j.biomaterials.2024.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 08/06/2024]
Abstract
Ovarian cancer (OvCa) is a leading cause of mortality among gynecological malignancies and usually manifests as intraperitoneal spheroids that generate metastases, ascites, and an immunosuppressive tumor microenvironment. In this study, we explore the immunomodulatory properties of cowpea mosaic virus (CPMV) as an adjuvant immunotherapeutic agent using an in vitro model of OvCa peritoneal spheroids. Previous findings highlighted the potent efficacy of intratumoral CPMV against OvCa in mouse tumor models. Leveraging the precision control over material deposition and cell patterning afforded by digital-light-processing (DLP) based bioprinting, we constructed OvCa-macrophage spheroids to mimic peritoneal spheroids using gelatin methacrylate (GelMA), a collagen-derived photopolymerizable biomaterial to mimic the extracellular matrix. Following CPMV treatment, bioprinted spheroids exhibited inhibited OvCa progression mediated by macrophage activation. Our analysis indicates that CPMV regulates and activates macrophage to both induce OvCa cell killing and restore normal cell-cell junctions. This study deepened our understanding of the mechanism of CPMV intratumoral immunotherapy in the setting of OvCa. This study also highlights the potential of studying immunotherapies using high throughput tissue models via DLP bioprinting.
Collapse
Affiliation(s)
- Yi Xiang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Emmie J Yao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Alis Balayan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Steven N Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Health, Lebanon, NH, 03756, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Center for Engineering in Cancer, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| | - Shaochen Chen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Habli Z, Zantout A, Al-Haj N, Saab R, El-Sabban M, Khraiche ML. Single-Cell Fluidic Force Spectroscopy Reveals Dynamic Mechanical Fingerprints of Malignancy in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50147-50159. [PMID: 39105773 PMCID: PMC11440459 DOI: 10.1021/acsami.4c06335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The interplay between cancer cell physical characteristics and metastatic potential highlights the significance of cancer cell mechanobiology. Using fluidic-based single-cell force spectroscopy (SCFS), quartz crystal microbalance with dissipation (QCM-D), and a model of cells with a spectrum of metastatic potential, we track the progression of biomechanics across the metastatic states by measuring cell-substrate and cell-to-cell adhesion forces, cell spring constant, cell height, and cell viscoelasticity. Compared to highly metastatic cells, cells in the lower spectrum of metastatic ability are found to be systematically stiffer, less viscoelastic, and larger. These mechanical transformations in cells within a cluster correlate with cells' metastatic potential but are significantly absent in single cells. Additionally, the response to chemotherapy is found to be highly dependent on cell viscoelastic properties in terms of both response time and magnitude. Shifts in cell softness and elasticity might serve as mechanoadaptive mechanisms during cancer cell metastasis, contributing to our understanding of metastasis and the effectiveness of potential therapeutic interventions.
Collapse
Affiliation(s)
- Zeina Habli
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ahmad Zantout
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nadine Al-Haj
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Raya Saab
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Massoud L Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
16
|
Song Y, Huang Q, Pu Q, Ni S, Zhu W, Zhao W, Xu H, Hu K. Gastrodin Liposomes Block Crosstalk between Astrocytes and Glioma Cells via Downregulating Cx43 to Improve Antiglioblastoma Efficacy of Temozolomide. Bioconjug Chem 2024; 35:1380-1390. [PMID: 39180545 DOI: 10.1021/acs.bioconjchem.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The crosstalk between glioma cells and astrocytes plays a crucial role in developing temozolomide (TMZ) resistance of glioblastomas, together with the existence of the BBB contributing to the unsatisfactory clinical treatment of glioblastomas. Herein, we developed a borneol-modified and gastrodin-loaded liposome (Bo-Gas-LP), with the intent of enhancing the efficacy of TMZ therapy after intranasal administration. The results showed that Bo-Gas-LP improved GL261 cells' sensitivity to TMZ and prolonged survival of GL261-bearing mice by blocking the crosstalk between astrocytes and glioblastoma cells with the decrease of Cx43. Our study showed that intranasal Bo-Gas-LP targeting the crosstalk in glioblastoma microenvironments proposed a promising targeted therapy idea to overcome the current therapeutic limitations of TMZ-resistant glioblastomas.
