1
|
Das M, Kiruthiga C, Shafreen RB, Nachammai K, Selvaraj C, Langeswaran K. Harnessing the human microbiome and its impact on immuno-oncology and nanotechnology for next-generation cancer therapies. Eur J Pharmacol 2025; 996:177436. [PMID: 40023356 DOI: 10.1016/j.ejphar.2025.177436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The integration of microbiome research and nanotechnology represents a significant advancement in immuno-oncology, potentially improving the effectiveness of cancer immunotherapies. Recent studies highlight the influential role of the human microbiome in modulating immune responses, presenting new opportunities to enhance immune checkpoint inhibitors (ICIs) and other cancer therapies. Nanotechnology offers precise drug delivery and immune modulation capabilities, minimizing off-target effects while maximizing therapeutic outcomes. This review consolidates current knowledge on the interactions between the microbiome and the immune system, emphasizing the microbiome's impact on ICIs, and explores the incorporation of nanotechnology in cancer treatment strategies. Additionally, it provides a forward-looking perspective on the synergistic potential of microbiome modulation and nanotechnology to overcome existing challenges in immuno-oncology. This integrated approach may enhance the personalization and effectiveness of next-generation cancer treatments, paving the way for transformative patient care.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India
| | | | - R Beema Shafreen
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India
| | - Kathiresan Nachammai
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to Be University), Pimpri, Pune, 411018, India.
| | - K Langeswaran
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India; Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
2
|
Walczak ŁJ, Kosikowska U, Herbet M. The role and significance of the oncobiota in selected cancers: a review. Clin Exp Med 2025; 25:141. [PMID: 40335827 PMCID: PMC12058861 DOI: 10.1007/s10238-025-01598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/10/2025] [Indexed: 05/09/2025]
Abstract
This review provides an overview of research evidence focused on the microbial components essential to clinical cancer care, called the oncobiota (the interaction of human microbiota and cancer cells). It specifically examines the oncobiota in central nervous system cancer,breast cancer, pancreatic cancer, liver cancer, lung cancer, and cervical cancer. The literature review reveals insufficient knowledge about the oncobiota of organs once considered sterile. Many studies on oncobiota focus on small, geographically specific patient groups, and the absence of a reference (control) group complicates the development of microbial profiles for selected cancers. Consequently, this review aims to analyze the literature data and reports on the role of oncobiota in selected "sterile" organs and the resulting therapeutic or preventive implications. All relevant publications on oncobiota in patients with the selected cancers were considered to provide the most thorough analysis possible. Understanding the significance and role of oncobiota in the pathomechanisms of carcinogenesis may pave the way for targeted cancer prevention methods. Furthermore, therapeutic strategies based on oncobiota could represent a novel area of personalized cancer treatment. Additionally, oncobiota may serve as an additional diagnostic tool in oncology.
Collapse
Affiliation(s)
- Łucja Justyna Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093, Lublin, Poland.
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland.
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093, Lublin, Poland
| |
Collapse
|
3
|
Kiran NS, Chatterjee A, Yashaswini C, Deshmukh R, Alsaidan OA, Bhattacharya S, Prajapati BG. The gastrointestinal mycobiome in inflammation and cancer: unraveling fungal dysbiosis, pathogenesis, and therapeutic potential. Med Oncol 2025; 42:195. [PMID: 40323477 DOI: 10.1007/s12032-025-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025]
Abstract
The gastrointestinal mycobiome, comprising diverse fungal species, plays a significant role in gastrointestinal carcinogenesis and inflammatory bowel disease (IBD) pathogenesis. Recent studies have demonstrated that dysbiosis of the gut mycobiome, characterized by an overrepresentation of pathogenic fungi such as Candida albicans and Aspergillus, correlates with increased inflammation and cancer risk. For instance, C. albicans has been shown to induce colonic inflammation through the activation of pattern recognition receptors and the release of pro-inflammatory cytokines, exacerbating IBD symptoms and potentially facilitating tumorigenesis. Additionally, metagenomic analyses have revealed distinct fungal signatures in colorectal cancer tissues compared to adjacent healthy tissues, highlighting the potential of fungi as biomarkers for disease progression. Mechanistically, gut fungi contribute to disease through biofilm formation, mycotoxin secretion (e.g., aflatoxins, candidalysin), pro-inflammatory cytokine induction (e.g., IL-1β, IL-17), and disruption of epithelial barriers-creating a tumor-promoting and inflammation-prone environment. Furthermore, the interplay between fungi and the bacterial microbiome can amplify inflammatory responses, contributing to chronic inflammation and cancer development. Fungal interactions with bacterial communities also play a synergistic role in shaping mucosal immune responses and enhancing disease severity in both cancer and IBD contexts. As research continues to elucidate these complex fungal-host and fungal-bacterial interactions, targeting the gut mycobiome may offer novel therapeutic avenues for managing IBD and gastrointestinal cancers, emphasizing the need for integrated, mechanistically informed approaches to microbiome research.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia
| | - Sankha Bhattacharya
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-Be University, Shirpur, 425405, Maharashtra, India.
| | - Bhupendra G Prajapati
- Department of Pharmaceutics, Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Martinez P, Sabatier JM. Malignant tumors in vagal-innervated organs: Exploring its homeostatic role. Cancer Lett 2025; 617:217539. [PMID: 39954934 DOI: 10.1016/j.canlet.2025.217539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Cancer remains a significant global health challenge, with its progression shaped by complex and multifactorial mechanisms. Recent research suggests that the vagus nerve could play a critical role in mediating communication between the tumor microenvironment and the central nervous system (CNS). This review highlights the diversity of vagal afferent receptors, which could position the vagus nerve as a unique pathway for transmitting immune, metabolic, mechanical, and chemical signals from tumors to the CNS. Such signaling could influence systemic disease progression and tumor-related responses. Additionally, the vagus nerve's interactions with the microbiome and the renin-angiotensin system (RAS)-both implicated in cancer biology-further underscore its potential central role in modulating tumor-related processes. Contradictions in the literature, particularly concerning vagal fibers, illustrate the complexity of its involvement in tumor progression, with both tumor-promoting and tumor-suppressive effects reported depending on cancer type and context. These contradictions often overlook certain experimental biases, such as the failure to distinguish between vagal afferent and efferent fibers during vagotomies or the localized parasympathetic effects that cannot always be extrapolated to the systemic level. By focusing on the homeostatic role of the vagus nerve, understanding these mechanisms could open the door to new perspectives in cancer research related to the vagus nerve and lead to potential therapeutic innovations.
