1
|
Marei M, El-Nikhely N, Sheta E, Ragab H, Wahid A, Saeed H, Rostom SAF. Biochemical and Molecular Studies on the Role of Celecoxib and Some Related Bipyrazoles in Mitigating Induced Liver Injury in Experimental Animals. Drug Des Devel Ther 2025; 19:3857-3882. [PMID: 40391176 PMCID: PMC12087607 DOI: 10.2147/dddt.s512058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 05/01/2025] [Indexed: 05/21/2025] Open
Abstract
Introduction Liver fibrosis is a life-threatening disease that greatly impacts the morbidity and mortality of hepatic patients worldwide, resulting mainly as a consequence of hepatitis C, alcoholic and non-alcoholic fatty liver. COX-1 and COX-2 isozymes catalyze the synthesis of prostaglandins (PGs) and thromboxanes (TXs) from arachidonic acid causing inflammation. Owing to the scarcity of approved fibrolytic drugs available for human use, celecoxib (a selective COX-2 inhibitor) has been repurposed as a potential antifibrotic and fibrolytic agent in some chronic liver fibrosis models. Methods The present study aims to discover a non-invasive treatment for liver fibrosis through investigating the possible ability of three celecoxib-related bipyrazole compounds HR1-3 to reverse chemically induced liver fibrosis in rats using CCl4. This fibrolytic effect was verified by histopathological, immunohistochemical, biochemical and biomolecular assays. In addition, in silico computer-aided evaluation of the compounds' binding mode to certain molecular targets was performed, and the in silico physicochemical properties, drug likeness and pharmacokinetic parameters were predicted using web-based applications. Results The analogs HR1-3 could serve as novel therapeutic candidates for the mitigation of liver fibrosis that deserves further derivatizations and investigations. In particular, the fluorinated analog HR3 proved to be the most active member in this study when compared to celecoxib due to its distinguished histopathological and immunohistochemical investigation results, beside its antioxidant potential, as well as its reliable effects against some biomarkers, namely, MMP-9, TGF-β1, TIMP-1, IL-6 and TNF-α. Conclusion Based on the obtained results, the fluorinated analog HR3 could serve as a novel therapeutic candidate for the amelioration of liver fibrosis that deserves further derivatizations and investigations.
Collapse
Affiliation(s)
- Maram Marei
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21521, Egypt
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21521, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Hanan Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21521, Egypt
| | - Sherif A F Rostom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
2
|
Ros-Tarraga P, Villanueva-Badenas E, Sanchez-Gonzalez E, Gallego-Ferrer G, Donato MT, Tolosa L. Challenges of in vitro modelling of liver fibrosis. Front Cell Dev Biol 2025; 13:1567916. [PMID: 40371390 PMCID: PMC12075197 DOI: 10.3389/fcell.2025.1567916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis has been proposed as the most important predictive indicator affecting prognosis of patients with chronic liver disease. It is defined by an abnormal accumulation of extracellular matrix components that results from necrotic and inflammatory processes and eventually impairs organ function. With no approved therapy, comprehensive cellular models directly derived from patient's cells are necessary to understand the mechanisms behind fibrosis and the response to anti-fibrotic therapies. Primary human cells, human hepatic cell lines and human stem cells-derived hepatic stellate-like cells have been widely used for studying fibrosis pathogenesis. In this paper, we depict the cellular crosstalk and the role of extracellular matrix during fibrosis pathogenesis and summarize different in vitro models from simple monolayers to multicellular 3D cultures used to gain deeper mechanistic understanding of the disease and the therapeutic response, discussing their major advantages and disadvantages for liver fibrosis modelling.
Collapse
Affiliation(s)
- Patricia Ros-Tarraga
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Estela Villanueva-Badenas
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Faculty of Medicine and Dentistry, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Estela Sanchez-Gonzalez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| | - M. Teresa Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Faculty of Medicine and Dentistry, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| |
Collapse
|
3
|
Kim H, Yoon HG, Yoo JY. Plumbagin ameliorates renal fibrosis by suppressing epithelial-mesenchymal transition. Biochem Biophys Res Commun 2025; 750:151325. [PMID: 39884006 DOI: 10.1016/j.bbrc.2025.151325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney diseases (CKDs), driven by excessive extracellular matrix (ECM) accumulation. Despite its prevalence, therapeutic candidates specifically targeting fibrosis are limited, and the role of renal tubular epithelial cells in fibrosis pathogenesis remains unclear. In this study, we evaluated the anti-fibrotic effects of Plumbagin, a plant-derived natural compound, using a folic acid-induced renal fibrosis model that simulates proximal tubular injury-driven fibrosis. Plumbagin treatment significantly attenuated renal fibrosis in a folic acid-induced model. Furthermore, using the human proximal tubular epithelial cell line HK-2, we assessed EMT, a key fibrosis-promoting biological process, and the expression of fibrosis-related factors. Plumbagin treatment reduced TGF-β-induced EMT and fibrosis-related factor expression in HK-2 cells. In summary, Plumbagin suppresses EMT in renal tubular epithelial cells under fibrotic conditions and alleviates renal fibrosis. These findings highlight the potential of Plumbagin as a therapeutic drug for renal fibrosis and propose a shared therapeutic strategy for CKD patients.
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, Wonju, 26493, South Korea.
| |
Collapse
|
4
|
Yang LX, Qi C, Lu S, Ye XS, Merikhian P, Zhang DY, Yao T, Zhao JS, Wu Y, Jia Y, Shan B, Chen J, Mou X, You J, Li W, Feng YX. Alleviation of liver fibrosis by inhibiting a non-canonical ATF4-regulated enhancer program in hepatic stellate cells. Nat Commun 2025; 16:524. [PMID: 39789010 PMCID: PMC11718104 DOI: 10.1038/s41467-024-55738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions. HSC-specific depletion of ATF4 suppresses liver fibrosis in vivo. Mechanistically, TGFβ resets ATF4 to orchestrate a unique enhancer program for the transcriptional activation of pro-fibrotic EMT genes. Analysis of human data confirms a strong correlation between HSC ATF4 expression and liver fibrosis progression. Importantly, a small molecule inhibitor targeting ATF4 translation effectively mitigates liver fibrosis. Together, our findings identify a mechanism promoting liver fibrosis and reveal new opportunities for treating this otherwise non-targetable disease.
Collapse
Affiliation(s)
- Li-Xian Yang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chuangye Qi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Si Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Head and Neck Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Shi Ye
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Parnaz Merikhian
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Du-Yu Zhang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Tao Yao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang-Sha Zhao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Shan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China.
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
| | - Yu-Xiong Feng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Chen KH, Hsu HH, Yang HY, Ko YC, Hung CC. Salinomycin attenuates kidney fibrosis and inflammation in mice with unilateral ureteral obstruction. Biochem Biophys Res Commun 2025; 742:151130. [PMID: 39644604 DOI: 10.1016/j.bbrc.2024.151130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Renal fibrosis is a crucial pathological feature in chronic kidney disease (CKD), resulting in the gradual decline of renal function. Salinomycin is an antibiotic discovered from Streptomyces albus that also regulates the fates of cells. However, its potential in kidney fibrosis remains elusive. In this study, salinomycin was administrated to a renal fibrosis mouse model with unilateral ureteral obstruction (UUO) and a kidney fibroblast cell line (NRK-49F cells) treated with transforming growth factor-β1 (TGF-β1). In vivo, salinomycin treatment attenuated tubulointerstitial fibrosis, as evidenced by Gomori's trichrome staining, in line with decreased mRNA and protein expressions of fibronectin, collagen type I/IV, in the UUO kidneys. Furthermore, inflammasome mRNA level in the kidney with UUO was also suppressed by salinomycin. In vitro, salinomycin administration impeded the upregulation of fibronectin, collagen type I/IV, and ⍺-smooth muscle actin in NRK-49F cells stimulated with TGF-β1. Importantly, the inhibitory properties of salinomycin were correlated with reduction of Smad2/3 and MAPK-p38 phosphorylation. Together, our data indicate salinomycin as a potential medication to counteract renal fibrosis in patients with CKD.
Collapse
Affiliation(s)
- Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan; Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Yang H, Zhang X, Xue B. New insights into the role of cellular senescence and chronic wounds. Front Endocrinol (Lausanne) 2024; 15:1400462. [PMID: 39558972 PMCID: PMC11570929 DOI: 10.3389/fendo.2024.1400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Chronic or non-healing wounds, such as diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), pressure ulcers (PUs) and wounds in the elderly etc., impose significant biological, social, and financial burdens on patients and their families. Despite ongoing efforts, effective treatments for these wounds remain elusive, costing the United States over US$25 billion annually. The wound healing process is notably slower in the elderly, partly due to cellular senescence, which plays a complex role in wound repair. High glucose levels, reactive oxygen species, and persistent inflammation are key factors that induce cellular senescence, contributing to chronic wound failure. This suggests that cellular senescence may not only drive age-related phenotypes and pathology but also be a key mediator of the decreased capacity for trauma repair. This review analyzes four aspects: characteristics of cellular senescence; cytotoxic stressors and related signaling pathways; the relationship between cellular senescence and typical chronic non-healing wounds; and current and future treatment strategies. In theory, anti-aging therapy may influence the process of chronic wound healing. However, the underlying molecular mechanism is not well understood. This review summarizes the relationship between cellular senescence and chronic wound healing to contribute to a better understanding of the mechanisms of chronic wound healing.