Collapse
Affiliation(s)
- Yangjie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Pu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhao Zhu
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Zhao
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
17
|
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189173. [PMID: 39154967 DOI: 10.1016/j.bbcan.2024.189173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response. In primary tumours, there is often a reduction and cytoplasmic mislocalization of Cx43 and Cx26, while metastatic lesions show an upregulation of these and other Cxs. Although existing research predominantly supports the tumour-suppressing role of Cxs in primary carcinomas through channel-dependent and independent functions, controversies persist regarding their involvement in the metastatic process. This review aims to provide an updated perspective on Cxs in human breast cancer, with a specific focus on intrinsic subtypes due to the heterogeneous nature of this disease. Additionally, the manuscript will explore the role of Cxs in immune interactions and novel forms of intercellular communication, such as tunneling nanotubes and extracellular vesicles, within the breast tumour context and tumour microenvironment. Recent findings suggest that Cxs hold potential as therapeutic targets for mitigating metastasis and drug resistance. Furthermore, they may serve as novel biomarkers for cancer prognosis, offering promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Marina Rodríguez-Candela Mateos
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain
| | - Paz Santiago Freijanes
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Anatomic Pathology Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Joaquin Mosquera
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Benigno Acea Nebril
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - María D Mayán
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain.
| |
Collapse
|
18
|
Baeza-Morales A, Medina-García M, Martínez-Peinado P, Pascual-García S, Pujalte-Satorre C, López-Jaén AB, Martínez-Espinosa RM, Sempere-Ortells JM. The Antitumour Mechanisms of Carotenoids: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1060. [PMID: 39334719 PMCID: PMC11428676 DOI: 10.3390/antiox13091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Carotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing apoptosis, inhibiting cell cycle progression and preventing metastasis by affecting oncogenic and tumour suppressor proteins. The review also explores the pro-oxidant function of carotenoids within cancer cells. In fact, although their overall contribution to cellular antioxidant defences is well known and significant, some carotenoids can exhibit pro-oxidant effects under certain conditions and are able to elevate reactive oxygen species (ROS) levels in tumoural cells, triggering mitochondrial pathways that would lead to cell death. The final balance between their antioxidant and pro-oxidant activities depends on several factors, including the specific carotenoid, its concentration and the redox environment of the cell. Clinical trials are discussed, highlighting the conflicting results of carotenoids in cancer treatment and the importance of personalized approaches. Emerging research on rare carotenoids like bacterioruberin showcases their superior antioxidant capacity and selective cytotoxicity against aggressive cancer subtypes, such as triple-negative breast cancer. Future directions include innovative delivery systems, novel combinations and personalized treatments, aiming to enhance the therapeutic potential of carotenoids. This review highlights the promising yet complex landscape of carotenoid-based cancer therapies, calling for continued research and clinical exploration.
Collapse
Affiliation(s)
- Andrés Baeza-Morales
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Miguel Medina-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Pascual Martínez-Peinado
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Sandra Pascual-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Carolina Pujalte-Satorre
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Ana Belén López-Jaén
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - José Miguel Sempere-Ortells
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| |
Collapse
|
19
|
Cook SR, Hugen S, Hayward JJ, Famula TR, Belanger JM, McNiel E, Fieten H, Oberbauer AM, Leegwater PA, Ostrander EA, Mandigers PJ, Evans JM. Genomic analyses identify 15 susceptibility loci and reveal HDAC2, SOX2-OT, and IGF2BP2 in a naturally-occurring canine model of gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.604426. [PMID: 39372775 PMCID: PMC11451740 DOI: 10.1101/2024.08.14.604426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Gastric cancer (GC) is the fifth most common human cancer worldwide, but the genetic etiology is largely unknown. We performed a Bayesian genome-wide association study and selection analyses in a naturally-occurring canine model of GC, the Belgian Tervuren and Sheepdog breeds, to elucidate underlying genetic risk factors. We identified 15 loci with over 90% predictive accuracy for the GC phenotype. Variant filtering revealed germline putative regulatory variants for the EPAS1 (HIF2A) and PTEN genes and a coding variant in CD101. Although closely related to Tervuren and Sheepdogs, Belgian Malinois rarely develop GC. Across-breed analyses uncovered protective haplotypes under selection in Malinois at SOX2-OT and IGF2BP2. Among Tervuren and Sheepdogs, HDAC2 putative regulatory variants were present at comparatively high frequency and were associated with GC. Here, we describe a complex genetic architecture governing GC in a dog model, including genes such as PDZRN3, that have not been associated with human GC.