Collapse
Affiliation(s)
| | - Jean-Marc Sabatier
- Institut de NeuroPhysiopathologie (INP), CNRS UMR 7051, 27 Bd Jean Moulin, 13005, Marseille, France
| |
Collapse
|
5
|
Han B, Zhang Y, Feng X, Yang J, Wang B, Fang J, Wang Z, Zhu J, Niu G, Guo Y. The power of microbes: the key role of gut microbiota in the initiation and progression of colorectal cancer. Front Oncol 2025; 15:1563886. [PMID: 40297806 PMCID: PMC12034544 DOI: 10.3389/fonc.2025.1563886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer (CRC) is ranked as the third most prevalent malignancy and is a leading cause of cancer-related mortality globally, significantly affecting the health and longevity of middle-aged individuals and the elderly. The primary risk factors for CRC are mainly due to unhealthy dietary habits and lifestyle choices, and they have been shown to profoundly influence the composition of the gut microbiota. Given that dietary patterns are critical determinants of gut microbial diversity, a compelling association exists between gut microbiota and the pathogenesis of CRC. Recent research has increasingly focused on the intricate interplay between gut microbiota and CRC, exploring its role in disease initiation, progression, and the modulation of host immune responses. Investigations have demonstrated that certain specific microbial communities can promote inflammation, disrupt metabolic pathways, and produce carcinogenic compounds, thereby contributing to the development of CRC. Conversely, a diverse and balanced gut microbiome may confer protective effects against cancer through mechanisms such as the production of short-chain fatty acids and the enhancement of intestinal barrier integrity. This article provides a comprehensive overview of the characteristics of the gut microbial community and its complex relationship with CRC. It highlights potential mechanisms through which gut microbiota may influence CRC pathogenesis, including chronic inflammation, toxins, metabolites, epigenetic dysregulation, and immune regulatory dysfunction. Additionally, this review summarizes innovative strategies for CRC prevention and treatment, emphasizing the therapeutic potential of probiotics and natural plant extracts. By elucidating these connections, this work aims to enhance the understanding of the gut microbiome's role in CRC.
Collapse
Affiliation(s)
- Bo Han
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Yongfeng Zhang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Xue Feng
- Department of Cardiology, 63650 Military Hospital, Urumqi, China
| | - Jun Yang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Baolin Wang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Jiang Fang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Zhigang Wang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Jun Zhu
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Ge Niu
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Youxiang Guo
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| |
Collapse
|
6
|
Oyovwi MO, Ben-Azu B, Babawale KH. Therapeutic potential of microbiome modulation in reproductive cancers. Med Oncol 2025; 42:152. [PMID: 40188410 DOI: 10.1007/s12032-025-02708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025]
Abstract
The human microbiome, a complex ecosystem of microbial communities, plays a crucial role in physiological processes, and emerging research indicates a potential link between it and reproductive cancers. This connection highlights the significance of understanding the microbiome's influence on cancer development and treatment. A comprehensive review of current literature was conducted, focusing on studies that investigate the relationship between microbiome composition, reproductive cancer progression, and potential therapeutic approaches to modulate the microbiome. Evidence suggests that imbalances in the microbiome, known as dysbiosis, may contribute to the development and progression of reproductive cancers. Specific microbial populations have been associated with inflammatory responses, immune modulation, and even resistance to conventional therapies. Interventions such as probiotics, dietary modifications, and fecal microbiota transplantation have shown promise in restoring healthy microbiome function and improving cancer outcomes in pre-clinical models, with pilot studies in humans indicating potential benefits. This review explores the therapeutic potential of microbiome modulation in the management of reproductive cancers, discussing the mechanisms involved and the evidence supporting microbiome-targeted therapies. Future research is warranted to unravel the complex interactions between the microbiome and reproductive cancer pathophysiology, paving the way for innovative approaches.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Faculty of Basic Medical Sciences, Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Delta State University, Abraka, 330106, Delta State, Nigeria
| | - Kehinde Henrietta Babawale
- Faculty of Basic Medical Sciences, Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
7
|
McDonnell KJ. Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome. J Clin Med 2025; 14:2040. [PMID: 40142848 PMCID: PMC11943358 DOI: 10.3390/jcm14062040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oncologists increasingly recognize the microbiome as an important facilitator of health as well as a contributor to disease, including, specifically, cancer. Our knowledge of the etiologies, mechanisms, and modulation of microbiome states that ameliorate or promote cancer continues to evolve. The progressive refinement and adoption of "omic" technologies (genomics, transcriptomics, proteomics, and metabolomics) and utilization of advanced computational methods accelerate this evolution. The academic cancer center network, with its immediate access to extensive, multidisciplinary expertise and scientific resources, has the potential to catalyze microbiome research. Here, we review our current understanding of the role of the gut microbiome in cancer prevention, predisposition, and response to therapy. We underscore the promise of operationalizing the academic cancer center network to uncover the structure and function of the gut microbiome; we highlight the unique microbiome-related expert resources available at the City of Hope of Comprehensive Cancer Center as an example of the potential of team science to achieve novel scientific and clinical discovery.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
8
|
An J, Kim BS, Yoon HJ. Combination of gut microbiota, proinflammatory cytokine, and 18F-FDG PET as potential indicators for predicting breast cancer recurrence. Sci Rep 2025; 15:8313. [PMID: 40065046 PMCID: PMC11894217 DOI: 10.1038/s41598-025-92233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer occurs at a younger age compared to western countries in South Korea. Despite advancements in treatment methods such as targeted therapy and immunotherapy, the increasing number of patients underscores the importance of improving disease-free survival (DFS). In this study, we evaluated the associations between gut microbiota composition, inflammatory cytokine levels, and breast cancer recurrence in preoperative patients. Additionally, we developed a composite prognostic index by integrating these factors with PET/CT indices and clinical prognostic factors. This study showed that Prevotella abundance was significantly higher in the DFS group than in the recurrence group, and higher Prevotella abundance was associated with lower levels of the inflammatory cytokine IL-1β. Survival analysis revealed that patients with low Prevotella abundance and high IL-1β levels had a higher risk of breast cancer recurrence. PET markers, such as SUVtumor, SUVVAT, and SUVspleen, were also found to be significant prognostic indicators, with lower values associated with better survival outcomes. An integrated predictive model combining gut microbiota composition, cytokine levels, PET indices, and clinical factors demonstrated superior accuracy (AUC: 0.9025) in predicting breast cancer recurrence compared to individual components.
