1
|
Puente-Fernández J, Larumbe-Zabala E, Roberts J, Naclerio F. Pre-workout multi-ingredients or carbohydrate alone promote similar resistance training outcomes in middle-aged adults: a double-blind, randomized controlled trial. J Int Soc Sports Nutr 2025; 22:2519515. [PMID: 40512050 PMCID: PMC12168407 DOI: 10.1080/15502783.2025.2519515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 06/05/2025] [Indexed: 06/18/2025] Open
Abstract
BACKGROUND Pre-workout multi-ingredients are designed to enhance energy levels and acutely increase exercise performance. This study compared the effectiveness of ingesting an admixture providing caffeinated ingredients and plant-based protein enriched with amino acids versus carbohydrates alone on body composition, hypertrophy and physical performance. METHODS Forty-three middle-aged physically active individuals (26 peri- and post-menopausal females and 17 males) completed the study after being randomly assigned to one of the following intervention groups: pre-workout (PREW n = 24, 54 ± 4 years, body mass 77.6 ± 16.0 kg) or a carbohydrate-only comparator (COMP n = 19, 52 ± 4 years, body mass 80.6 ± 16.0 kg). Measurement of fat and fat-free mass (via plethysmography), waist and hip circumferences, muscle thickness (via ultrasound), strength, power output and muscle endurance performance were collected before and after a 6-week resistance training programme performed 3 times per week. Treatment consisted of ingesting 30g of the assigned supplement, mixed with 400mL of plain water, 15min before each workout session. RESULTS Both groups significantly (p < 0.05) reduced fat mass (mean ± SD) (PREW -1.4 ± 1.6 kg; COMP -1.0 ± 1.5 kg), increased fat-free mass (PREW +0.9 ± 1.1 kg; COMP + 0.8 ± 0.9 kg); vastus lateralis (PREW +0.2 ± 0.2 cm; COMP + 0.1 ± 0.6 cm), and elbow flexors (PREW +0.5 ± 0.3 cm; COMP + 0.4 ± 0.2 cm) muscle thickness. Only the PREW group showed a significant reduction in the waist circumference (-1.8 ± 1.8 cm, p < 0.01). However, no significant differences between groups (PREW vs. COMP) were identified at post-intervention. Isometric force, countermovement jump, medicine ball throw, and upper and lower body muscle endurance performance improved (p < 0.05) for both treatments, with no difference between groups. CONCLUSION Except for waist circumference reduction, ingesting a pre-workout vegan protein-based caffeinated supplement promotes no further resistance training benefits in middle-aged individuals.
Collapse
Affiliation(s)
- Joel Puente-Fernández
- Institute for Lifecourse Development, School of Human Sciences, Centre for Exercise Activity and Rehabilitation, University of Greenwich, Eltham, UK
| | - Eneko Larumbe-Zabala
- Canary Islands Health Research Institute Foundation (FCIISC), La Laguna, Tenerife, Spain
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Fernando Naclerio
- Institute for Lifecourse Development, School of Human Sciences, Centre for Exercise Activity and Rehabilitation, University of Greenwich, Eltham, UK
| |
Collapse
|
2
|
Xie K, Zhang Y, Ou X, Xiao Y, Luo J, Tan S. Taurine ameliorates liver fibrosis by repressing Fpr2-regulated macrophage M1 polarization. Eur J Pharmacol 2025; 997:177614. [PMID: 40216178 DOI: 10.1016/j.ejphar.2025.177614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Liver fibrosis is a reversible pathophysiological condition characterized by excessive extracellular matrix deposition that can progress to cirrhosis and liver failure if left untreated. Taurine, a sulfur-containing amino acid, protects the liver from damage. However, the effects of taurine on liver fibrogenesis have not been completely elucidated. In this study, we used amino acid metabolomics, gene expression microanalysis, and single-cell RNA sequencing (scRNA-seq) to investigate the roles of taurine, formyl peptide receptor 2 (Fpr2), and proinflammatory macrophages in liver fibrosis in human fibrotic sections and two distinct mouse models of liver fibrosis. Taurine transporter SLC6A6 wild-type and knockout littermate models and critical element inhibitors were also used. We found that taurine levels were significantly reduced in both human and murine fibrotic sections and that exogenous taurine supplementation alleviated fibrosis via SLC6A6. Furthermore, gene expression microarray analysis and scRNA-seq analyses demonstrated that exogenous taurine mitigated liver fibrosis, mainly by regulating Fpr2-related macrophage status. WRW4-mediated inhibition of Fpr2 ameliorated M1 macrophage polarization and alleviated liver fibrosis. Additionally, exogenous taurine suppressed Fpr2-modulated macrophage M1 polarization and the production of associated proinflammatory cytokines by repressing NF-κBp65 phosphorylation; moreover, SLC6A6 deficiency or treatment of liver fibrosis mouse models with an NF-κB inhibitor, BAY, impaired this protective effect of taurine. Therefore, taurine exerts a protective effect against liver fibrosis by repressing Fpr2/NF-κBp65-regulated macrophage M1 polarization, highlighting its potential therapeutic agent.
Collapse
Affiliation(s)
- Kaiduan Xie
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yiwang Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xingtong Ou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yuelin Xiao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Jiajie Luo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China.
| |
Collapse
|
3
|
Smimmo M, Casale V, D'Andrea D, Bello I, Iaccarino N, Romano F, Brancaleone V, Panza E, d'Emmanuele di Villa Bianca R, Katsouda A, Mitidieri E, Antoniadou I, Papapetropoulos A, Maione F, Castaldo S, Friuli M, Romano A, Gaetani S, Sorrentino R, Randazzo A, Cirino G, Bucci M, Filipovic M, Vellecco V. Defective protein persulfidation is involved in obesity associated skeletal muscle dysfunction: role of SIRT-1. Redox Biol 2025; 83:103645. [PMID: 40318302 PMCID: PMC12124727 DOI: 10.1016/j.redox.2025.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Ectopic fat deposition in skeletal muscle (SKM) due to obesity leads to biochemical and morphological alterations that deteriorate SKM quality and performance. Here, we show that impaired MPST-derived hydrogen sulfide (H2S) signaling contributes to obesity-related SKM dysfunction. Muscle tissues from obese db/db mice exhibit reduced MPST expression, correlating with decreased protein persulfidation and muscle performance in vivo. Mpst-/- mice show similar deficits as db/db mice, confirming the role of MPST. H2S supplementation improves locomotor activity in db/db mice and restores protein persulfidation, including SIRT-1. Myotubes placed in an "obese environment" display a downregulation of MPST, coupled with a reduced SIRT-1 persulfidation leading to an inflammatory state. Exogenous H2S exerts beneficial effects recovering SIRT-1 persulfidation/activity. Finally, muscle biopsies from obese individuals show reduced MPST expression, underscoring the translational relevance to human SKM health. Our study unveils a crucial role for MPST-derived H2S in obesity-associated SKM dysfunction via SIRT-1 persulfidation, highlighting the importance of the MPST/H2S pathway in maintaining healthy SKM function.
Collapse
Affiliation(s)
- M Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Casale
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - D D'Andrea
- School of Molecular Biosciences, University of Glasgow, UK; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Dortmund, Germany
| | - I Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - N Iaccarino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - F Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Brancaleone
- Department of Science, University of Potenza, Basilicata, Italy
| | - E Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - A Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - E Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - I Antoniadou
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - A Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - F Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - S Castaldo
- U.O.C. Ricerca Formazione & Cooperazione Internazionale, A.O.R.N." Antonio Cardarelli", Naples, Italy
| | - M Friuli
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - A Romano
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - S Gaetani
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - R Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Randazzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - M Filipovic
- School of Molecular Biosciences, University of Glasgow, UK; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Dortmund, Germany
| | - V Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Huang K, Chiang Y, Ali M, Hsia S. Cisplatin-Induced Muscle Wasting and Atrophy: Molecular Mechanism and Potential Therapeutic Interventions. J Cachexia Sarcopenia Muscle 2025; 16:e13817. [PMID: 40343378 PMCID: PMC12059472 DOI: 10.1002/jcsm.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025] Open
Abstract
Platinum-based chemotherapeutics, particularly cisplatin, are crucial in the treatment of various malignancies due to their strong antitumor effects. However, a significant side effect of cisplatin is muscle atrophy, which severely impairs physical strength, diminishes quality of life and complicates cancer therapy. Cisplatin-induced muscle wasting arises from a complex interplay of enhanced proteolysis, reduced muscle protein synthesis and systemic inflammation. Understanding the underlying molecular mechanisms of muscle atrophy is vital for identifying new therapeutic targets. This review systematically explores molecular-based therapies and plant-derived natural compounds, providing a comprehensive overview of their efficacy in vivo and in vitro for preventing cisplatin-induced muscle atrophy. Both molecular-based therapies and plant-derived natural compounds present promising strategies for mitigating cisplatin-induced muscle atrophy. Ghrelin, growth hormone secretagogues and testosterone stimulate anabolic pathways and reduce muscle degradation, whereas natural compounds like capsaicin and naringenin exert protective effects by reducing inflammation and oxidative stress. A better understanding of the pathophysiology of muscle atrophy, combined with optimized therapeutic applications, may facilitate the clinical translation of these interventions to improve outcomes for cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Ko‐Chieh Huang
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Yi‐Fen Chiang
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of PharmacyAin Shams UniversityCairoEgypt
- Department of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| | - Shih‐Min Hsia
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- School of Food and SafetyTaipei Medical UniversityTaipeiTaiwan
- Nutrition Research CenterTaipei Medical University HospitalTaipeiTaiwan
- TMU Research Center for Digestive MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
5
|
Miguel-Ortega Á, Rodríguez-Rodrigo MA, Mielgo-Ayuso J, Calleja-González J. Triathlon: Ergo Nutrition for Training, Competing, and Recovering. Nutrients 2025; 17:1846. [PMID: 40507114 PMCID: PMC12157197 DOI: 10.3390/nu17111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/22/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025] Open
Abstract
Triathlon is a multi-sport event that combines swimming, cycling and running. The distances vary and the physiological demands are high. Objectives: This review compiles information on nutritional strategies and ergogenic supplements for triathlon training, competition and recovery. It aims to provide an understanding of the specific challenges and needs of the sport to help triathletes and coaches optimise performance through effective training and nutrition plans. Methods: English-language publications were searched using the keywords triathlon, nutrition, recovery and ergogenic aids, alone or in combination, in databases. Results: Maintaining good glycogen levels, consuming enough carbohydrates and staying properly hydrated are key to athletic performance, especially for triathletes. Education regarding nutrition, the role of probiotics and supplements, and diet modification for the enhancement of performance and recovery are pivotal considerations. Conclusions: Triathletes are at risk of RED-S due to negative energy balance and high fibre/plant protein diets, especially women. Optimising muscle glycogen through tailored diet and training, especially pre- and in-race nutrition, including carbohydrate loading and hydration strategies, is critical. Education is needed to improve post-exercise nutrition, while probiotics and certain supplements may aid performance and recovery. Dietary support is important for resistance training to optimise performance and recovery.