Collapse
Affiliation(s)
- Shawna R. Cook
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sanne Hugen
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Elizabeth McNiel
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Hille Fieten
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Peter A.J. Leegwater
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul J.J. Mandigers
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jacquelyn M. Evans
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Kumar P, Banik SP, Ohia SE, Moriyama H, Chakraborty S, Wang CK, Song YS, Goel A, Bagchi M, Bagchi D. Current Insights on the Photoprotective Mechanism of the Macular Carotenoids, Lutein and Zeaxanthin: Safety, Efficacy and Bio-Delivery. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:505-518. [PMID: 38393321 DOI: 10.1080/27697061.2024.2319090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Ocular health has emerged as one of the major issues of global health concern with a decline in quality of life in an aging population, in particular and rise in the number of associated morbidities and mortalities. One of the chief reasons for vision impairment is oxidative damage inflicted to photoreceptors in rods and cone cells by blue light as well as UV radiation. The scenario has been aggravated by unprecedented rise in screen-time during the COVID and post-COVID era. Lutein and Zeaxanthin are oxygenated carotenoids with proven roles in augmentation of ocular health largely by virtue of their antioxidant properties and protective effects against photobleaching of retinal pigments, age-linked macular degeneration, cataract, and retinitis pigmentosa. These molecules are characterized by their characteristic yellow-orange colored pigmentation and are found in significant amounts in vegetables such as corn, spinach, broccoli, carrots as well as fish and eggs. Unique structural signatures including tetraterpenoid skeleton with extensive conjugation and the presence of hydroxyl groups at the end rings have made these molecules evolutionarily adapted to localize in the membrane of the photoreceptor cells and prevent their free radical induced peroxidation. Apart from the benefits imparted to ocular health, lutein and zeaxanthin are also known to improve cognitive function, cardiovascular physiology, and arrest the development of malignancy. Although abundant in many natural sources, bioavailability of these compounds is low owing to their long aliphatic backbones. Under the circumstances, there has been a concerted effort to develop vegetable oil-based carriers such as lipid nano-emulsions for therapeutic administration of carotenoids. This review presents a comprehensive update of the therapeutic potential of the carotenoids along with the challenges in achieving an optimized delivery tool for maximizing their effectiveness inside the body.
Collapse
Affiliation(s)
- Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Hiroyoshi Moriyama
- Department of Scientific Affairs, The Japanese Institute for Health Food Standards, Tokyo, Japan
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yong Sang Song
- Department of Obstetrics and Gynaecology, Seoul National University Hospital, Seoul, South Korea
| | - Apurva Goel
- Regulation Department, Chemical Resources (CHERESO), Panchkula, India
| | | | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
21
|
Zeng J, Li X, Zhang Y, Zhang B, Wang H, Bao S, Zu L, Zhang H, Cheng Y, Tang Q, Xu X, Xu S, Song Z. GJB3: a comprehensive biomarker in pan-cancer prognosis and immunotherapy prediction. Aging (Albany NY) 2024; 16:7647-7667. [PMID: 38728250 PMCID: PMC11132019 DOI: 10.18632/aging.205774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND A wide range of connexins are situated between normal-normal cells, cancer-cancer cells, and cancer-normal cells. Abnormalities in connexin expression are typically accompanied by cancer development; however, no systematic studies have examined the role of Gap Junction Protein Beta 3 (GJB3) in the context of tumor progression and immunity, especially when considering a broad range of cancer types. METHODS In this study, data on GJB3 expression were gathered from Genotype-Tissue Expression, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas databases. Then, we analyzed the relationship between GJB3 expression and tumor characteristics. In vitro experiments using colony formation, EdU, CCK8, transwell migration assays, immunohistochemistry and western blot were performed to investigate the function of GJB3 in tumor progression of various cell lines. A drug sensitivity analysis of GJB3 was performed using the Genomics of Drug Sensitivity in Cancer database. RESULT Our findings demonstrate that GJB3 is widely expressed in various cancers and correlates significantly with disease stages, patient survival, immunotherapy response, and pharmaceutical guidance. Additionally, GJB3 plays a role in different cancer pathways, as well as in different immune and molecular subtypes of cancer. Co-expression of GJB3 with immune checkpoint genes was observed. Further experiments showed that knockdown of GJB3 inhibited the PI3K/AKT pathway and resulted in reduced proliferation, migration, and viability of different cancer cells. CONCLUSION Overall, GJB3 shows potential as a molecular biomarker and therapeutic target for various cancers, particularly lung adenocarcinomas, mesothelioma, pancreatic adenocarcinoma. Thus, GJB3 may represent a new therapeutic target for a wide range of cancers.