Collapse
Affiliation(s)
- Jeongshin An
- Institute of Convergence Medicine Research, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, 1071 Anyangcheon‑ro, Yangcheon‑gu, Seoul, 07985, Republic of Korea
- Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, 1071 Anyangcheon‑ro, Yangcheon‑gu, Seoul, 07985, Republic of Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, 260 Gonghang-daero, Gangseo-gu, Seoul, 07804, Republic of Korea.
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, 1071 Anyangcheon‑ro, Yangcheon‑gu, Seoul, 07985, Republic of Korea.
| |
Collapse
|
9
|
El-Baz AM, El-Mahmoudy AA, Saber S, ElRakaiby MT. The coadministration of Lactobacillus probiotic augments the antitumor effect of telmisartan in rats. AMB Express 2025; 15:38. [PMID: 40044961 PMCID: PMC11883082 DOI: 10.1186/s13568-025-01843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent disease with a high mortality rate and is significantly affected by microbial dysbiosis. Recent research suggests that modulation of the gut microbiome can have therapeutic benefits and that Angiotensin-II Type 1 Receptor (AT1R) can stimulate cell growth, angiogenesis, and resistance to apoptosis in various cancers. In this study, the adjunctive administration of Lactobacillus spp. and telmisartan, an AT1R blocker, was explored in the treatment of CRC. The effect of telmisartan and a mixture of probiotic species, Lactobacillus delbrueckii and Lactobacillus fermentum, was assessed on key biomarkers and selected gut microbiota taxa in 1,2-dimethylhydrazine-induced CRC in rats. Angiogenesis, inflammation, and apoptosis were assessed by measuring vascular endothelial growth factor (VEGF), carcinoembryonic antigen (CEA), Interleukin 6 (IL-6), and Annexin V levels, respectively. The relative abundance of selected gut microbial taxa, including Bacteroides spp., Clostridium spp., Clostridium coccoides, Ruminococcus spp., and Lactobacillus spp. was analyzed to determine the change in the microbial composition in the different experimental groups of the animal model. This study demonstrated that the unique combination therapy using a Lactobacillus mixture and telmisartan effectively reduced VEGF and IL-6 levels, indicating decreased angiogenesis and inflammation. Lactobacillus spp. co-administration with telmisartan boosted programmed cell death, reversed dysbiosis, improved histopathological outcomes, and reduced CEA levels. These findings offer a new perspective on the role of Lactobacillus spp. and telmisartan in CRC treatment. Further research on their adjunctive use and therapeutic potential are needed to enhance clinical efficacy.
Collapse
Affiliation(s)
- Ahmed M El-Baz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Amany A El-Mahmoudy
- Dakahliya Health Directorate, Ministry of Health and Population, Dakahliya, 35931, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Marwa T ElRakaiby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
10
|
El-Baz AM, El-Mahmoudy AA, Saber S, ElRakaiby MT. The coadministration of Lactobacillus probiotic augments the antitumor effect of telmisartan in rats. AMB Express 2025; 15:38. [DOI: https:/doi.org/10.1186/s13568-025-01843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/07/2025] [Indexed: 05/14/2025] Open
Abstract
Abstract
Colorectal cancer (CRC) is a prevalent disease with a high mortality rate and is significantly affected by microbial dysbiosis. Recent research suggests that modulation of the gut microbiome can have therapeutic benefits and that Angiotensin-II Type 1 Receptor (AT1R) can stimulate cell growth, angiogenesis, and resistance to apoptosis in various cancers. In this study, the adjunctive administration of Lactobacillus spp. and telmisartan, an AT1R blocker, was explored in the treatment of CRC. The effect of telmisartan and a mixture of probiotic species, Lactobacillus delbrueckii and Lactobacillus fermentum, was assessed on key biomarkers and selected gut microbiota taxa in 1,2-dimethylhydrazine-induced CRC in rats. Angiogenesis, inflammation, and apoptosis were assessed by measuring vascular endothelial growth factor (VEGF), carcinoembryonic antigen (CEA), Interleukin 6 (IL-6), and Annexin V levels, respectively. The relative abundance of selected gut microbial taxa, including Bacteroides spp., Clostridium spp., Clostridium coccoides, Ruminococcus spp., and Lactobacillus spp. was analyzed to determine the change in the microbial composition in the different experimental groups of the animal model. This study demonstrated that the unique combination therapy using a Lactobacillus mixture and telmisartan effectively reduced VEGF and IL-6 levels, indicating decreased angiogenesis and inflammation. Lactobacillus spp. co-administration with telmisartan boosted programmed cell death, reversed dysbiosis, improved histopathological outcomes, and reduced CEA levels. These findings offer a new perspective on the role of Lactobacillus spp. and telmisartan in CRC treatment. Further research on their adjunctive use and therapeutic potential are needed to enhance clinical efficacy.