Collapse
Affiliation(s)
- Huiqing Yang
- Institute of Evolution and Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
8
|
Zhou P, Mo D, Huang H, Xu J, Liao B, Wang Y, Mao D, Zeng Z, Huang Z, Zhang C, Yang Y, Yu Y, Pan H, Li R. Integrated transcriptomic analysis reveals dysregulated immune infiltration and pro-inflammatory cytokines in the secretory endometrium of recurrent implantation failure patients. LIFE MEDICINE 2024; 3:lnae036. [PMID: 39872439 PMCID: PMC11749484 DOI: 10.1093/lifemedi/lnae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/19/2024] [Indexed: 01/30/2025]
Abstract
Recurrent implantation failure (RIF) is a leading impediment to assisted reproductive technology, yet the underlying pathogenesis of RIF remains elusive. Recent studies have sought to uncover novel biomarkers and etiological factors of RIF by profiling transcriptomes of endometrial samples. Nonetheless, the inherent heterogeneity among published studies and a scarcity of experimental validations hinder the identification of robust markers of RIF. Hence, we integrated six publicly accessible datasets with 209 samples, including microarray profiles of endometrial samples in the secretory phase. After removing batch effects, we identified 175 differentially expressed genes. Gene set enrichment analysis identified dysregulation of immunological pathways in RIF. We also observed altered immune infiltration and pro-inflammatory cytokines in RIF. Protein-protein interaction network analysis identified ten hub genes, representing two co-expression modules significantly related to RIF. Knockdown of ENTPD3, one of the hub genes, promoted the epithelial-mesenchymal transition process and resulted in elevated levels of pro-inflammatory cytokines. Collectively, our study reveals abnormal gene expressions involving the regulation of epithelial-mesenchymal transition and immune status in RIF, providing valuable insights into its pathogenesis.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Dan Mo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hanji Huang
- Department of Reproductive Medicine, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jiaqi Xu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Baoying Liao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yinxue Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Di Mao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Zhonghong Zeng
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ziying Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Chao Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yihua Yang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Heng Pan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
9
|
Ke HL, Li RJ, Yu CC, Wang XP, Wu CY, Zhang YW. Network pharmacology and experimental verification to decode the action of Qing Fei Hua Xian Decotion against pulmonary fibrosis. PLoS One 2024; 19:e0305903. [PMID: 38913698 PMCID: PMC11195996 DOI: 10.1371/journal.pone.0305903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a common interstitial pneumonia disease, also occurred in post-COVID-19 survivors. The mechanism underlying the anti-PF effect of Qing Fei Hua Xian Decotion (QFHXD), a traditional Chinese medicine formula applied for treating PF in COVID-19 survivors, is unclear. This study aimed to uncover the mechanisms related to the anti-PF effect of QFHXD through analysis of network pharmacology and experimental verification. METHODS The candidate chemical compounds of QFHXD and its putative targets for treating PF were achieved from public databases, thereby we established the corresponding "herb-compound-target" network of QFHXD. The protein-protein interaction network of potential targets was also constructed to screen the core targets. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict targets, and pathways, then validated by in vivo experiments. RESULTS A total of 188 active compounds in QFHXD and 50 target genes were identified from databases. The key therapeutic targets of QFHXD, such as PI3K/Akt, IL-6, TNF, IL-1β, STAT3, MMP-9, and TGF-β1 were identified by KEGG and GO analysis. Anti-PF effects of QFHXD (in a dose-dependent manner) and prednisone were confirmed by HE, Masson staining, and Sirius red staining as well as in vivo Micro-CT and immunohistochemical analysis in a rat model of bleomycin-induced PF. Besides, QFXHD remarkably inhibits the activity of PI3K/Akt/NF-κB and TGF-β1/Smad2/3. CONCLUSIONS QFXHD significantly attenuated bleomycin-induced PF via inhibiting inflammation and epithelial-mesenchymal transition. PI3K/Akt/NF-κB and TGF-β1/Smad2/3 pathways might be the potential therapeutic effects of QFHXD for treating PF.
Collapse
Affiliation(s)
- Hao-Liang Ke
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui-Jie Li
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chao-Chao Yu
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiu-Ping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao-Yan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Elzainy A, El Sadik A, Altowayan WM. Comparison between the Regenerative and Therapeutic Impacts of Bone Marrow Mesenchymal Stem Cells and Adipose Mesenchymal Stem Cells Pre-Treated with Melatonin on Liver Fibrosis. Biomolecules 2024; 14:297. [PMID: 38540717 PMCID: PMC10968153 DOI: 10.3390/biom14030297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The distinctive feature of liver fibrosis is the progressive replacement of healthy hepatic cells by the extracellular matrix protein, which is abundant in collagen I and III, with impaired matrix remodeling. The activation of myofibroblastic cells enhances the fibrogenic response of complex interactions of hepatic stellate cells, fibroblasts, and inflammatory cells to produce the excessive deposition of the extracellular protein matrix. This process is activated by multiple fibrogenic mediators and cytokines, such as TNF-α and IL-1β, accompanied with a decrease in the anti-fibrogenic factor NF-κβ. Mesenchymal stem cells (MSCs) represent a promising therapy for liver fibrosis, allowing for a more advanced regenerative influence when cultured with extrinsic or intrinsic proliferative factors, cytokines, antioxidants, growth factors, and hormones such as melatonin (MT). However, previous studies showed conflicting findings concerning the therapeutic effects of adipose (AD) and bone marrow (BM) MSCs; therefore, the present work aimed to conduct a comparative and comprehensive study investigating the impact of MT pre-treatment on the immunomodulatory, anti-inflammatory, and anti-apoptotic effects of AD- and BM-MSCs and to critically analyze whether MT-pre-treated AD-MSCs and BM-MSCs reveal equal or different therapeutic and regenerative potentials in a CCl4-injured liver experimental rat model. MATERIALS AND METHODS Six groups of experimental rats were used, with ten rats in each group: group I (control group), group II (CCl4-treated group), group III (CCl4- and BM-MSC-treated group), group IV (CCl4 and MT-pre-treated BM-MSC group), group V (CCl4- and AD-MSC-treated group), and group VI (CCl4 and MT-pre-treated AD-MSC group). Liver function tests and the gene expression of inflammatory, fibrogenic, apoptotic, and proliferative factors were analyzed. Histological and immunohistochemical changes were assessed. RESULTS The present study compared the ability of AD- and BM-MSCs, with and without MT pre-treatment, to reduce hepatic fibrosis. Both types of MSCs improved hepatocyte function by reducing the serum levels of ALT, aspartate aminotransferase (AST), alkaline phosphatase (AKP), and total bilirubin (TBIL). In addition, the changes in the hepatocellular architecture, including the hepatocytes, liver sinusoids, central veins, portal veins, biliary ducts, and hepatic arteries, showed a decrease in hepatocyte injury and cholestasis with a reduction in inflammation, apoptosis, and necrosis of the hepatic cells, together with an inhibition of liver tissue fibrosis. These results were augmented by an analysis of the expression of the pro-inflammatory cytokines TNFα and IL-1β, the anti-fibrogenic factor NF-κβ, the apoptotic factor caspase-3, and the proliferative indicators antigen Ki-67 and proliferating cell nuclear antigen (PCNA). These findings were found to be statistically significant, with the restoration of normal parameters in the rats that received AD-MSCs pre-treated with MT, denoting optimal regenerative and therapeutic effects. CONCLUSIONS AD-MSCs pre-treated with MT are the preferred choice in improving hepatic fibrosis and promoting the therapeutic and regenerative ability of liver tissue. They represent a very significant tool for future stem cell use in the tissue regeneration strategy for the treatment of liver diseases.
Collapse
Affiliation(s)
- Ahmed Elzainy
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Abir El Sadik
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Waleed Mohammad Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
11
|
Hadpech S, Thongboonkerd V. Epithelial-mesenchymal plasticity in kidney fibrosis. Genesis 2024; 62:e23529. [PMID: 37345818 DOI: 10.1002/dvg.23529] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-β (TGF-β), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1β, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-β1/Smad and Wnt/β-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-β1/Smad and Wnt/β-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Hung CC, Chen KH, Hsu HH, Chang MY, Ko YC, Yang HY, Yang CW. Noscapine alleviates unilateral ureteral obstruction-induced inflammation and fibrosis by regulating the TGFβ1/Smads signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119594. [PMID: 37730129 DOI: 10.1016/j.bbamcr.2023.119594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Renal fibrosis is a common pathway leading to progressive renal function loss in various forms of chronic kidney disease. Many fibrogenic factors regulate renal fibrosis; two key players are post-injury inflammation and transforming growth factor-β1 (TGF-β1)-induced myofibroblast differentiation. Myofibroblast differentiation is tightly regulated by the microtubule polymerization. Noscapine, an antitussive plant alkaloid, is a potent microtubule-interfering agent previously identified as a potential anticancer compound. Here, we examined how noscapine affects renal fibrogenesis in an in vitro renal fibroblast model and an in vivo unilateral ureteral obstruction (UUO) model. UUO mice were intraperitoneally treated with noscapine at 1 day before UUO surgery and daily thereafter. At 7 days post-surgery, kidneys were collected for further analysis. To analyze whether noscapine inhibits downstream TGF-β1-related signaling, we pre-incubated NRK-49F fibroblasts with noscapine and then performed TGF-β1 stimulation. In UUO mice, noscapine attenuated extracellular matrix protein deposition and the expression levels of type I collagen, type IV collagen, α-smooth muscle actin, and fibronectin. In addition, noscapine decreased tubulointerstitial inflammation in UUO kidneys by reducing TLR2 expression, modulating NLRP3 inflammasome activation, reducing macrophage infiltration, and antagonizing the M2 macrophage phenotype. Furthermore, noscapine pre-incubation suppressed the TGF-β1-induced fibroblast-myofibroblast transformation by downregulating the TGF-β/Smads signaling pathways in NRK-49F cells. These results suggest that noscapine reduces tubulointerstitial inflammation and fibrosis in the kidneys of UUO mice and inhibits the fibroblast-myofibroblast transformation induced by TGF-β1. Noscapine is an over-the-counter antitussive that has been used safely for several decades. Therefore, noscapine is an attractive therapeutic agent for inhibiting renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Cheng-Chieh Hung
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan.
