1
|
Ajike RA, Afolabi OA, Alabi BA, Ajayi AF, Oyekunle OS, Lawal SK, Olojede SO, Nku-Ekpang OA, Hezekiah OS, Hammed OS. Sequential administration of febuxostat and vitamin E protects against testicular ischemia/reperfusion injury via inhibition of sperm DNA damage in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04095-x. [PMID: 40261353 DOI: 10.1007/s00210-025-04095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/22/2025] [Indexed: 04/24/2025]
Abstract
The pathway of testicular ischemia-reperfusion injury (TIRI) has been shown to involve reactive oxygen species (ROS) generation in the ischemic phase and later phase of reperfusion. This study was therefore designed to investigate the effect of blockage of ROS in the ischemic and reperfusion phases of TIRI. Thirty male Wistar rats were grouped into five groups (n = 6 rats each): sham, torsion + detorsion (TD), febuxostat (FEB)-administered (TFD) group, vitamin E (V)-administered (TDV) group, and FEB and vitamin E-administered (TFDV) group. Blood samples (for inflammatory and hormonal assay), testicular (for oxidative stress and histopathology), and epididymal (for sperm DNA damage and indices) tissues were collected after 3 days of detorsion. The TFD and TFDV groups showed a significant reduction in XO and MDA (p < 0.001; η2 > 0.7), as well as a concomitant increase in CAT, thiols, and SOD levels when compared with the TD group (p < 0.01, η2 > 0.5). The TFD group significantly reduced all inflammatory markers (p < 0.05; η2 = 0.75). The observed increase (p < 0.05; η2 = 0.92) in LH level, in response to a low level of testosterone in the TD group, was significantly raised in TFD and TFDV groups. The observed decrease (p < 0.001) in inhibin level in the TD group was raised (p < 0.05; η2 = 0.90) in the TDV group only. A significant increase (p < 0.001) in sperm DNA damage in the TD group was significantly reduced (p < 0.05; η2 = 0.88) in all the treatment groups while the reduced sperm viability (p < 0.01) in the TD group was increased (p < 0.05) in the TFDV group only. There was an improvement in the testicular cytoarchitecture in the TFD and TFDV groups. This study showed that sequential administration of febuxostat in the ischemic phase of TT and vitamin E in the later phase of reperfusion protects the testes against TIRI via inhibition of oxidative stress, inflammation, and sperm DNA damage.
Collapse
Affiliation(s)
- Richard Adedamola Ajike
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladele Ayobami Afolabi
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Babatunde Adebola Alabi
- Department of Pharmacology & Therapeutics, Bowen University, Iwo, Osun State, Nigeria
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Pharmacy, Kampala International University in Tanzania, Dar Es Salaam, United Republic of Tanzania
| | - Ayodeji Folorunsho Ajayi
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olubunmi Simeon Oyekunle
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Sodiq Kolawole Lawal
- School of Nursing, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Samuel Oluwaseun Olojede
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Okot-Asi Nku-Ekpang
- Department of Physiology, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Oluwaseun Samuel Hezekiah
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Opeyemi Sodiq Hammed
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
2
|
Bai Y, Shi H, Zhang Y, Zhang C, Wu B, Wu X, Fang Z, Wang Q, Sima X, Zhang T. Febuxostat attenuates secondary brain injury caused by cerebral hemorrhage through inhibiting inflammatory pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:740-746. [PMID: 38645501 PMCID: PMC11024405 DOI: 10.22038/ijbms.2024.74655.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Objectives Neuroinflammation is considered an important step in the progression of secondary brain injury (SBI) induced by cerebral hemorrhage (ICH). The nucleotide-binding and oligomerization structural domain-like receptor family of pyridine structural domain-containing 3 (NLRP3) inflammasomes play an important role in the immune pathophysiology of SBI. Febuxostat (Feb) is a xanthine oxidase inhibitor that is approved for the treatment of gout and has been found to have potent anti-inflammatory effects. However, it has been less studied after ICH and we aimed to explore its protective role in ICH. Materials and Methods We established an autologous blood-brain hemorrhage model in C57BL/6 mice. Functions of co-expressed genes were analyzed by trend analysis and bioinformatics analysis. Enzyme-linked immunosorbent assay were used to assess the inflammatory factor levels. Fluoro-Jade B histochemistry and TUNEL staining were used to detect neuronal apoptosis. Immunofluorescence staining and western blotting were used to detect the expression of NLRP3 inflammasomes. Results Pretreatment with Feb reduced neuronal cell death and degeneration and alleviated neurobehavioral disorders in vivo. Feb was found to modulate inflammation-related pathways by trend analysis and bioinformatics analysis. In addition, Feb inhibited microglia activation and elevated cytokine levels after ICH. Furthermore, double immunofluorescence staining showed that co-localization of NLRP3 with Iba1 positive cells was reduced after treatment with Feb. Finally, we found that Feb inhibited the activation of the NLRP3/ASC/caspase-1 pathway after ICH. Conclusion By inhibiting the NLRP3 inflammasome, preconditioning Feb attenuates inflammatory injury after ICH. Our findings may provide new insights into the role of Feb in neuroprotection.
Collapse
Affiliation(s)
- Yang Bai
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Hongxia Shi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Bin Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinghan Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenwei Fang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wang F, Ma Q, Dong X, Wang T, Ma C. circ-Gucy1a2 Protects Mice from Cerebral Ischemia-Reperfusion Injury by Attenuating Neuronal Apoptosis and Mitochondrial Membrane Potential Loss. J INVEST SURG 2023; 36:2152509. [PMID: 37277119 DOI: 10.1080/08941939.2022.2152509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/22/2022] [Indexed: 06/07/2023]
Abstract
Cerebral ischemia-reperfusion (I/R) injury (CI/RI) is a severe problem in patients with cerebral ischemia. The current study explored the influences of circular (circ)-Gucy1a2 on neuronal apoptosis and mitochondrial membrane potential (MMP) in the brain tissue of CI/RI mice. Forty-eight mice were randomized into the sham group, transient middle cerebral artery occlusion (tMCAO) group, lentivirus negative control (LV-NC) group, and LV-Gucy1a2 group. Mice were first injected with lentivirus loaded with LV-Gucy1a2 or LV-NC via lateral ventricle, followed by the establishment of CI/RI models 2 weeks later. Twenty-four hours after CI/RI, the neurological impairment of mice was assessed using a 6-point scoring system. The cerebral infarct volume and brain histopathological changes were determined in CI/RI mice through histological staining. In vitro, pcDNA3.1-NC and pcDNA3.1-Gucy1a2 were transfected into mouse primary cortical neurons for 48 hours, followed by the establishment of oxygen-glucose deprivation/reoxygenation (OGD/R) models. The levels of circ-Gucy1a2 in mouse brain tissues and neurons were examined using RT-qPCR. Neuronal proliferation and apoptosis, MMP loss, and oxidative stress (OS)-related indexes in neurons were detected using CCK-8 assay, flow cytometry, JC-1 staining, and H2DFFDA staining. CI/RI mouse models and OGD/R cell models were successfully established. After CI/RI, neurons in mice were impaired and the cerebral infarction volume was increased. circ-Gucy1a2 was poorly expressed in CI/RI mouse brain tissues. Overexpression of circ-Gucy1a2 increased OGD/R-induced neuronal proliferation and mitigated apoptosis, MMP loss, and OS. Overall, circ-Gucy1a2 was down-regulated in brain tissues of CI/RI mice, and overexpression of circ-Gucy1a2 can protect mice from CI/RI.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurology, The First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Qian Ma
- Department of Neurology, The First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Xinglu Dong
- Department of Neurology, The First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Tinghuan Wang
- Department of Neurology, The First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Wang L, Zheng M, Tang Y, Yin Y, Liu Y, Liu G. Impact of various periods of perfusion-pause and reperfusion on the severity of myocardial injury in the langenodorff model. Perfusion 2023; 38:1609-1616. [PMID: 36059244 DOI: 10.1177/02676591221122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND To explore impact of various periods of ischemia and reperfusion on the severity of myocardial injury. METHODS Langendorff model of isolated cardiac perfusion system was established in 56 rat hearts. They were randomly assigned into four groups with four different ischemia (perfusion-pause) time and reperfusion time. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were measured and the size of myocardial infarction was assessed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. RESULTS The levels of AST, ALT, LDH, and CK-MB in the heart tissues and perfusate were lowest in the group I (shortest time of perfusion-pause and reperfusion) followed by the groups II, III, and IV (longest time of perfusion-pause and reperfusion) (p < 0.05). The myocardial infarction size was smallest in the group I (6.63 ± 0.47) followed by group II (15.12 ± 1.03), group III (20.32 ± 2.18), and group IV (32.29 ± 5.42) (p < 0.05). Two-way ANOVA analysis revealed that period of perfusion-pause and reperfusion independently and significantly affected the levels of AST and ALT in both heart tissues and perfusate (p < 0.001). The interaction of pausing period and reperfusion significantly affected the level of AST (p = 0.046) and CK-MB (p = 0.001) in the perfusate. In addition, perfusion-pause period significantly affected levels of LDH and CK-MB only in the perfusate (p < 0.001). Neither perfusate nor heart tissue LDH level was significantly affected by the interaction of perfusion-pause and reperfusion period (p > 0.05). CONCLUSION The severity of myocardial injury in the Langendorff model was affected by the period of perfusion-pause and reperfusion. The longer period of perfusion-pause followed by the longer the period of reperfusion, the severe myocardial injury was found.
Collapse
Affiliation(s)
- Le Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, China
| | - Yida Tang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuecheng Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Raeispour M, Talebpour Amiri F, Farzipour S, Ghasemi A, Hosseinimehr SJ. Febuxostat, an inhibitor of xanthine oxidase, ameliorates ionizing radiation-induced lung injury by suppressing caspase-3, oxidative stress and NF-κB. Drug Chem Toxicol 2022; 45:2586-2593. [PMID: 34538151 DOI: 10.1080/01480545.2021.1977315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Febuxostat (FBX), a selective inhibitor of xanthine oxidase, has several biological properties such as antioxidant, anti-inflammatory and anti-apoptosis activities. The purpose of this study was to evaluate the protective effect of FBX against ionizing radiation (IR)-induced lung injury through mitigation of oxidative stress, inflammation and apoptosis. Sixty-four mice were randomized into eight groups as control, FBX (5, 10, and 15 mg/kg), IR (6 Gy), and IR + FBX (IR + FBX in three doses). Mice were received FBX for 8 consecutive days and then were exposed to IR at a single dose (6 Gy) of X-ray. At 1 and 7 days after irradiation, the biochemical parameters were analyzed in lung tissue, while histological and immunohistochemical examinations were evaluated 1 week after irradiation. Irradiation led to elevate of oxidative stress parameters (an increase of MDA, PC, NO, and decrease of GSH), inflammation and apoptosis in lung of mice. Furthermore, IR resulted in histopathological changes in the lung tissues. These changes were significantly mitigated by FBX treatment. FBX also inhibited immunoreactivity of caspase-3, NF-κB, and reduced oxidative stress. This study showed that FBX is able to protect lung injury induced by IR through inhibiting apoptosis (caspase-3), oxidative stress and inflammation (NF-κB).