Collapse
|
11
|
Blacklock KLB, Donnelly K, Lu Y, del Pozo J, Glendinning L, Polton G, Selmic L, Tanis J, Killick D, Parys M, Morris JS, Breathnach I, Zago S, Gould SM, Shaw DJ, Tivers MS, Malucelli D, Marques A, Purzycka K, Cantatore M, Mathers ME, Stares M, Meynert A, Patton EE. Oronasal mucosal melanoma is defined by two transcriptional subtypes in humans and dogs with implications for diagnosis and therapy. J Pathol 2025; 265:245-259. [PMID: 39828982 PMCID: PMC11794980 DOI: 10.1002/path.6377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/31/2024] [Indexed: 01/22/2025]
Abstract
Mucosal melanoma is a rare melanoma subtype associated with a poor prognosis and limited existing therapeutic interventions, in part due to a lack of actionable targets and translational animal models for preclinical trials. Comprehensive data on this tumour type are scarce, and existing data often overlooks the importance of the anatomical site of origin. We evaluated human and canine oronasal mucosal melanoma (OMM) to determine whether the common canine disease could inform the rare human equivalent. Using a human and canine primary OMM cohort of treatment-naive archival tissue, alongside clinicopathological data, we obtained transcriptomic, immunohistochemical, and microbiome data from both species. We defined the transcriptomic landscape in both species and linked our findings to immunohistochemical, microbiome, and clinical data. Human and dog OMM stratified into two distinctive transcriptional groups, which we defined using a species-independent 41-gene signature. These two subgroups are termed CTLA4-high and MET-high and indicate actionable targets for OMM patients. To guide clinical decision-making, we developed immunohistochemical diagnostic tools that distinguish between transcriptomic subgroups. We found that OMM had conserved transcriptomic subtypes and biological similarity between human and canine OMM, with significant implications for patient classification, treatment, and clinical trial design. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kelly L Bowlt Blacklock
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteEdinburghUK
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Kevin Donnelly
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Yuting Lu
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Jorge del Pozo
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteEdinburghUK
| | - Laura Glendinning
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteEdinburghUK
| | | | - Laura Selmic
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOHUSA
| | - Jean‐Benoit Tanis
- Department of Small Animal Clinical Sciences, Institute of Infection, Veterinary and Ecological ScienceUniversity of LiverpoolNestonUK
| | - David Killick
- Department of Small Animal Clinical Sciences, Institute of Infection, Veterinary and Ecological ScienceUniversity of LiverpoolNestonUK
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteEdinburghUK
| | | | | | | | | | - Darren J Shaw
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteEdinburghUK
| | - Michael S Tivers
- Paragon Veterinary Referrals, Paragon Point, Red Hall CrescentWakefieldUK
| | - Davide Malucelli
- Paragon Veterinary Referrals, Paragon Point, Red Hall CrescentWakefieldUK
| | | | - Katarzyna Purzycka
- Anderson Moores Veterinary Specialists, The Granary, Bunstead BarnsHampshireUK
| | - Matteo Cantatore
- Anderson Moores Veterinary Specialists, The Granary, Bunstead BarnsHampshireUK
| | | | - Mark Stares
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Edinburgh Cancer Centre, Western General Hospital, Crewe RoadEdinburghUK
| | - Alison Meynert
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
12
|
Abbas M, Tangney M. The oncobiome; what, so what, now what? MICROBIOME RESEARCH REPORTS 2025; 4:16. [PMID: 40207280 PMCID: PMC11977386 DOI: 10.20517/mrr.2024.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Microbial communities inhabiting various body sites play critical roles in the initiation, progression, and treatment of cancer. The gut microbiota, a highly diverse microbial ecosystem, interacts with immune cells to modulate inflammation and immune surveillance, influencing cancer risk and therapeutic outcomes. Local tissue microbiota may impact the transition from premalignant states to malignancy. Characterization of the intratumoral microbiota increasingly reveals distinct microbiomes that may influence tumor growth, immune responses, and treatment efficacy. Various bacteria species have been reported to modulate cancer therapies through mechanisms such as altering drug metabolism and shaping the tumor microenvironment (TME). For instance, gut or intratumoral bacterial enzymatic activity can convert prodrugs into active forms, enhancing therapeutic effects or, conversely, inactivating small-molecule chemotherapeutics. Specific bacterial species have also been linked to improved responses to immunotherapy, underscoring the microbiome's role in treatment outcomes. Furthermore, unique microbial signatures in cancer patients, compared with healthy individuals, demonstrate the diagnostic potential of microbiota. Beyond the gut, tumor-associated and local microbiomes also affect therapy by influencing inflammation, tumor progression, and drug resistance. This review explores the multifaceted relationships between microbiomes and cancer, focusing on their roles in modulating the TME, immune activation, and treatment efficacy. The diagnostic and therapeutic potential of bacterial members of microbiota represents a promising avenue for advancing precision oncology and improving patient outcomes. By leveraging microbial biomarkers and interventions, new strategies can be developed to optimize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Munawar Abbas
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Cancer Research@UCC, University College Cork, Cork, T12 XF62, Ireland
| | - Mark Tangney
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Cancer Research@UCC, University College Cork, Cork, T12 XF62, Ireland
| |
Collapse
|
13
|
Kiouri DP, Batsis GC, Mavromoustakos T, Giuliani A, Chasapis CT. Structure-Based Modeling of the Gut Bacteria-Host Interactome Through Statistical Analysis of Domain-Domain Associations Using Machine Learning. BIOTECH 2025; 14:13. [PMID: 40227324 PMCID: PMC11940256 DOI: 10.3390/biotech14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome's influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein-protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial-human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study's findings contribute to the understanding of the intricate gut microbiome-host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios C. Batsis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| |
Collapse
|
14
|
Zhang G, Huang X, Li R, Hong S, Zheng X, Huang K, Wang J, Tao Q, Shi X. Molecular and cellular mechanisms of PDAC progression based on RETN-CAP1-mediated macrophage-fibroblast crosstalk: Action of ITGB5 and ITGB1 recombinant proteins. Int J Biol Macromol 2025; 290:139078. [PMID: 39719238 DOI: 10.1016/j.ijbiomac.2024.139078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis, and the main objective of this study was to reveal the specific mechanism of action of TN-CAP1-mediated macrophage-fibroblast crossinulation in the progression of PDAC, and to evaluate the function and potential therapeutic value of ITGB5 and ITGB1 recombinant proteins in this process. The expression of TN-CAP1 in tumor tissues of PDAC patients was analyzed by immunohistochemistry and compared with normal pancreatic tissues. The co-culture system of macrophages and fibroblasts was constructed using in vitro cell culture model. The intercellular interactions and their effects on the proliferation, migration and invasion of tumor cells were observed by adding or knocking down ITGB5 and ITGB1 proteins. Western blot and RT-PCR were also used to detect the expression changes of related signaling pathway proteins and mRNA, which verified the effects of ITGB5 and ITGB1 recombinant proteins on tumor growth and metastasis in vivo. In vitro experiments showed that the addition of ITGB5 and ITGB1 recombinant proteins significantly enhanced the interaction between macrophages and fibroblasts, and promoted the proliferation and migration of tumor cells. Specifically, ITGB5 and ITGB1 recombinant proteins promote tumor cell aggressiveness by activating the FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Guangquan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaozhun Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ruixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shengjie Hong
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiyan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kai Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jicai Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiang Tao
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China..
| | - Xianjie Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China..