| | - Kuan-Hsing Chen
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| |
Collapse
|
13
|
Marzoog BA. Cytokines and Regulating Epithelial Cell Division. Curr Drug Targets 2024; 25:190-200. [PMID: 38213162 DOI: 10.2174/0113894501279979240101051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Physiologically, cytokines play an extremely important role in maintaining cellular and subcellular homeostasis, as they interact almost with every cell in the organism. Therefore, cytokines play a significantly critical role in the field of pathogenic pharmacological therapy of different types of pathologies. Cytokine is a large family containing many subfamilies and can be evaluated into groups according to their action on epithelial cell proliferation; stimulatory include transforming growth factor-α (TGF-α), Interlukine-22 (IL-22), IL-13, IL-6, IL-1RA and IL-17 and inhibitory include IL-1α, interferon type I (IFN type I), and TGF-β. The balance between stimulatory and inhibitory cytokines is essential for maintaining normal epithelial cell turnover and tissue homeostasis. Dysregulation of cytokine production can contribute to various pathological conditions, including inflammatory disorders, tissue damage, and cancer. Several cytokines have shown the ability to affect programmed cell death (apoptosis) and the capability to suppress non-purpose cell proliferation. Clinically, understanding the role of cytokines' role in epithelial tissue is crucial for evaluating a novel therapeutic target that can be of use as a new tactic in the management of carcinomas and tissue healing capacity. The review provides a comprehensive and up-to-date synthesis of current knowledge regarding the multifaceted effects of cytokines on epithelial cell proliferation, with a particular emphasis on the intestinal epithelium. Also, the paper will highlight the diverse signaling pathways activated by cytokines and their downstream consequences on epithelial cell division. It will also explore the potential therapeutic implications of targeting cytokine- epithelial cell interactions in the context of various diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
14
|
Taşkın RB, Aydın İ, Aytaç G, Imamoglu S, Tunçay SC, Bulut İK, Karaca NE, Aksu G, Berdeli A, Kütükçüler N. Analysis of IL-1β, TGF-β, IL-5, ACE, PTPN22 gene polymorphisms, and gene expression levels in Turkish children with IgA vasculitis. Mol Biol Rep 2023; 51:15. [PMID: 38085361 DOI: 10.1007/s11033-023-08944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Immunoglobulin-A vasculitis (IgAV) is an inflammatory disease that affects small blood vessels. This study was performed to identify an association between protein tyrosine phosphatase non-receptor type 22 (PTPN22) + 788G > A (rs33996649), transforming growth factor-beta (TGF-β) -509C > T (rs18004069), interleukin 1-beta (IL-1β) -511C > T (rs16944), interleukin 5 (IL-5) -746C/T (rs2069812), and angiotensin-converting enzyme (ACE) I/D (rs4646994) gene polymorphisms, susceptibility to IgAV, as well as the mRNA levels of IL-1β, IL-1β, and TGF-β. METHOD A total of 53 patients with IgAV and 50 healthy controls were enrolled. PTPN22, TGF-β, IL-1β, ACE gene polymorphisms, ACE gene I/D polymorphisms, and mRNA expression levels were analyzed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, allele-specific PCR, and real-time PCR with TaqMan kits, respectively. RESULTS PTPN22, TGF-β, IL-1β, IL-5, and ACE variants showed no genotype or allele differences between patients with IgAV and controls. Increased levels of IL-1β and TGF-β mRNA expressions were observed in patients with IgAV (p < 0.001). Patients with the IL-1β AG genotype showed significantly increased amounts of arthritis than patients with non-AG (p = 0.004). Age at disease onset was found to be significantly different in patients with IgAV according to the presence of TGF-β TT genotype (p = 0.047). CONCLUSION Polymorphisms in PTPN22, TGF-β, IL-5, IL-1β, and ACE genes are unlikely to confer susceptibility to IgAV. However, the presence of the AG genotype of IL-1β is associated with susceptibility to IgAV-related arthritis. This is the first study to report a significant increase in serum mRNA levels of IL-1β and TGF-β in IgAV patients, supporting a susceptibility to IgAV in childhood.
Collapse
Affiliation(s)
- Raziye Burcu Taşkın
- Faculty of Medicine, Department of Pediatric Rheumatology, Ege University, Izmir, Turkey.
| | - İlyas Aydın
- Faculty of Medicine, Department of Pediatric Rheumatology, Ege University, Izmir, Turkey
| | - Gülçin Aytaç
- Faculty of Medicine, Department of Pediatric Rheumatology, Ege University, Izmir, Turkey
| | - Süleyman Imamoglu
- Faculty of Medicine, Department of Pediatric Rheumatology, Ege University, Izmir, Turkey
| | - Secil Conkar Tunçay
- Faculty of Medicine, Department of Pediatric Nephrology, Ege University, Izmir, Turkey
| | - İpek Kaplan Bulut
- Faculty of Medicine, Department of Pediatric Nephrology, Ege University, Izmir, Turkey
| | - Neslihan Edeer Karaca
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ege University, Kazimdirik Neighborhood, University Street Number: 9, 35100, Bornova, Izmir, Turkey
| | - Güzide Aksu
- Faculty of Medicine, Department of Pediatric Rheumatology, Ege University, Izmir, Turkey
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ege University, Kazimdirik Neighborhood, University Street Number: 9, 35100, Bornova, Izmir, Turkey
| | - Afig Berdeli
- Faculty of Medicine, Department of Pediatric Rheumatology, Ege University, Izmir, Turkey
| | - Necil Kütükçüler
- Faculty of Medicine, Department of Pediatric Rheumatology, Ege University, Izmir, Turkey
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ege University, Kazimdirik Neighborhood, University Street Number: 9, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
15
|
SONG HEEJU, KIM TAEHEE, CHOI HANNA, KIM SOOJIN, LEE SANGDO. TonEBP expression is essential in the IL-1β-induced migration and invasion of human A549 lung cancer cells. Oncol Res 2023; 32:151-161. [PMID: 38188678 PMCID: PMC10767233 DOI: 10.32604/or.2023.030690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers, in part because it readily metastasizes. The tumor microenvironment, comprising blood vessels, fibroblasts, immune cells, and macrophages [including tumor-associated macrophages (TAMs)], is closely related to cancer cell growth, migration, and invasion. TAMs secrete several cytokines, including interleukin (IL)-1β, which participate in cancer migration and invasion. p21-activated kinase 1 (PAK1), an important signaling molecule, induces cell migration and invasion in several carcinomas. Tonicity-responsive enhancer-binding protein (TonEBP) is also known to participate in cancer cell growth, migration, and invasion. However, the mechanisms by which it increases lung cancer migration remain unclear. Therefore, in this study, we aimed to elucidate the mechanisms by which IL-1β and TonEBP affect lung cancer cell migration and invasion. We found that A549 cocultured-MΦ-secreted IL-1β induced A549 cell migration and invasion via the PAK1 pathway. TonEBP deficiency reduced A549 cell migration and invasion and increased responsiveness to IL-1β-induced migration and invasion. PAK1 phosphorylation, which was promoted by IL-1β, was reduced when TonEBP was depleted. These results suggest that TonEBP plays an important role in IL-1β induction and invasiveness of A549 cells via the PAK1 pathway. These findings could be valuable in identifying potential targets for lung cancer treatment.
Collapse
Affiliation(s)
- HEE JU SONG
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - TAEHEE KIM
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - HAN NA CHOI
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - SOO JIN KIM
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - SANG DO LEE
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| |
Collapse
|
16
|
Panahipour L, Croci R, Guarnieri S, Gruber R. PRF Lysates Enhance the Proliferation and Migration of Oral Squamous Carcinoma Cell Lines. Dent J (Basel) 2023; 11:242. [PMID: 37886927 PMCID: PMC10605502 DOI: 10.3390/dj11100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Platelet-rich fibrin (PRF) is an autologous fibrin-rich matrix where activated platelets and leucocytes accumulate. PRF has a wide spectrum of clinical indications with the overall aim of supporting tissue regeneration which in dentistry includes the healing of healthy oral mucosa with epithelial cells. In oral squamous cell carcinoma lesions, however, epithelial cells undergo malignant transformation, indicated by their unrestricted proliferation and migration potential, which should not be further enhanced by a wound-healing formula. Yet, little is known about how oral squamous cell carcinomas respond to PRF lysates. The aim of the present study was, therefore, to test the capacity of PRF lysates to change the transcriptome of HSC2 oral squamous carcinoma cells and perform bioassays to support the findings. Based on the RNAseq analysis, PRF lysates caused an increase in the genes functionally linked to cell replication and migration. In support of this screening approach, PRF lysates enhanced the proliferation of HSC2 oral squamous carcinoma cells, as indicated by 3[H]-thymidine incorporation, cell counting, and the expression of proliferation-related genes. Moreover, PRF lysates sped up cell migration in a scratch assay requiring actin polymerization. Taken together, our data showing that PRF lysates are mitogenic and stimulate motility of oral squamous carcinoma cell lines could be an indication that treatment with PRF in cases of oral carcinoma should be carefully considered.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (R.C.); (S.G.)
| | - Rebecca Croci
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (R.C.); (S.G.)
| | - Sara Guarnieri
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (R.C.); (S.G.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (R.C.); (S.G.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
17
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
18
|
Gao Z, Feng SR, Chen JF, Li XG, Shi YH, Tang Z, Liu WR, Zhang X, Huang A, Luo XM, Zeng HY, Gao Q, Shi GM, Ke AW, Zhou J, Fan J, Fu XT, Ding ZB. Inhibition of autophagy in macrophage promotes IL-1β-mediated hepatocellular carcinoma progression via inflammasome accumulation and self-recruitment. Biomed Pharmacother 2023; 161:114560. [PMID: 36940618 DOI: 10.1016/j.biopha.2023.114560] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a complex and changeable tumor microenvironment. Despite emerging evidence focusing on autophagy process within immune cells, the function and regulatory mechanism of macrophage autophagy in tumor progression remains unclear. Our results of multiplex-immunohistochemistry and RNA-sequencing identified the reduced levels of autophagy in tumor macrophages in the HCC microenvironment, associated with a poor prognosis and increased microvascular metastasis in HCC patients. Specifically, HCC suppressed the macrophage autophagy initiation through the up-regulation of mTOR and ULK1 phosphorylation at Ser757. Knockdown of autophagy-related proteins to further inhibit autophagy significantly boosted the metastatic potential of HCC. Mechanistically, the accumulation of NLRP3 inflammasome mediated by autophagy inhibition promoted the cleavage, maturation, and release of IL-1β, which facilitated the HCC progression, eventually accelerating HCC metastasis via the epithelial-mesenchymal transition. Autophagy inhibition provoked macrophage self-recruitment through the CCL20-CCR6 signaling was also a crucial account of HCC progression. Recruited macrophages mediated the cascade amplification of IL-1β and CCL20 to form a novel pro-metastatic positive feedback loop through promoting HCC metastasis and increased macrophage recruitment, respectively. Notably, targeting IL-1β/IL-1 receptor signaling impaired lung metastasis induced by macrophage autophagy inhibition in a mice HCC lung metastasis model. In summary, this study highlighted that inhibition of tumor macrophage autophagy facilitated HCC progression by increasing IL-1β secretion via NLRP3 inflammasome accumulation and by macrophage self-recruitment through the CCL20 signaling pathway. Interruption of this metastasis-promoting loop by IL-1β blockade may provide a promising therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Zheng Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Shan-Ru Feng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jia-Feng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiao-Gang Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xuan-Ming Luo
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China.