Collapse
Affiliation(s)
- Marziyeh Raeispour
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Ghasemi
- Department of Radiology and Radiation Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Zhu Y, Zheng B, Cai C, Lin Z, Qin H, Liu H, Cui C, Chen M. Febuxostat increases ventricular arrhythmogenesis through calcium handling dysregulation in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2022; 189:216-224. [PMID: 35866629 DOI: 10.1093/toxsci/kfac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Febuxostat is a xanthine oxidase inhibitor used to reduce the formation of uric acid and prevent gout attacks. Previous studies have suggested that febuxostat was associated with a higher risk of cardiovascular events, including atrial fibrillation, compared with allopurinol, another anti-hyperuricemia drug. Whereas in our clinical practice, we identified two cases of febuxostat-associated ventricular tachycardia events. The proarrhythmogenic effects of febuxostat on human cardiomyocytes and underlined mechanisms remain poorly understood. In this study, we employed real time cell analysis (RTCA) and calcium transient to investigate the effects of febuxostat on the cytotoxicity and electrophysiology properties of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Up to 10 μM febuxostat treatment did not show toxicity to cell viability. However, 48-hour febuxostat exposure generated dose-dependent increased irregular calcium transients and decreased calcium transient amplitude. Furthermore, RNA-seq analysis indicated that the MAPK signaling pathway was enriched in the febuxostat-treated group, especially the protein kinases JNK. Western blotting of three main protein kinases demonstrated that JNK activation is related to febuxostat-induced arrythmia rather than ERK or p38. The dysfunctional calcium dynamics of febuxostat-treated hiPSC-CMs could be ameliorated by SP600125, the inhibitor of JNK. In conclusion, our study demonstrated that febuxostat increases the predisposition to ventricular arrythmia by dysregulating calcium dynamics.
Collapse
Affiliation(s)
- Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingyu Zheng
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cheng Cai
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqiao Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huiyuan Qin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
7
|
Wang X, Zhang C, Li Y, Xu T, Xiang J, Bai Y, Zhang Y, Wang Q, Zhang T, Liao L. High-Throughput mRNA Sequencing Reveals Potential Therapeutic Targets of Febuxostat in Secondary Injury After Intracerebral Hemorrhage. Front Pharmacol 2022; 13:833805. [PMID: 35814252 PMCID: PMC9260037 DOI: 10.3389/fphar.2022.833805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Febuxostat is a urate-lowering medication for the treatment of patients with gout. This study was performed to elucidate the effects and underlying mechanisms of febuxostat on neuronal injury induced by intracerebral hemorrhage (ICH) in mice. The results showed that the administration of febuxostat improved neurological severity scores and blood–brain barrier (BBB) permeability. Moreover, febuxostat attenuated neuronal cell death and cytokine levels compared with the ICH group. Next, we conducted a transcriptome analysis of the neuroprotective effects of febuxostat. The overlapping significant differentially expressed genes (DEGs) were identified. Gene ontology (GO) analysis revealed that the overlapping significant DEGs were most enriched in five items. The intersecting DEGs of the aforementioned five pathways were Wisp1, Wnt7b, Frzb, and Pitx2. In addition, GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that DEGs were mainly involved in the wnt signaling pathway. Furthermore, the expression of Wisp1 and Wnt7b in the perihematomal region at 72 h post-ICH was observed. The results showed that both Wisp1 and Wnt7b were increased in the ICH group and were decreased by the administration of febuxostat. Taken together, the study showed that febuxostat protected against secondary brain injury after ICH and the Wnt7b-Wisp1 pathway was closely related to neuroprotective effects.
Collapse
Affiliation(s)
- Xueyan Wang
- Department of Pharmacy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ting Xu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jin Xiang
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Bai
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Tiejun Zhang, ; Linchuan Liao,
| | - Linchuan Liao
- Department of Forensic Analytical Toxicology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Tiejun Zhang, ; Linchuan Liao,
| |
Collapse
|
8
|
Suzuki K, Tsuchiya M, Yoshida S, Ogawa K, Chen W, Kanzaki M, Takahashi T, Fujita R, Li Y, Yabe Y, Aizawa T, Hagiwara Y. Tissue accumulation of neutrophil extracellular traps mediates muscle hyperalgesia in a mouse model. Sci Rep 2022; 12:4136. [PMID: 35264677 PMCID: PMC8907237 DOI: 10.1038/s41598-022-07916-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulation of uric acid (UA) during muscular trauma is a factor involved in the development of muscle hyperalgesia. Neutrophil extracellular traps (NETs), DNA-based reticular structures to capture UA, play a central role in the pain onset of gout attacks; however, the involvement of NETs via the elevation of local UA level in muscle hyperalgesia due to injuries from muscle overuse remains unknown. The triceps surae muscles (TSMs) in the unilateral hindlimb of mice were electrically stimulated to induce excessive muscle contraction. Mechanical withdrawal thresholds, tissue UA levels, neutrophil recruitment, and protein amount of citrullinated histone 3 (citH3), a major marker of NETs, were investigated. Furthermore, whether neutrophil depletion, extracellular DNA cleavage, and administration of the urate-lowering agent febuxostat improved muscle hyperalgesia caused by NET formation was examined. CitH3 expression upon neutrophil recruitment was significantly increased in the stimulated TSMs with increased tissue UA levels, whereas febuxostat administration improved muscle hyperalgesia with decreased citH3 and tissue UA levels, as observed in neutrophil depletion and extracellular DNA digestion. The underlying mechanism of muscle hyperalgesia associated with locally recruited neutrophils forming NETs due to increased tissue UA levels potentially plays a significant role in creating a vicious circle of muscle pain.
Collapse
Affiliation(s)
- Kazuaki Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Masahiro Tsuchiya
- Department of Nursing, Tohoku Fukushi University, 6-149-1 Kunimi-ga-oka, Sendai, 981-3201, Japan.
| | - Shinichirou Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazumi Ogawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Weijian Chen
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ryo Fujita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yuqing Li
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yutaka Yabe
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Odake K, Tsujii M, Iino T, Chiba K, Kataoka T, Sudo A. Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model. Free Radic Biol Med 2021; 177:238-246. [PMID: 34737143 DOI: 10.1016/j.freeradbiomed.2021.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which is a serious complication of reconstructive surgery. The purpose of this study was to evaluate the protective effect of treatment with febuxostat, a selective xanthine oxidase inhibitor, on I/R injury in the skin flap of an animal (rat) model. METHODS Superficial epigastric flaps were raised in Sprague-Dawley rats and subjected to ischemia for 3 h. Febuxostat at a dose of 10 mg/kg/day was administered to rats in drinking water from 1 week before the surgery (Feb group). Control animals received no drugs (Con group). The mean ratio of flap survival and contraction was evaluated and compared between animals with and without administration of febuxostat on day 5 after the surgery. In addition, infiltration by polymorphonuclear leukocytes and muscles of the panniculus carnosus in the flap were histologically evaluated using hematoxylin-eosin staining. Furthermore, xanthine oxidase activity, ATP levels, superoxide dismutase activity, and expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-α, and interleukin-1β were quantitatively assessed in the skin flap 24 h after the surgery. RESULTS In the Feb group, the survival and contraction rates at the 5 d timepoint post-surgery were significantly higher and lower than those in the Con group, respectively. Histological analysis showed significant reduction in polymorphonuclear leukocyte infiltration and muscle injury scores due to I/R injury in the Feb group. The expression of 8-OHdG was also significantly inhibited in animals administered febuxostat. Biochemical analysis showed a significant reduction in xanthine oxidase activity and significant increases in ATP levels and superoxide dismutase activity in the Feb group. Furthermore, the expression of interleukin-1β was significantly lower in the Feb group than in the Con group. CONCLUSION Febuxostat, which is clinically used for the treatment of hyperuricemia, was effective against necrosis of the skin flap via inhibition of oxidative stress and inflammation caused by I/R injury.
Collapse
Affiliation(s)
- Kazuya Odake
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| | - Masaya Tsujii
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan.
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| | - Katsura Chiba
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| | - Takeshi Kataoka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| |
Collapse
|
10
|
Association of Mutations Identified in Xanthinuria with the Function and Inhibition Mechanism of Xanthine Oxidoreductase. Biomedicines 2021; 9:biomedicines9111723. [PMID: 34829959 PMCID: PMC8615798 DOI: 10.3390/biomedicines9111723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the two-step reaction from hypoxanthine to xanthine and from xanthine to uric acid in purine metabolism. XOR generally carries dehydrogenase activity (XDH) but is converted into an oxidase (XO) under various pathophysiologic conditions. The complex structure and enzymatic function of XOR have been well investigated by mutagenesis studies of mammalian XOR and structural analysis of XOR-inhibitor interactions. Three XOR inhibitors are currently used as hyperuricemia and gout therapeutics but are also expected to have potential effects other than uric acid reduction, such as suppressing XO-generating reactive oxygen species. Isolated XOR deficiency, xanthinuria type I, is a good model of the metabolic effects of XOR inhibitors. It is characterized by hypouricemia, markedly decreased uric acid excretion, and increased serum and urinary xanthine concentrations, with no clinically significant symptoms. The pathogenesis and relationship between mutations and XOR activity in xanthinuria are useful for elucidating the biological role of XOR and the details of the XOR reaction process. In this review, we aim to contribute to the basic science and clinical aspects of XOR by linking the mutations in xanthinuria to structural studies, in order to understand the function and reaction mechanism of XOR in vivo.
Collapse
|
11
|
Tsukamoto S, Okami N, Yamada T, Azushima K, Yamaji T, Kinguchi S, Uneda K, Kanaoka T, Wakui H, Tamura K. Prevention of kidney function decline using uric acid-lowering therapy in chronic kidney disease patients: a systematic review and network meta-analysis. Clin Rheumatol 2021; 41:911-919. [PMID: 34642880 DOI: 10.1007/s10067-021-05956-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Several previous studies have suggested that uric acid-lowering therapy (ULT) can slow the progression of chronic kidney disease (CKD). Although crucial for CKD patients, few studies have evaluated the effects of different ULT medications on kidney function. This systematic review summarizes evidence from randomized controlled trials (RCTs) regarding the effects of ULT on kidney function. METHOD We performed a systematic search of PubMed, MEDLINE, Embase, Scopus, and the Cochrane Library up to September 2021 to identify RCTs in CKD patients comparing the effects of ULT on kidney function with other ULT medications or placebo. A network meta-analysis was performed to compare each ULT indirectly. The primary outcome was a change in estimated glomerular filtration rate (eGFR) from baseline. RESULTS Ten studies were selected with a total of 1480 patients. Topiroxostat significantly improved eGFR and reduced the urinary albumin/creatinine ratio compared to placebo (mean difference (MD) and 95% confidence interval [95% CI]: 1.49 [0.08; 2.90], P = 0.038 and 25.65% [13.25; 38.04], P < 0.001, respectively). Although febuxostat did not show a positive effect overall, it significantly improved renal function (i.e., eGFR) in a subgroup of CKD patients with hyperuricemia (MD [95% CI]: 0.85 [0.02; 1.67], P = 0.045). Allopurinol and pegloticase did not show beneficial effects. CONCLUSIONS Topiroxostat and febuxostat may have better renoprotective effects in CKD patients than other ULT medications. Further large-scale, long-term studies are required to determine whether these effects will lead, ultimately, to reductions in dialysis induction and major adverse cardiovascular events. Key Points • This study is the first network meta-analysis comparing the nephroprotective effects of ULT in CKD patients. • Topiroxostat and febuxostat showed better renoprotective effects in CKD patients than other ULT medications. • Heterogeneity was low in this study, suggesting consistency of results.