Collapse
Affiliation(s)
- Álvaro Miguel-Ortega
- Faculty of Education, Alfonso X “El Sabio” University (UAX), 28691 Madrid, Spain
- Regional Ministry of Castilla y León Board of Education, HS Conde Diego Porcelos, 09006 Burgos, Spain;
| | | | - Juan Mielgo-Ayuso
- Faculty of Health Sciences, University of Burgos (UBU), 09001 Burgos, Spain;
| | - Julio Calleja-González
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain;
- Faculty of Kinesiology, University of Zagreb, 10110 Zagreb, Croatia
| |
Collapse
|
6
|
Han L, Fu R, Fu B, Li Q, Yu Y, Gao H, Zhang J, Qi M, Jin C, Mao S, Leng J. Integrating metabolomics and transcriptomics to analyze differences in muscle mass and flavor formation in Gayal and yellow cattle. Front Vet Sci 2025; 12:1581767. [PMID: 40438416 PMCID: PMC12116499 DOI: 10.3389/fvets.2025.1581767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
Beef flavor is affected by muscle metabolites and their related regulatory genes, and the molecular regulatory mechanisms vary among different beef breeds. To provide some new ways to improve meat quality and cattle breed improvement, 24-month-old Gayal (n = 8) and yellow cattle (n = 8) were selected for comparison in this study. The result revealed that the longissimus dorsi muscle fiber diameter, protein content and a-value of Gayal were significantly higher than that of yellow cattle, but the fat content was lower than that of yellow cattle. Furthermore, Gayal meat contained notably higher levels of polyunsaturated fatty acids (PUFA) and n-3PUFA than that of yellow cattle, and also had better levels of flavor amino acids (FAAs) and sweet amino acids (SAAs), which contribute to the flavor of beef. Through comprehensive analysis of transcriptomics and metabolomics, we detected a total of 109 markedly different metabolites (DEMs) and 1,677 differentially expressed genes (DEGs) in the pectoral muscles of the two breeds. Further analysis indicated that amino acid and lipid metabolism might be the key factors contributing to the differences in meat quality and flavor between Gayal and yellow cattle, involving metabolites such as L-2-aminobutyric acid, L-glutamic acid, L-glutamine, L-serine, betaine, pantothenic acid, and taurine. Through correlation analysis, we identified genes highly associated with flavor amino acids (GSTM3, GSTT2), muscle development (FGF10, EIF4EBP1, PPP2R2C), and lipid metabolism (CYP4A22, ACOX3, PLIN1, ADH6, CNDP1, LPAR3, BRCA1, ADIPOQ, FABP3) related essential regulatory genes and constructed a gene-metabolite interaction network for meat quality and flavor formation in Gayal. In summary, it was shown that significant differences in muscle metabolites between Gayal and yellow cattle, especially in amino acid and lipid metabolism, may be the major reason for the differences in quality and flavor between the two types of beef. This study provides a theoretical basis for further exploring the molecular regulatory mechanisms of the differences in beef quality and flavor between Gayal and yellow cattle, and provides a reference for the development and genetic breeding of high-quality cattle breeds.
Collapse
Affiliation(s)
- Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Jiawei Zhang
- Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Wang T, Huang X, Zhang X, Li N, Lu K, Zeng Y. Unveiling taurine's protective role in ischemic stroke: insights from bidirectional Mendelian randomization and LC-MS/MS analysis. GENES & NUTRITION 2025; 20:10. [PMID: 40361025 PMCID: PMC12076942 DOI: 10.1186/s12263-025-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Ischemic stroke remains a leading cause of mortality and disability globally, emphasizing the urgent need for innovative preventative and therapeutic strategies. Taurine, a critical amino sulfonic acid, has garnered attention for its neuroprotective effects, yet its precise role in ischemic stroke remains elusive. This study utilized a bidirectional Mendelian Randomization (MR) approach to explore the causal relationship between plasma taurine levels and ischemic stroke risk, employing genome-wide association study (GWAS) datasets. In parallel, a novel high-sensitivity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to quantify plasma taurine levels in ischemic stroke patients and healthy controls. Our findings reveal a significant inverse association between taurine levels and stroke risk, with IVW analysis showing beta = -0.001 and P = 0.0085. Furthermore, LC-MS/MS analysis demonstrated that plasma taurine levels in patients with ischemic stroke were notably lower at 36.07 ± 5.37 μmol/L compared to controls at 108.66 ± 25.11 μmol/L, confirming taurine's potential as a protective factor. These results suggest taurine as a promising biomarker and therapeutic target for stroke prevention and recovery. This study not only highlights the importance of taurine in cerebrovascular health but also provides a foundation for personalized intervention strategies.
Collapse
Affiliation(s)
- Tianyi Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuyang Huang
- Department of Neurology Central Hospital Affiliated to Shenyang Medical College, Liaoning, China
| | - Xinyue Zhang
- Department of Pediatrics, Liaoning Provincial People's Hospital, Liaoning, China
| | - Na Li
- Mass Spectrometry Research Institute, Beijing Gobroad Hospital, Beijing, China
| | - Kaizhi Lu
- Mass Spectrometry Research Institute, Beijing Gobroad Hospital, Beijing, China
| | - Yong Zeng
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Davari Zanjani M, Khodabandeh Z, Edalatmanesh MA. The Protective Effect of Taurine and Curcumin on Autophagy-Related Genes in the Oocytes of the Mouse Treated with Acrylamide. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:260-269. [PMID: 40255227 PMCID: PMC12008657 DOI: 10.30476/ijms.2024.101801.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/01/2024] [Accepted: 07/27/2024] [Indexed: 04/22/2025]
Abstract
Background Autophagy is also essential for both male and female infertility since it controls the development of germ cells and reproductive organs. This study aimed to investigate the effects of taurine and curcumin on the expression of genes related to autophagy in acrylamide-treated mice. Methods In 2022, this experimental study was conducted at the Shiraz University of Medical Sciences, Stem Cells Technology Research Centre. Forty-eight mice were randomly assigned to eight groups (control, curcumin 200 mg/Kg, taurine 150 mg/Kg, acrylamide 50 mg/Kg, acrylamide+curcumin 100 mg/Kg, acrylamide+curcumin 200, acrylamide+taurine 75 mg/Kg, acrylamide+taurine 150 mg/Kg). Finally, oocyte characteristics and gene expression were determined in each group using one-way analysis of variance (ANOVA) by SPSS 25 and GraphPad 9, respectively. P<0.05 was conducted statistically significant. Results A significant decrease was observed in several oocytes in the acrylamide group compared to the control group (P<0.001). The expression levels of light chain 3 (LC3), autophagy-related gene (ATG)12, ATG5, and Beclin1 significantly increased in the acrylamide compared to the control group. A significant increase in the number of oocytes was observed in the taurine group compared to the control. The expression levels of LC3, ATG12, ATG5, and Beclin1 significantly decreased in the acrylamide+taurine (150 mg/Kg) compared to the acrylamide group. Conclusion The acrylamide negatively impacts oocyte viability and causes the higher expression of autophagy-related genes. Taurine may encourage the fusion of autophagosomes with lysosomes by removing autophagic obstruction, potentially accelerating autophagy and protecting against oxidative stress. Taurine is more effective than curcumin at reducing the harmful effects of acrylamide. As a result, taurine can be proposed as a potential treatment drug for acrylamide-induced infertility.
Collapse
Affiliation(s)
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
9
|
Chen X, Wenting A, Zhiqing H, Jia G, Zhao H. Taurine reduces glycolysis of pig skeletal muscle by inhibiting HIF-1α signaling. J Cell Physiol 2025; 240:e31461. [PMID: 39373065 DOI: 10.1002/jcp.31461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The aim of this study was to investigate the effect of taurine on skeletal muscle glycolysis in pigs. The results showed that dietary supplementation of taurine significantly reduced the activities of hexokinase (HK), phosphofructose kinase (PFK), and pyruvate kinase (PK) in finishing pigs. Meanwhile, taurine reduced the protein and mRNA expression levels of hypoxia inducible factor 1α (HIF-1α) and the mRNA expression of glycolytic enzyme related genes (such as HK type II, HK Ⅱ; pyruvate kinase M2, PKM2; lactate dehydrogenase A, LDHA). In addition, taurine reduced the expression of HIF-1α, lactate content, and the expression of glycolysis related genes in porcine myotubes. These results suggest that taurine may regulate glycolysis in skeletal muscle of finishing pigs through the HIF-1α signaling pathway. To further investigate the mechanism by which taurine affects skeletal glycolysis, HIF-1α activator dimethyloxalyl glycine (DMOG) was used to treat porcine myotubes, our results showed that DMOG significantly increased the protein and mRNA expression levels of HIF-1α, lactate content, and glycolytic enzyme (HK, PFK, PK, and LDH) activity, but taurine treatment significantly inhibited this effect. Taken together, these results of in vivo and in vitro experiments revealed that taurine reduces skeletal muscle glycolysis by inhibiting HIF-1α signaling.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - An Wenting
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Huang Zhiqing
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
10
|
Sun Q, Wang J, Wang H, Yu H, Wan K, Ma F, Wang R. Effect of Long-Term Taurine Supplementation on the Lipid and Glycaemic Profile in Adults with Overweight or Obesity: A Systematic Review and Meta-Analysis. Nutrients 2024; 17:55. [PMID: 39796489 PMCID: PMC11722866 DOI: 10.3390/nu17010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Taurine has been demonstrated to regulate and improve metabolic health. However, physiological and pathological differences among individuals with overweight or obesity may result in varied responses to taurine supplementation. This study aims to estimate the effects of long-term taurine supplementation on blood lipids, glycemia, and insulin sensitivity in adults with overweight or obesity through a systematic review and meta-analysis. METHODS The literature search was based on six databases (Web of Science, PubMed, Scopus, EMBASE, Cochrane, and SPORTDiscus) up to October 2024. Subgroup analyses were performed based on daily taurine intake dosage (<3 g or 3 g), overweight (BMI 25-29.9 kg/m2), and obesity (BMI ≥30 kg/m2). RESULTS The final number of studies that met the inclusion criteria was 9 RCTs. The overall analysis showed that taurine supplementation significantly decreased TG (WMD = -0.56 mg/dL, 95% CI: -0.92 to -0.2, p = 0.002, I2 = 63%), TC (WMD = -0.71 mg/dL, 95% CI: -1.17 to -0.25, p = 0.002, I2 = 73%), and fasting insulin (WMD = -2.15 µU/mL, 95% CI: -3.24 to -1.06, p = 0.0001, I2 = 9%). In the subgroup analysis, long-term taurine intake led to BMI improvement in overweight adults (WMD = -1.14 kg/m2, 95% CI: -1.81 to -0.47, p = 0.0008, I2 = 0%). Meanwhile, improvements in HbA1c (WMD = -0.33%, 95% CI: -0.53 to -0.12, p = 0.002, I2 = 16%) and HOMA-IR (WMD = -0.91, 95% CI: -1.74 to -0.08, p = 0.003, I2 = 54%) were observed only in obese participants following taurine supplementation. Additionally, the long-term intake of 3 g of taurine significantly improved HbA1c (WMD = -0.37%, 95% CI: -0.61 to -0.13, p = 0.003, I2 = 0%) and FPG levels (WMD = -7.14 mg/dL, 95% CI: -12.53 to -1.74, p = 0.003, I2 = 70%) in overweight/obesity. CONCLUSIONS Long-term taurine supplementation is particularly effective in improving glycemic control and insulin sensitivity in obesity. Furthermore, higher doses of taurine (3 g per day) demonstrate even greater improvements in glycemic control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Q.S.); (J.W.); (H.W.); (H.Y.); (K.W.); (F.M.)