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Department of liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This short review is intended to highlight the potential role of inflammation as a key pathological driver, rather than a mere consequence, of nephrolithiasis. Although there is clearly a strong likelihood that the relationship is bidirectional, and that kidney stone-triggered inflammation can establish a vicious cycle of tissue injury and stone formation. RECENT FINDINGS These consist of data from both recent preclinical and clinical studies demonstrating the importance of inflammation in models of stone disease and in kidney tissue from patients with nephrolithiasis, and as a potential driver of disease recurrence and a suitable treatment target. In particular, the role of immune cells and their relationship to the NLRP3 inflammasome is becoming clearer, as well as the potential contribution to tissue injury and stone formation of the pro-inflammatory cytokines interleukin-1β and interleukin-18. SUMMARY This concept is not new and raises the possibility that targeting inflammation directly may prove to be a novel and suitable means of treatment for at least some types of kidney stone, and in certain clinical settings, both acutely and as prevention, especially in those patients experiencing recurrent stone episodes and/or who have a well defined metabolic cause such as uric acid or calcium oxalate stones.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples
| | - Pietro Manuel Ferraro
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London (UCL), London, UK
| |
Collapse
|
20
|
Zhang Y, Zhang J, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Wang Z, Wang Z, Gu M, Tan R. IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radic Biol Med 2022; 193:579-594. [PMID: 36356714 DOI: 10.1016/j.freeradbiomed.2022.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Renal interstitial fibrosis and tubular atrophy are essential pathological characteristics of chronic renal allograft dysfunction (CAD). Herein, we revealed that ferroptosis of renal tubular epithelial cells (RTECs) might contribute to renal tubular injury in CAD. Mechanistically, TNF-α induced ferroptosis by inhibiting GPX4 transcription through upregulating IRF1 in RTECs. IRF1 could bind with ZNF350 to form a transcription factor complex, which directly binds to the GPX4 promoter region to inhibit GPX4 transcription. Ferroptotic RTECs might secrete profibrotic factors, including PDGF-BB and IL-6, to activate neighboring fibroblasts to transform into myofibroblasts or induce EMT in adjacent RTECs. In conclusion, our results confirmed a novel role of ferroptosis in renal tubular injury and interstitial fibrosis, thereby providing insights into the pathogenesis of chronic renal allograft interstitial fibrosis during CAD.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Othman MS, Khaled AM, Aleid GM, Fareid MA, Hameed RA, Abdelfattah MS, Aldin DE, Moneim AEA. Evaluation of antiobesity and hepatorenal protective activities of Salvia officinalis extracts pre-treatment in high-fat diet-induced obese rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75043-75056. [PMID: 35648345 DOI: 10.1007/s11356-022-21092-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/21/2022] [Indexed: 04/16/2023]
Abstract
The present study evaluated the effects of Hail Salvia officinalis total extract (SOTE) and its high flavonoid fraction (SOHFF) on the high-fat diet (HFD)-induced obesity and hepatorenal damage in rats. Salvia officinalis plants were collected from Hail region, Saudi Arabia. Rats were fed HFD and supplemented orally with SOTE (250 mg kg-1) or SOHFF (100 mg kg-1) or simvastatin (SVS; 10 mg kg-1) every day for 8 weeks. Compared to the controls, HFD-induced obesity led to significant increases in body weight, body weight gained, blood insulin, leptin, cardiac enzymes (LDH and CPK) activity, and atherogenic index (AI). HFD rats also showed higher levels of hepatic and renal function biomarkers (ALT, urea, and creatinine), as well as lower levels of PPARγ and Nrf2-gene expression and a disrupted lipid profile. Moreover, HFD rats had lower levels of hepatic and renal antioxidant biomarkers (CAT, GPx, SOD, GR, and GSH), accompanied by higher levels of hepatic and renal lipid peroxidation (LPO), nitric oxide (NO), and inflammatory mediators (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)). In addition, histological examination of hepatic and renal tissues revealed histopathological changes that validated the biochemical findings. Compared to HFD group, SOTE and SOHFF treatment led to marked amelioration of all the aforementioned parameters. Collectively, supplementation with SOTE and SOHFF effectively reversed HFD-induced alterations through its antioxidant, hypolipidemic, and anti-inflammatory properties. Hence, SOTE and SOHFF have therapeutic potential in controlling obesity and related pathologies.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia.
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Ghada M Aleid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Hameed
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Doaa Ezz Aldin
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
22
|
dos Santos Bronel BA, Anauate AC, Maquigussa E, Boim MA, da Silva Novaes A. Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells stimulated with TGF-β. Sci Rep 2022; 12:15626. [PMID: 36115882 PMCID: PMC9482652 DOI: 10.1038/s41598-022-19548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard technique for gene expression analysis, but the choice of quantitative reference genes (housekeeping genes, HKG) remains challenging. Identify the best HKG is essential for estimating the expression level of target genes. Therefore, the aim of this study was to determine the best HKG for an in vitro model with mouse mesangial cells (MMCs) stimulated with 5 ng/mL of TGF-β. Five candidates HKG were selected: Actb, Hprt, Gapdh, 18S and Ppia. After quantitative expression, the best combination of these genes was analyzed in silico using six software programs. To validate the results, the best genes were used to normalize the expression levels of fibronectin, vimentin and α-SMA. In silico analysis revealed that Ppia, Gapdh and 18S were the most stable genes between the groups. GenEX software and Spearman's correlation determined Ppia and Gapdh as the best HKG pair, and validation of the HKG by normalizing fibronectin, vimentin and α-SMA were consistent with results from the literature. Our results established the combination of Ppia and Gapdh as the best HKG pair for gene expression analysis by RT-PCR in this in vitro model using MMCs treated with TGF-β.
Collapse
|
23
|
Guo R, Jia X, Ding Z, Wang G, Jiang M, Li B, Chen S, Xia B, Zhang Q, Liu J, Zheng R, Gao Z, Xie X. Loss of MLKL ameliorates liver fibrosis by inhibiting hepatocyte necroptosis and hepatic stellate cell activation. Am J Cancer Res 2022; 12:5220-5236. [PMID: 35836819 PMCID: PMC9274737 DOI: 10.7150/thno.71400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Liver fibrosis affects millions of people worldwide without an effective treatment. Although multiple cell types in the liver contribute to the fibrogenic process, hepatocyte death is considered to be the trigger. Multiple forms of cell death, including necrosis, apoptosis, and necroptosis, have been reported to co-exist in liver diseases. Mixed lineage kinase domain-like protein (MLKL) is the terminal effector in necroptosis pathway. Although necroptosis has been reported to play an important role in a number of liver diseases, the function of MLKL in liver fibrosis has yet to be unraveled. Methods and Results: Here we report that MLKL level is positively correlated with a number of fibrotic markers in liver samples from both patients with liver fibrosis and animal models. Mlkl deletion in mice significantly reduces clinical symptoms of CCl4- and bile duct ligation (BDL) -induced liver injury and fibrosis. Further studies indicate that Mlkl-/- blocks liver fibrosis by reducing hepatocyte necroptosis and hepatic stellate cell (HSC) activation. AAV8-mediated specific knockdown of Mlkl in hepatocytes remarkably alleviates CCl4-induced liver fibrosis in both preventative and therapeutic ways. Conclusion: Our results show that MLKL-mediated signaling plays an important role in liver damage and fibrosis, and targeting MLKL might be an effective way to treat liver fibrosis.
Collapse
Affiliation(s)
- Ren Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohui Jia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zhenbin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200031, China,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200031, China,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Gang Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengmeng Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shanshan Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Liu
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruting Zheng
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,✉ Corresponding author: Dr. Xin Xie, 189 Guo Shou Jing Road, Shanghai 201203, China; Tel: (86) 186-0211-0377; Fax: 0086-21-50800721; E-mail:
| |
Collapse
|
24
|
Peng W, Zhang S, Zhou W, Zhao X, Wang K, Yue C, Wei X, Pang S, Dong W, Chen S, Chen C, Yang Q, Wang W. Layered Double Hydroxides-Loaded Sorafenib Inhibit Hepatic Stellate Cells Proliferation and Activation In Vitro and Reduce Fibrosis In Vivo. Front Bioeng Biotechnol 2022; 10:873971. [PMID: 35711641 PMCID: PMC9196193 DOI: 10.3389/fbioe.2022.873971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
A core feature of liver fibrosis is the activation of hepatic stellate cells (HSCs), which are transformed into myofibroblasts and lead to the accumulation of extracellular matrix (ECM) proteins. In this study, we combined in vitro cellular efficacy with in vivo antifibrosis performance to evaluate the outcome of sorafenib (SRF) loaded layered double hydroxide (LDH) nanocomposite (LDH-SRF) on HSCs. The cellular uptake test has revealed that sorafenib encapsulated LDH nanoparticles were efficiently internalized by the HSC-T6 cells, synergistically inducing apoptosis of hepatic stellate cells. Moreover, the apoptosis rate and the migration inhibition rate induced by LDHs-SRF were 2.5 and 1.7 times that of SRF. Western Blot showed that the TGF-β1/Smad/EMT and AKT signaling pathway was significantly inhibited in HSC-T6 cells treated with LDHs-SRF. For the in vivo experiment, LDHs-SRF were administered to rat models of CCl4-induced liver fibrosis. H&E, masson and sirius red staining showed that LDHs-SRF could significantly reduce inflammatory infiltrate and collagen fiber deposition and immunohistochemical results found that LDHs-SRF treatment significantly inhibited the protein expressions of α-SMA in the liver, these results suggesting that LDHs-SRF exhibited better anti-fibrotic effect than SRF alone and significantly inhibited the proliferation and activation of rat hepatic stellate cells and collagen fiber synthesis.