Collapse
Affiliation(s)
- Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naohito Okami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University School of Medicine, Aizuwakamatsu, Japan
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
12
|
Abstract
Hyperuricemia and gout have been linked to an increased risk for cardiovascular (CV) disease, stroke, hypertension, heart failure, and chronic kidney disease, possibly through a proinflammatory milieu. However, not all the drugs used in gout treatment improve CV outcomes; colchicine has shown improved CV outcomes in patients with recent myocardial infarction and stable coronary artery disease independent of lipid-lowering effects. There is resurging interest in colchicine following publication of the COLCOT, LoDoCo, LoDoCo2, LoDoCo-MI trials, and COLCORONA trial which will shed light on its utility in COVID-19. Our aim is to review the CV use of colchicine beyond pericardial diseases, as well as CV outcomes of the available gout therapies, including allopurinol and febuxostat. The CARES trial and its surrounding controversies, which lead to the US FDA ‘black box’ warning on febuxostat, in addition to the recent FAST trial which contradicts this and finds febuxostat to be non-inferior, are discussed in this paper.
Collapse
|
13
|
Tsukamoto T, Tsujii M, Odake K, Iino T, Nakamura T, Matsumine A, Sudo A. Febuxostat reduces muscle wasting in tumor-bearing mice with LM8 osteosarcoma cells via inhibition of reactive oxygen species generation. Free Radic Res 2021; 55:810-820. [PMID: 34278932 DOI: 10.1080/10715762.2021.1947502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cachexic condition due to malignant tumors has been a challenging problem. The aim of this study is to analyze effects of febuxostat on both in vitro and in vivo models of the wasting of skeletal muscles, due to LM8 osteosarcoma cells. C2C12 myotubes were incubated in the conditioned medium of LM8. Febuxostat was added at a concentration of 3 µM and 30 µM, and ROS, diameter of myotubes, and expression of atrogin-1 were analyzed. Furthermore, an in vivo study was performed by subcutaneous injection of LM8 on C3H mice. Febuxostat was administered in the drinking water at 5 µg/ml, and 25 µg/ml. In addition, tumor-bearing mice without febuxostat (group TB) and control mice (group C) were established. At 4 weeks, body weight, wet weights of the gastrocnemius muscles, XO activity, 8-OHdG, and expression of TNF-α and IL-6 were evaluated. ROS generation, atrophy of myotubes, and upregulation of atrogin-1 were clearly observed in C2C12 myotubes following incubation in the conditioned medium. These pathological conditions were significantly inhibited by febuxostat administration. Furthermore, mice in group TB showed significant loss of body weight and muscle weight in which XO activity, 8-OHdG, and expression of IL-6 were significantly increased compared to those in group C. Febuxostat administration not only significantly improved the body weight and muscleweight, but also reduced markers of oxidative stress and pro-inflammatory cytokines. Febuxostat did not show anti-tumor effects. Febuxostat, which is clinically used for treatment of hyperuricemia, is effective against the wasting of the skeletal muscles induced by LM8 osteosarcoma cells.
Collapse
Affiliation(s)
- Tadashi Tsukamoto
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Masaya Tsujii
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Kazuya Odake
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Akihiko Matsumine
- Department of Orthopaedic Surgery, Fukui University Faculty of Medical Science, Eiheiji-Cho, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
14
|
Elsisi AEE, Sokar SS, Shalaby MF, Abu-Risha SES. Nephroprotective effects of febuxostat and/or mirtazapine against gentamicin-induced nephrotoxicity through modulation of ERK 1/2, NF-κB and MCP1. Expert Rev Clin Pharmacol 2021; 14:1039-1050. [PMID: 34030558 DOI: 10.1080/17512433.2021.1933435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This study was conducted to evaluate the potential nephroprotective effects of febuxostat, mirtazapine, and their combination against gentamicin-induced nephrotoxicity. METHODS Induction of nephrotoxicity was achieved via gentamicin injection (100 mg/kg, I.P., for 7 days). Two different doses of mirtazapine (15-30 mg/kg), febuxostat (5-10 mg/kg), and their combination were administered daily for 14 days prior to gentamicin injection and then concomitantly with gentamicin for additional 7 days. Nephrotoxicity was evaluated histopathologically and biochemically. Renal caspase-3, extracellular signal-regulated protein kinase 1/2 (ERK1/2), nuclear factor-kappa-β (NF-κβ), and monocyte chemoattractant protein (MCP-1) were assayed. RESULTS Febuxostat and mirtazapine significantly (p < 0.05) alleviated biochemical and histopathological alterations that were induced by gentamicin and, for the first time, significantly decreased the renal levels of ERK1/2 and MCP-1. Conclusion: Febuxostat and mirtazapine were found to have a synergistic impact in reducing gentamicin-induced nephrotoxicity. EXPERT OPINION The utility of nonpurine xanthine oxidase inhibitor, such as febuxostat and mirtazapine are offering a new potential opportunity for the future nephroprotective effects therapy: Febuxostat and mirtazapine are found to have a synergistic impact in reducing gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
| | - Samia Salem Sokar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa Fouad Shalaby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | |
Collapse
|
15
|
Nambu H, Takada S, Maekawa S, Matsumoto J, Kakutani N, Furihata T, Shirakawa R, Katayama T, Nakajima T, Yamanashi K, Obata Y, Nakano I, Tsuda M, Saito A, Fukushima A, Yokota T, Nio-Kobayashi J, Yasui H, Higashikawa K, Kuge Y, Anzai T, Sabe H, Kinugawa S. Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance. Cardiovasc Res 2021; 117:805-819. [PMID: 32402072 DOI: 10.1093/cvr/cvaa127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Exercise intolerance in patients with heart failure (HF) is partly attributed to skeletal muscle abnormalities. We have shown that reactive oxygen species (ROS) play a crucial role in skeletal muscle abnormalities, but the pathogenic mechanism remains unclear. Xanthine oxidase (XO) is reported to be an important mediator of ROS overproduction in ischaemic tissue. Here, we tested the hypothesis that skeletal muscle abnormalities in HF are initially caused by XO-derived ROS and are prevented by the inhibition of their production. METHODS AND RESULTS Myocardial infarction (MI) was induced in male C57BL/6J mice, which eventually led to HF, and a sham operation was performed in control mice. The time course of XO-derived ROS production in mouse skeletal muscle post-MI was first analysed. XO-derived ROS production was significantly increased in MI mice from Days 1 to 3 post-surgery (acute phase), whereas it did not differ between the MI and sham groups from 7 to 28 days (chronic phase). Second, mice were divided into three groups: sham + vehicle (Sham + Veh), MI + vehicle (MI + Veh), and MI + febuxostat (an XO inhibitor, 5 mg/kg body weight/day; MI + Feb). Febuxostat or vehicle was administered at 1 and 24 h before surgery, and once-daily on Days 1-7 post-surgery. On Day 28 post-surgery, exercise capacity and mitochondrial respiration in skeletal muscle fibres were significantly decreased in MI + Veh compared with Sham + Veh mice. An increase in damaged mitochondria in MI + Veh compared with Sham + Veh mice was also observed. The wet weight and cross-sectional area of slow muscle fibres (higher XO-derived ROS) was reduced via the down-regulation of protein synthesis-associated mTOR-p70S6K signalling in MI + Veh compared with Sham + Veh mice. These impairments were ameliorated in MI + Feb mice, in association with a reduction of XO-derived ROS production, without affecting cardiac function. CONCLUSION XO inhibition during the acute phase post-MI can prevent skeletal muscle abnormalities and exercise intolerance in mice with HF.
Collapse
MESH Headings
- Animals
- Cell Hypoxia
- Cell Line
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Exercise Tolerance/drug effects
- Febuxostat/pharmacology
- Male
- Mice, Inbred C57BL
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/pathology
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Atrophy/enzymology
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Muscular Atrophy/prevention & control
- Myocardial Infarction/drug therapy
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Reactive Oxygen Species/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- TOR Serine-Threonine Kinases/metabolism
- Time Factors
- Xanthine Oxidase/antagonists & inhibitors
- Xanthine Oxidase/metabolism
- Mice
Collapse
Affiliation(s)
- Hideo Nambu
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Molecular Biology, Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Sports Education, Faculty of Lifelong Sport, Hokusho University, Ebetsu, Japan
| | - Satoshi Maekawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Matsumoto
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryosuke Shirakawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Katayama
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Nakajima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Tsuda
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Institute of Preventive Medical Sciences, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ. Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radic Biol Med 2021; 163:325-343. [PMID: 33359685 DOI: 10.1016/j.freeradbiomed.2020.12.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Global epidemiological studies reported a shift from maternal/infectious communicable diseases to chronic non-communicable diseases and a major part is attributable to atherosclerosis and metabolic disorders. Accordingly, ischemic heart disease was identified as a leading risk factor for global mortality and morbidity with a prevalence of 128 million people. Almost 9 million premature deaths can be attributed to ischemic heart disease and subsequent acute myocardial infarction and heart failure, also representing a substantial socioeconomic burden. As evidenced by typical oxidative stress markers such as lipid peroxidation products or oxidized DNA/RNA bases, the formation of reactive oxygen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial resperatory chain) plays a central role for the severity of ischemia/reperfusion damage. The underlying mechanisms comprise direct oxidative damage but also adverse redox-regulation of kinase and calcium signaling, inflammation and cardiac remodeling among others. These processes and the role of reactive oxygen species are discussed in the present review. We also present and discuss potential targets for redox-based therapies that are either already established in the clinics (e.g. guanylyl cyclase activators and stimulators) or at least successfully tested in preclinical models of myocardial infarction and heart failure (mitochondria-targeted antioxidants). However, reactive oxygen species have not only detrimental effects but are also involved in essential cellular signaling and may even act protective as seen by ischemic pre- and post-conditioning or eustress - which makes redox therapy quite challenging.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Matthias Oelze
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan.
| |
Collapse
|
17
|
Davoodi L, Abedi SM, Salehifar E, Alizadeh‐Navaei R, Rouhanizadeh H, Khorasani G, Hosseinimehr SJ. Febuxostat therapy in outpatients with suspected COVID-19: A clinical trial. Int J Clin Pract 2020; 74:e13600. [PMID: 32603531 PMCID: PMC7361151 DOI: 10.1111/ijcp.13600] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of this clinical trial was to evaluate the effects of febuxostat (FBX) in comparison with hydroxychloroquine (HCQ) on clinical symptoms, laboratory tests and chest CT findings in outpatients with moderate symptoms of COVID-19 infection. METHODS We conducted a clinical trial involving adult outpatients with the moderate respiratory illness following COVID-19 infection. Patients were randomly assigned to receive either FBX or HCQ for 5 days. The measured variables were needs to hospitalisation, clinical and laboratory data including fever, cough, breathing rate, C-Reactive Protein level, lymphocytes count at onset of admission and was well as at 5 days of treatments. In addition, CT findings were evaluated on admission and 14 days after initiation of treatment. RESULTS Sixty subjects were enrolled in the study with a 1 to 1 ratio in FBX and HCQ groups. On admission, fever (66.7%), cough (87%), tachypnoea (44.4%), dyspnoea (35%), elevated CRP value (94.4%) and lung involvement according to chest CT (100%) were documented in enrolled patients with insignificant difference between FBX and HCQ groups. Fever, cough and tachypnoea were significantly mitigated in both groups after five days of treatments without any significant differences between groups. The mean percentages of lung involvement were significantly reduced to 7.3% and 8% after 14 days of treatment with FBX and HCQ, respectively. In adult outpatients with moderate COVID-19 infection, the effectiveness of FBX and HCQ was not different in terms of resolution of clinical manifestations, laboratory tests and lung CT findings. CONCLUSION This trial suggests that FBX is as an alternative treatment to HCQ for COVID-19 infection and may be considered in patients with a contraindication or precaution to HCQ.