| |
Collapse
|
11
|
Adhish M, Manjubala I. Integrative in-silico and in-vitro analysis of taurine and vitamin B12 in modulating PPARγ and Wnt signaling in hyperhomocysteinemia-induced osteoporosis. Biol Direct 2024; 19:141. [PMID: 39707534 DOI: 10.1186/s13062-024-00581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a critical regulator of adipogenesis and bone metabolism, playing complex roles in osteoporosis. This study investigates the effects of taurine and homocysteine on PPARγ, focusing on their roles in osteoclastogenesis and bone health. In-silico analyses, including molecular docking and molecular dynamic simulations, revealed that both taurine and homocysteine bind competitively to the PPARγ ligand-binding domain, exhibiting distinctive antagonistic modes, including destabilization of PPARγ's key helices H3, H4/5, H11, and H12. In-vitro experiments further supported these results, demonstrating that taurine protects against oxidative damage, enhances bone mineralization, and reduces the expression levels of PPARγ, while also downregulating negative regulators of the Wnt signaling pathway, such as SOST and DKK1. Homocysteine, on the other hand, was observed to increase the expression of these regulators and impair bone formation. Vitamin B12 was included in the study due to its known role in mitigating hyperhomocysteinemia, a condition linked to impaired bone health and reduced taurine levels. While vitamin B12 alone demonstrated some beneficial effects, it did not achieve the same level of efficacy as taurine. However, a combination of taurine and vitamin B12 showed greater efficacy in ameliorating hyperhomocysteinemia-induced osteoporosis. Overall, this study highlights taurine's therapeutic potential in counteracting the adverse effects of hyperhomocysteinemia on bone health and underscores the need for further research into taurine's mechanisms in osteoporosis treatment.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
12
|
Livengood EJ, Fong RAMV, Pratt AM, Alinskas VO, Van Gorder G, Mezzio M, Mulligan ME, Voura EB. Taurine stimulation of planarian motility: a role for the dopamine receptor pathway. PeerJ 2024; 12:e18671. [PMID: 39655335 PMCID: PMC11627082 DOI: 10.7717/peerj.18671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Taurine, a normal dietary component that is found in many tissues, is considered important for a number of physiological processes. It is thought to play a particular role in eye development and in the maturation of both the muscular and nervous systems, leading to its suggested use as a therapeutic for Alzheimer's and Parkinson's diseases. Taurine increases metabolism and has also been touted as a weight loss aid. Due to its possible benefits to health and development, taurine is added as a supplement to a wide array of products, including infant formula and energy drinks. Despite its pervasive use as a nutritional additive and implied physiological actions, there is little consensus on how taurine functions. This is likely because, mechanistically, taurine has been demonstrated to affect multiple metabolic pathways. Simple models and straightforward assay systems are required to make headway in understanding this complexity. We chose to begin this work using the planarian because these animals have basic, well-understood muscular and nervous systems and are the subjects of many well-tested assays examining how their physiology is influenced by exposure to various environmental, nutritional, and therapeutic agents. We used a simple behavioral assay, the planarian locomotor velocity test (pLmV), to gain insight into the stimulant properties of taurine. Using this assay, we observed that taurine is a mild stimulant that is not affected by sugars or subject to withdrawal. We also provide evidence that taurine makes use of the dopamine D1 receptor to mediate this stimulant effect. Given the pervasiveness of taurine in many commercial products, our findings using the planarian system provide needed insight into the stimulant properties of taurine that should be considered when adding it to the diet.
Collapse
Affiliation(s)
- Elisa J. Livengood
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Robyn A. M. V. Fong
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Angela M. Pratt
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Veronika O. Alinskas
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Grace Van Gorder
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Michael Mezzio
- Department of Math and Science, Dominican University, Orangeburg, New York, United States
| | - Margaret E. Mulligan
- Department of Math and Science, Dominican University, Orangeburg, New York, United States
| | - Evelyn B. Voura
- Crouse Neuroscience Institute, Crouse Health at Crouse Hospital, Crouse Medical Practice, Syracuse, New York, United States
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States
| |
Collapse
|
13
|
Srikha T, Pootthachaya P, Puangsap W, Pintaphrom N, Somparn N, Boonkum W, Cherdthong A, Tengjaroenkul B, Wongtangtintharn S. Effects of Black Soldier Fly Larvae Oil on Growth Performance, Blood Biochemical Parameters, Carcass Quality, and Metabolomics Profile of Breast Muscle of Thai Native Chickens. Animals (Basel) 2024; 14:3098. [PMID: 39518821 PMCID: PMC11545031 DOI: 10.3390/ani14213098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to evaluate the effects of the replacement of rice bran oil (RBO) with black soldier fly larvae oil (BSFLO) on growth performance, blood biochemicals, carcass quality, and metabolomics profile of breast muscle of Thai native chickens. A total of 192 1-day-old, mixed-sex, Pradu Hang Dam (Mor Kor 55) chickens were randomly allocated to one of three dietary groups. Each treatment had four replicates with 16 chicks per replicate (8 males and 8 females). Three dietary treatments were used: (T1) the control group, based on a corn-soybean meal with RBO, and two treatment groups that replaced 50% (T2) and 75% (T3) of RBO in the basal diet with BSFLO, respectively. Results showed that BSFLO inclusion at 50% and 75% did not adversely affect the productive performance of Thai native chickens (p > 0.05). Regarding blood profiles, on day 28, chickens fed 75% BSFLO exhibited significant increases in hemoglobin, hematocrit, and MCHC (mean corpuscular hemoglobin concentration) with lower eosinophil percentages compared to the control group (p < 0.05). Additionally, BSFLO supplementation raised glucose levels but decreased globulin and total protein levels (p < 0.05). On day 63, BSFLO inclusion primarily affected MCV (mean corpuscular volume), with higher values in the 50% BSFLO group (p < 0.05). It also increased globulin and HDL (high-density lipoprotein) levels while lowering AST (aspartate transaminase) concentrations (p < 0.05). For carcass and meat quality, BSFLO supplementation did not affect dressing percentage or edible meat yield (p > 0.05). However, it influenced meat pH and shear force (p < 0.05), with a higher pH at 24 h post-mortem in BSFLO-fed chickens. Metabolomics showed that arginine biosynthesis; phenylalanine, tyrosine, and tryptophan metabolism; alanine, aspartate, and glutamate metabolism; arginine and proline metabolism; and taurine and hypotaurine metabolism were the most differentially abundant. These findings suggest that BSFLO can be used for a partial replacement (50 to 75%) for RBO in Thai native chicken diets, potentially offering benefits for animal health and meat quality without compromising growth performance.
Collapse
Affiliation(s)
- Theeraphat Srikha
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (P.P.); (N.P.); (N.S.); (W.B.); (A.C.)
| | - Padsakorn Pootthachaya
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (P.P.); (N.P.); (N.S.); (W.B.); (A.C.)
| | - Warin Puangsap
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (B.T.)
| | - Nisakon Pintaphrom
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (P.P.); (N.P.); (N.S.); (W.B.); (A.C.)
| | - Nantanant Somparn
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (P.P.); (N.P.); (N.S.); (W.B.); (A.C.)