Collapse
Affiliation(s)
- Wei Peng
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Zhou
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Xinchen Zhao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Kexue Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Chengxu Yue
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Xinyu Wei
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sulian Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Changjie Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Qingling Yang
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| |
Collapse
|
25
|
The Inflammasome NLR Family Pyrin Domain-Containing Protein 3 (NLRP3) as a Novel Therapeutic Target for Idiopathic Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:837-846. [PMID: 35351468 DOI: 10.1016/j.ajpath.2022.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a dramatic disease without cure. The US Food and Drug Administration-approved drugs, pirfenidone and nintedanib, only slow disease progression. The clinical investigation of novel therapeutic approaches for IPF is an unmet clinical need. Nucleotide-binding oligomerization domain-like receptor or NOD-like receptors are pattern recognition receptors capable of binding a large variety of stress factors. NLR family pyrin domain-containing protein 3 (NLRP3), once activated, promotes IL-1β, IL-18 production, and innate immune responses. Multiple reports indicate that the inflammasome NLRP3 is overactivated in IPF patients, leading to increased production of class I IL and collagens. Similarly, data from animal models of pulmonary fibrosis confirm the role of NLRP3 in the development of chronic lung injury and pulmonary fibrosis. This report provides a review of the evidence of NLRP3 activation in IPF and of NLRP3 inhibition in different animal models of fibrosis, and highlights the recent advances in direct and indirect NLRP3 inhibitors.
Collapse
|
26
|
α-Viniferin and ε-Viniferin Inhibited TGF-β1-Induced Epithelial-Mesenchymal Transition, Migration and Invasion in Lung Cancer Cells through Downregulation of Vimentin Expression. Nutrients 2022; 14:nu14112294. [PMID: 35684095 PMCID: PMC9182810 DOI: 10.3390/nu14112294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Resveratrol has well-known anticancer properties; however, its oligomers, including α-viniferin, ε-viniferin, and kobophenol A, have not yet been well investigated. This is the first study examining the anti-epithelial-mesenchymal transition (EMT) effects of α-viniferin and ε-viniferin on A549, NCI-H460, NCI-H520, MCF-7, HOS, and U2OS cells. The results showed that α-viniferin and ε-viniferin significantly inhibited EMT, invasion and migration in TGF-β1- or IL-1β-induced non-small cell lung cancer. α-Viniferin and ε-viniferin also reversed TGF-β1-induced reactive oxygen species (ROS), MMP2, vimentin, Zeb1, Snail, p-SMAD2, p-SMAD3, and ABCG2 expression in A549 cells. Furthermore, ε-viniferin was found to significantly inhibit lung metastasis in A549 cell xenograft metastatic mouse models. In view of these findings, α-viniferin and ε-viniferin may play an important role in the prevention of EMT and cancer metastasis in lung cancer.
Collapse
|
27
|
Fu H, Gu YH, Tan J, Yang YN, Wang GH. CircACTR2 in macrophages promotes renal fibrosis by activating macrophage inflammation and epithelial-mesenchymal transition of renal tubular epithelial cells. Cell Mol Life Sci 2022; 79:253. [PMID: 35449370 PMCID: PMC11072867 DOI: 10.1007/s00018-022-04247-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
The crosstalk between macrophages and tubular epithelial cells (TECs) actively regulates the progression of renal fibrosis. In the present study, we revealed the significance of circular RNA ACTR2 (circACTR2) in regulating macrophage inflammation, epithelial-mesenchymal transition (EMT) of TECs, and the development of renal fibrosis. Our results showed UUO-induced renal fibrosis was associated with increased inflammation and EMT, hypertrophy of contralateral kidney, up-regulations of circACTR2 and NLRP3, and the down-regulation of miR-561. CircACTR2 sufficiently and essentially promoted the activation of NLRP3 inflammasome, pyroptosis, and inflammation in macrophages, and through paracrine effect, stimulated EMT and fibrosis of TECs. Mechanistically, circACTR2 sponged miR-561 and up-regulated NLRP3 expression level to induce the secretion of IL-1β. In TECs, IL-1β induced renal fibrosis via up-regulating fascin-1. Knocking down circACTR2 or elevating miR-561 potently alleviated renal fibrosis in vivo. In summary, circACTR2, by sponging miR-561, activated NLRP3 inflammasome, promoted macrophage inflammation, and stimulated macrophage-induced EMT and fibrosis of TECs. Knocking down circACTR2 and overexpressing miR-561 may, thus, benefit the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hua Fu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yong-Hong Gu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Juan Tan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Ye-Ning Yang
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Guo-Hui Wang
- Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, No 138, Tongzipo Road, Yuelu, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
28
|
Oxidative Stress and Ischemia/Reperfusion Injury in Kidney Transplantation: Focus on Ferroptosis, Mitophagy and New Antioxidants. Antioxidants (Basel) 2022; 11:antiox11040769. [PMID: 35453454 PMCID: PMC9024672 DOI: 10.3390/antiox11040769] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Although there has been technical and pharmacological progress in kidney transplant medicine, some patients may experience acute post-transplant complications. Among the mechanisms involved in these conditions, ischemia/reperfusion (I/R) injury may have a primary pathophysiological role since it is one of the leading causes of delayed graft function (DGF), a slow recovery of the renal function with the need for dialysis (generally during the first week after transplantation). DGF has a significant social and economic impact as it is associated with prolonged hospitalization and the development of severe complications (including acute rejection). During I/R injury, oxidative stress plays a major role activating several pathways including ferroptosis, an iron-driven cell death characterized by iron accumulation and excessive lipid peroxidation, and mitophagy, a selective degradation of damaged mitochondria by autophagy. Ferroptosis may contribute to the renal damage, while mitophagy can have a protective role by reducing the release of reactive oxygen species from dysfunctional mitochondria. Deep comprehension of both pathways may offer the possibility of identifying new early diagnostic noninvasive biomarkers of DGF and introducing new clinically employable pharmacological strategies. In this review we summarize all relevant knowledge in this field and discuss current antioxidant pharmacological strategies that could represent, in the next future, potential treatments for I/R injury.
Collapse
|
29
|
Song Z, Wang L, Cao Y, Liu Z, Zhang M, Zhang Z, Jiang S, Fan R, Hao T, Yang R, Wang B, Guan Z, Zhu L, Liu Z, Zhang S, Zhao L, Xu Z, Xu H, Dai G. Isoandrographolide inhibits NLRP3 inflammasome activation and attenuates silicosis in mice. Int Immunopharmacol 2022; 105:108539. [DOI: 10.1016/j.intimp.2022.108539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/05/2022]
|
30
|
Epithelial–Fibroblast Crosstalk Protects against Acidosis-Induced Inflammatory and Fibrotic Alterations. Biomedicines 2022; 10:biomedicines10030681. [PMID: 35327483 PMCID: PMC8945333 DOI: 10.3390/biomedicines10030681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenesis of chronic kidney disease (CKD) is accompanied by extracellular acidosis inflammation, fibrosis and epithelial-to-mesenchymal transition (EMT). The aim of this study was to assess the influence of acidosis on tubule epithelial cells (NRK-52E) and fibroblasts (NRK-49F) in dependence of cellular crosstalk. NRK-52E and NRK-49F were used in mono- and co-cultures, and were treated with acidic media (pH 6.0) for 48 h. The intracellular proteins were measured by Western blot. Secreted proteins were measured by ELISA. Distribution of E-cadherin was assessed by immunofluorescence and epithelial barrier function by FITC-dextran diffusion. Inflammation: Acidosis led to an increase in COX-2 in NRK-52E and TNF in NRK-49F in monoculture. In co-culture, this effect was reversed. EMT: Acidosis led to an increase in vimentin protein in both cell lines, whereas in co-culture, the effect was abolished. In NRK-52E, the E-cadherin expression was unchanged, but subcellular E-cadherin showed a disturbed distribution, and cellular barrier function was decreased. Fibrosis: Monoculture acidosis led to an increased secretion of collagen I and fibronectin in NRK-52E and collagen I in NRK-49F. In co-culture, the total collagen I secretion was unchanged, and fibronectin secretion was decreased. Intercellular crosstalk between epithelial cells and fibroblasts has a protective function regarding the development of acidosis-induced damage.
Collapse
|
31
|
Zeng X, Xie L, Ge Y, Zhou Y, Wang H, Chen Y, Zhu X, Liu H, Liao Q, Kong Y, Pan L, Li J, Xue L, Li S, Zhou X, Shi C, Sheng X. Satellite Cells are Activated in a Rat Model of Radiation-Induced Muscle Fibrosis. Radiat Res 2022; 197:638-649. [PMID: 35294551 DOI: 10.1667/rade-21-00183.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
Radiation-induced muscle fibrosis is a long-term side effect of radiotherapy that significantly affects the quality of life and even reduces the survival of cancer patients. We have demonstrated that radiation induces satellite cell (SC) activation at the molecular level; however, cellular evidence in a rat model of radiation-induced muscle fibrosis was lacking. In this study, we evaluated SC activation in vivo and investigated whether radiation affects the proliferation and differentiation potential of SCs in vitro. For in vivo studies, Sprague-Dawley rats were randomly divided into six groups (n = 6 per group): non-irradiated controls, 90 Gy/1 week-, 90 Gy/2 weeks-, 90 Gy/4 weeks-, 90 Gy/12 weeks- and 90 Gy/24 weeks-postirradiation groups. Rats received a single dose of radiation in the left groin area and rectus femoris tissues were collected in the indicated weeks. Fibrosis, apoptosis, and autophagy were evaluated by Masson's trichrome staining, TUNEL staining, and electron microscopy, respectively. SC activation and central nuclear muscle fibers were evaluated by immunofluorescence staining and hematoxylin and eosin staining. IL-1β concentrations in serum and irradiated muscle tissue samples were determined by ELISA. For in vitro studies, SCs were isolated from rats with radiation-induced muscle fibrosis and their proliferation and differentiation were evaluated by immunofluorescence staining. In vivo, fibrosis increased over time postirradiation. Apoptosis and autophagy levels, IL-1β concentrations in serum and irradiated skin tissues, and the numbers of SCs and central nuclear muscle fibers were increased in the irradiated groups when compared with the control group. In vitro, cultured SCs from irradiated muscle were positive for the proliferation marker Pax7, and differentiated SCs were positive for the myogenic differentiation marker MyHC. This study provided cellular evidence of SC activation and proliferation in rats with radiation-induced muscle fibrosis.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Luyuan Xie
- Changsha Medical University, Changsha, Hunan Province, China
| | - Yuxin Ge
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Yue Zhou
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yongyi Chen
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Xiaomei Zhu
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Huayun Liu
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Qianjin Liao
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Yu Kong
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Junjun Li
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Lei Xue
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Sha Li
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Xiao Zhou
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowu Sheng
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| |
Collapse
|
32
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
33
|
Effects of cytokine signaling inhibition on inflammation-driven tissue remodeling. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100023. [PMID: 34909658 PMCID: PMC8663982 DOI: 10.1016/j.crphar.2021.100023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a common condition that can affect all body tissues, driven by unresolved tissue inflammation and resulting in tissue dysfunction and organ failure that could ultimately lead to death. A myriad of factors are thought to contribute to fibrosis and, although it is relatively common, treatments focusing on reversing fibrosis are few and far between. The process of fibrosis involves a variety of cell types, including epithelial, endothelial, and mesenchymal cells, as well as immune cells, which have been shown to produce pro-fibrotic cytokines. Advances in our understanding of the molecular mechanisms of inflammation-driven tissue fibrosis and scar formation have led to the development of targeted therapeutics aiming to prevent, delay, or even reverse tissue fibrosis. In this review, we describe promising targets and agents in development, with a specific focus on cytokines that have been well-described to play a role in fibrosis: IL-1, TNF-α, IL-6, and TGF-β. An array of small molecule inhibitors, natural compounds, and biologics have been assessed in vivo, in vivo, and in the clinic, demonstrating the capacity to either directly interfere with pro-fibrotic pathways or to block intracellular enzymes that control fibrosis-related signaling pathways. Targeting pro-fibrotic cytokines, potentially via a multi-pronged approach, holds promise for the treatment of inflammation-driven fibrotic diseases in numerous organs. Despite the complexity of the interplay of cytokines in fibrotic tissues, the breadth of the currently ongoing research targeting cytokines suggests that these may hold the key to mitigating tissue fibrosis and reducing organ damage in the future.