Collapse
Affiliation(s)
- Jingtong Zeng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjie Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yifan Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanqing Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shihao Bao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Cheng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanying Tang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- Colleges of Nursing, Tianjin Medical University, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
22
|
Papadakos SP, Chatzikalil E, Arvanitakis K, Vakadaris G, Stergiou IE, Koutsompina ML, Argyrou A, Lekakis V, Konstantinidis I, Germanidis G, Theocharis S. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers (Basel) 2024; 16:1533. [PMID: 38672615 PMCID: PMC11048329 DOI: 10.3390/cancers16081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Vakadaris
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Maria-Loukia Koutsompina
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | | | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
23
|
Leighton SE, Wong RS, Lucaciu SA, Hauser A, Johnston D, Stathopulos PB, Bai D, Penuela S, Laird DW. Cx31.1 can selectively intermix with co-expressed connexins to facilitate its assembly into gap junctions. J Cell Sci 2024; 137:jcs261631. [PMID: 38533727 PMCID: PMC11058089 DOI: 10.1242/jcs.261631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.
Collapse
Affiliation(s)
- Stephanie E. Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Robert S. Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sergiu A. Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON N6A 5B9, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
24
|
HU QIAN, WANG MENGYAO, WANG JINJIN, TAO YALI, NIU TING. Development of a cell adhesion-based prognostic model for multiple myeloma: Insights into chemotherapy response and potential reversal of adhesion effects. Oncol Res 2024; 32:753-768. [PMID: 38560563 PMCID: PMC10972724 DOI: 10.32604/or.2023.043647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy notorious for its high relapse rate and development of drug resistance, in which cell adhesion-mediated drug resistance plays a critical role. This study integrated four RNA sequencing datasets (CoMMpass, GSE136337, GSE9782, and GSE2658) and focused on analyzing 1706 adhesion-related genes. Rigorous univariate Cox regression analysis identified 18 key prognosis-related genes, including KIF14, TROAP, FLNA, MSN, LGALS1, PECAM1, and ALCAM, which demonstrated the strongest associations with poor overall survival (OS) in MM patients. To comprehensively evaluate the impact of cell adhesion on MM prognosis, an adhesion-related risk score (ARRS) model was constructed using Lasso Cox regression analysis. The ARRS model emerged as an independent prognostic factor for predicting OS. Furthermore, our findings revealed that a heightened cell adhesion effect correlated with tumor resistance to DNA-damaging drugs, protein kinase inhibitors, and drugs targeting the PI3K/Akt/mTOR signaling pathway. Nevertheless, we identified promising drug candidates, such as tirofiban, pirenzepine, erlotinib, and bosutinib, which exhibit potential in reversing this resistance. In vitro, experiments employing NCIH929, RPMI8226, and AMO1 cell lines confirmed that MM cell lines with high ARRS exhibited poor sensitivity to the aforementioned candidate drugs. By employing siRNA-mediated knockdown of the key ARRS model gene KIF14, we observed suppressed proliferation of NCIH929 cells, along with decreased adhesion to BMSCs and fibronectin. This study presents compelling evidence establishing cell adhesion as a significant prognostic factor in MM. Additionally, potential molecular mechanisms underlying adhesion-related resistance are proposed, along with viable strategies to overcome such resistance. These findings provide a solid scientific foundation for facilitating clinically stratified treatment of MM.