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (P.P.); (N.P.); (N.S.); (W.B.); (A.C.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusorn Cherdthong
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (P.P.); (N.P.); (N.S.); (W.B.); (A.C.)
| | - Bundit Tengjaroenkul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (B.T.)
| | - Sawitree Wongtangtintharn
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (P.P.); (N.P.); (N.S.); (W.B.); (A.C.)
| |
Collapse
|
14
|
Adhish M, Manjubala I. An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. J Biomol Struct Dyn 2024; 42:9002-9017. [PMID: 37608541 DOI: 10.1080/07391102.2023.2249103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
The cysteine-knot containing negative regulator of the Wnt (Wingless-related integration site) signaling pathway, sclerostin (SOST) is an emerging therapeutic target for osteoporosis. Its inhibition is responsible for the promotion of osteoblastogenesis. In this study, taurine, an amino sulfonic acid was used to study its mechanism of action for the inhibition of the SOST protein. Molecular docking and dynamic studies were performed as a part of the study whereby, it was observed that taurine binds to a probable allosteric pocket which allows it to modulate the structure of the SOST protein affecting all of the loops - loops 1, loop 2, and loop 3 - as well as the cysteine residues forming the cysteine-knot. The study also identified a set of seven taurine analogues that have better pharmacological activity than their parent compound using screening techniques. The conclusions derived from the study support that taurine has a probable antagonistic effect on the SOST protein directly through the modulation of HNQS motif and loops 2 and 3 and indirectly through its influence on the cysteine residues - 134, 165 and 167 C. Based on the results, it can be assumed that the binding of taurine with SOST protein probably reduces its binding affinity to the LRP6 protein greatly, while also inhibiting the target protein from anchoring to LRP4. Furthermore, it was noted that probable additional binding with any small molecule inhibitor (SMI) at the active site (PNAIG motif), in the presence of an already allosterically bound taurine, of the SOST protein would result in a complete potential antagonism of the target protein. Additionally, the study also uncovers the possible role of the GKWWRPS motif in providing stability to the PNAIG motif for the purpose of binding with LRP6.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
15
|
Brandão SR, Oliveira PF, Guerra-Carvalho B, Reis-Mendes A, Neuparth MJ, Carvalho F, Ferreira R, Costa VM. Enduring metabolic modulation in the cardiac tissue of elderly CD-1 mice two months post mitoxantrone treatment. Free Radic Biol Med 2024; 223:199-211. [PMID: 39059512 DOI: 10.1016/j.freeradbiomed.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Mitoxantrone (MTX) is a therapeutic agent used in the treatment of solid tumors and multiple sclerosis, recognized for its cardiotoxicity, with underlying molecular mechanisms not fully disclosed. The cardiotoxicity is influenced by risk factors, including age. Our study intended to assess the molecular effect of MTX on the cardiac muscle of old male CD-1 mice. Mice aged 19 months received a total cumulative dose of 4.5 mg/kg of MTX (MTX group) or saline solution (CTRL group). Two months post treatment, blood was collected, animals sacrificed, and the heart removed. MTX caused structural cardiac changes, which were accompanied by extracellular matrix remodeling, as indicated by the increased ratio between matrix metallopeptidase 2 and metalloproteinase inhibitor 2. At the metabolic level, decreased glycerol levels were found, together with a trend towards increased content of the electron transfer flavoprotein dehydrogenase. In contrast, lower glycolysis, given by the decreased content of glucose transporter GLUT4 and phosphofructokinase, seemed to occur. The findings suggest higher reliance on fatty acids oxidation, despite no major remodeling occurring at the mitochondrial level. Furthermore, the levels of glutamine and other amino acids (although to a lesser extent) were decreased, which aligns with decreased content of the E3 ubiquitin-protein ligase Atrogin-1, suggesting a decrease in proteolysis. As far as we know, this was the first study made in old mice with a clinically relevant dose of MTX, evaluating its long-term cardiac effects. Even two months after MTX exposure, changes in metabolic fingerprint occurred, highlighting enduring cardiac effects that may require clinical vigilance.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Fontes Oliveira
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Bárbara Guerra-Carvalho
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.
| | - Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Rita Ferreira
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Jornada DH, Boreski D, Chiba DE, Ligeiro D, Luz MAM, Gabriel EA, Scarim CB, de Andrade CR, Chin CM. Synergistic Enhancement of 5-Fluorouracil Chemotherapeutic Efficacy by Taurine in Colon Cancer Rat Model. Nutrients 2024; 16:3047. [PMID: 39339648 PMCID: PMC11434803 DOI: 10.3390/nu16183047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) is one of the top 10 most common cancers worldwide and caused approximately 10 million deaths in 2022. CRC mortality has increased by 10% since 2020 and 52.000 deaths will occur in 2024, highlighting the limitations of current treatments due to ineffectiveness, toxicity, or non-adherence. The widely used chemotherapeutic agent, 5-fluorouracil (5-FU), is associated with several adverse effects, including renal, cardiac, and hepatic toxicity; mucositis; and resistance. Taurine (TAU), an essential β-amino acid with potent antioxidant, antimutagenic, and anti-inflammatory properties, has demonstrated protective effects against tissue toxicity from chemotherapeutic agents like doxorubicin and cisplatin. Taurine deficiency is linked to aging and cancers such as breast and colon cancer. This study hypothesized that TAU may mitigate the adverse effects of 5-fluorouracil (5-FU). Carcinogenesis was chemically induced in rats using 1,2-dimethylhydrazine (DMH). Following five months of cancer progression, taurine (100 mg/kg) was administered orally for 8 days, and colon tissues were analyzed. The results showed 80% of adenocarcinoma (AC) in DMH-induced control animals. Notably, the efficacy of 5-FU showed 70% AC and TAU 50% while, in the 5-FU + TAU group, no adenocarcinoma was observed. No differences were observed in the inflammatory infiltrate or the expression of genes such as K-ras, p53, and Ki-67 among the cancer-induced groups whereas APC/β-catenin expression was increased in the 5FU + TAU-treated group. The mitotic index and dysplasia were increased in the induced 5-FU group and when associated with TAU, the levels returned to normal. These data suggest that 5-FU exhibits a synergic anticancer effect when combined with taurine.
Collapse
Affiliation(s)
- Daniela Hartmann Jornada
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Diogo Boreski
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Diego Eidy Chiba
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Denise Ligeiro
- Physiology and Pathology Department, School of Dentistry, University of São Paulo State, UNESP, Araraquara 14801-385, SP, Brazil
| | - Marcus Alexandre Mendes Luz
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| | - Edmo Atique Gabriel
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| | - Cauê Benito Scarim
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Cleverton Roberto de Andrade
- Physiology and Pathology Department, School of Dentistry, University of São Paulo State, UNESP, Araraquara 14801-385, SP, Brazil
| | - Chung Man Chin
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| |
Collapse
|
17
|
Rodella P, Boreski D, Luz MAM, Gabriel EA, Takase LF, Chin CM. Taurine Neuroprotection and Neurogenesis Effect in Chronic Ethanol-Induced Rats. Nutrients 2024; 16:1973. [PMID: 38931326 PMCID: PMC11206532 DOI: 10.3390/nu16121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is a non-protein β-amino acid essential for cellular homeostasis, with antioxidant, anti-inflammatory, and cytoprotective properties that are crucial for life maintenance. This study aimed to evaluate the effects of taurine administration on hippocampal neurogenesis, neuronal preservation, or reverse damage in rats exposed to forced ethanol consumption in an animal model. Wistar rats were treated with ethanol (EtOH) for a 28-day period (5% in the 1st week, 10% in the 2nd week, and 20% in the 3rd and 4th weeks). Two taurine treatment protocols (300 mg/kg i.p.) were implemented: one during ethanol consumption to analyze neuroprotection, and another after ethanol consumption to assess the reversal of ethanol-induced damage. Overall, the results demonstrated that taurine treatment was effective in protecting against deficits induced by ethanol consumption in the dentate gyrus. The EtOH+TAU group showed a significant increase in cell proliferation (145.8%) and cell survival (54.0%) compared to the EtOH+Sal group. The results also indicated similar effects regarding the reversal of ethanol-induced damage 28 days after the cessation of ethanol consumption. The EtOH+TAU group exhibited a significant increase (41.3%) in the number of DCX-immunoreactive cells compared to the EtOH+Sal group. However, this amino acid did not induce neurogenesis in the tissues of healthy rats, implying that its activity may be contingent upon post-injury stimuli.
Collapse
Affiliation(s)
- Patricia Rodella
- Laboratory for Drug Design (LAPDESF), School of Pharmaceutical Sciences, University of São Paulo State (UNESP), Araraquara 14800-903, Brazil; (P.R.); (D.B.)
| | - Diogo Boreski
- Laboratory for Drug Design (LAPDESF), School of Pharmaceutical Sciences, University of São Paulo State (UNESP), Araraquara 14800-903, Brazil; (P.R.); (D.B.)
| | - Marcus Alexandre Mendes Luz
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto 15030-070, Brazil; (M.A.M.L.); (E.A.G.)
| | - Edmo Atique Gabriel
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto 15030-070, Brazil; (M.A.M.L.); (E.A.G.)
| | - Luiz Fernando Takase
- Morphology and Pathology Department, Federal University of São Paulo of São Carlos (UFSCar), São Carlos 13565-905, Brazil;
| | - Chung Man Chin
- Laboratory for Drug Design (LAPDESF), School of Pharmaceutical Sciences, University of São Paulo State (UNESP), Araraquara 14800-903, Brazil; (P.R.); (D.B.)
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto 15030-070, Brazil; (M.A.M.L.); (E.A.G.)
| |
Collapse
|
18
|
Wang F, Cheng Y, Yin L, Liu S, Li X, Xie M, Li J, Chen J, Fu C. Dietary supplementation with ellagic acid improves the growth performance, meat quality, and metabolomics profile of yellow-feathered broiler chickens. Poult Sci 2024; 103:103700. [PMID: 38631231 PMCID: PMC11036095 DOI: 10.1016/j.psj.2024.103700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The aim of this research was to explore the effects of ellagic acid (EA) on growth performance, meat quality, and metabolomics profile of broiler chickens. 240 healthy yellow-feathered broilers were randomly divided into 4 groups (6 replicates/group and 10 broilers /replicate): 1) a standard diet (CON); 2) CON+0.01% EA; 3) CON+0.02% EA; 4) CON+0.04% EA. Compared with the CON group, dietary 0.02% EA increased linearly and quadratically the ADG and lowered F/G ratio from 29 to 56 d and from 1 to 56 d of age (P < 0.05). The EA groups had higher spleen index and showed linear and quadratic improve thymus index (P < 0.05). A total of 0.02% EA linearly and quadratically increased the leg muscle percentage and quadratically increased the breast muscle percentage (P < 0.05). Compared to the control diet, 0.02% EA decreased quadratically the L* and increased a* of breast muscle at 45 min postslaughter (P < 0.05), and quadratically decreased (P < 0.05) the b* and increased linearly and quadratically (P < 0.05) drip loss. Additionally, EA improved linearly and quadratically (P < 0.05) serum total protein concentration and reduced linearly and quadratically (P < 0.05) serum blood urea nitrogen concentration. A total of 0.02% EA quadratically increased catalase activity and decreased malondialdehyde concentration in breast muscle compared with the control diet (P < 0.05). 0.02% and 0.04% EA could linearly and quadratically increase (P < 0.05) the concentrations of histidine, leucine and essential amino acids (EAA), 0.02% EA could linearly and quadratically increase (P < 0.05) the concentrations of threonine, glutamate, and flavored amino acids in breast muscle. 0.02% EA linearly and quadratically improved the C20:3n6, C22:6n3, polyunsaturated fatty acid (PUFA) concentrations, and the ratio of PUFA to saturated fatty acids (SFA), but reduced the C16:0 and the SFA concentrations in breast muscle than the CON group (P < 0.05). The EA diet linearly increased (P = 0.035) and quadratically tended (P = 0.068) to regulate the C18:2n6c concentration of breast muscle. Metabolomics showed that alanine metabolism, aspartate and glutamate metabolism, arginine and proline metabolism, taurine and hypotaurine metabolism, and glycerophospholipid metabolism were the most differentially abundant. These results showed that EA supported moderate positive effects on growth performance, meat quality, and metabolomics profile of broilers.