Collapse
|
34
|
Zhang C, Wang S, Lau J, Roden AC, Matteson EL, Sun J, Luo F, Tschumperlin DJ, Vassallo R. IL-23 amplifies the epithelial-mesenchymal transition of mechanically conditioned alveolar epithelial cells in rheumatoid arthritis-associated interstitial lung disease through mTOR/S6 signaling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1006-L1022. [PMID: 34585990 DOI: 10.1152/ajplung.00292.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) creates an environment facilitating fibrosis following alveolar epithelial cell injury. IL-23 has important roles in chronic autoimmune conditions like rheumatoid arthritis (RA), but its role in the interstitial lung disease that affects patients with RA is unclear. This study aimed to determine the profibrogenic role of IL-23 on somatic alveolar type I (ATI) epithelial cells. Primary ATI cells were isolated from rats and cultured on plastic dishes for 1-3 wk. After prolonged culture (≥14 days) on rigid culture dishes, primary ATI cells gradually acquired a mesenchymal phenotype, identified by decreased expression of caveolin-1, and reorganization of F-actin cytoskeleton, indicating the initiation of EMT by matrix stiffness. To determine how IL-23 promotes EMT in vitro, transitioning ATI cells, cultured on a stiff substrate for ≥14 days were stimulated with IL-23. The EMT phenotype was significantly enhanced by IL-23, which upregulated α-smooth muscle actin (α-SMA), collagen I/III protein, and decreased caveolin-1. Furthermore, IL-23 significantly promoted cell invasion, as well as apoptotic resistance on transitioning ATI cells. Mechanistically, IL-23-induced EMT was mammalian target of rapamycin/ribosomal protein S6 (mTOR/S6) signaling dependent and reversible by rapamycin. Transcriptional sequencing analysis of human lung fibrosis biopsy tissue revealed key roles for IL-23 in rheumatoid arthritis-associated interstitial lung disease (RA-ILD). This result was further validated by significantly upregulated IL-23 expression at the mRNA level in RA-ILD lung sections. Notably, transitioning ATI epithelial cells were abundantly detected in RA-ILD tissue. Taken together, these data support a role for IL-23 in the pathogenesis of RA lung fibrosis by promoting EMT in alveolar epithelial cells through mTOR/S6 signaling.
Collapse
Affiliation(s)
- Chujie Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica Lau
- Pulmonary and Critical Care Medicine, The Vancouver Clinic, Vancouver, Washington
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Eric L Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Daniel J Tschumperlin
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
35
|
Cheng X, Zhang Y, Ma J, Wang S, Ma R, Ge X, Zhao W, Xue T, Chen L, Yao B. NLRP3 promotes endometrial receptivity by inducing epithelial-mesenchymal transition of the endometrial epithelium. Mol Hum Reprod 2021; 27:gaab056. [PMID: 34524457 DOI: 10.1093/molehr/gaab056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/06/2021] [Indexed: 12/20/2022] Open
Abstract
Endometrial receptivity is crucial for successful embryo implantation. It is regulated by multiple factors which include ovarian steroid hormones and the immune microenvironment among others. Nod-Like Receptor Pyrins-3 (NLRP3) is a key intracellular pattern-recognition receptor and a critical component of the inflammasome, which plays an essential role in the development of inflammation and of immune responses. However, the physiological functions of NLRP3 in the endometrium remain largely unclear. This study investigated the physiological and pathological significance of NLRP3 in human endometrial epithelial cell during the implantation window. NLRP3 is highly expressed during the mid-proliferative and mid-secretory phases of the human endometrium and transcriptionally up-regulated by estradiol (E2) through estrogen receptor β (ERβ). In addition, NLRP3 promotes embryo implantation and enhances epithelial-mesenchymal transition (EMT) of Ishikawa (IK) cells via both inflammasome-dependent and inflammasome-independent pathways, which might provide a novel insight into endometrial receptivity and embryo implantation. Our findings suggest that NLRP3, which is transcriptionally regulated by E2, induces epithelial-mesenchymal transition of endometrial epithelial cells and promotes embryo adhesion.
Collapse
Affiliation(s)
- Xi Cheng
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yu Zhang
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuxian Wang
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wei Zhao
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Tongmin Xue
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Li Chen
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bing Yao
- Center of Reproductive Medicine, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Expression of TXNIP is associated with angiogenesis and postoperative relapse of conventional renal cell carcinoma. Sci Rep 2021; 11:17200. [PMID: 34433833 PMCID: PMC8387483 DOI: 10.1038/s41598-021-96220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
One of the common mediator of tumour progression is the oxidative stress induced by inflammatory tumour microenvironment (TME). Activated fibroblasts, local and immune cells produce reactive oxygen species (ROS) supporting tumour cell proliferation and pave the way for metastatic tumour growth. TXNIP regulates ROS generation by inhibiting the antioxidative function of thioredoxin (TXN). The shift of TXNIP/TXN balance towards overexpression of TXNIP is associated with proliferation of endothelial cells during tumor angiogenesis. The oxidative stress activates the hypoxia inducible factor-1 (HIF-1), which plays an important role in the biology of conventional RCC (cRCC). Under oxydative stress TXNIP interacts with NLRP3 inflammasome leading to maturation and secretion of inflammatory cytokine IL1β. To establish the role of TXNIP and downstream genes HIF1α and IL1β in the biology of cRCC, we have applied immunohistochemistry to multi-tissue arrays containing tumours of 691 patients without detectable metastases at the time of operation. We found that cRCC displaying a fine organised capillary network with nuclear translocation of TXNIP and expressing IL1β have a good prognosis. In contrary, we showed a significant correlation between cytoplasmic TXNIP expression, inefficient vascularisation by unorganized and tortuous vessels causing tumour cell necrosis and postoperative tumour relapse of cRCC.
Collapse
|
37
|
Soni H, Kumar R, Kanthakumar P, Adebiyi A. Interleukin 1 beta-induced calcium signaling via TRPA1 channels promotes mitogen-activated protein kinase-dependent mesangial cell proliferation. FASEB J 2021; 35:e21729. [PMID: 34143493 DOI: 10.1096/fj.202100367r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Glomerular mesangial cell (GMC)-derived pleiotropic cytokine, interleukin-1 (IL-1), contributes to hypercellularity in human and experimental proliferative glomerulonephritis. IL-1 promotes mesangial proliferation and may stimulate extracellular matrix accumulation, mechanisms of which are unclear. The present study shows that the beta isoform of IL-1 (IL-1β) is a potent inducer of IL-1 type I receptor-dependent Ca2+ entry in mouse GMCs. We also demonstrate that the transient receptor potential ankyrin 1 (TRPA1) is an intracellular store-independent diacylglycerol-sensitive Ca2+ channel in the cells. IL-1β-induced Ca2+ and Ba2+ influxes in the cells were negated by pharmacological inhibition and siRNA-mediated knockdown of TRPA1 channels. IL-1β did not stimulate fibronectin production in cultured mouse GMCs and glomerular explants but promoted Ca2+ -dependent cell proliferation. IL-1β also stimulated TRPA1-dependent ERK mitogen-activated protein kinase (MAPK) phosphorylation in the cells. Concomitantly, IL-1β-induced GMC proliferation was attenuated by TRPA1 and RAF1/ MEK/ERK inhibitors. These findings suggest that IL-1β-induced Ca2+ entry via TRPA1 channels engenders MAPK-dependent mesangial cell proliferation. Hence, TRPA1-mediated Ca2+ signaling could be of pathological significance in proliferative glomerulonephritis.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
38
|
Alishahedani ME, Yadav M, McCann KJ, Gough P, Castillo CR, Matriz J, Myles IA. Therapeutic candidates for keloid scars identified by qualitative review of scratch assay research for wound healing. PLoS One 2021; 16:e0253669. [PMID: 34143844 PMCID: PMC8213172 DOI: 10.1371/journal.pone.0253669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The scratch assay is an in vitro technique used to analyze cell migration, proliferation, and cell-to-cell interaction. In the assay, cells are grown to confluence and then ‘scratched’ with a sterile instrument. For the cells in the leading edge, the resulting polarity induces migration and proliferation in attempt to ‘heal’ the modeled wound. Keloid scars are known to have an accelerated wound closure phenotype in the scratch assay, representing an overactivation of wound healing. We performed a qualitative review of the recent literature searching for inhibitors of scratch assay activity that were already available in topical formulations under the hypothesis that such compounds may offer therapeutic potential in keloid treatment. Although several shortcomings in the scratch assay literature were identified, caffeine and allicin successfully inhibited the scratch assay closure and inflammatory abnormalities in the commercially available keloid fibroblast cell line. Caffeine and allicin also impacted ATP production in keloid cells, most notably with inhibition of non-mitochondrial oxygen consumption. The traditional Chinese medicine, shikonin, was also successful in inhibiting scratch closure but displayed less dramatic impacts on metabolism. Together, our results partially summarize the strengths and limitations of current scratch assay literature and suggest clinical assessment of the therapeutic potential for these identified compounds against keloid scars may be warranted.