Collapse
Affiliation(s)
- QIAN HU
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - MENGYAO WANG
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - JINJIN WANG
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - YALI TAO
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - TING NIU
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
25
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
26
|
Xiang D, Zhou L, Yang R, Yuan F, Xu Y, Yang Y, Qiao Y, Li X. Advances in Ferroptosis-Inducing Agents by Targeted Delivery System in Cancer Therapy. Int J Nanomedicine 2024; 19:2091-2112. [PMID: 38476278 PMCID: PMC10929151 DOI: 10.2147/ijn.s448715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, cancer remains one of the most significant threats to human health. Treatment of most cancers remains challenging, despite the implementation of diverse therapies in clinical practice. In recent years, research on the mechanism of ferroptosis has presented novel perspectives for cancer treatment. Ferroptosis is a regulated cell death process caused by lipid peroxidation of membrane unsaturated fatty acids catalyzed by iron ions. The rapid development of bio-nanotechnology has generated considerable interest in exploiting iron-induced cell death as a new therapeutic target against cancer. This article provides a comprehensive overview of recent advancements at the intersection of iron-induced cell death and bionanotechnology. In this respect, the mechanism of iron-induced cell death and its relation to cancer are summarized. Furthermore, the feasibility of a nano-drug delivery system based on iron-induced cell death for cancer treatment is introduced and analyzed. Secondly, strategies for inducing iron-induced cell death using nanodrug delivery technology are discussed, including promoting Fenton reactions, inhibiting glutathione peroxidase 4, reducing low glutathione levels, and inhibiting system Xc-. Additionally, the article explores the potential of combined treatment strategies involving iron-induced cell death and bionanotechnology. Finally, the application prospects and challenges of iron-induced nanoagents for cancer treatment are discussed.
Collapse
Affiliation(s)
- Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Lili Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Rui Yang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Yilin Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Yuan Yang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Yong Qiao
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| |
Collapse
|
27
|
Abu Bakar NFAB, Yeo ZL, Hussin F, Madhavan P, Lim V, Jemon K, Prabhakaran P. Synergistic effects of combined cisplatin and Clinacanthus nutans extract on triple negative breast cancer cells. J Taibah Univ Med Sci 2023; 18:1220-1236. [PMID: 37250812 PMCID: PMC10209459 DOI: 10.1016/j.jtumed.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/18/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Triple negative breast cancer (TNBC) is the most invasive breast cancer subtype enriched with cancer stem cells. TNBCs do not express estrogen, progesterone, or human epidermal growth factor receptor 2 (HER2) receptors, making them difficult to be targeted by existing chemotherapy treatments. In this study, we attempted to identify the effects of combined cisplatin and Clinacanthus nutans treatment on MDA-MD-231 and MDA-MB-468 breast cancer cells, which represent TNBC subtypes. Methods The phytochemical fingerprint of C. nutans ethanolic leaf extract was evaluated by LC-MS/MS analysis. We investigated the effects of cisplatin (0-15.23 μg/mL), C. nutans (0-50 μg/mL), and a combination of cisplatin (3.05 μg/mL) and C. nutans (0-50 μg/mL), on cell viability, proliferation, apoptosis, invasion, mRNA expression in cancer stem cells (CD49f, KLF4), and differentiation markers (TUBA1A, KRT18) in TNBC cells. In addition, we also studied the interaction between cisplatin and C. nutans. Results Derivatives of fatty acids, carboxylic acid ester, and glycosides, were identified as the major bioactive compounds with potential anticancer properties in C. nutans leaf extract. Reductions in cell viability (0-78%) and proliferation (2-77%), as well as a synergistic anticancer effect, were identified in TNBC cells when treated with a combination of cisplatin and C. nutans. Furthermore, apoptotic induction via increased caspase-3/7 activity (MDA-MB-231: 2.73-fold; MDA-MB-468: 3.53-fold), and a reduction in cell invasion capacity to 36%, were detected in TNBC cells when compared to single cisplatin and C. nutans treatments. At the mRNA level, cisplatin and C. nutans differentially regulated specific genes that are responsible for proliferation and differentiation. Conclusion Our findings demonstrate that the combination of cisplatin and C. nutans represents a potential treatment for TNBC.