Collapse
Affiliation(s)
- Lotfollah Davoodi
- Department of Infection DiseasesAntimicrobial Resistance Research CenterFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Seyed Mohammad Abedi
- Department of RadiologyFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Ebrahim Salehifar
- Department of Clinical PharmacyPharmaceutical Sciences Research CenterHemoglobinopathy InstituteFaculty of PharmacyMazandaran University of Medical SciencesSariIran
| | - Reza Alizadeh‐Navaei
- Gastrointestinal Cancer Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Hamed Rouhanizadeh
- Department of PediatricsFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Ghasemali Khorasani
- Department of Plastic and Reconstructive SurgeryImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | | |
Collapse
|
18
|
Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia -reperfusion injury. Acta Pharm Sin B 2020; 10:1866-1879. [PMID: 33163341 PMCID: PMC7606115 DOI: 10.1016/j.apsb.2020.03.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial damage is a critical contributor to cardiac ischemia/reperfusion (I/R) injury. Mitochondrial quality control (MQC) mechanisms, a series of adaptive responses that preserve mitochondrial structure and function, ensure cardiomyocyte survival and cardiac function after I/R injury. MQC includes mitochondrial fission, mitochondrial fusion, mitophagy and mitochondria-dependent cell death. The interplay among these responses is linked to pathological changes such as redox imbalance, calcium overload, energy metabolism disorder, signal transduction arrest, the mitochondrial unfolded protein response and endoplasmic reticulum stress. Excessive mitochondrial fission is an early marker of mitochondrial damage and cardiomyocyte death. Reduced mitochondrial fusion has been observed in stressed cardiomyocytes and correlates with mitochondrial dysfunction and cardiac depression. Mitophagy allows autophagosomes to selectively degrade poorly structured mitochondria, thus maintaining mitochondrial network fitness. Nevertheless, abnormal mitophagy is maladaptive and has been linked to cell death. Although mitochondria serve as the fuel source of the heart by continuously producing adenosine triphosphate, they also stimulate cardiomyocyte death by inducing apoptosis or necroptosis in the reperfused myocardium. Therefore, defects in MQC may determine the fate of cardiomyocytes. In this review, we summarize the regulatory mechanisms and pathological effects of MQC in myocardial I/R injury, highlighting potential targets for the clinical management of reperfusion.
Collapse
Affiliation(s)
- Jin Wang
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
19
|
Febuxostat attenuates testosterone-induced benign prostatic hyperplasia in rats via inhibiting JAK/STAT axis. Life Sci 2020; 260:118414. [PMID: 32926929 DOI: 10.1016/j.lfs.2020.118414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/27/2023]
Abstract
AIM To investigate the possible modulatory effect of febuxostat in testosterone-induced benign prostatic hyperplasia (BPH) in rats with emphasis on xanthine oxidase (XO)/Janus Kinases (JAK)/signal transducer and activator of transcription (STAT) axis. MAIN METHODS Male Wistar rats were treated with testosterone with/out febuxostat. Effect of febuxostat on BPH was assessed at the structural level by histopathology and determination of prostate weight/index. Cyclin D1 protein expression was assessed immunohistochemically and the ratio of Bax/Bcl-2 mRNA expression was determined by real time polymerase chain reaction analysis (RT-PCR). Besides, uric acid serum level was determined colorimetrically. Prostatic XO activity, as well as oxidative stress and inflammatory markers were evaluated. Additionally, western blot analysis was performed for determination of JAK-1 and phosphorylated form of STAT-3 expression in tissues. KEY FINDINGS Results revealed that febuxostat inhibited the increase in prostatic weight and index compared to testosterone-treated group. Additionally, febuxostat ameliorated testosterone-induced histopathological changes, prevented the rise in cyclin D1 expression and enhanced Bax/Bcl2 ratio. Febuxostat suppressed testosterone induced- increase in XO activity in prostates and serum level of uric acid. Moreover, it regulated oxidative stress markers including; malondialdehyde (MDA), superoxide dismutase (SOD) activity and glutathione (GSH) content. Also, it inhibited the increase in prostate contents of interleukin-6 (IL-6), interleukin-1β (IL-1 β), tumor necrosis factor (TNF-α) and nuclear factor (NF-κB). Interestingly, febuxostat markedly reduced JAK-1 and subsequent phosphorylation of STAT-3 protein expression. SIGNIFICANCE Febuxostat ameliorates testosterone-induced BPH via suppressing XO/JAK/STAT axis. This may help to re-purpose the use of XO inhibitors.
Collapse
|
20
|
Xu L, Yang Y, Chen J. The role of reactive oxygen species in cognitive impairment associated with sleep apnea. Exp Ther Med 2020; 20:4. [PMID: 32934669 PMCID: PMC7471880 DOI: 10.3892/etm.2020.9132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA), a common breathing and sleeping disorder, is associated with a broad range of neurocognitive difficulties. Intermittent hypoxia (IH), one major characteristic of OSA, has been shown to impair learning and memory due to increased levels of reactive oxygen species (ROS). Under normal conditions, ROS are produced in low concentrations and act as signaling molecules in different processes. However, IH treatment leads to elevated ROS production via multiple pathways, including mitochondrial electron transport chain dysfunction and in particular complex I dysfunction, and induces oxidative tissue damage. Moreover, elevated ROS results in the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) and increased activity of peroxisomes, such as NADPH oxidase, xanthine oxidase and phospholipase A2. Furthermore, oxidative tissue damage has been found in regions of the brains of patients with OSA, including the cortex and hippocampus, which are associated with memory and executive function. Furthermore, increased ROS levels in these regions of the brain induce damage via inflammation, apoptosis, ER stress and neuronal activity disturbance. The present review focuses on the mechanism of excessive ROS production in an OSA model and the relationship between ROS and cognitive impairment.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Department of Pathology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China.,Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yibo Yang
- College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 201424, P.R. China
| | - Jian Chen
- Department of Pathology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
21
|
Maresh MM, Abdelaziz RR, Ibrahim TM. Febuxostat mitigates concanavalin A-induced acute liver injury via modulation of MCP-1, IL-1β, TNF-α, neutrophil infiltration, and apoptosis in mice. Life Sci 2020; 260:118307. [PMID: 32841665 DOI: 10.1016/j.lfs.2020.118307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
AIM Liver plays a crucial role in innate immunity reactions. This role predisposes the liver to innate-mediated liver injury when uncontrolled inflammation occurs. In this study, the effect of febuxostat administration on acute liver injury induced by concanavalin A (Con A) injection into mouse eye orbital sinus was studied. MATERIALS AND METHODS Two doses of febuxostat (10 and 20 mg/kg, orally) were administered either 1 h before or 30 min after the administration of Con A. Febuxostat at a low dose (10 mg/kg) before and after Con A modulated the elevation of serum ALT, liver uric acid, liver myeloperoxidase (MPO), and interleukin-1β (IL-1β) induced by Con A. The same dose of febuxostat before Con A also decreased serum total bilirubin and neutrophil infiltration, as evidenced by flow cytometry and histopathological analysis. KEY FINDINGS Febuxostat at a high dose (20 mg/kg) significantly improved serum ALT, AST, albumin, total bilirubin, liver uric acid, MPO, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), IL-1β, and neutrophil infiltration induced by Con A administration. The results of histopathological examination of liver cells paralleled the observed biochemical improvements. Hepatocyte apoptosis as evidenced by immunohistochemical examination of cleaved caspase-3 was markedly decreased in the febuxostat protection and treatment groups, in a dose-dependent manner SIGNIFICANCE: These results indicate that febuxostat, especially at the higher dose, may be an effective inhibitor of immune reactions evoked by Con A administration.
Collapse
Affiliation(s)
- Mohammed M Maresh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt..
| | - Tarek M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
22
|
Deng H, Zhang BL, Tong JD, Yang XH, Jin HM. Febuxostat Use and Risks of Cardiovascular Disease Events, Cardiac Death, and All-cause Mortality: Metaanalysis of Randomized Controlled Trials. J Rheumatol 2020; 48:1082-1089. [PMID: 32801136 DOI: 10.3899/jrheum.200307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To assess whether febuxostat use increases the risk of developing cardiovascular (CV) events, cardiac death, and all-cause mortalities. METHODS The relevant literature was searched in several databases including MEDLINE (PubMed, January 1, 1966-February 29, 2020), Web of Science, EMBASE (January 1, 1974-February 29, 2020), ClinicalTrials. gov, and Cochrane Central Register of Controlled Trials. Manual searches for references cited in the original studies and relevant review articles were also performed. All studies included in this metaanalysis were published in English. RESULTS In the end, 20 studies that met our inclusion criteria were included in our metaanalysis. Use of febuxostat was found not to be associated with an increased risk of all-cause mortality (RR 0.87, 95% CI 0.57-1.32, P = 0.51). Also, there was no association between febuxostat use and mortalities arising from CV diseases (CVD; RR 0.84, 95% CI 0.49-1.45, P = 0.53). The RR also revealed that febuxostat use was not associated with CVD events (RR 0.98, 95% CI 0.83-1.16, P = 0.83). Further, the likelihood of occurrence of CVD events was found not to be dependent on febuxostat dose (RR 1.04, 95% CI 0.84-1.30, P = 0.72). CONCLUSION Febuxostat use is not associated with increased risks of all-cause mortality, death from CVD, or CVD events. Accordingly, it is a safe drug for the treatment of gout.
Collapse
Affiliation(s)
- Hao Deng
- H. Deng, MD, X.H. Yang, MD, H.M. Jin, PhD, Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center
| | - Bao Long Zhang
- B.L. Zhang, PhD, The Institutes of Biomedical Sciences (IBS), Fudan University
| | - Jin Dong Tong
- J.D. Tong, PhD, Division of Vascular Surgery, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China.
| | - Xiu Hong Yang
- H. Deng, MD, X.H. Yang, MD, H.M. Jin, PhD, Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center;
| | - Hui Min Jin
- H. Deng, MD, X.H. Yang, MD, H.M. Jin, PhD, Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center;
| |
Collapse
|
23
|
Yoshida S, Hagiwara Y, Tsuchiya M, Shinoda M, Koide M, Hatakeyama H, Chaweewannakorn C, Suzuki K, Yano T, Sogi Y, Itaya N, Sekiguchi T, Yabe Y, Sasaki K, Kanzaki M, Itoi E. Involvement of inflammasome activation via elevation of uric acid level in nociception in a mouse model of muscle pain. Mol Pain 2020; 15:1744806919858797. [PMID: 31161887 PMCID: PMC6614954 DOI: 10.1177/1744806919858797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscle pain is a common condition in many diseases and is induced by muscle
overuse. Muscle overuse induces an increase in uric acid, which stimulates the
nucleotide-binding oligomerization domain-like receptor (NLR). This receptor
contains the pyrin domain NLRP-3 inflammasome which when activated, results in
the secretion of potent pro-inflammatory cytokines such as interleukin-1β
(IL-1β). The aim of this study was to investigate the involvement of
inflammasome activation via the elevation of uric acid level in nociception in a
mouse model of muscle pain. The right hind leg muscles of BALB/c mice were
stimulated electrically to induce excessive muscle contraction. The left hind
leg muscles were not stimulated as a control. Mechanical withdrawal thresholds,
levels of uric acid, IL-1β, and NLRP3, caspase-1 activity, and the number of
macrophages were investigated. Furthermore, the effects of xanthine oxidase
inhibitors, such as Brilliant Blue G, caspase-1 inhibitor, and clodronate
liposome, on pain were investigated. In the stimulated muscles, mechanical
withdrawal thresholds decreased, and the levels of uric acid, NLRP3, and IL-1β,
caspase-1 activity, and the number of macrophages increased compared to that in
the non-stimulated muscles. Administration of the inhibitors attenuated
hyperalgesia caused by excessive muscle contraction. These results suggested
that IL-1β secretion and NLRP3 inflammasome activation in macrophages produced
mechanical hyperalgesia by elevating uric acid level, and xanthine oxidase
inhibitors may potentially reduce over-exercised muscle pain.