Collapse
Affiliation(s)
- Mohammadali E. Alishahedani
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Manoj Yadav
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Katelyn J. McCann
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Portia Gough
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Carlos R. Castillo
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Jobel Matriz
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Ian A. Myles
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Wang WJ, Chen XM, Cai GY. Cellular senescence and the senescence-associated secretory phenotype: Potential therapeutic targets for renal fibrosis. Exp Gerontol 2021; 151:111403. [PMID: 33984448 DOI: 10.1016/j.exger.2021.111403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Renal fibrosis plays a crucial role in the progression of chronic kidney disease and end-stage renal disease. However, because the aetiology of this pathological process is complex and remains unclear, there is still no effective treatment. Cellular senescence and the senescence-associated secretory phenotype (SASP) have been reported to lead to renal fibrosis. This review first discusses the relationships among cellular senescence, the SASP and renal fibrosis. Then, the key role of the SASP in irreversible renal fibrosis, including fibroblast activation and abnormal extracellular matrix accumulation, is discussed, with the results of studies having indicated that inhibiting cellular senescence and the SASP might be a potential preventive and therapeutic strategy for renal fibrosis. Finally, we summarize promising therapeutic strategies revealed by existing research on senescent cells and the SASP, including emerging interventions targeting the SASP, caloric restriction and mimetics, and novel regeneration therapies with stem cells.
Collapse
Affiliation(s)
- Wen-Juan Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiang-Mei Chen
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Guang-Yan Cai
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
40
|
Chen TT, Xiao F, Li N, Shan S, Qi M, Wang ZY, Zhang SN, Wei W, Sun WY. Inflammasome as an Effective Platform for Fibrosis Therapy. J Inflamm Res 2021; 14:1575-1590. [PMID: 33907438 PMCID: PMC8069677 DOI: 10.2147/jir.s304180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is the final stage of the development of chronic inflammation. It is characterized by excessive deposition of the extracellular matrix, leading to tissue structure damage and organ dysfunction, which is a serious threat to human health and life. However, the molecular mechanism of fibrosis is still unclear. Inflammasome is a molecular complex of proteins that has been becoming a key innate sensor for host immunity and is involved in pyroptosis, pathogen infection, metabolic syndrome, cellular stress, and tumor metastasis. Inflammasome signaling and downstream cytokine responses mediated by the inflammasome have been found to play an important role in fibrosis. The inflammasome regulates the secretion of IL-1β and IL-18, which are both critical for the process of fibrosis. Recently, researches on the function of inflammasome have attracted extensive attention, and data derived from these researches have increased our understanding of the effects and regulation of inflammasome during fibrosis. In this review, we emphasize the growing evidence for both indirect and direct effects of inflammasomes in triggering fibrosis as well as potential novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Feng Xiao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Shan Shan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Zi-Ying Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| |
Collapse
|
41
|
Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. J Clin Med 2021; 10:jcm10071488. [PMID: 33916672 PMCID: PMC8038382 DOI: 10.3390/jcm10071488] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
The primary cause of tooth loss in the industrialized world is periodontitis, a bacterial anaerobic infection whose pathogenesis is characterized by composite immune response. At present, the diagnose of periodontitis is made by a complete status check of the patient’s periodontal health; full-mouth plaque score, full-mouth bleeding score, probing depth, clinical attachment level, bleeding on probing, recessions, mobility, and migration are evaluated in order to provides a clear picture of the periodontal conditions of a single patient. Chair-side diagnostic tests based on whole saliva could be routinely used by periodontists for a very early diagnosis of periodontitis, monitoring, prognosis, and management of periodontal patients by biomarker detection, whose diagnostic validity is related to sensitivity and specificity. Recent paper reviews and meta-analyses have focused on five promising host derived biomarkers as candidate for early diagnosis of periodontitis: MMP-8 (Metalloproteinase-8), MIP-1α (Macrophage inflammatory protein-1 alpha), IL-1 β (Interleukin-1 beta), IL-6 (Interleukin-6), and HB (Hemoglobin), and their combinations. Chair-side Lab-on-a-chip (LOC) technology may soon become an important part of efforts to detect such biomarkers in saliva medium to improve worldwide periodontal health in developed nations as well as in underserved communities and poor countries. Their applications in preventive and predictive medicine is now fundamental, and is aimed at the early detection of risk factors or the presence or evolution of the disease, and in personalized medicine, which aims to identify tailor-made treatments for individual patients. The aim of the present paper is to be informative about host derived periodontal biomarkers and, in particular, we intend to report information about the most important immune response derived biomarkers and Hemoglobin as candidates to be routinely utilized in order to obtain a chair-side early diagnosis of periodontal disease.
Collapse
|
42
|
Hammoud SH, AlZaim I, Mougharbil N, Koubar S, Eid AH, Eid AA, El-Yazbi AF. Peri-renal adipose inflammation contributes to renal dysfunction in a non-obese prediabetic rat model: Role of anti-diabetic drugs. Biochem Pharmacol 2021; 186:114491. [PMID: 33647265 DOI: 10.1016/j.bcp.2021.114491] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy is a major health challenge with considerable economic burden and significant impact on patients' quality of life. Despite recent advances in diabetic patient care, current clinical practice guidelines fall short of halting the progression of diabetic nephropathy to end-stage renal disease. Moreover, prior literature reported manifestations of renal dysfunction in early stages of metabolic impairment prior to the development of hyperglycemia indicating the involvement of alternative pathological mechanisms apart from those typically triggered by high blood glucose. Here, we extend our prior research work implicating localized inflammation in specific adipose depots in initiating cardiovascular dysfunction in early stages of metabolic impairment. Non-obese prediabetic rats showed elevated glomerular filtration rates and mild proteinuria in absence of hyperglycemia, hypertension, and signs of systemic inflammation. Isolated perfused kidneys from these rats showed impaired renovascular endothelial feedback in response to vasopressors and increased flow. While endothelium dependent dilation remained functional, renovascular relaxation in prediabetic rats was not mediated by nitric oxide and prostaglandins as in control tissues, but rather an upregulation of the function of epoxy eicosatrienoic acids was observed. This was coupled with signs of peri-renal adipose tissue (PRAT) inflammation and renal structural damage. A two-week treatment with non-hypoglycemic doses of metformin or pioglitazone, shown previously to ameliorate adipose inflammation, not only reversed PRAT inflammation in prediabetic rats, but also reversed the observed functional, renovascular, and structural renal abnormalities. The present results suggest that peri-renal adipose inflammation triggers renal dysfunction early in the course of metabolic disease.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Sahar Koubar
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Assaad A Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon.
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt.
| |
Collapse
|
43
|
Zaarour RF, Prasad P, Venkatesh GH, Khouzam RA, Amirtharaj F, Zeinelabdin N, Rifath A, Terry S, Nawafleh H, El Sayed Y, Chouaib S. Waterpipe smoke condensate influences epithelial to mesenchymal transition and interferes with the cytotoxic immune response in non-small cell lung cancer cell lines. Oncol Rep 2021; 45:879-890. [PMID: 33469682 PMCID: PMC7859923 DOI: 10.3892/or.2021.7938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Waterpipe tobacco smoking (WPS) continues to spread globally and presents serious health hazards. The aim of the present study was to investigate the effects of treatment with WPS condensate (WPSC) on lung cell proliferation and plasticity as well as tumor cell recognition and killing by natural killer (NK) cells using cytotoxicity assays. The results indicated that exposure of normal and cancer lung cell lines to WPSC resulted in a decrease in their in vitro growth in a dose-dependent manner and it induced tumor senescence. In addition, WPSC selectively caused DNA damage as revealed by an increase in γH2AX and 53BP1 in tumor lung cells. To gain further insight into the molecular mechanisms altered by WPSC, we conducted a global comprehensive transcriptome analysis of WPSC-treated tumor cells. Data analysis identified an expression profile of genes that best distinguished treated and non-treated cells involving several pathways. Of these pathways, we focused on those involved in epithelial to mesenchymal transition (EMT) and stemness. Results showed that WPSC induced an increase in SNAI2 expression associated with EMT, ACTA2 and SERPINE2 were involved in invasion and CD44 was associated with stemness. Furthermore, WPSC exposure increased the expression of inflammatory response genes including CASP1, IL1B, IL6 and CCL2. While immune synapse formation between NK and WPSC-treated lung cancer target cells was not affected, the capacity of NK cells to kill these target cells was reduced. The data reported in the present study are, to the best of our knowledge, the first in vitro demonstration of WPSC effects on lung cellular parameters providing evidence of its potential involvement in tumor physiology and development.
Collapse
Affiliation(s)
- Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Prathibha Prasad
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | | | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Francis Amirtharaj
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Nagwa Zeinelabdin
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Ayesha Rifath
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Stephane Terry
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine - University of Paris-Sud, University of Paris-Saclay, F-94805 Villejuif, France
| | - Husam Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Yehya El Sayed
- Department of Biology, Chemistry and Environmental Sciences (BCE), American University of Sharjah, Sharjah 26666, UAE
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine - University of Paris-Sud, University of Paris-Saclay, F-94805 Villejuif, France
| |
Collapse
|
44
|
Karina K, Christoffel LM, Novariani R, Rosadi I, Rosliana I, Rosidah S, Sobariah S, Fatkhurohman N, Puspitaningrum N, Hertati Y, Afini I, Ernanda D, Widyastuti T, Sulaeha AD, Zakiyah A, Aini N, Krisandi G, Andrew H. The Effect of Intravenous Autologous Activated Platelet-Rich Plasma Therapy on "Profibrotic Cytokine" IL-1 β Levels in Severe and Critical COVID-19 Patients: A Preliminary Study. SCIENTIFICA 2021; 2021:9427978. [PMID: 34306796 PMCID: PMC8266471 DOI: 10.1155/2021/9427978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 06/26/2021] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Elevated concentration of proinflammatory cytokines followed by hyperinflammation is one of the hallmarks of severe and critical COVID-19. In the short term, this may result in ARDS and lung injury; subsequently, this may cause pulmonary fibrosis-a disease with poor prognosis-in the long run. Among the cytokines, interleukin-1β (IL-1β) is one of the most overexpressed in COVID-19. We speculate that administration of intravenous activated autologous platelet-rich plasma (aaPRP), which contains interleukin-1 receptor antagonist (IL-1RA), would lower IL-1β levels and benefit the severe and critical COVID-19 patients. METHODS After acquiring ethical clearance, we recruited 12 adult COVID-19 patients of both sexes from the Koja Regional Hospital (Jakarta, Indonesia) ICU. After selection, seven patients were included and divided into two groups, severe and critical. In addition to three doses of aaPRP, both groups received the same treatment of antiviral, steroid, and antibiotics. Quantification of plasma IL-1β levels was performed by beads multiplex assay a day before the first aaPRP administration and a day after the second and third aaPRP administration. PaO2/FiO2 ratio and lung injury scores were evaluated a day before and a day after each aaPRP administration. RESULTS Severe and critical patients' initial plasma IL-1β concentration was 4.71 pg/mL and 3.095 pg/mL, respectively. After 2 treatments with aaPRP, severe patients' plasma IL-1β concentration decreased 12.48 pg/mL, while critical patients' plasma IL-1β concentration increased to 18.77 pg/mL. Furthermore, after 3 aaPRP treatments, significant amelioration of patients' PaO2/FiO2 ratio from 71.33 mmHg at baseline to 144.97 mmHg was observed (p < 0.05). However, no significant improvement in lung injury score was observed in severe and critical groups. All severe patients and one critical patient recovered. CONCLUSION The use of aaPRP may prevent pulmonary fibrosis in severe COVID-19 patients through the reduction of patients' plasma IL-1β concentration and the amelioration of PaO2/FiO2 ratio.