Collapse
Affiliation(s)
- Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xinrui Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Meizhu Xie
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiayang Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
19
|
Aisyah R, Ohshima N, Watanabe D, Nakagawa Y, Sakuma T, Nitschke F, Nakamura M, Sato K, Nakahata K, Yokoyama C, Marchioni CR, Kumrungsee T, Shimizu T, Sotomaru Y, Takeo T, Nakagata N, Izumi T, Miura S, Minassian BA, Yamamoto T, Wada M, Yanaka N. GDE5/Gpcpd1 activity determines phosphatidylcholine composition in skeletal muscle and regulates contractile force in mice. Commun Biol 2024; 7:604. [PMID: 38769369 PMCID: PMC11106330 DOI: 10.1038/s42003-024-06298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Glycerophosphocholine (GPC) is an important precursor for intracellular choline supply in phosphatidylcholine (PC) metabolism. GDE5/Gpcpd1 hydrolyzes GPC into choline and glycerol 3-phosphate; this study aimed to elucidate its physiological function in vivo. Heterozygous whole-body GDE5-deficient mice reveal a significant GPC accumulation across tissues, while homozygous whole-body knockout results in embryonic lethality. Skeletal muscle-specific GDE5 deletion (Gde5 skKO) exhibits reduced passive force and improved fatigue resistance in electrically stimulated gastrocnemius muscles in vivo. GDE5 deficiency also results in higher glycolytic metabolites and glycogen levels, and glycerophospholipids alteration, including reduced levels of phospholipids that bind polyunsaturated fatty acids (PUFAs), such as DHA. Interestingly, this PC fatty acid compositional change is similar to that observed in skeletal muscles of denervated and Duchenne muscular dystrophy mouse models. These are accompanied by decrease of GDE5 expression, suggesting a regulatory role of GDE5 activity for glycerophospholipid profiles. Furthermore, a DHA-rich diet enhances contractile force and lowers fatigue resistance, suggesting a functional relationship between PC fatty acid composition and muscle function. Finally, skinned fiber experiments show that GDE5 loss increases the probability of the ryanodine receptor opening and lowers the maximum Ca2+-activated force. Collectively, GDE5 activity plays roles in PC and glucose/glycogen metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Yoshiko Nakagawa
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minako Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Koji Sato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kaori Nakahata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Chihiro Yokoyama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Charlotte R Marchioni
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Takashi Izumi
- Graduate School of Medicine, Gunma University, Gunma, Japan
- Faculty of Health Care, Teikyo Heisei University, Tokyo, Japan
| | - Shinji Miura
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Berge A Minassian
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
20
|
Turbitt J, Moffett RC, Brennan L, Johnson PRV, Flatt PR, McClenaghan NH, Tarasov AI. Molecular determinants and intracellular targets of taurine signalling in pancreatic islet β-cells. Acta Physiol (Oxf) 2024; 240:e14101. [PMID: 38243723 DOI: 10.1111/apha.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
AIM Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet β-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into β-cells and its acute and chronic intracellular interactions. METHODS The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 β-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals. RESULTS Taurine transporter TauT was expressed in the islet β-cells, with the transport of taurine and homologs having a weak sulfonate specificity but significant sensitivity to the molecular weight of the transporter. Taurine, hypotaurine, homotaurine, and β-alanine enhanced insulin secretion in a glucose-dependent manner, an action potentiated by cytosolic Ca2+ and cAMP. Acute and chronic β-cell insulinotropic effects of taurine were highly sensitive to co-agonism with GLP-1, forskolin, tolbutamide, and membrane depolarization, with an unanticipated indifference to the activation of PKC and CCK8 receptors. Pre-culturing with GLP-1 or KATP channel inhibitors sensitized or, respectively, desensitized β-cells to the acute taurine stimulus. CONCLUSION Together, these data demonstrate the pathways whereby taurine exhibits a range of beneficial effects on insulin secretion and β-cell function, consistent with the antidiabetic potential of its dietary low-dose supplementation.
Collapse
Affiliation(s)
- Julie Turbitt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Republic of Ireland
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Oxford Biomedical Research Centre (OxBRC), Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Republic of Ireland
| | | |
Collapse
|
21
|
Chang TM, Lin HL, Tzang CC, Liang JA, Hsu TC, Tzang BS. Unraveling the Role of miR-200b-3p in Attention-Deficit/Hyperactivity Disorder (ADHD) and Its Therapeutic Potential in Spontaneously Hypertensive Rats (SHR). Biomedicines 2024; 12:144. [PMID: 38255250 PMCID: PMC10813109 DOI: 10.3390/biomedicines12010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children with unknown etiology. Impaired learning ability was commonly reported in ADHD patients and has been associated with dopamine uptake in the striatum of an animal model. Another evidence also indicated that micro-RNA (miR)-200b-3p is associated with learning ability in various animal models. However, the association between miR-200b-3p and ADHD-related symptoms remains unclear. Therefore, the current study investigated the role of miR-200b-3p in ADHD-related symptoms such as inattention and striatal inflammatory cytokines. To verify the influence of miR-200b-3p in ADHD-related symptoms, striatal stereotaxic injection of miR-200b-3p antagomir (AT) was performed on spontaneously hypertensive rats (SHR). The antioxidant activity and expressions of miR-200b-3p, slit guidance ligand 2 (Slit2), and inflammatory cytokines in the striatum of SHR were measured using quantitative real-time polymerase chain reaction (RT-qPCR), immunohistochemistry (IHC), immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The spontaneous alternation of SHR was tested using a three-arm Y-shaped maze. The administration of miR-200b-3p AT or taurine significantly decreased striatal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in SHR, along with increased super-oxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and significantly higher spontaneous alternation. In this paper, we show that miR-200b-3p AT and taurine alleviates ADHD-related symptoms in SHR. These findings provide insights into ADHD's molecular basis and suggest miR-200b-3p as a potential therapeutic target. Concurrently, this study also suggests broad implications for treating neurodevelopmental disorders affecting learning activity such as ADHD.
Collapse
Affiliation(s)
- Tung-Ming Chang
- Pediatric Neurology, Changhua Christian Children’s Hospital, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Hsiu-Ling Lin
- Cardiac Function Examination Room, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan;
| | - Ju-An Liang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
22
|
Ommati MM, Rezaei H, Socorro RM, Tian W, Zhao J, Rouhani A, Sabouri S, Ghaderi F, Niknahad AM, Najibi A, Mazloomi S, Safipour M, Honarpishefard Z, Wang HW, Niknahad H, Heidari R. Pre/postnatal taurine supplementation improves neurodevelopment and brain function in mice offspring: A persistent developmental study from puberty to maturity. Life Sci 2024; 336:122284. [PMID: 38008208 DOI: 10.1016/j.lfs.2023.122284] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Retana-Márquez Socorro
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ayeh Rouhani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; College of Animal Science and Veterinary, Shanxi agricultural University, Taigu, Shanxi, China
| | - Fatemeh Ghaderi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Chemistry and Biochemistry, Miami University, 244 Hughes Laboratories, 651 E. High Street, Oxford, OH 45056, USA
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moslem Safipour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Honarpishefard
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
24
|
Yuan D, Chen J, Zhao Z, Qin H. Metabolomics analysis of visceral leishmaniasis based on urine of golden hamsters. Parasit Vectors 2023; 16:304. [PMID: 37649093 PMCID: PMC10469881 DOI: 10.1186/s13071-023-05881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Leishmaniasis is one of the most neglected tropical diseases and is spread mainly in impoverished regions of the world. Although many studies have focused on the host's response to Leishmania invasion, relatively less is known about the complex processes at the metabolic level, especially the metabolic alterations in the infected hosts. METHODS In this study, we conducted metabolomics analysis on the urine of golden hamsters in the presence or absence of visceral leishmaniasis (VL) using the ultra-performance liquid chromatography (UPLC) system tandem high-resolution mass spectrometer (HRMS). The metabolic characteristics of urine samples, along with the histopathological change and the parasite burden of liver and spleen tissues, were detected at 4 and 12 weeks post infection (WPI), respectively. RESULTS Amino acid metabolism was extensively affected at both stages of VL progression. Meanwhile, there were also distinct metabolic features at different stages. At 4 WPI, the significantly affected metabolic pathways involved alanine, aspartate and glutamate metabolism, the pentose phosphate pathway (PPP), histidine metabolism, tryptophan metabolism and tyrosine metabolism. At 12 WPI, the markedly enriched metabolic pathways were almost concentrated on amino acid metabolism, including tyrosine metabolism, taurine and hypotaurine metabolism and tryptophan metabolism. The dysregulated metabolites and metabolic pathways at 12 WPI were obviously less than those at 4 WPI. In addition, seven metabolites that were dysregulated at both stages through partial least squares-discriminant analysis (PLS-DA) and receiver-operating characteristic (ROC) tests were screened to be of diagnostic potential. The combination of these metabolites as a potential biomarker panel showed satisfactory performance in distinguishing infection groups from control groups as well as among different stages of infection. CONCLUSION Our findings could provide valuable information for further understanding of the host response to Leishmania infection from the aspect of the urine metabolome. The proposed urine biomarker panel could help in the development of a novel approach for the diagnosis and prognosis of VL.