Collapse
Affiliation(s)
| | - Zhin Leng Yeo
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Faisal Hussin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Khairunadwa Jemon
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Praseetha Prabhakaran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
28
|
Wang YF, Shen ZF, Xiang FY, Wang H, Zhang P, Zhang Q. The direct transfer approach for transcellular drug delivery. Drug Deliv 2023; 30:2288799. [PMID: 38037327 PMCID: PMC10987047 DOI: 10.1080/10717544.2023.2288799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
A promising paradigm for drug administration that has garnered increasing attention in recent years is the direct transfer (DT) of nanoparticles for transcellular drug delivery. DT requires direct cell-cell contact and facilitates unidirectional and bidirectional matter exchange between neighboring cells. Consequently, DT enables fast and deep penetration of drugs into the targeted tissues. This comprehensive review discusses the direct transfer concept, which can be delineated into the following three distinct modalities: membrane contact-direct transfer, gap junction-mediated direct transfer (GJ-DT), and tunneling nanotubes-mediated direct transfer (TNTs-DT). Further, the intercellular structures for each modality of direct transfer and their respective merits and demerits are summarized. The review also discusses the recent progress on the drugs or drug delivery systems that could activate DT.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fang-yue Xiang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
30
|
Pericoli G, Galardi A, Paolini A, Petrilli LL, Pepe G, Palma A, Colletti M, Ferretti R, Giorda E, Levi Mortera S, Burford A, Carai A, Mastronuzzi A, Mackay A, Putignani L, Jones C, Pascucci L, Peinado H, Helmer-Citterich M, de Billy E, Masotti A, Locatelli F, Di Giannatale A, Vinci M. Inhibition of exosome biogenesis affects cell motility in heterogeneous sub-populations of paediatric-type diffuse high-grade gliomas. Cell Biosci 2023; 13:207. [PMID: 37957701 PMCID: PMC10641969 DOI: 10.1186/s13578-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Paediatric-type diffuse High-Grade Gliomas (PDHGG) are highly heterogeneous tumours which include distinct cell sub-populations co-existing within the same tumour mass. We have previously shown that primary patient-derived and optical barcoded single-cell-derived clones function as interconnected networks. Here, we investigated the role of exosomes as a route for inter-clonal communication mediating PDHGG migration and invasion. RESULTS A comprehensive characterisation of seven optical barcoded single-cell-derived clones obtained from two patient-derived cell lines was performed. These analyses highlighted extensive intra-tumour heterogeneity in terms of genetic and transcriptional profiles between clones as well as marked phenotypic differences including distinctive motility patterns. Live single-cell tracking analysis of 3D migration and invasion assays showed that the single-cell-derived clones display a higher speed and longer travelled distance when in co-culture compared to mono-culture conditions. To determine the role of exosomes in PDHGG inter-clonal cross-talks, we isolated exosomes released by different clones and characterised them in terms of marker expression, size and concentration. We demonstrated that exosomes are actively internalized by the cells and that the inhibition of their biogenesis, using the phospholipase inhibitor GW4689, significantly reduced the cell motility in mono-culture and more prominently when the cells from the clones were in co-culture. Analysis of the exosomal miRNAs, performed with a miRNome PCR panel, identified clone-specific miRNAs and a set of miRNA target genes involved in the regulation of cell motility/invasion/migration. These genes were found differentially expressed in co-culture versus mono-culture conditions and their expression levels were significantly modulated upon inhibition of exosome biogenesis. CONCLUSIONS In conclusion, our study highlights for the first time a key role for exosomes in the inter-clonal communication in PDHGG and suggests that interfering with the exosome biogenesis pathway may be a valuable strategy to inhibit cell motility and dissemination for these specific diseases.