Collapse
Affiliation(s)
- Shinichirou Yoshida
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Hagiwara
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Masamichi Shinoda
- 3 Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masashi Koide
- 4 Department of Orthopaedic Surgery, Matsuda Hospital, Sendai, Japan
| | - Hiroyasu Hatakeyama
- 5 Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | - Kazuaki Suzuki
- 6 Department of Orthopaedic Surgery, JR Sendai Hospital, Sendai, Japan
| | - Toshihisa Yano
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhito Sogi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Itaya
- 6 Department of Orthopaedic Surgery, JR Sendai Hospital, Sendai, Japan
| | - Takuya Sekiguchi
- 7 Department of Orthopaedic Surgery, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Yutaka Yabe
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Sasaki
- 8 Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makoto Kanzaki
- 5 Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Eiji Itoi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
24
|
Mohamed MZ, Baky MAE, Hassan OA, Mohammed HH, Abdel-Aziz AM. PTEN/PI3K/VEGF signaling pathway involved in the protective effect of xanthine oxidase inhibitor febuxostat against endometrial hyperplasia in rats. Hum Exp Toxicol 2020; 39:1224-1234. [PMID: 32228192 DOI: 10.1177/0960327120914977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometrial hyperplasia (EH) is a medical condition that affects many females as it increases their uterine carcinogenic potential. EH results from entangling hormonal imbalance and inflammatory response. The study examined the role of a xanthine oxidase inhibitor, febuxostat, in a rat model of EH. Adult female Wistar albino rats were subjected to estradiol valerate (EV) 2 mg/kg for 10 days to induce EH. Another group was treated concomitantly with febuxostat 10 mg/kg for the same period. The uterine malondialdehyde, reduced glutathione (GSH), and superoxide dismutase (SOD) were assessed by chemical methods. Gene expressions of phosphatidylinositol-3-kinase (PI3K), Akt, and hypoxia-inducible factor 1 alpha were assessed by the quantitative real-time polymerase chain reaction. Moreover, the vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay. Histopathology and immunohistochemical techniques were used for the detection of phosphatase and tensin homolog (PTEN). The results revealed that EV administration induced complex EH with focal atypia and loss of PTEN expression by the histological examination. Uteri of the EV group showed a significant drop in GSH content and SOD activity and rise in the expressions of PI3K, Akt, VEGF, and IL-6. Febuxostat administration significantly improved the uterine GSH and SOD levels. It decreased the expressions of PI3K, Akt, VEGF, and IL-6. The endometrium showed a regression of the proliferative epithelium with the restoration of PTEN expression and the absence of the atypical features. In conclusion, febuxostat protected the endometrium against estrogen-induced EH and may be beneficial in the management along with the hormonal therapy.
Collapse
Affiliation(s)
- M Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Mf Abed El Baky
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - O A Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - H H Mohammed
- Department of Histology, Faculty of Medicine, Minia University, Minia, Egypt
| | - A M Abdel-Aziz
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
25
|
Zi C, Zhang C, Yang Y, Ma J. Penehyclidine hydrochloride protects against anoxia/reoxygenation injury in cardiomyocytes through ATP-sensitive potassium channels, and the Akt/GSK-3β and Akt/mTOR signaling pathways. Cell Biol Int 2020; 44:1353-1362. [PMID: 32125033 DOI: 10.1002/cbin.11329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022]
Abstract
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)-induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP-sensitive K+ (KATP) channel blocker 5-hydroxydecanoate (5-HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit-8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm ), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt-C), Bax, Bcl-2, cleaved caspase-3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK-3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R-induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt-C release into cytoplasm, and maintenance of ΔΨm . Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK-3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5-HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK-3β and Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Congna Zi
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China.,Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chunlei Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| |
Collapse
|
26
|
Gong L, Xu H, Zhang X, Zhang T, Shi J, Chang H. Oridonin relieves hypoxia-evoked apoptosis and autophagy via modulating microRNA-214 in H9c2 cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:2585-2592. [PMID: 31220945 DOI: 10.1080/21691401.2019.1628037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/29/2019] [Indexed: 01/05/2023]
Abstract
Oridonin (Orid) has been diffusely applied to remedy dissimilar cancers. Howbeit, the influence of Orid in ischemic heart disease (IHD) remains imprecise. The current study uncovered the functions of Orid in hypoxia-caused apoptosis and autophagy in H9c2 cells. H9c2 cells received hypoxia and Orid manipulation, cell viability, apoptosis, apoptosis-interrelated factors and autophagy-correlative factors were appraised. After the extraordinary vectors transfections, the impacts of miR-214 inhibition on hypoxia-triggered apoptosis and autophagy were investigated. Further, dual luciferase reporter assay was enforced for ascertaining the pertinence between miR-214 and PTEN. PI3K/AKT/mTOR pathway was finally determined using western blot. We found that, Orid significantly alleviated hypoxia-induced apoptosis and autophagy through regulation their associated proteins in H9c2 cells. Up-regulation of miR-214 was found in hypoxia and Orid co-managed cells, meanwhile, repression of miR-214 obviously annulled the modulatory functions of Orid in hypoxia-evoked apoptosis and autophagy. Additionally, PTEN was forecasted to be a firsthand target of miR-214. Besides, we observed that Orid evoked PI3K/AKT/mTOR activation through elevation of miR-214 in hypoxia-managed H9c2 cells. In conclusion, the amusing results corroborated that Orid relieved hypoxia-caused apoptosis and autophagy via adjusting PI3K/AKT/mTOR pathway through enhancement of miR-214 in H9c2 cells.
Collapse
Affiliation(s)
- Licheng Gong
- a Department of Cardiology, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Haiming Xu
- a Department of Cardiology, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Xiuli Zhang
- b Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Tao Zhang
- b Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Jingwei Shi
- c Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Hong Chang
- a Department of Cardiology, China-Japan Union Hospital of Jilin University , Changchun , China
| |
Collapse
|
27
|
Yang KJ, Kim JH, Chang YK, Park CW, Kim SY, Hong YA. Inhibition of xanthine oxidoreductase protects against contrast-induced renal tubular injury by activating adenosine monophosphate-activated protein kinase. Free Radic Biol Med 2019; 145:209-220. [PMID: 31560952 DOI: 10.1016/j.freeradbiomed.2019.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) play a pivotal role in the development of contrast-induced nephropathy (CIN). The inhibition of xanthine oxidoreductase is known to reduce levels of ROS. We investigated whether febuxostat could attenuate oxidative stress via the activation of adenosine monophosphate-activated protein kinase (AMPK) against CIN. In a mouse model of CIN, renal impairment and tubular injury substantially increased, whereas febuxostat attenuated renal injury. Plasma and kidney xanthine oxidoreductase levels were decreased by febuxostat. Febuxostat administration was accompanied by the upregulation of AMPK phosphorylation and the inhibition of nicotinamide-adenine dinucleotide phosphate oxidase (Nox)1 and Nox2, followed by the inhibition of hypoxia-inducible factor-1α (HIF-1α) and heme oxygenase-1 expressions and the suppression of transcription factor forkhead box O (FoxO)1 and FoxO3a phosphorylation. Cell survival was significantly reduced after iohexol administration and febuxostat ameliorated iohexol-induced cell death in proximal tubular (HK-2) cells. Furthermore, febuxostat enhanced AMPK phosphorylation and inhibited Nox1, Nox2, and HIF-1α expression in iohexol-exposed HK-2 cells. Finally, these processes decrease ROS in both in vivo and in vitro models of CIN. AMPK inhibition using small interfering RNA blunted the antioxidative effects of febuxostat in iohexol-treated HK-2 cells. Febuxostat attenuated CIN by modulating oxidative stress through AMPK-NADPH oxidase-HIF-1α signaling.
Collapse
Affiliation(s)
- Keum-Jin Yang
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Jeong Ho Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Kyung Chang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yu Ah Hong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
28
|
El-Sheikh AA, Abdelzaher WY, Gad AA, Abdel-Gaber SA. Purine versus non-purine xanthine oxidase inhibitors against cyclophosphamide-induced cardiac and bone marrow toxicity in rats. Hum Exp Toxicol 2019; 39:249-261. [PMID: 31640406 DOI: 10.1177/0960327119883412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Cancer is a fatal and serious disease. Cyclophosphamide (CYC) is a commonly used anticancer drug. Cardiotoxicity and myelotoxicity are life-threatening side effects of CYC treatment. We aimed to evaluate the effect of the xanthine oxidase (XO) inhibitors, allopurinol (ALL) and febuxostat (FEB), on CYC-induced cardio- and hematopoietic toxicity in rats. METHODS ALL (100 mg/kg/day) or FEB (10 mg/kg/day) were administered orally to rats in the presence and absence of CYC (200 mg/kg kg i.p. single dose) treatment. Serum creatine kinase-MB creatine kinase myocardial band (CK-MB) and lactate dehydrogenase (LDH) activities were estimated. Complete blood counting (CBC), cardiac and bone marrow XO activity, malondialdehyde level, and superoxide dismutase activity were determined. Cardiac and bone marrow histopathological changes were also evaluated. RESULTS ALL and FEB significantly decreased CK-MB and LDH induced by CYC. Disturbed levels of XO, oxidative stress parameters, and CBC were also corrected by both XO inhibitors tested, with amelioration of cardiac histopathological changes caused by CYC. Treatment with FEB, but not ALL, prior to CYC challenges normalized bone marrow histopathological changes. CONCLUSION These results suggest that both XO inhibitors tested; ALL and FEB can ameliorate CYC-induced cardiotoxicity. However, only FEB can protect against CYC-induced myelotoxicity, whereas ALL, to the contrary, might aggravate it.
Collapse
Affiliation(s)
- A A El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - W Y Abdelzaher
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - A A Gad
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - S A Abdel-Gaber
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
29
|
Tani T, Okamoto K, Fujiwara M, Katayama A, Tsuruoka S. Metabolomics analysis elucidates unique influences on purine / pyrimidine metabolism by xanthine oxidoreductase inhibitors in a rat model of renal ischemia-reperfusion injury. Mol Med 2019; 25:40. [PMID: 31438839 PMCID: PMC6704627 DOI: 10.1186/s10020-019-0109-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background Clinically applied as anti-gout drugs, xanthine oxidoreductase (XOR) inhibitors, especially the potent, selective, non-purine-analog XOR inhibitors febuxostat and topiroxostat, exert organ-protective effects. We tested the hypothesis that preservation of tissue concentrations of high-energy phosphates, such as ATP and ADP, contributes to organ-protective effects through CE-TOFMS metabolomics. Methods Rats were subjected to 30 min of renal ischemia-reperfusion (I/R) injury 60 min after oral administration of 10 mg/kg febuxostat, 10 mg/kg topiroxostat, 50 mg/kg allopurinol, or vehicle. Results In non-purine-analog XOR inhibitor-treated groups, renal concentrations of high-energy phosphates were greater before and after I/R injury, and renal adenine compounds were less depleted by I/R injury than in the vehicle and allopurinol groups. These findings were well in accordance with the proposed hypothesis that the recomposition of high-energy phosphates is promoted by non-purine-analog XOR inhibitors via the salvage pathway through blockade of hypoxanthine catabolism, whereas non-specific inhibitory effects of allopurinol on purine/pyrimidine enzymes impede this re-synthesis process. Conclusions This metabolic approach shed light on the physiology of the organ-protective effects of XOR inhibitors. Electronic supplementary material The online version of this article (10.1186/s10020-019-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takashi Tani
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan. .,Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Ken Okamoto
- Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Megumi Fujiwara
- Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Akira Katayama
- Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shuichi Tsuruoka
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
30
|
Sun T, Liu H, Cheng Y, Yan L, Krittanawong C, Li S, Qian W, Su W, Chen X, Hou X, Zhang H. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside eliminates ischemia/reperfusion injury-induced H9c2 cardiomyocytes apoptosis involving in Bcl-2, Bax, caspase-3, and Akt activation. J Cell Biochem 2019; 120:10972-10977. [PMID: 30891810 DOI: 10.1002/jcb.27949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This study was designed to explore the protective effect of 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (TSG) against ischemia/reperfusion (I/R) injury-induced cardiomyocytes apoptosis. METHODS The H9c2 cell I/R injury model was induced by simultaneous shortage of nutrients and oxygen. TSG administration (0.10, 0.25, and 0.50 mM) was performed before and during I/R stimulation. Cell apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Expression of cell-related proteins was detected to assess the effect of TSG on cell apoptosis. RESULTS I/R injury induced significant cell apoptosis. Significantly decreased Bcl-2 and increased Bax, caspase-3, and p-Akt expression ( P < 0.01) was detected in the cell model of I/R injury. In contrast, TSG administration eliminated all the changes induced by I/R injury in a dose-dependent manner. Compared with the H9c2 cell model of I/R injury, the H9c2 cells treated with 0.50 mM TSG showed the lowest cell apoptosis percentage, the highest expression of Bcl-2, and the lowest expression of Bax, caspase-3, and p-Akt ( P < 0.01). CONCLUSION We confirmed that the protective effect of TSG against I/R injury-induced cell apoptosis in H9c2 in vitro was associated with the Bcl-2/Bax ratio, caspase-3, and Akt activation.