| |
Collapse
|
15
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Wawrety W, Kedziora ,A. Role of bacteria in cancers and their therapeutic potential: Review of current knowledge. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:273-282. [PMID: 39906620 PMCID: PMC11790194 DOI: 10.22038/ijbms.2024.77667.16798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/14/2024] [Indexed: 02/06/2025]
Abstract
Cancers are extremely dynamic diseases that can actively cause refractorines to be gained from applied therapies, which is why they are at the forefront of deaths worldwide. In this literature review, we covered the most recent and important discoveries regarding the influence of human microbiota, including tumor bacteriome, on the development and treatment of cancer. Advances in research on microbial communities have enabled us to discover the role of the human microbiome in the development and course of this disease, helping us understand neoplasms better and design new potential therapies. As we show through our findings, by immunomodulation and the secretion of certain chemical substances, the correct bacteriome of the intestinal tract, respiratory system, or skin can protect humans against cancer development and help during the treatment process. Bacteria also reside inside tumors, forming part of the tumor microenvironment (TME), where they interact with immunological and cancer cells in many complex ways. Some bacteria, such as Pseudomonas aeruginosa or Akkermansia muciniphila, can stimulate anticancer cell-mediated immune responses or even directly lead to cancer cell death. We also present the clinical possibilities of using some live, usually modified bacteria to develop bacteriotherapies. Modifying the gut microbiome to stimulate standard treatment is also important. Research on the microbiome and cancer remains a challenging topic in microbiology, having a great potential for advancements in cancer therapy in the future, and is continuously becoming a more and more popular field of research, as shown by our statistical analysis of PubMed data.
Collapse
Affiliation(s)
- Wojciech Wawrety
- Department of Microbiology Faculty of Biological Sciences University of Wroclaw Przybyszewskiego 63, 51-148 Wroclaw, Poland
| | - , Anna Kedziora
- Department of Microbiology Faculty of Biological Sciences University of Wroclaw Przybyszewskiego 63, 51-148 Wroclaw, Poland
| |
Collapse
|
17
|
Biennier S, Fontaine M, Duquenoy A, Schwintner C, Doré J, Corvaia N. Narrative Review: Advancing Dysbiosis Treatment in Onco-Hematology with Microbiome-Based Therapeutic Approach. Microorganisms 2024; 12:2256. [PMID: 39597645 PMCID: PMC11596191 DOI: 10.3390/microorganisms12112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the complex relationship between gut dysbiosis and hematological malignancies, focusing on graft-versus-host disease (GvHD) in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. We discuss how alterations in microbial diversity and composition can influence disease development, progression, and treatment outcomes in blood cancers. The mechanisms by which the gut microbiota impacts these conditions are examined, including modulation of immune responses, production of metabolites, and effects on intestinal barrier function. Recent advances in microbiome-based therapies for treating and preventing GvHD are highlighted, with emphasis on full ecosystem standardized donor-derived products. Overall, this review underscores the growing importance of microbiome research in hematology-oncology and its potential to complement existing treatments and improve outcomes for thousands of patients worldwide.
Collapse
Affiliation(s)
- Salomé Biennier
- MaaT Pharma, 69007 Lyon, France; (S.B.); (A.D.); (C.S.); (N.C.)
| | | | - Aurore Duquenoy
- MaaT Pharma, 69007 Lyon, France; (S.B.); (A.D.); (C.S.); (N.C.)
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, 78350 Jouy-en-Josas, France;
| | | |
Collapse
|
18
|
Hrubesz G, Leigh J, Ng TL. Understanding the relationship between breast cancer, immune checkpoint inhibitors, and gut microbiota: a narrative review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:31. [PMID: 39534584 PMCID: PMC11557166 DOI: 10.21037/tbcr-24-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective The composition of gut microbiota plays an important role in predicting and influencing outcomes of cancer treated with immunotherapy. Our objective is to summarize the role of gut microbiota and immunotherapy in breast cancer. Methods A systematic search from inception until July 2024 of key search terms including immunity, breast neoplasm, gastrointestinal microbiome/microbiota, fecal microbiota transplantation, pro- and prebiotics, antibiotics and immunotherapy using EMBASE, MEDLINE and CENTRAL was conducted. The results were screened by two reviewers independently and synthesized and presented descriptively. Key Content and Findings Thirteen studies (5 clinical, 8 pre-clinical) met the eligibility criteria and were published from 2020-2024. Clinical studies showed that the composition and diversity of gut microbiota was associated with patient response to immunotherapy. In pre-clinical studies, dysbiotic states induced by obesity, antibiotics, and diet were associated with immunosuppression and influenced response to programmed cell death-ligand 1 (PD-L1) inhibitors. Microbiota-modulating treatments such as probiotics showed the ability to enhance response to immunotherapy, indicating their potential use as adjunct therapies in breast cancer treatment. Conclusions The composition of gut microbiota could help predict the chance of response to immunotherapy, and modulating gut microbiota has the potential to enhance the efficacy of chemo-immunotherapy in breast cancer. However, the available data relating to breast cancer are limited. Larger prospective studies are required to further elucidate their role as a biomarker and treatment.
Collapse
Affiliation(s)
- Gabriella Hrubesz
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Jennifer Leigh
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Terry L Ng
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Al-Akayleh F, Agha ASAA, Al-Remawi M, Al-Adham ISI, Daadoue S, Alsisan A, Khattab D, Malath D, Salameh H, Al-Betar M, AlSakka M, Collier PJ. What We Know About the Actual Role of Traditional Probiotics in Health and Disease. Probiotics Antimicrob Proteins 2024; 16:1836-1856. [PMID: 38700762 DOI: 10.1007/s12602-024-10275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 10/02/2024]
Abstract
The complex relationship between probiotics and human health goes beyond their traditional function in gut health, generating considerable interest for their broad potential in disease treatment. This review explores the various functions of probiotics, highlighting their impact on the immune system, their benefits for gut and oral health, their effects on metabolic and neurological disorders, and their emerging potential in cancer therapy. We give significant importance to studying the effects of probiotics on the gut-brain axis, revealing new and non-invasive therapeutic approaches for complex neurological disorders. In addition, we expand the discussion to encompass the impact of probiotics on the gut-liver and gut-lung axes, recognizing their systemic effects and potential in treating respiratory and hepatic conditions. The use of probiotic "cocktails" to improve cancer immunotherapy outcomes indicates a revolutionary approach to oncological treatments. The review explores the specific benefits associated with various strains and the genetic mechanisms that underlie them. This study sets the stage for precision medicine, where probiotic treatments can be tailored to meet the unique needs of each patient. Recent developments in delivery technologies, including microencapsulation and nanotechnology, hold great potential for enhancing the effectiveness and accuracy of probiotic applications in therapeutic settings. This study provides a strong basis for future scientific research and clinical use, promoting the incorporation of probiotics into treatment plans for a wide range of diseases. This expands our understanding of the potential benefits of probiotics in modern medicine.