Collapse
Affiliation(s)
- Karina Karina
- Klinik Hayandra, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
- Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
- Pusat Kajian Stem Cell, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | | | - Rita Novariani
- Koja Regional Public Hospital, Jl. Deli No. 4, Jakarta, Indonesia
| | - Imam Rosadi
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia
| | - Iis Rosliana
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
| | - Siti Rosidah
- Koja Regional Public Hospital, Jl. Deli No. 4, Jakarta, Indonesia
| | - Siti Sobariah
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
| | | | | | - Yuli Hertati
- Koja Regional Public Hospital, Jl. Deli No. 4, Jakarta, Indonesia
| | - Irsyah Afini
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
| | - Difky Ernanda
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
| | - Tias Widyastuti
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
| | - A. D. Sulaeha
- Klinik Hayandra, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
| | - Alfida Zakiyah
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
| | - Noor Aini
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
| | - Grady Krisandi
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
- Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Hubert Andrew
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta, Indonesia
- Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| |
Collapse
|
45
|
Olaoye IF, Oso BJ, Aberuagba A. Molecular Mechanisms of Anti-Inflammatory Activities of the Extracts of Ocimum gratissimum and Thymus vulgaris. Avicenna J Med Biotechnol 2021; 13:207-216. [PMID: 34900147 PMCID: PMC8606109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/15/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A large body of literature suggests that the extracts of Ocimum gratissimum (O. gratissimum) and Thymus vulgaris (T. vulgaris) play protective roles against various inflammatory disorders. However, the possible mechanism of action with reference to the interactions of their respective phytochemical compositions with pro-inflammatory mediators as the indication of their therapeutic effects is less clear. Therefore, the immunomodulatory properties of O. gratissimum and T. vulgaris were investigated in this study. METHODS The in vitro lipoxygenase inhibitory potentials of methanolic extracts of the selected plants were assessed through colorimetric analysis. The pharmacokinetics of some identified compounds in the botanicals were investigated via the Swiss ADME server while the molecular interactions of the compounds with lipoxygenase, IL-1, IL-6, TNF-α, IL-8, and CCL-2 were performed through molecular docking. RESULTS The assessment of the lipoxygenase inhibition revealed the extracts could possess anti-inflammatory agents. The pharmacokinetic results of some selected compounds identified in the botanicals showed moderate toxic effects compared to indomethacin. The molecular docking study substantiated the report of the in vitro analysis as indicated in the binding score of all the selected compounds compared to indomethacin. CONCLUSION The phytochemical components of the extracts of O. gratissimum and T. vulgaris could be effective as anti-inflammatory agents that could be explored in preventing disorders associated with excessive activities of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Ige Francis Olaoye
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria
| | - Babatunde Joseph Oso
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria,Corresponding author: Babatunde Joseph Oso, Ph.D., Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria, Tel: +23 48060625697, E-mail:
| | - Adepeju Aberuagba
- Department of Biochemistry, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
46
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
47
|
Wang R, Wu G, Dai T, Lang Y, Chi Z, Yang S, Dong D. Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation. Exp Ther Med 2020; 21:66. [PMID: 33365066 PMCID: PMC7716641 DOI: 10.3892/etm.2020.9498] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Interstitial fibrosis is a typical feature of all progressive renal diseases. The process of fibrosis is frequently coupled with the presence of pro-fibrotic factors and inflammation. Naringin is a dihydroflavone compound that has been previously reported to exhibit anti-fibrotic effects in the liver, where it prevents oxidative damage. In the present study, a rat model of renal interstitial fibrosis and fibrosis cell model were established to evaluate the effects of naringin on inflammatory proteins and fibrosis markers in kidney of rats and NRK-52E cells, and to elucidate the role of the TGF-β/Smad signaling pathway in this mechanism. Compared with those in fibrotic NRK-52E cells that were stimulated by transforming growth factor-β (TGF-β), gene expression levels of α-smooth muscle actin (α-SMA), collagen 1 (COL1A1), collagen 3 (COL3A1), interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) were all found to be significantly decreased in fibrotic NRK-52E cells following treatment with naringin (50, 100 and 200 ng/ml). Results from the histopathological studies showed that naringin treatment preserved the renal tissue structure and reduced the degree of fibrosis in the kidney tissues of rats that underwent unilateral ureteral obstruction (UUO). In addition, naringin administration reduced the expression of α-SMA, COL1A1, COL3A1, IL-1β, IL-6 and TNF-α in the kidneys of rats following UUO. The current study, using western blot analysis, indicated that naringin also downregulated the activation of Smad2/3 and the expression of Smad4, high-mobility group protein B1, activator protein-1, NF-κB and cyclooxygenase-2 whilst upregulating the expression of Smad7 in fibrotic NRK-52E cells and rats in the UUO group. In conclusion, naringin could antagonize renal interstitial fibrosis by regulating the TGF-β/Smad pathway and the expression of inflammatory factors.
Collapse
Affiliation(s)
- Ruichen Wang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Gaolei Wu
- Department of Pharmacy, Dalian Municipal Women and Children's Medical Center, Dalian, Liaoning 116037, P.R. China
| | - Tiantian Dai
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yitian Lang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhongchao Chi
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
48
|
Mesaros O, Jimbu L, Neaga A, Popescu C, Berceanu I, Tomuleasa C, Fetica B, Zdrenghea M. Macrophage Polarization in Chronic Lymphocytic Leukemia: Nurse-Like Cells Are the Caretakers of Leukemic Cells. Biomedicines 2020; 8:E516. [PMID: 33228048 PMCID: PMC7699370 DOI: 10.3390/biomedicines8110516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are terminally differentiated innate immune cells. Through their activation, they can be polarized towards the pro-inflammatory M1 type or the wound healing-associated, anti-inflammatory M2 type macrophages. In the tumor microenvironment (TME), M2 is the dominant phenotype and these cells are referred to as tumor-associated macrophages (TAMs). TAMs secrete cytokines and chemokines, exerting an antiapoptotic, proliferative and pro-metastatic effect on the tumor cells. TAMs can be found in many cancers, including chronic lymphocytic leukemia (CLL), where they are called nurse-like cells (NLCs). Despite the generally indolent behavior of CLL, the proportion of treatment-refractory patients is significant. As with the majority of cancers, despite significant recent progress, CLL pathogenesis is poorly understood. The emerging role of the TME in nurturing the neoplastic process warrants the investigation of macrophages as a significant pathogenetic element of tumors. In this paper, we review the current knowledge on the role of stromal macrophages in CLL.
Collapse
Affiliation(s)
- Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
| | - Cristian Popescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Infectious Diseases, County Emergency Hospital Alba Iulia, 20 Decebal str., 510093 Alba-Iulia, Romania
| | - Iulia Berceanu
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Bogdan Fetica
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| |
Collapse
|
49
|
Abstract
Hepatic fibrosis is a complex mechanism defined by the net deposition of the extracellular matrix (ECM) owing to liver injury caused by multiple etiologies such as viral hepatitis and nonalcoholic fatty liver disease. Many cell types are implicated in liver fibrosis development and progression. In general, liver fibrosis starts with the recruitment of inflammatory immune cells to generate cytokines, growth factors, and other activator molecules. Such chemical mediators drive the hepatic stellate cells (HSCs) to activate the production of the ECM component. The activation of HSC is thus a crucial event in the fibrosis initiation, and a significant contributor to collagen deposition (specifically type I). This review explores the causes and mechanisms of hepatic fibrosis and focuses on the roles of key molecules involved in liver fibro genesis, some of which are potential targets for therapeutics to hamper liver fibro genesis.
Collapse
Affiliation(s)
- Reham M Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
50
|
New Insights into the Mechanisms of Pyroptosis and Implications for Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21197057. [PMID: 32992874 PMCID: PMC7583981 DOI: 10.3390/ijms21197057] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Pyroptosis is one special type of lytic programmed cell death, featured in cell swelling, rupture, secretion of cell contents and remarkable proinflammation effect. In the process of pyroptosis, danger signalling and cellular events are detected by inflammasome, activating caspases and cleaving Gasdermin D (GSDMD), along with the secretion of IL-18 and IL-1β. Pyroptosis can be divided into canonical pathway and non-canonical pathway, and NLRP3 inflammasome is the most important initiator. Diabetic kidney disease (DKD) is one of the most serious microvascular complications in diabetes. Current evidence reported the stimulatory role of hyperglycaemia-induced cellular stress in renal cell pyroptosis, and different signalling pathways have been shown to regulate pyroptosis initiation. Additionally, the inflammation and cellular injury caused by pyroptosis are tightly implicated in DKD progression, aggravating renal fibrosis, glomerular sclerosis and tubular injury. Some registered hypoglycaemia agents exert suppressive activity in pyroptosis regulation pathway. Latest studies also reported some potential approaches to target the pyroptosis pathway, which effectively inhibits renal cell pyroptosis and alleviates DKD in in vivo or in vitro models. Therefore, comprehensively compiling the information associated with pyroptosis regulation in DKD is the main aim of this review, and we try to provide new insights for researchers to dig out more potential therapies of DKD.
Collapse
|