Collapse
Affiliation(s)
- Tao Sun
- Division of Cardiology, Anzhen Hospital Capital Medical University, Beijing, China
| | - Han Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutong Cheng
- Division of Cardiology, Anzhen Hospital Capital Medical University, Beijing, China
| | - Lixiao Yan
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Chayakrit Krittanawong
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shihong Li
- Division of Cardiology, Anzhen Hospital Capital Medical University, Beijing, China
| | - Wang Qian
- Division of Cardiology, Anzhen Hospital Capital Medical University, Beijing, China
| | - Wang Su
- Division of Cardiology, Anzhen Hospital Capital Medical University, Beijing, China
| | - Xuanzu Chen
- Division of Cardiology, Anzhen Hospital Capital Medical University, Beijing, China
| | - Xuejian Hou
- Division of Cardiology, Anzhen Hospital Capital Medical University, Beijing, China
| | - Hongju Zhang
- Department of Echocardiography, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
31
|
Effects of febuxostat on atrial remodeling in a rabbit model of atrial fibrillation induced by rapid atrial pacing. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2019; 16:540-551. [PMID: 31447893 PMCID: PMC6689522 DOI: 10.11909/j.issn.1671-5411.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase (XO), may be used in the prevention and management of atrial fibrillation (AF). The purpose of this study was to evaluate the effects of febuxostat on atrial remodeling in a rabbit model of AF induced by rapid atrial pacing (RAP) and the mechanisms by which it acts. Methods Twenty-four rabbits were randomly divided into four groups: sham-operated group (Group S), RAP group (Group P), RAP with 5 mg/kg per day febuxostat group (Group LFP), and RAP with 10 mg/kg per day febuxostat group (Group HFP). All rabbits except those in Group S were subjected to RAP at 600 beats/min for four weeks. The effects of febuxostat on atrial electrical and structural remodeling, markers of inflammation and oxidative stress, and signaling pathways involved in the left atrium were examined. Results Shortened atrial effective refractory period (AERP), increased AF inducibility, decreased mRNA levels of Cav1.2 and Kv4.3, and left atrial enlargement and dysfunction were observed in Group P, and these changes were suppressed in the groups treated with febuxostat. Prominent atrial fibrosis was observed in Group P, as were increased levels of TGF-β1, Collagen I, and α-SMA and decreased levels of Smad7 and eNOS. Treatment with febuxostat attenuated these differences. Changes in inflammatory and oxidative stress markers induced by RAP were consistent with the protective effects of febuxostat. Conclusions This study is the first to find that febuxostat can inhibit atrial electrical and structural remodeling of AF by suppressing XO and inhibiting the TGF-β1/Smad signaling pathway.
Collapse
|
32
|
Zhao YB, Zhao J, Zhang LJ, Shan RG, Sun ZZ, Wang K, Chen JQ, Mu JX. MicroRNA-370 protects against myocardial ischemia/reperfusion injury in mice following sevoflurane anesthetic preconditioning through PLIN5-dependent PPAR signaling pathway. Biomed Pharmacother 2019; 113:108697. [PMID: 30856533 DOI: 10.1016/j.biopha.2019.108697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Myocardial ischemia/reperfusion injury (IRI) has long been identified to be a contributor to adverse cardiovascular outcomes following myocardial ischemia, cardiac surgery or circulatory arrest. This study aims to investigate the effects of microRNA (miR-370) targeting perilipin-5 (PLIN5) in mice following sevoflurane anesthetic preconditioning (SAP). A mouse model of left ventricular myocardial IRI was established, followed by the evaluation of myocardial infarction size and cardiac function to determine the effects of SAP. The underlying regulatory mechanisms of miR-370 were analyzed in concert with the treatment of miR-370 mimic, miR-370 inhibitor, or siRNA against PLIN5 in cardiomyocytes isolated from mice with IRI. Also, cardiomyocyte proliferation, cell cycle distribution and apoptosis were evaluated following treatment. Lastly, SAP-treated I/R mice were injected with miR-370 inhibitor to verify the mechanism of SAP. The use of SAP conferred cardioprotective effects on myocardial IRI. MiR-370 was downregulated in mice that exhibited IRI, but SAP elevated the miR-370 expression. Functionally, miR-370 negatively targeted PLIN5 and activated the peroxisome proliferator activated-receptor (PPAR) signaling pathway, leading to decreased PPARγ expression but increased PPARα expression. The results also showed that elevation of miR-370 or the silencing of PLIN5 promoted cardiomyocyte proliferation. miR-370 also inhibited cardiomyocyte apoptosis as reflected by decreased caspase-3 expression and increased Bcl-2 expression. Additionally, SAP also alleviated I/R injury by inhibiting PPARγ. This study demonstrates that SAP induces miR-370 and exerts cardioprotective effects on myocardial IRI, where upregulation of miR-370 alleviates myocardial IRI via inhibiting the PLIN5-dependent PPAR signaling pathway.
Collapse
Affiliation(s)
- Yan-Bin Zhao
- Department of Anesthesiology, the First Hospital of the PLA, Lanzhou 730031, PR China
| | - Juan Zhao
- Department of Anesthesiology, the First Hospital of Lanzhou University, Donggang Courtyard Area, Lanzhou 730030, PR China
| | - Li-Jun Zhang
- Department of Anesthesiology, Lanzhou Time Laser Cosmetic Surgery Hospital, Lanzhou 730030, PR China
| | - Run-Gang Shan
- Department of Anesthesiology, the First Hospital of the PLA, Lanzhou 730031, PR China
| | - Zhen-Zhong Sun
- Department of Anesthesiology, Guangdong Armed Police Corps Hospital, Guangzhou 510507, PR China
| | - Kai Wang
- Department of Anesthesiology, the First Hospital of the PLA, Lanzhou 730031, PR China
| | - Jin-Quan Chen
- Department of Anesthesiology, the First People's Hospital of Xianyang City, Xianyang 712000, PR China.
| | - Ji-Xue Mu
- Lanzhou Minimally Invasive Orthopedic Hospital, Lanzhou 730050, PR China.
| |
Collapse
|
33
|
Lu L, Zhu J, Zhang Y, Wang Y, Zhang S, Xia A. Febuxostat inhibits TGF‑β1‑induced epithelial‑mesenchymal transition via downregulation of USAG‑1 expression in Madin‑Darby canine kidney cells in vitro. Mol Med Rep 2019; 19:1694-1704. [PMID: 30628645 PMCID: PMC6390060 DOI: 10.3892/mmr.2019.9806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Our previous study demonstrated that febuxostat, a xanthine oxidase inhibitor, can alleviate kidney dysfunction and ameliorate renal tubulointerstitial fibrosis in a rat unilateral ureteral obstruction (UUO) model; however, the underlying mechanisms remain unknown. Increasing evidence has revealed that epithelial-mesenchymal transition (EMT) is one of the key mechanisms mediating the progression of renal tubulointerstitial fibrosis in chronic kidney disease (CKD). Uterine sensitization-associated gene-1 (USAG-1), a kidney-specific bone morphogenetic protein antagonist, is involved in the development of numerous types of CKDs. The present study aimed to investigate the role of febuxostat in the process of EMT in Madin-Darby canine kidney (MDCK) cells in vitro. Western blotting, reverse transcription-semiquantitative polymerase chain reaction analysis and immunofluorescence staining were used to evaluate the expression levels of bone morphogenetic protein 7, USAG-1, α-smooth muscle actin (α-SMA) and E-cadherin, respectively. The results demonstrated that the expression of USAG-1 and α-SMA increased, and that of E-cadherin decreased significantly in MDCK cells following treatment with transforming growth factor-β1 (TGF-β1). The application of small interfering RNA-USAG-1 potently inhibited TGF-β1-induced EMT. Subsequently, the effects of febuxostat on TGF-β1-induced EMT was investigated. The results demonstrated that febuxostat downregulated the expression of USAG-1, and reversed TGF-β1-induced EMT in MDCK cells. Furthermore, pretreatment with febuxostat significantly restored the decreased expression levels of phosphorylated Smad1/5/8 induced by TGF-β1 in MDCK cells. The results of the present study suggested that USAG-1 may be involved in the EMT process of MDCK cells induced by TGF-β1, and febuxostat inhibited EMT by activating the Smad1/5/8 signaling pathway via downregulating the expression of USAG-1 in MDCK cells.