Collapse
Affiliation(s)
- Faisal Al-Akayleh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
- Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Ibrahim S I Al-Adham
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Saifeddin Daadoue
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Anagheem Alsisan
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Dana Khattab
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Doha Malath
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Haneen Salameh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Maya Al-Betar
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Motaz AlSakka
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
20
|
Tirgar A, Rezaei M, Ehsani M, Salmani Z, Rastegari A, Jafari E, Khandani BK, Nakhaee N, Khaksari M, Moazed V. Exploring the synergistic effects of vitamin D and synbiotics on cytokines profile, and treatment response in breast cancer: a pilot randomized clinical trial. Sci Rep 2024; 14:21372. [PMID: 39266591 PMCID: PMC11393349 DOI: 10.1038/s41598-024-72172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
This study was designed to investigate the effect of vitamin D and/or synbiotics on the response to treatment, cytokines profile and hormonal biomarkers in breast cancer patients undergoing neoadjuvant therapy. A total of 76 patients were recruited and completed the course of the intervention between 2019 and 2021 in Kerman, Iran. breast cancer patients were randomly enrolled in this study. Patients divided into four groups to receive one of the following regimens: placebo, vitamin D, synbiotics and a combination of vitamin D and synbiotics. clinicopathologic parameters, inflammatory and anti-inflammatory biomarkers and hormonal levels were measured at the baseline and four months after intervention. The study results found no clear link between the interventions and achieving pathological complete response (pCR), and a similar trend was observed in Ki-67 index examination. After neoadjuvant therapy, TNF-α concentrations decreased, with vitamin D supplementation moderating this decline. Vitamin D supplemented groups showed a significant increase in serum IL-6 levels. While IL-10 levels decreased in the placebo group, all intervention groups were protected from this decline. Moreover, there was a notable increase in the anti-inflammatory index, particularly in the group receiving both vitamin D and synbiotic supplementation, suggesting potential synergistic anti-inflammatory effects from their combined administration. The outcomes suggest a potential anti-inflammatory function of this combination. Consequently, more extensive studies with prolonged follow-up periods and substantial sample sizes are warranted to thoroughly evaluate their potential benefits for breast cancer patients.
Collapse
Grants
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
- 98000252 Kerman University of Medical Sciences, Iran
Collapse
Affiliation(s)
- Aliasghar Tirgar
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaei
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Salmani
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Armin Rastegari
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Department of Pathology, Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Behjat Kalantari Khandani
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nouzar Nakhaee
- Health Services Management Research Center, Institute of Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Moazed
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
21
|
Ikegami M, Narabayashi H, Nakata K, Yamashita M, Sugi Y, Fuji Y, Matsufuji H, Harata G, Yoda K, Miyazawa K, Nakanishi Y, Takahashi K. Intervention in gut microbiota increases intestinal γ-aminobutyric acid and alleviates anxiety behavior: a possible mechanism via the action on intestinal epithelial cells. Front Cell Infect Microbiol 2024; 14:1421791. [PMID: 39301289 PMCID: PMC11410766 DOI: 10.3389/fcimb.2024.1421791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
The role of the gut microbiota in the gut-brain axis has attracted attention in recent years. Some gut microbiota produces γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in mammals, in vitro, but the correlation between gut microbiota composition and intestinal GABA concentration, as well as the action of intestinal GABA in vivo, are poorly understood. Herein, we found that the intestinal GABA concentration was increased in mice by the intervention of the gut microbiota with neomycin or Bifidobacterium bifidum TMC3115 (TMC3115). Administration of TMC3115 reduced anxiety without affecting serum levels of serotonin, corticosterone, or GABA. We further found that intestinal epithelial cells expressed GABA receptor subunits and mediated mitogen-activated protein kinase signaling upon GABA stimulation. In addition, administration of TMC3115 induced mitogen-activated protein kinase signaling in colonic epithelial cells but not in small intestinal epithelial cells in mice. These results indicate that GABA produced by the gut microbiota, mainly in the colon, may affect host behavioral characteristics via GABA receptors expressed in intestinal epithelial cells without being transferred to the blood. This study suggests a novel mechanism by which intestinal GABA exerts physiological effects, even in the presence of the blood-brain barrier.
Collapse
Affiliation(s)
- Mion Ikegami
- Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Hikari Narabayashi
- Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Kazuaki Nakata
- Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Miyu Yamashita
- Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Yutaka Sugi
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yushiro Fuji
- Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Hiroshi Matsufuji
- Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kazutoyo Yoda
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kenji Miyazawa
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd, Yokohama, Kanagawa, Japan
| | - Yusuke Nakanishi
- Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kyoko Takahashi
- Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
22
|
Li Q, Liu D, Liang M, Zhu Y, Yousaf M, Wu Y. Mechanism of probiotics in the intervention of colorectal cancer: a review. World J Microbiol Biotechnol 2024; 40:306. [PMID: 39160377 DOI: 10.1007/s11274-024-04112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The human microbiome interacts with the host mainly in the intestinal lumen, where putrefactive bacteria are suggested to promote colorectal cancer (CRC). In contrast, probiotics and their isolated components and secreted substances, display anti-tumor properties due to their ability to modulate gut microbiota composition, promote apoptosis, enhance immunity, resist oxidation and alter metabolism. Probiotics help to form a solid intestinal barrier against damaging agents via altering the gut microbiota and preventing harmful microbes from colonization. Probiotic strains that specifically target essential proteins involved in the process of apoptosis can overcome CRC resistance to apoptosis. They can increase the production of anti-inflammatory cytokines, essential in preventing carcinogenesis, and eliminate cancer cells by activating T cell-mediated immune responses. There is a clear indication that probiotics optimize the antioxidant system, decrease radical generation, and detect and degrade potential carcinogens. In this review, the pathogenic mechanisms of pathogens in CRC and the recent insights into the mechanism of probiotics in CRC prevention and therapy are discussed to provide a reference for the actual application of probiotics in CRC.