Collapse
Affiliation(s)
- Dongmei Yuan
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhiwei Zhao
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hanxiao Qin
- Clinical Trial Center, Chengdu Second People's Hospital, Chengdu, 610021, Sichuan, People's Republic of China.
| |
Collapse
|
25
|
Lee MC, Hsu YJ, Shen SY, Ho CS, Huang CC. A functional evaluation of anti-fatigue and exercise performance improvement following vitamin B complex supplementation in healthy humans, a randomized double-blind trial. Int J Med Sci 2023; 20:1272-1281. [PMID: 37786445 PMCID: PMC10542023 DOI: 10.7150/ijms.86738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023] Open
Abstract
B vitamins play a crucial role in maintaining fundamental cellular functions and various essential metabolic pathways in the body. Although they do not directly provide energy, each B vitamin acts as a cofactor in energy metabolism processes. Based on the evidence presented above, we hypothesized that a 28-day supplementation of vitamin B would enhance physical performance and reduce physical fatigue. The objective of this study was to evaluate the anti-fatigue effect of vitamin B supplementation, specifically vitamin B1, B2, B6, and B12, and its potential to improve exercise performance. We employed a randomized double-blind crossover design with a 28-day supplementation period. Sixteen male and sixteen female subjects, aged 20-30 years, were divided into two groups: the placebo group (n=16, equal gender distribution) and the Ex PLUS® group (n=16, equal gender distribution). The participants received either placebo or Ex PLUS® (one tablet per day) for 28 consecutive days. Following the intervention, there was a 14-day wash-out period during which the subjects did not receive any further interventions. After supplementation with Ex PLUS®, we found a significant increase in the running time by 1.26-fold (p < 0.05) to exhaustion compared to that before supplementation and that in the placebo group. In addition, the Ex PLUS® supplementation group presented significantly reduced blood lactate and blood ammonia concentrations during exercise and at rest after exercise compared with placebo (p < 0.05). In conclusion, 28 consecutive days of vitamin B complex (Ex PLUS®) supplementation significantly improved exercise endurance performance and reduced exercise fatigue biochemical metabolites in not athletes. In addition, it does not cause adverse effects in humans when taken at appropriate doses.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan
| | - Sih-Yu Shen
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City, 242062, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
26
|
Song W, Li X, Cao H, Wang T, Sun Y, Fan Q, Zahid D, Li M, Li W. Taurine promotes B-cell activation by interaction with the V H /V L framework regions of B-cell receptor. Immunology 2023; 169:141-156. [PMID: 36510675 DOI: 10.1111/imm.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Taurine (Tau) is a special sulphur-containing amino acid and has been widely used as a dietary supplement. Although Tau exists in lymphocytes in large quantities, the physiological significance of Tau to modulate human immunity is unknown. In the present study, we first found that Tau regulates the B-cell receptor (BCR)-mediated signal transduction and induces the B cells activation. The IgG production of mice after ovalbumin immunization was also increased by Tau administration. Moreover, the isothermal titration calorimetry and surface plasmon resonance analysis have shown that Tau specifically bound to the IgG2a-BCR. The Tau could bind to IgG F(ab')2 regions via fluorescence spectroscopy analysis. In the molecular docking analysis, Tau bound to the framework regions (FRs) of variable region of the heavy chains (VH ) and in the light chains (VL ) of IgG2a-BCR. Our results suggested that Tau could improve the activation of B cells by interaction with the VH /VL FRs of BCR.
Collapse
Affiliation(s)
- Wanli Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xueying Li
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hongyu Cao
- School of Life Science and Biotechnology, Liaoning Key Lab of Bio-Organic Chemistry, Dalian University, Dalian, Liaoning, China
| | - Tiantong Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuhan Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Qingjie Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Danish Zahid
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
27
|
Gowda GAN, Abell L, Tian R, Raftery D. Whole Body Distribution of Labile Coenzymes and Antioxidants in a Mouse Model as Visualized Using 1H NMR Spectroscopy. Anal Chem 2023; 95:6029-6037. [PMID: 36988554 PMCID: PMC10089975 DOI: 10.1021/acs.analchem.3c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Coenzyme A, acetyl coenzyme A, coenzymes of cellular energy, coenzymes of redox reactions, and antioxidants mediate biochemical reactions fundamental to the functioning of all living cells. There is an immense interest in measuring them routinely in biological specimens to gain insights into their roles in cellular functions and to help characterize the biological status. However, it is challenging to measure them ex vivo as they are sensitive to specimen harvesting, extraction, and measurement conditions. This challenge is largely underappreciated and carries the risk of grossly inaccurate measurements that lead to incorrect inferences. To date, several efforts have been focused on alleviating this challenge using NMR spectroscopy. However, a comprehensive solution for the measurement of the compounds in a wide variety of biological specimens is still lacking. As a part of addressing this challenge, we demonstrate here that the total pool of each group of unstable metabolites offers a starting place for the representation of labile metabolites in biological specimens. Based on this approach, in this proof-of-concept study, we determine the distribution of the labile compounds in different organs including heart, kidney, liver, brain, and skeletal muscle of a mouse model. The results were independently validated using different specimens and a different metabolite extraction protocol. Further, we show that both stable and unstable metabolites were distributed differentially in different organs, which signifies their differential functional roles, the knowledge of which is currently lacking for many metabolites. Intriguingly, the concentration of taurine, an amino sulfonic acid, in skeletal muscle is >30 mM, which is the highest for any metabolite in a mammalian tissue known to date. To the best of our knowledge, this is the first study to profile the whole body distribution of the labile and other high-concentration metabolites using NMR spectroscopy. The results may pave ways for gaining new insights into cellular functions in health and diseases.
Collapse
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109
| | - Lauren Abell
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109
| | - Rong Tian
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
28
|
Calvani R, Picca A, Rodriguez-Mañas L, Tosato M, Coelho-Júnior HJ, Biancolillo A, Laosa O, Gervasoni J, Primiano A, Santucci L, Giampaoli O, Bourdel-Marchasson I, Regueme SC, Sinclair AJ, Urbani A, Landi F, Gambassi G, Marini F, Marzetti E. Amino Acid Profiles in Older Adults with Frailty: Secondary Analysis from MetaboFrail and BIOSPHERE Studies. Metabolites 2023; 13:metabo13040542. [PMID: 37110200 PMCID: PMC10147014 DOI: 10.3390/metabo13040542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS-DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS-DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Leocadio Rodriguez-Mañas
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red "Fragilidad y Envejecimiento Saludable" (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Olga Laosa
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, 28905 Getafe, Spain
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Isabelle Bourdel-Marchasson
- Clinical Gerontology Department, Bordeaux University Hospital, 33000 Bordeaux, France
- CRMSB, CNRS UMR 5536, Université de Bordeaux, 33000 Bordeaux, France
| | - Sophie C Regueme
- CHU Bordeaux, Pole Gérontologie Clinique, 33000 Bordeaux, France
| | - Alan J Sinclair
- Foundation for Diabetes Research in Older People (fDROP), King's College, London WC2R 2LS, UK
| | - Andrea Urbani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Gambassi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
29
|
Terrill JR, Huchet C, Le Guiner C, Lafoux A, Caudal D, Tulangekar A, Bryson-Richardson RJ, Sztal TE, Grounds MD, Arthur PG. Muscle Pathology in Dystrophic Rats and Zebrafish Is Unresponsive to Taurine Treatment, Compared to the mdx Mouse Model for Duchenne Muscular Dystrophy. Metabolites 2023; 13:metabo13020232. [PMID: 36837851 PMCID: PMC9963000 DOI: 10.3390/metabo13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Inflammation and oxidative stress are strongly implicated in the pathology of Duchenne muscular dystrophy (DMD), and the sulphur-containing amino acid taurine ameliorates both and decreases dystropathology in the mdx mouse model for DMD. We therefore further tested taurine as a therapy using dystrophic DMDmdx rats and dmd zebrafish models for DMD that have a more severe dystropathology. However, taurine treatment had little effect on the indices of dystropathology in both these models. While we and others have previously observed a deficiency in taurine in mdx mice, in the current study we show that the rat and zebrafish models had increased taurine content compared with wild-type, and taurine treatment did not increase muscle taurine levels. We therefore hypothesised that endogenous levels of taurine are a key determinate in potential taurine treatment efficacy. Because of this, we felt it important to measure taurine levels in DMD patient plasma samples and showed that in non-ambulant patients (but not in younger patients) there was a deficiency of taurine. These data suggest that taurine homeostasis varies greatly between species and may be influenced by age and disease progression. The potential for taurine to be an effective therapy may depend on such variables.
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Correspondence:
| | - Corinne Huchet
- TaRGeT Lab, Translational Research for Gene Therapy, INSERM, UMR 1089, Nantes Université, CHU Nantes, 440200 Nantes, France
| | - Caroline Le Guiner
- TaRGeT Lab, Translational Research for Gene Therapy, INSERM, UMR 1089, Nantes Université, CHU Nantes, 440200 Nantes, France
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Nantes Université, 44007 Nantes, France
| | - Dorian Caudal
- Therassay Platform, CAPACITES, Nantes Université, 44007 Nantes, France
| | - Ankita Tulangekar
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | - Tamar E. Sztal
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Miranda D. Grounds
- School of Human Sciences, the University of Western Australia, Perth 6009, Australia
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
30
|
Sarnobat D, Moffett RC, Ma J, Flatt PR, McClenaghan NH, Tarasov AI. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023. [PMID: 36714992 DOI: 10.1002/biof.1938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and β-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in β-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic β-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into β-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet β-cell biology, which combines the augmentation of α-/β-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.
Collapse
Affiliation(s)
- Dipak Sarnobat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | | |
Collapse
|
31
|
Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022; 14:nu14235069. [PMID: 36501099 PMCID: PMC9736198 DOI: 10.3390/nu14235069] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
The metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two-tart cherry and omega-3 fatty acids-are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.
Collapse
|
32
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
33
|
Wang Y, Xu T, Zhao H, Gu C, Li Z. Effect of taurine in muscle damage markers and inflammatory cytokines in running exercise. Front Physiol 2022; 13:1008060. [PMID: 36176774 PMCID: PMC9513359 DOI: 10.3389/fphys.2022.1008060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effect of taurine on muscle damage markers and inflammatory markers in the running. For that, ten healthy volunteers participated in this study (mean ± SEM; age 24 ± 1 year, body mass 72.2 ± 4.89 kg, height 174.03 ± 2.85 cm, and BMI 23.83 ± 1.27). The running exercise was performed for 5 km, and blood was taken pre-exercise and pre-exercise + tau and post-exercise and post-exercise + tau for biochemical assessment. We assessed serum creatine kinase (CK), CK isoenzyme, Lactate dehydrogenase (LDH), aspartate transaminase (AST), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). CK level was not significantly different in the control and taurine (tau) administrated groups. However, creatine kinase isoenzyme was decreased in the pre-exercise + tau group when compared to the post-exercise + tau group. AST level was increased significantly in the post-exercise compared to the post-exercise + tau group. There was no significant difference observed in the LDH level in both post-exercise and post-exercise + tau. TNF-alpha level was not also significantly different in both post-exercise and post-exercise + tau. However, IL-6 was decreased in the post-exercise + tau when compared to the post-exercise group. In conclusion, we observed that taurine decreases the inflammatory response by decreasing IL-6 and AST, suggesting the role of taurine in regulating inflammatory response could help to increase running performance.