Collapse
Affiliation(s)
- Linghong Lu
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jiajun Zhu
- Department of Anesthesiology, Guanyun County People's Hospital, Lianyungang, Jiangsu 222200, P.R. China
| | - Yaqian Zhang
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yanxia Wang
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Shu Zhang
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Anzhou Xia
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
34
|
Chang P, Zhang M, Zhang X, Li G, Hu H, Wu J, Wang X, Yang Z, Zhang J, Chen W, Ren M, Li X, Zhu M, Chen B, Yu J. B-type natriuretic peptide attenuates endoplasmic reticulum stress in H9c2 cardiomyocytes underwent hypoxia/reoxygenation injury under high glucose/high fat conditions. Peptides 2019; 111:103-111. [PMID: 29689346 DOI: 10.1016/j.peptides.2018.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
Exogenously administered B-type natriuretic peptide (BNP) has been shown to provide cardioprotection against various heart diseases. However, the underlying mechanisms remain elusive. This study explores whether BNP exerts its cardioprotection against hypoxia/reoxygenation (H/R) injury under high glucose/high fat (HG/HF) conditions in cardiac H9c2 cells and uncovers the underlying mechanisms. Our data revealed that BNP significantly increased the cell viability and decreased the release of lactate dehydrogenase (LDH) and creatine kinase (CK), with a maximal effect at the BNP concentration of 10-7 mol/L. In addition, by analyzing the activation of cleaved caspase-3 and by Annexin V-FITC/PI staining, we showed that BNP attenuated H/R-induced cell apoptosis in HG/HF conditions. Western blot analysis showed enhanced phosphorylation of protein kinase RNA (PKR)-like endoplastmic reticulum (ER) kinase (PERK) and eukaryotic initiation factor 2α (eIF2α)(one of the three main signaling pathways in endoplastmic reticulum (ER) stress), and increased expression of GRP78 and CHOP proteins (ER stress-related proteins) in H9c2 cells which underwent H/R in HG/HF conditions. Treatment with BNP or 8-Br-cGMP (an analog of cGMP) reversed this activation. However, this effect was significantly weakened by KT-5823, a selective cGMP-dependent protein kinase G (PKG) inhibitor. In addition, similar to BNP, treatment with a specific inhibitor of ER stress tauroursodeoxycholic acid (TUDCA) protected the cells against H/R injury exposed to HG/HF conditions. In conclusion, these findings demonstrated that BNP effectively protected cells against H/R injury under HG/HF conditions by inhibiting the ER stress via activation of the cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Pan Chang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China; Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China; Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guohua Li
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Haiyan Hu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Juan Wu
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xihui Wang
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Zihua Yang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Jing Zhang
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Weiguo Chen
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Minggang Ren
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xin Li
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Miaozhang Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an, China.
| | - Baoying Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jun Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China; Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
35
|
Pretreatment with Total Flavonoid Extract from Dracocephalum Moldavica L. Attenuates Ischemia Reperfusion-induced Apoptosis. Sci Rep 2018; 8:17491. [PMID: 30504832 PMCID: PMC6269513 DOI: 10.1038/s41598-018-35726-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated the cardio-protection mediated by the total flavonoid extracted from Dracocephalum moldavica L. (TFDM) following myocardial ischemia reperfusion injury (MIRI). The present study assessed the presence and mechanism of TFDM-related cardio-protection on MIRI-induced apoptosis in vivo. Male Sprague-Dawley rats experienced 45-min ischemia with 12 h of reperfusion. Rats pretreated with TFDM (3, 10 or 30 mg/kg/day) were compared with Sham (no MIRI and no TFDM), MIRI (no TFDM), and Positive (trapidil tablets, 13.5 mg/kg/day) groups. In MIRI-treated rats, high dose-TFDM (H-TFDM) pre-treatment with apparently reduced release of LDH, CK-MB and MDA, enhanced the concentration of SOD in plasma, and greatly reduced the infarct size, apoptotic index and mitochondrial injury. H-TFDM pretreatment markedly promoted the phosphorylation of PI3K, Akt, GSK-3β and ERK1/2 in comparison with the MIRI model group. Western blot analysis after reperfusion also showed that H-TFDM decreased release of Bax, cleaved caspase-3, caspase-7 and caspase-9, and increased expression of Bcl-2 as evident by the higher Bcl-2/Bax ratio. TFDM cardio-protection was influenced by LY294002 (PI3K inhibitor) and PD98059 (ERK1/2 inhibitor). Taken together, these results provide convincing evidence of the benefit of TFDM pretreatment due to inhibited myocardial apoptosis as mediated by the PI3K/Akt/GSK-3β and ERK1/2 signaling pathways.
Collapse
|
36
|
Zhang W, Wang Y, Wan J, Zhang P, Pei F. COX6B1 relieves hypoxia/reoxygenation injury of neonatal rat cardiomyocytes by regulating mitochondrial function. Biotechnol Lett 2018; 41:59-68. [PMID: 30311029 PMCID: PMC6313357 DOI: 10.1007/s10529-018-2614-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
Objective Mitochondrial dysfunction plays a pivotal role in various pathophysiological processes of heart. Cytochrome oxidase subunit 6B1 (COX6B1) is a subunit of cytochrome oxidase. Methods Cardiomyocytes were isolated from neonatal SD rats (within 24 h of birth) by repeating digestion of collagenase and trypsin. COX6B1 over-expression and hypoxia/reoxygenation was conducted on neonatal rat cardiomyocytes. Cell viability, apoptosis rates, mitochondria membrane potential and mitochondrial permeabilization transition pores (mPTPs) were then determined respectively by Cell performing Counting Kit-8 (CCK-8), Annexin-V/PI assay, JC-1 assay, mPTP assay. The expression of cyto C and apoptosis-related factors were detected by RT-Qpcr and Western blot. Results Hypoxia/reoxygenation increased apoptosis and mPTP levels, and decreased mitochondria membrane potential in I/R and I/R + EV groups. COX6B1 over-expression increased mitochondria cyto C, pro-caspase-3, pro-caspase-9 and bcl-2, while it decreased cytosol cyto C, cleaved-caspase-3, cleaved-caspase-9 and bax compared to I/R + EV group. Conclusion COX6B1 protected cardiomyocytes from hypoxia/reoxygenation injury by reducing ROS production and cell apoptosis, during which reduction of the release of cytochrome C from mitochondria to cytosol was involved. Our study demonstrated that COX6B1 may be an candidate target gene in preventing hypoxia/reoxygenation injury of cardiomyocytes.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 West 5 Road, Xi'an, 710004, Shaanxi Province, China
| | - Yu Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 West 5 Road, Xi'an, 710004, Shaanxi Province, China
| | - Junzhe Wan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 West 5 Road, Xi'an, 710004, Shaanxi Province, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 West 5 Road, Xi'an, 710004, Shaanxi Province, China
| | - Fei Pei
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 West 5 Road, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
37
|
Kalatanova AV, Makarov VG, Faustova NM, Gushchin YI, Makarova MN. [Evaluation of the cardioprotective effect of ubiquinol on the model of reperfusion injury of rat myocardium]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:188-194. [PMID: 29723149 DOI: 10.18097/pbmc20186402188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cardioprotective effect of ubiquinol on the model of myocardium reperfusion injury in rats was investigated. The study was carried out using mature males of outbred rats. Myocardial ischemia-reperfusion injury was performed after 30-minute ligation of the left coronary artery followed by reperfusion. The main criteria for assessing the development of pathology included the results of electrocardiography, biochemical analysis of blood plasma, histological and histochemical study of the myocardium. Development of the reperfusion damage of the myocardium caused specific changes in non-treated animals. The best therapeutic effect on biochemical indices was provided by a drug with the known cardioprotective activity - Mexidolâ and the tested object ubiquinol at doses of 2-6 mg/kg. Evaluation of the results of electrocardiography allowed to confirm the development of ischemic myocardial damage in all groups. The results of histochemical and histological examination of the myocardium suggest a high cardioprotective activity of ubiquinol at a dose of 3 mg/kg and a potential cardioprotective effect of ubiquinol in doses closest to the therapeutic doses of 2 and 6 mg/kg. Ubiquinol is a dose 9 mg/kg showed signs of prooxidant activity, manifested in the form of aggravation of reperfusion injury of the myocardium. The most effective in the conditions of experimental pathology is 1% solution of ubiquinol, at a dose of 3 mg/kg, whose cardioprotective effect is comparable or higher than that for the reference drug Mexidolâ at the therapeutic dose. In doses that are greater than therapeutic ubiquinol is able to act as a pro-oxidant.
Collapse
Affiliation(s)
- A V Kalatanova
- ICJSC "Saint-Petersburg Institute of Pharmacy", Kuzmolovskiy, Leningradskaya reg., Vsevolozhskiy distr., Russia
| | - V G Makarov
- ICJSC "Saint-Petersburg Institute of Pharmacy", Kuzmolovskiy, Leningradskaya reg., Vsevolozhskiy distr., Russia
| | - N M Faustova
- CJSC "Institute of experimental pharmacology", Leningradskaya reg., Russia
| | - Ya I Gushchin
- JSC "Research-and-manufacturing company "HOME OF PHARMACY"", Leningradskaya reg., Russia
| | - M N Makarova
- JSC "Research-and-manufacturing company "HOME OF PHARMACY"", Leningradskaya reg., Russia
| |
Collapse
|
38
|
Sun G, Lu Y, Li Y, Mao J, Zhang J, Jin Y, Li Y, Sun Y, Liu L, Li L. miR-19a protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via PTEN/PI3K/p-Akt pathway. Biosci Rep 2017; 37:BSR20170899. [PMID: 29054970 PMCID: PMC5715126 DOI: 10.1042/bsr20170899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/10/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022] Open
Abstract
miRNAs have been implicated in processing of cardiac hypoxia/reoxygenation (H/R)-induced injury. Recent studies demonstrated that miR-19a might provide a potential cardioprotective effect on myocardial disease. However, the effect of miR-19a in regulating myocardial ischemic injury has not been previously addressed. The present study was to investigate the effect of miR-19a on myocardial ischemic injury and identified the potential molecular mechanisms involved. Using the H/R model of rat cardiomyocytes H9C2 in vitro, we found that miR-19a was in low expression in H9C2 cells after H/R treatment and H/R dramatically decreased cardiomyocyte viability, and increased lactate dehydrogenase (LDH) release and cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-19a mimic. Dual-luciferase reporter assay and Western blotting assay revealed that PTEN was a direct target gene of miR-19a, and miR-19a suppressed the expression of PTEN via binding to its 3'-UTR. We further identified that overexpression of miR-19a inhibited the expression of PTEN at the mRNA and protein levels. Moreover, PTEN was highly expressed in H/R H9C2 cells and the apoptosis induced by H/R was associated with the increase in PTEN expression. Importantly, miR-19a mimic significantly increased p-Akt levels under H/R. In conclusion, our findings indicate that miR-19a could protect against H/R-induced cardiomyocyte apoptosis by inhibiting PTEN /PI3K/p-Akt signaling pathway.
Collapse
Affiliation(s)
- Guochao Sun
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Ying Lu
- Teaching Laboratory of Morphology, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Yingxia Li
- Department of Spine Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jun Mao
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Jun Zhang
- Teaching Affairs Department, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Yanling Jin
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Li
- Department of Anatomy, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Yan Sun
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Lei Liu
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Lianhong Li
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| |
Collapse
|
39
|
Honorat JA, Nakatsuji Y, Shimizu M, Kinoshita M, Sumi-Akamaru H, Sasaki T, Takata K, Koda T, Namba A, Yamashita K, Sanda E, Sakaguchi M, Kumanogoh A, Shirakura T, Tamura M, Sakoda S, Mochizuki H, Okuno T. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner. PLoS One 2017; 12:e0187215. [PMID: 29107957 PMCID: PMC5673182 DOI: 10.1371/journal.pone.0187215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS.