Collapse
Affiliation(s)
- Qinqin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongmei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Minghua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yichao Zhu
- Laboratory of Cell Engineering, Research Unit of Cell Death Mechanism, Beijing Institute of Biotechnology, Chinese Academy of Medical Sciences (2021RU008), Beijing, 100071, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yaping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
23
|
Wu C, Wei X, Huang Z, Zheng Z, Zhang W, Chen J, Hong H, Li W. Urinary microbiome dysbiosis is associated with an inflammatory environment and perturbed fatty acids metabolism in the pathogenesis of bladder cancer. J Transl Med 2024; 22:628. [PMID: 38970045 PMCID: PMC11227203 DOI: 10.1186/s12967-024-05446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Bladder cancer is a common malignancy with high recurrence rate. Early diagnosis and recurrence surveillance are pivotal to patients' outcomes, which require novel minimal-invasive diagnostic tools. The urinary microbiome is associated with bladder cancer and can be used as biomarkers, but the underlying mechanism is to be fully illustrated and diagnostic performance to be improved. METHODS A total of 23 treatment-naïve bladder cancer patients and 9 non-cancerous subjects were enrolled into the Before group and Control group. After surgery, 10 patients from the Before group were further assigned into After group. Void mid-stream urine samples were collected and sent for 16S rDNA sequencing, targeted metabolomic profiling, and flow cytometry. Next, correlations were analyzed between microbiota, metabolites, and cytokines. Finally, receiver operating characteristic (ROC) curves of the urinary biomarkers were plotted and compared. RESULTS Comparing to the Control group, levels of IL-6 (p < 0.01), IL-8 (p < 0.05), and IL-10 (p < 0.05) were remarkably elevated in the Before group. The α diversity of urine microbiome was also significantly higher, with the feature microbiota positively correlated to the level of IL-6 (r = 0.58, p < 0.01). Significant differences in metabolic composition were also observed between the Before and Control groups, with fatty acids and fatty acylcarnitines enriched in the Before group. After tumor resection, cytokine levels and the overall microbiome structure in the After group remained similar to that of the Before group, but fatty acylcarnitines were significantly reduced (p < 0.05). Pathway enrichment analysis revealed beta-oxidation of fatty acids was significantly involved (p < 0.001). ROC curves showed that the biomarker panel of Actinomycetaceae + arachidonic acid + IL-6 had superior diagnostic performance, with sensitivity of 0.94 and specificity of 1.00. CONCLUSIONS Microbiome dysbiosis, proinflammatory environment and altered fatty acids metabolism are involved in the pathogenesis of bladder cancer, which may throw light on novel noninvasive diagnostic tool development.
Collapse
Affiliation(s)
- Cen Wu
- Department of Urology, Fujian Medical University Affiliated Quanzhou First Hospital, Fujian, 362011, China
| | - Xiaoyu Wei
- Department of Urology, Fujian Medical University Affiliated Quanzhou First Hospital, Fujian, 362011, China
| | - Zhiyang Huang
- Department of Urology, Fujian Medical University Affiliated Quanzhou First Hospital, Fujian, 362011, China
| | - Zhixiong Zheng
- Department of Urology, Fujian Medical University Affiliated Quanzhou First Hospital, Fujian, 362011, China
| | - Wei Zhang
- Department of Urology, Fujian Medical University Affiliated Quanzhou First Hospital, Fujian, 362011, China
| | - Jiajun Chen
- Department of Urology, Fujian Medical University Affiliated Quanzhou First Hospital, Fujian, 362011, China
| | - Hongchang Hong
- Department of Urology, Fujian Medical University Affiliated Quanzhou First Hospital, Fujian, 362011, China
| | - Weili Li
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Biotechnology Co., Ltd., 180 Zhangheng Road, Pudong District, Shanghai, 201204, China.
| |
Collapse
|
24
|
Sun M, Zhang Y, Gao W, He Y, Wang Y, Sun Y, Kuang H. Polysaccharides from Porphyra haitanensis: A Review of Their Extraction, Modification, Structures, and Bioactivities. Molecules 2024; 29:3105. [PMID: 38999057 PMCID: PMC11243187 DOI: 10.3390/molecules29133105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Porphyra haitanensis (P. haitanensis), an important food source for coastal residents in China, has a long history of medicinal and edible value. P. haitanensis polysaccharides are some of the main active ingredients in P. haitanensis. It is worth noting that P. haitanensis polysaccharides have a surprising and satisfactory biological activity, which explains the various benefits of P. haitanensis to human health, such as anti-oxidation, immune regulation, anti-allergy, and anticancer properties. Hence, a systematic review aimed at comprehensively summarizing the recent research advances in P. haitanensis polysaccharides is necessary for promoting their better understanding. In this review, we systematically and comprehensively summarize the research progress on the extraction, purification, structural characterization, modification, and biological activity of P. haitanensis polysaccharides and address the shortcomings of the published research and suggest area of focus for future research, providing a new reference for the exploitation of polysaccharides from P. haitanensis in the fields of medicine and functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China; (M.S.); (Y.Z.); (W.G.); (Y.H.); (Y.W.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China; (M.S.); (Y.Z.); (W.G.); (Y.H.); (Y.W.)