Collapse
Affiliation(s)
- Yucong Wang
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| | - Tao Xu
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| | - Hui Zhao
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| | - Chunxiao Gu
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| | - Zhongzheng Li
- Department of Joint Surgery, Ningbo NO9 Hospital, Ningbo, China
| |
Collapse
|
34
|
Najibi A, Rezaei H, Manthari RK, Niknahad H, Jamshidzadeh A, Farshad O, Yan F, Ma Y, Xu D, Tang Z, Ommati MM, Heidari R. Cellular and mitochondrial taurine depletion in bile duct ligated rats: a justification for taurine supplementation in cholestasis/cirrhosis. Clin Exp Hepatol 2022; 8:195-210. [PMID: 36685263 PMCID: PMC9850306 DOI: 10.5114/ceh.2022.119216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.
Collapse
Affiliation(s)
- Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh, India
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Feng Yan
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Yanqin Ma
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Dongmei Xu
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Zhongwei Tang
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
A bio-based flame retardant coating for improving flame retardancy and anti-dripping performance of polyamide 6 fabric. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Gu X, Wang W, Yang Y, Lei Y, Liu D, Wang X, Wu T. The Effect of Metabolites on Mitochondrial Functions in the Pathogenesis of Skeletal Muscle Aging. Clin Interv Aging 2022; 17:1275-1295. [PMID: 36033236 PMCID: PMC9416380 DOI: 10.2147/cia.s376668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related systemic disease characterized by skeletal muscle aging that generally severely affects the quality of life of elderly patients. Metabolomics analysis is a powerful tool for qualitatively and quantitatively characterizing the small molecule metabolomics of various biological matrices in order to clarify all key scientific problems concerning cell metabolism. The discovery of optimal therapy requires a thorough understanding of the cellular metabolic mechanism of skeletal muscle aging. In this review, the relationship between skeletal muscle mitochondria, amino acid, vitamin, lipid, adipokines, intestinal microbiota and vascular microenvironment has been separately reviewed from the perspective of metabolomics, and a new therapeutic direction has been suggested.
Collapse
Affiliation(s)
- Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Dehua Liu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
37
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
38
|
Bkaily G, Simon Y, Normand A, Jazzar A, Najibeddine H, Khalil A, Jacques D. Short-Communication: Short-Term Treatment with Taurine Prevents the Development of Cardiac Hypertrophy and Early Death in Hereditary Cardiomyopathy of the Hamster and Is Sex-Dependent. Nutrients 2022; 14:nu14163287. [PMID: 36014791 PMCID: PMC9412608 DOI: 10.3390/nu14163287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Premature death due to heart failure is a major health problem. Taurine is a non-essential amino acid that has received much attention. However, although many studies have been carried out on the beneficial effects of taurine in cardiac pathophysiology, no studies have investigated the effect of taurine treatment on the development of hereditary cardiomyopathy (HCM) associated with hypertrophy, heart failure, and early death. This study aims to verify whether short-term treatment (20 days) with taurine in tap water prevents the development of hypertrophy and premature death in hereditary cardiomyopathy of the hamster (HCMH) of the line UM-X7.1 and if its effect is sex-dependent. Our results show that treatment for 20 days with taurine (250 mg/kg/day or 25 mg/animal/day) during the development of the hypertrophic phase (220 days old) significantly decreased (p < 0.01) the heart weight to body weight ratio in male HCMHs without affecting the female. During the 20 days (220−240 days old), there were nearly 40% premature deaths in non-treated males HCMHs and 50% in female HCMHs. Treatment for 20 days wholly and significantly prevented early death in both males and females HCMHs. Our results demonstrate that short-term treatment with taurine prevents the development of cardiac hypertrophy associated with HCM in a sex-dependent manner; however, it prevents early death in a sex-independent fashion. Our results suggest that taurine supplementation could be used to treat HCM.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (G.B.); (D.J.)
| | - Yanick Simon
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Normand
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ashley Jazzar
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Houssein Najibeddine
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (G.B.); (D.J.)
| |
Collapse
|
39
|
Pérez-Hernández E, Pastrana-Carballo JJ, Gómez-Chávez F, Gupta RC, Pérez-Hernández N. A Key Metabolic Regulator of Bone and Cartilage Health. Endocrinol Metab (Seoul) 2022; 37:559-574. [PMID: 35938304 PMCID: PMC9449101 DOI: 10.3803/enm.2022.1443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Taurine, a cysteine-derived zwitterionic sulfonic acid, is a common ingredient in energy drinks and is naturally found in fish and other seafood. In humans, taurine is produced mainly in the liver, and it can also be obtained from food. In target tissues, such as the retina, heart, and skeletal muscle, it functions as an essential antioxidant, osmolyte, and antiapoptotic agent. Taurine is also involved in energy metabolism and calcium homeostasis. Taurine plays a considerable role in bone growth and development, and high-profile reports have demonstrated the importance of its metabolism for bone health. However, these reports have not been collated for more than 10 years. Therefore, this review focuses on taurine-bone interactions and covers recently discovered aspects of taurine's effects on osteoblastogenesis, osteoclastogenesis, bone structure, and bone pathologies (e.g., osteoporosis and fracture healing), with due attention to the taurine-cartilage relationship.
Collapse
Affiliation(s)
- Elizabeth Pérez-Hernández
- Medical Unit of High Specialty of Traumatology, Orthopedics and Rehabilitation “Dr. Victorio de la Fuente Narváez”, Mexican Social Security Institute, Mexico City, Mexico
| | | | - Fernando Gómez-Chávez
- National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Ramesh C. Gupta
- School of Agricultural Sciences and Rural Development (SASRD) Nagaland University, Medziphema, India
| | - Nury Pérez-Hernández
- National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
40
|
Tao X, Zhang Z, Yang Z, Rao B. The effects of taurine supplementation on diabetes mellitus in humans: A systematic review and meta-analysis. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100106. [PMID: 35769396 PMCID: PMC9235038 DOI: 10.1016/j.fochms.2022.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 12/27/2022]
Abstract
The first meta-analysis to comprehensively evaluate the effects of taurine supplementation on diabetic patients. Statistical significance in HbA1C, Fasting Blood Sugar, HOMA-IR after oral supplemental of taurine by diabetic patients than that of placebo. Taurine is expected to be a new option for the management of diabetes.
Objective The ameliorative effect of taurine on diabetes has received extensive attention in recent years. Despite promising data from animal studies, the efficacy of taurine supplementation in human studies has been inconsistent. We thus did a meta-analysis of randomized controlled trials to assess the effect of taurine supplement on glycemic indices, serum lipids, blood pressure, body composition in patients with diabetes. Methods We systematically searched PubMed, Embase, Cochrane, Web of Science, FDA.gov, and ClinicalTrials.gov for randomized controlled trials (published from inception to January 15, 2022; no language restrictions) about the effect of taurine supplement on diabetes. Values of Standardized Mean Differences (SMD) were determined for continuous outcomes. Results Of 2206 identified studies, 5 randomized controlled trials were eligible and were included in our analysis (N = 209 participants). Compared with the control group, taurine could significantly reduce HbA1c (SMD −0.41[95% CI: −0.74, −0.09], p = 0.01), Fasting Blood Sugar (SMD − 1.28[95% CI: −2.42, −0.14], p = 0.03) and HOMA-IR (SMD − 0.64[95% CI: −1.22, −0.06], p = 0.03). In addition, taurine also reduced Insulin (SMD −0.48 [95% CI: −0.99, 0.03], p = 0.06) and TG (SMD −0.26 [95% CI: −0.55, 0.02], p = 0.07), but did not reach statistical significance. Conclusions Taurine supplementation is beneficial in reducing glycemic indices, such as HbA1c, Fasting Blood Sugar, HOMA-IR in diabetic patients, but has no significant effect on serum lipids, blood pressure and body composition in diabetic patients. Taurine emerges as a new option for the management of patients with diabetes. Further studies are needed to understand the potential effect of taurine in diabetic patients.
Collapse
Affiliation(s)
- Xiaomei Tao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Zhanzhi Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Zhenpeng Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| |
Collapse
|
41
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
42
|
Cui P, Li M, Yu M, Liu Y, Ding Y, Liu W, Liu J. Advances in sports food: Sports nutrition, food manufacture, opportunities and challenges. Food Res Int 2022; 157:111258. [DOI: 10.1016/j.foodres.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
|
43
|
Buzdağlı Y, Eyipınar CD, Tekin A, Şıktar E, Zydecka KS. Effect of Taurine Supplement on Aerobic and Anaerobic Outcomes: Meta-Analysis of Randomized Controlled Trials. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Speth C, Rambach G, Windisch A, Neurauter M, Maier H, Nagl M. Efficacy of Inhaled N-Chlorotaurine in a Mouse Model of Lichtheimia corymbifera and Aspergillus fumigatus Pneumonia. J Fungi (Basel) 2022; 8:jof8050535. [PMID: 35628790 PMCID: PMC9143854 DOI: 10.3390/jof8050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
N-chlorotaurine (NCT) can be used topically as a well-tolerated anti-infective at different body sites. The aim of this study was to investigate the efficacy of inhaled NCT in a mouse model of fungal pneumonia. Specific pathogen-free female C57BL/6JRj seven-week-old mice were immune-suppressed with cyclophosphamide. After 4 days, the mice were inoculated intranasally with 1.5 × 10E7 spores of Lichtheimia corymbifera or 1.0 × 10E7 spores of Aspergillus fumigatus. They were randomized and treated three times daily for 10 min with aerosolized 1% NCT or 0.9% sodium chloride starting 1 h after the inoculation. The mice were observed for survival for two weeks, and fungal load, blood inflammation parameters, bronchoalveolar lavage, and histology of organs were evaluated upon their death or at the end of this period. Inhalations were well-tolerated. After challenge with L. corymbifera, seven out of the nine mice (77.8%) survived for 15 days in the test group, which was in strong contrast to one out of the nine mice (11.1%) in the control group (p = 0.0049). The count of colony-forming units in the homogenized lung tissues came to 1.60 (1.30; 1.99; median, quartiles) log10 in the test group and to 4.26 (2.17; 4.53) log10 in the control group (p = 0.0032). Body weight and temperature, white blood count, and haptoglobin significantly improved with NCT treatment. With A. fumigatus, all the mice except for one in the test group died within 4 days without a significant difference from the control group. Inhaled NCT applied early demonstrated a highly significant curative effect in L. corymbifera pneumonia, while this could not be shown in A. fumigatus pneumonia, probably due to a too high inoculum. Nevertheless, this study for the first time disclosed efficacy of NCT in pneumonia in vivo.