Collapse
Affiliation(s)
- Giulia Pericoli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Galardi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Gerardo Pepe
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Marta Colletti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Roberta Ferretti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Ezio Giorda
- Core Facilities research laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Burford
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Andrea Carai
- Oncological Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alan Mackay
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Lorenza Putignani
- Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chris Jones
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Emmanuel de Billy
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Masotti
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.
| |
Collapse
|
31
|
Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer's Disease and Glioblastoma. Life (Basel) 2023; 13:2038. [PMID: 37895420 PMCID: PMC10608464 DOI: 10.3390/life13102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain. In the last few decades, compelling evidence has revealed that glial cells are far more active and complex than previously thought. In particular, astrocytes, the most abundant glial cell population, not only take part in brain development, metabolism, and defense against pathogens and insults, but they also affect sensory, motor, and cognitive functions by constantly modulating synaptic activity. Not surprisingly, astrocytes are actively involved in neurodegenerative diseases (NDs) and other neurological disorders like brain tumors, in which they rapidly become reactive and mediate neuroinflammation. Reactive astrocytes acquire or lose specific functions that differently modulate disease progression and symptoms, including cognitive impairments. Astrocytes express several types of ion channels, including K+, Na+, and Ca2+ channels, transient receptor potential channels (TRP), aquaporins, mechanoreceptors, and anion channels, whose properties and functions are only partially understood, particularly in small processes that contact synapses. In addition, astrocytes express ionotropic receptors for several neurotransmitters. Here, we provide an extensive and up-to-date review of the roles of ion channels and ionotropic receptors in astrocyte physiology and pathology. As examples of two different brain pathologies, we focus on Alzheimer's disease (AD), one of the most diffuse neurodegenerative disorders, and glioblastoma (GBM), the most common brain tumor. Understanding how ion channels and ionotropic receptors in astrocytes participate in NDs and tumors is necessary for developing new therapeutic tools for these increasingly common neurological conditions.
Collapse
Affiliation(s)
- Annamaria Lia
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
| | - Alessandro Di Spiezio
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
- Neuroscience Institute (CNR-IN), Padova Section, 35131 Padova, Italy
| | - Lorenzo Vitalini
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Manuela Tore
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Puja
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Gabriele Losi
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
32
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
33
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
34
|
Kneitz H, Frings V, Kircher S, Goebeler M. Expression of Connexin 43 in Granular Cell Tumors of the Skin, Tongue and Esophagus. Dermatopathology (Basel) 2023; 10:184-192. [PMID: 37366801 DOI: 10.3390/dermatopathology10020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Granular cell tumors (GCT) are rare neoplasms of Schwann cell origin occurring in the skin and in other organs. The etiopathogenesis of GCT is yet poorly understood. Connexin 43 (Cx43) is the most broadly expressed gap junction protein in humans, the tumoral role of which has been investigated in several types of tumors. Its role in GCT of the skin, oral cavity and gastrointestinal tract is as yet unknown. METHODS Herein, we present a study on the immunohistochemical expression of Cx43 in GCT of the skin (n = 15), tongue (n = 4) and esophagus (n = 3). Immunolabeling was scored positive (weak (+), moderate (++) or strong (+++)). RESULTS Cx43 was expressed by all cases of GCT of the skin, tongue and esophagus (22/22), showing moderate to strong staining. All tissue sections of GCT were characterized by a diffuse, cytoplasmic staining pattern of the tumor cells. None of those showed membranous or nuclear staining. CONCLUSION Our results suggest that Cx43 probably plays an important role in the development of this rare tumor entity.
Collapse
Affiliation(s)
- Hermann Kneitz
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Verena Frings
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stefan Kircher
- Department of Pathology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
35
|
How Warburg-Associated Lactic Acidosis Rewires Cancer Cell Energy Metabolism to Resist Glucose Deprivation. Cancers (Basel) 2023; 15:cancers15051417. [PMID: 36900208 PMCID: PMC10000466 DOI: 10.3390/cancers15051417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Lactic acidosis, a hallmark of solid tumour microenvironment, originates from lactate hyperproduction and its co-secretion with protons by cancer cells displaying the Warburg effect. Long considered a side effect of cancer metabolism, lactic acidosis is now known to play a major role in tumour physiology, aggressiveness and treatment efficiency. Growing evidence shows that it promotes cancer cell resistance to glucose deprivation, a common feature of tumours. Here we review the current understanding of how extracellular lactate and acidosis, acting as a combination of enzymatic inhibitors, signal, and nutrient, switch cancer cell metabolism from the Warburg effect to an oxidative metabolic phenotype, which allows cancer cells to withstand glucose deprivation, and makes lactic acidosis a promising anticancer target. We also discuss how the evidence about lactic acidosis' effect could be integrated in the understanding of the whole-tumour metabolism and what perspectives it opens up for future research.
Collapse
|