Collapse
Affiliation(s)
- Josephe A. Honorat
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (TO); (YN)
| | - Mikito Shimizu
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka General Medical Center, Osaka, Osaka, Japan
| | - Hisae Sumi-Akamaru
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazushiro Takata
- Department of Neurology, Osaka General Medical Center, Osaka, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akiko Namba
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuya Yamashita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eri Sanda
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Manabu Sakaguchi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi Shirakura
- Pharmaceutical Development Research Laboratories, Teijin Pharma Ltd., Hino, Tokyo, Japan
| | - Mizuho Tamura
- Pharmaceutical Development Research Laboratories, Teijin Pharma Ltd., Hino, Tokyo, Japan
| | - Saburo Sakoda
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (TO); (YN)
| |
Collapse
|
40
|
Cardiac Aging – Benefits of Exercise, Nrf2 Activation and Antioxidant Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:231-255. [DOI: 10.1007/978-981-10-4307-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Zhao X, Dou M, Zhang Z, Zhang D, Huang C. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes. Biomed Pharmacother 2017; 94:72-78. [DOI: 10.1016/j.biopha.2017.07.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022] Open
|
42
|
Inhibition of Caveolae Contributes to Propofol Preconditioning-Suppressed Microvesicles Release and Cell Injury by Hypoxia-Reoxygenation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3542149. [PMID: 29181124 PMCID: PMC5625844 DOI: 10.1155/2017/3542149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023]
Abstract
Endothelial microvesicles (EMVs), released after endothelial cell (EC) apoptosis or activation, may carry many adverse signals and propagate injury by intercellular transmission. Caveolae are 50–100 nm cell surface plasma membrane invaginations involved in many pathophysiological processes. Recent evidence has indicated EMVs and caveolae may have functional effects in cells undergoing H/R injury. Propofol, a widely used anaesthetic, confers antioxidative stress capability in the same process. But the connection between EMVs, H/R, and caveolae remains largely unclear. Here, we found that H/R significantly increased the release of EMVs, the expression of CAV-1 (the structural protein responsible for maintaining the shape of caveolae), oxidative stress, and the mitochondrial damage, and all these changes were inhibited by propofol preconditioning. Interestingly, the caveolae inhibitor Mβ-CD strengthened the protective effect of propofol preconditioning. We further found that the release of EMVs is more significantly reduced under propofol preconditioning in the presence of the caveolae inhibitor Mβ-CD. EMVs released from H/R-treated cells caused a substantially increased mitochondrial and cellular damage to normal HUVECs after 4 hours of coculture. Thus, we conclude that inhibition of caveolae contributes to propofol preconditioning-suppressed microvesicles release and cell injury by H/R.
Collapse
|
43
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
44
|
Febuxostat Modulates MAPK/NF- κBp65/TNF- α Signaling in Cardiac Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8095825. [PMID: 29138678 PMCID: PMC5613710 DOI: 10.1155/2017/8095825] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/02/2017] [Indexed: 01/09/2023]
Abstract
Xanthine oxidase and xanthine dehydrogenase have been implicated in producing myocardial damage following reperfusion of an occluded coronary artery. We investigated and compared the effect of febuxostat and allopurinol in an experimental model of ischemia-reperfusion (IR) injury with a focus on the signaling pathways involved. Male Wistar rats were orally administered vehicle (CMC) once daily (sham and IR + control), febuxostat (10 mg/kg/day; FEB10 + IR), or allopurinol (100 mg/kg/day; ALL100 + IR) for 14 days. On the 15th day, the IR-control and treatment groups were subjected to one-stage left anterior descending (LAD) coronary artery ligation for 45 minutes followed by a 60-minute reperfusion. Febuxostat and allopurinol pretreatment significantly improved cardiac function and maintained morphological alterations. They also attenuated oxidative stress and apoptosis by suppressing the expression of proapoptotic proteins (Bax and caspase-3), reducing TUNEL-positive cells, and increasing the level of antiapoptotic proteins (Bcl-2). The MAPK-based molecular mechanism revealed suppression of active JNK and p38 proteins concomitant with the rise in ERK1/ERK2, a prosurvival kinase. Additionally, a reduction in the level of inflammatory markers (TNF-α, IL-6, and NF-κB) was also observed. The changes observed with febuxostat were remarkable in comparison with those observed with allopurinol. Febuxostat protects relatively better against IR injury than allopurinol by suppressing inflammation and apoptosis mediating the MAPK/NF-κBp65/TNF-α pathway.
Collapse
|
45
|
Khames A, Khalaf MM, Gad AM, Abd El-Raouf OM. Ameliorative effects of sildenafil and/or febuxostat on doxorubicin-induced nephrotoxicity in rats. Eur J Pharmacol 2017; 805:118-124. [PMID: 28257823 DOI: 10.1016/j.ejphar.2017.02.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 02/05/2023]
Abstract
Sildenafil and febuxostat protect against doxorubicin-induced nephrotoxicity; however the exact mechanism remains to be elucidated. The effect of sildenafil and febuxostat on doxorubicin-induced nephrotoxicity in rats was studied. Male rats were subdivided into nine groups. The 1st group served as normal control, the 2nd group received dimethylsulfoxide 50% (DMSO), the 3rd group received doxorubicin (3.5mg/kg, i.p.), twice weekly for 3 weeks. The next 3 groups received sildenafil (5mg/kg; p.o.), febuxostat (10mg/kg; p.o.) and their combination, respectively daily for 21 days. The last 3 groups received doxorubicin in combination with sildenafil, febuxostat or their combination. Nephrotoxicity was evaluated histopathologically by light microscopy and biochemically through measuring the following parameters, Kidney function biomarkers [serum levels of urea, creatinine and uric acid], oxidative stress biomarkers [kidney contents of glutathione reduced (GSH) and malondialdehyde (MDA)], The apoptotic marker namely; caspase-3 in kidney tissue and the inflammatory mediator tumor necrosis factor alpha (TNF-α). doxorubicin-induced a significant elevation in nephrotoxicity markers, expression of caspase-3 and caused induction of inflammation and oxidative stress. Histological changes in the kidney was tubular necrosis. Sildenafil and/or febuxostat administration with doxorubicin caused a significant decrease in nephrotoxicity markers and inflammatory mediators, restoration of normal values of oxidative stress biomarkers and hampering the expression of renal caspase-3. They also ameliorate histological changes induced by doxorubicin. sildenafil and febuxostat are promising protective agents against doxorubicin-nephrotoxicity through improving biochemical, inflammatory, histopathological and immunohistochemical alterations induced by doxorubicin.
Collapse
Affiliation(s)
- Ali Khames
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ola M Abd El-Raouf
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
46
|
Khames A, khalaf MM, Gad AM, Abd El-Raouf OM. Ameliorative effects of sildenafil and/or febuxostat on doxorubicin-induced nephrotoxicity in rats. Eur J Pharmacol 2017. [DOI: https://doi.org/10.1016/j.ejphar.2017.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
He S, Wang X, Zhong Y, Tang L, Zhang Y, Ling Y, Tan Z, Yang P, Chen A. Hesperetin post-treatment prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating PI3K/Akt signaling pathway. Biomed Pharmacother 2017; 91:1106-1112. [PMID: 28531921 DOI: 10.1016/j.biopha.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 05/01/2017] [Indexed: 01/04/2023] Open
Abstract
Hesperidin (HES), a citrus fruit extract, has beneficial effects on various ischemia/reperfusion (I/R) models. Here, we investigated the possible positive effect of hesperetin (HPT), an active metabolite of HES, and identified the potential molecular mechanisms involved in cardiomyocytes H/R-induced injury. To construct the cardiomyocyte model of hypoxia/reoxygenation (H/R) injury, cultured neonatal rat cardiomyocytes were subjected to 3h of hypoxia followed by 3h of reoxygenation. Cell viability and apoptosis were detected. The levels of Apoptosis-related proteins and PI3K/Akt proteins were detected by western blot. Our results showed that HPT post-treatment significantly inhibited apoptosis by elevating the expression of Bcl-2, decreasing the expression of Bax and cleaved caspase-3, and diminished the apoptotic cardiomyocytes ratio. Mechanism studies demonstrated that HPT post-treatment up-regulated the expression levels of p-PI3K, and p-Akt. Co-treatment of the cardiomyocytes with the PI3K/Akt-specific inhibitor LY294002 blocked the HPT-induced cardioprotective effects. Taken together, these data suggested that HPT post-treatment prevented cardiomyocytes from H/R injury in vitro most likely through the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shangfei He
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Yongkang Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Lu Tang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Ya Zhang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Yuanna Ling
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Zhipeng Tan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China.
| |
Collapse
|
48
|
Chen H, Liu S, Liu X, Yang J, Wang F, Cong X, Chen X. Lysophosphatidic Acid Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury in the Immature Hearts of Rats. Front Physiol 2017; 8:153. [PMID: 28377726 PMCID: PMC5359218 DOI: 10.3389/fphys.2017.00153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
The cardioprotection of the immature heart during cardiac surgery remains controversial due to the differences between the adult heart and the newborn heart. Lysophosphatidic acid (LPA) is a small bioactive molecule with diverse functions including cell proliferation and survival via its receptor: LPA1–LPA6. We previously reported that the expressions of LPA1 and LPA3 in rat hearts were much higher in immature hearts and then declined rapidly with age. In this study, we aimed to investigate whether LPA signaling plays a potential protective role in immature hearts which had experienced ischemia/reperfusion (I/R) injury. The results showed that in Langendorff-perfused immature rat hearts (2 weeks), compared to I/R group, LPA pretreatment significantly enhanced the cardiac function, attenuated myocardial infarct size and CK-MB release, decreased myocardial apoptosis and increased the expression of pro-survival signaling molecules. All these effects could be abolished by Ki16425, an antagonist to LPA1 and LPA3. Similarly, LPA pretreatment protected H9C2 from hypoxia-reoxygenation (H/R) induced apoptosis and necrosis in vitro. The mechanisms underlying the anti-apoptosis effects were related to activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinas B (AKT) signaling pathways as well as phosphorylation of the downstream effector of AKT, glycogen synthase kinase 3 beta (GSK3β), through LPA1 and/or LPA3. What's more, we found that LPA preconditioning increased glucose uptake of H9C2 subjected to H/R by the activation of AMP-Activated Protein Kinase (AMPK) but not the translocation of GLUT4. In conclusion, our study indicates that LPA is a potent survival factor for immature hearts against I/R injuries and has the potential therapeutic function as a cardioplegia additive for infantile cardiac surgery.
Collapse
Affiliation(s)
- Haibo Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Si Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xuewen Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Jinjing Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| |
Collapse
|
49
|
Bakthavachalam P, Shanmugam PST. Mitochondrial dysfunction - Silent killer in cerebral ischemia. J Neurol Sci 2017; 375:417-423. [PMID: 28320180 DOI: 10.1016/j.jns.2017.02.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial dysfunction aggravates ischemic neuronal injury through activation of various pathophysiological and molecular mechanisms. Ischemic neuronal injury is particularly intensified during reperfusion due to impairment of mitochondrial function. Mitochondrial mutilation instigates alterations in calcium homeostasis in neurons, which plays a pivotal role in the maintenance of normal neuronal function. Increase in intracellular calcium level in mitochondria triggers the opening of mitochondrial transition pore and over production of reactive oxygen species (ROS). Several investigations have concluded that ROS not only contribute to lipids and proteins damage, but also transduce apoptotic signals leading to neuronal death. In addition to the above mentioned reasons, endoplasmic reticulum (ER) stress due to excitotoxicity also leads to neuronal death. Recently, some newer proteins have been claimed to induce "mitophagy" by triggering the receptors on autophagic membranes leading to neurodegeneration. This review summarizes the mechanisms underlying neuronal death involving mitochondrial dysfunction and mitophagy.
Collapse
Affiliation(s)
- Pramila Bakthavachalam
- Sri Ramachandra University, No. 1, Ramachandra Nagar, Porur, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
50
|
He S, Wang X, Chen A. Myocardial ischemia/reperfusion injury: the role of adaptor proteins Crk. Perfusion 2017; 32:345-349. [PMID: 28553779 DOI: 10.1177/0267659117691813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies have reported that the ischemia/reperfusion (I/R) myocardium may act as an immune system where an exaggerated inflammatory reaction initiates. With activation of the immune system, damage-associated molecular patterns migrate and adhere into the I/R region and, consequently, induce myocardial injury. Emerging data have indicated that the adaptor proteins Crk are thought to play essential roles in signaling during apoptosis and cell adhesion and migration. Accumulated data highlight that Crk proteins are potential immunotherapeutic targets in immune diseases. However, very few studies have determined the roles of Crk on myocardial I/R injury. This mini review will focus on the emerging roles of Crk adaptors during myocardial I/R injury.
Collapse
Affiliation(s)
- Shangfei He
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Xianbao Wang
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Aihua Chen
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| |
Collapse
|