Collapse
Affiliation(s)
- Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
- Christian-Doppler Laboratory for Invasive Fungal Infections, Medical University of Innsbruck, Schöpfstraße 41, A-6020 Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
- Christian-Doppler Laboratory for Invasive Fungal Infections, Medical University of Innsbruck, Schöpfstraße 41, A-6020 Innsbruck, Austria
| | - Andrea Windisch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
| | - Magdalena Neurauter
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
| | - Hans Maier
- INNPATH GmbH-Institute of Pathology, A-6020 Innsbruck, Austria;
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
- Correspondence: ; Tel.: +43-(0)512-9003-70708; Fax: +43-(0)512-9003-73700
| |
Collapse
|
45
|
Tôrres CL, Biourge VC, Backus RC. Plasma and Whole Blood Taurine Concentrations in Dogs May Not Be Sensitive Indicators of Taurine Deficiency When Dietary Sulfur Amino Acid Content Is Reduced. Front Vet Sci 2022; 9:873460. [PMID: 35615252 PMCID: PMC9125078 DOI: 10.3389/fvets.2022.873460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Taurine status is impacted by dietary supply of methionine and cysteine (SAA) and possibly intestinal microbial activity, where plasma and whole blood taurine concentrations are currently used to evaluate taurine status. Objective We determined effects of dietary SAA restriction on rate and extent of taurine depletion of blood and skeletal muscle in dogs of two body sizes, and whether oral antibiotic administration affected the taurine depletion and fecal bile acid excretion of the dogs. Methods Adult, male, Beagles (n = 6; 10.1–13.1 kg) and larger mixed-breed dogs (n = 6; 28.5–41.1 kg) were given four dry-expanded diets, whereby each successive diet contained lower protein and/or SAA concentration. After receiving the final diet for 44 weeks, all dogs were orally administered a mixture of ampicillin, neomycin sulfate, and metronidazole for 12 weeks. Taurine concentrations were determined every 2–4 weeks in venous blood and voided urine and every 4 to 16 weeks in biopsied semimembranosus muscle. Fecal bile acid excretion before and after antibiotics administration were quantified. Results When given for 36 weeks the lowest SAA diet, 3.4% methionine and 2.9% cystine, taurine concentrations in whole blood were not different between groups, while taurine in plasma declined (P < 0.05) in large but not in small dogs, and taurine in biopsied muscle decreased (P < 0.05) by 50% in large and by 37% in small dogs. Concentrations of taurine in muscle were lower (P < 0.01) and fecal bile acids greater (P = 0.001) in large than small dogs. Antibiotic administration restored plasma and muscle taurine to initial concentrations and halved fecal bile acid excretion by dogs of both groups. Conclusions Blood taurine concentration may not be a sensitive indictor of taurine depletion caused by low intake of bioavailable SAA in dogs, especially in large dogs. Taurine status and dietary SAA requirements of dogs may substantively depend on taurine loss mediated by intestinal microbiota.
Collapse
Affiliation(s)
- Cristina L. Tôrres
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States
| | | | - Robert C. Backus
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
- *Correspondence: Robert C. Backus
| |
Collapse
|
46
|
Ouiganon S, Thammakhet-Buranachai C, Thavarungkul P, Kanatharana P, Buranachai C. Fluorescent cysteine probe based on a signal amplification unit, a catalyzed hairpin assembly reaction and Förster resonance energy transfer. Methods Appl Fluoresc 2022; 10. [PMID: 35442215 DOI: 10.1088/2050-6120/ac6664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 11/12/2022]
Abstract
This work developed a sensitive DNA-based fluorescent probe comprising a cysteine binding unit and a signal amplification unit based on a catalyzed hairpin assembly (CHA) reaction. The cysteine binding unit comprises a homodimer of single-stranded DNA (ssDNA) rich in cytosine and held together by silver ions. In the presence of cysteine, the homodimer is disintegrated because of cysteine-silver binding that liberates the ssDNA, which drives the CHA reaction in the signal amplification unit. Förster resonance energy transfer (FRET) was used to report the generation of the amplified double-stranded DNA (dsDNA) product. Under the optimal conditions, the probe provided a good linearity (100-1200 nM), a good detection limit (47.8 ± 2.7 nM) and quantification limit (159.3 ± 5.3 nM), and a good sensitivity (1.900 ± 0.045μM-1). The probe was then used to detect cysteine in nine real food supplement samples. All results provided good recoveries that are acceptable by the AOAC, indicating that it has potential for practical applications.
Collapse
Affiliation(s)
- Sirirat Ouiganon
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Chongdee Thammakhet-Buranachai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chittanon Buranachai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| |
Collapse
|
47
|
The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites 2022; 12:metabo12020193. [PMID: 35208266 PMCID: PMC8879184 DOI: 10.3390/metabo12020193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is required for ensuring proper muscle functioning. Knockout of the taurine transporter in mice results in low taurine concentrations in the muscle and associates with myofiber necrosis and diminished exercise capacity. Interestingly, regulation of taurine and its transporter is altered in the mdx mouse, a model for Duchenne Muscular Dystrophy (DMD). DMD is a genetic disorder characterized by progressive muscle degeneration and weakness due to the absence of dystrophin from the muscle membrane, causing destabilization and contraction-induced muscle cell damage. This review explores the physiological role of taurine in skeletal muscle and the consequences of a disturbed balance in DMD. Its potential as a supportive treatment for DMD is also discussed. In addition to genetic correction, that is currently under development as a curative treatment, taurine supplementation has the potential to reduce muscle inflammation and improve muscle strength in patients.
Collapse
|
48
|
Bai Y, Zhang H, Wu Z, Huang S, Luo Z, Wu K, Hu L, Chen C. Use of Ultra High Performance Liquid Chromatography with High Resolution Mass Spectrometry to Analyze Urinary Metabolome Alterations Following Acute Kidney Injury in Post-Cardiac Surgery Patients. J Mass Spectrom Adv Clin Lab 2022; 24:31-40. [PMID: 35252948 PMCID: PMC8892161 DOI: 10.1016/j.jmsacl.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiac surgery-associated AKI results in dramatic changes in urinary metabolome. Urinary metabolite disorder observed in patients with cardiac surgery-associated AKI. When metaboloite disorder was due to ischaemia and medical treatment, kidneys could return to normal. This work provides data about urinary metabolic profiles and resources for further research on AKI.
Background Cardiac surgery-associated acute kidney injury (AKI) can increase the mortality and morbidity, and the incidence of chronic kidney disease, in critically ill survivors. The purpose of this research was to investigate possible links between urinary metabolic changes and cardiac surgery-associated AKI. Methods Using ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry, non-targeted metabolomics was performed on urinary samples collected from groups of patients with cardiac surgery-associated AKI at different time points, including Before_AKI (uninjured kidney), AKI_Day1 (injured kidney) and AKI_Day14 (recovered kidney) groups. The data among the three groups were analyzed by combining multivariate and univariate statistical methods, and urine metabolites related to AKI in patients after cardiac surgery were screened. Altered metabolic pathways associated with cardiac surgery-induced AKI were identified by examining the Kyoto Encyclopedia of Genes and Genomes database. Results The secreted urinary metabolome of the injured kidney can be well separated from the urine metabolomes of uninjured or recovered patients using multivariate and univariate statistical analyses. However, urine samples from the AKI_Day14 and Before_AKI groups cannot be distinguished using either of the two statistical analyses. Nearly 4000 urinary metabolites were identified through bioinformatics methods at Annotation Levels 1–4. Several of these differential metabolites may also perform essential biological functions. Differential analysis of the urinary metabolome among groups was also performed to provide potential prognostic indicators and changes in signalling pathways. Compared with the uninjured kidney group, the patients with cardiac surgery-associated AKI displayed dramatic changes in renal metabolism, including sulphur metabolism and amino acid metabolism. Conclusions Urinary metabolite disorder was observed in patients with cardiac surgery-associated AKI due to ischaemia and medical treatment, and the recovered patients’ kidneys were able to return to normal. This work provides data on urine metabolite markers and essential resources for further research on AKI.
Collapse
Affiliation(s)
- Yunpeng Bai
- Center of Scientific Research, Maoming People’s Hospital, Maoming 525000, China
- Department of Critical Care Medicine, Maoming People’s Hospital, Maoming 525000, China
| | - Huidan Zhang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zheng Wu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Sumei Huang
- Center of Scientific Research, Maoming People’s Hospital, Maoming 525000, China
- Biological Resource Center of Maoming People’s Hospital, Maoming 525000, China
| | - Zhidan Luo
- Center of Scientific Research, Maoming People’s Hospital, Maoming 525000, China
| | - Kunyong Wu
- Center of Scientific Research, Maoming People’s Hospital, Maoming 525000, China
- Biological Resource Center of Maoming People’s Hospital, Maoming 525000, China
| | - Linhui Hu
- Center of Scientific Research, Maoming People’s Hospital, Maoming 525000, China
- Department of Critical Care Medicine, Maoming People’s Hospital, Maoming 525000, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Maoming People’s Hospital, Maoming 525000, China
- Corresponding author at: Department of Critical Care Medicine, Maoming People’s Hospital, Maoming 525000, China.
| |
Collapse
|
49
|
Kp AD, Martin A. Recent insights into the molecular regulators and mechanisms of taurine to modulate lipid metabolism: a review. Crit Rev Food Sci Nutr 2022; 63:6005-6017. [PMID: 35040723 DOI: 10.1080/10408398.2022.2026873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid metabolism disorders such as hypertriglyceridemia and hypercholesterolemia are risk factors for cardiovascular diseases and atherosclerosis that are grave public health issues. Taurine, a sulfur-containing non-essential amino acid exerts a wide range of physiological effects that regulate lipid metabolic disorders. Although the effects of taurine on lipid-lowering have been reported in animals and humans, mechanisms elucidating the lipid-lowering action of taurine remain unclear. A series of molecular regulators associated with lipid metabolism have been identified in the past few decades. These include nuclear receptors, transcription factors, and enzymes that undergo important changes during taurine treatment. In this review, we focus on the role of taurine in lipid metabolism and discuss taurine-related interventions in combating lipid disorders.
Collapse
Affiliation(s)
- Arya Devi Kp
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Asha Martin
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
50
|
Differences Between Physiological and Pharmacological Actions of Taurine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:311-321. [DOI: 10.1007/978-3-030-93337-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|