| |
Collapse
|
25
|
Wu-Chuang A, Mateos-Hernandez L, Abuin-Denis L, Maitre A, Avellanet J, García A, Fuentes D, Cabezas-Cruz A. Exploring the impact of breast cancer on colonization resistance of mouse microbiota using network node manipulation. Heliyon 2024; 10:e30914. [PMID: 38784541 PMCID: PMC11112314 DOI: 10.1016/j.heliyon.2024.e30914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, a global health concern affecting women, has been linked to alterations in the gut microbiota, impacting various aspects of human health. This study investigates the interplay between breast cancer and the gut microbiome, particularly focusing on colonization resistance-an essential feature of the microbiota's ability to prevent pathogenic overgrowth. Using a mouse model of breast cancer, we employ diversity analysis, co-occurrence network analysis, and robustness tests to elucidate the impact of breast cancer on microbiome dynamics. Our results reveal that breast cancer exposure affects the bacterial community's composition and structure, with temporal dynamics playing a role. Network analysis demonstrates that breast cancer disrupts microbial interactions and decreases network complexity, potentially compromising colonization resistance. Moreover, network robustness analysis shows the susceptibility of the microbiota to node removal, indicating potential vulnerability to pathogenic colonization. Additionally, predicted metabolic profiling of the microbiome highlights the significance of the enzyme EC 6.2.1.2 - Butyrate--CoA ligase, potentially increasing butyrate, and balancing the reduction of colonization resistance. The identification of Rubrobacter as a key contributor to this enzyme suggests its role in shaping the microbiota's response to breast cancer. This study uncovers the intricate relationship between breast cancer, the gut microbiome, and colonization resistance, providing insights into potential therapeutic strategies and diagnostic approaches for breast cancer patients.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lianet Abuin-Denis
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Janet Avellanet
- Center of Molecular Immunology (CIM), Calle 15 esq. 216, Atabey, Playa, Havana, Cuba
| | - Arlem García
- Center of Molecular Immunology (CIM), Calle 15 esq. 216, Atabey, Playa, Havana, Cuba
| | - Dasha Fuentes
- National Center for Laboratory Animal Breeding (CENPALAB), Calle 3ra # 40759 entre 6ta y carretera de Tirabeque, Rpto La Unión, Boyeros, Havana, Cuba
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
26
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
27
|
Yadav A, Kaushik M, Tiwari P, Dada R. From microbes to medicine: harnessing the gut microbiota to combat prostate cancer. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:187-197. [PMID: 38803512 PMCID: PMC11129862 DOI: 10.15698/mic2024.05.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiome (GM) has been identified as a crucial factor in the development and progression of various diseases, including cancer. In the case of prostate cancer, commensal bacteria and other microbes are found to be associated with its development. Recent studies have demonstrated that the human GM, including Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectale, and Mycoplasma genitalium, are involved in prostate cancer development through both direct and indirect interactions. However, the pathogenic mechanisms of these interactions are yet to be fully understood. Moreover, the microbiota influences systemic hormone levels and contributes to prostate cancer pathogenesis. Currently, it has been shown that supplementation of prebiotics or probiotics can modify the composition of GM and prevent the onset of prostate cancer. The microbiota can also affect drug metabolism and toxicity, which may improve the response to cancer treatment. The composition of the microbiome is crucial for therapeutic efficacy and a potential target for modulating treatment response. However, their clinical application is still limited. Additionally, GM-based cancer therapies face limitations due to the complexity and diversity of microbial composition, and the lack of standardized protocols for manipulating gut microbiota, such as optimal probiotic selection, treatment duration, and administration timing, hindering widespread use. Therefore, this review provides a comprehensive exploration of the GM's involvement in prostate cancer pathogenesis. We delve into the underlying mechanisms and discuss their potential implications for both therapeutic and diagnostic approaches in managing prostate cancer. Through this analysis, we offer valuable insights into the pivotal role of the microbiome in prostate cancer and its promising application in future clinical settings.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | | | - Prabhakar Tiwari
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | - Rima Dada
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| |
Collapse
|
28
|
Shen H, Zhang C, Li S, Liang Y, Lee LT, Aggarwal N, Wun KS, Liu J, Nadarajan SP, Weng C, Ling H, Tay JK, Wang DY, Yao SQ, Hwang IY, Lee YS, Chang MW. Prodrug-conjugated tumor-seeking commensals for targeted cancer therapy. Nat Commun 2024; 15:4343. [PMID: 38773197 PMCID: PMC11109227 DOI: 10.1038/s41467-024-48661-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery. We identify an oral commensal strain of Lactobacillus plantarum with an intrinsic cancer-binding mechanism and engineer the strain to enable the surface loading of anticancer prodrugs, with nasopharyngeal carcinoma (NPC) as a model cancer. The engineered commensals show specific binding to NPC via OppA-mediated recognition of surface heparan sulfate, and the loaded prodrugs are activated by tumor-associated biosignals to release SN-38, a chemotherapy compound, near NPC. In vitro experiments demonstrate that the prodrug-loaded microbes significantly increase the potency of SN-38 against NPC cell lines, up to 10-fold. In a mouse xenograft model, intravenous injection of the engineered L. plantarum leads to bacterial colonization in NPC tumors and a 67% inhibition in tumor growth, enhancing the efficacy of SN-38 by 54%.
Collapse
Affiliation(s)
- Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Changyu Zhang
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shengjie Li
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Ting Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Kwok Soon Wun
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Saravanan Prabhu Nadarajan
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Weng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Wilmar International Limited, Singapore, Singapore
| | - Joshua K Tay
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore, Singapore.
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National Centre for Engineering Biology (NCEB), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Messaritakis I, Koulouris A, Boukla E, Vogiatzoglou K, Lagkouvardos I, Intze E, Sfakianaki M, Chondrozoumaki M, Karagianni M, Athanasakis E, Xynos E, Tsiaoussis J, Christodoulakis M, Flamourakis ME, Tsagkataki ES, Giannikaki L, Chliara E, Mavroudis D, Tzardi M, Souglakos J. Exploring Gut Microbiome Composition and Circulating Microbial DNA Fragments in Patients with Stage II/III Colorectal Cancer: A Comprehensive Analysis. Cancers (Basel) 2024; 16:1923. [PMID: 38792001 PMCID: PMC11119035 DOI: 10.3390/cancers16101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) significantly contributes to cancer-related mortality, necessitating the exploration of prognostic factors beyond TNM staging. This study investigates the composition of the gut microbiome and microbial DNA fragments in stage II/III CRC. METHODS A cohort of 142 patients with stage II/III CRC and 91 healthy controls underwent comprehensive microbiome analysis. Fecal samples were collected for 16S rRNA sequencing, and blood samples were tested for the presence of microbial DNA fragments. De novo clustering analysis categorized individuals based on their microbial profiles. Alpha and beta diversity metrics were calculated, and taxonomic profiling was conducted. RESULTS Patients with CRC exhibited distinct microbial composition compared to controls. Beta diversity analysis confirmed CRC-specific microbial profiles. Taxonomic profiling revealed unique taxonomies in the patient cohort. De novo clustering separated individuals into distinct groups, with specific microbial DNA fragment detection associated with certain patient clusters. CONCLUSIONS The gut microbiota can differentiate patients with CRC from healthy individuals. Detecting microbial DNA fragments in the bloodstream may be linked to CRC prognosis. These findings suggest that the gut microbiome could serve as a prognostic factor in stage II/III CRC. Identifying specific microbial markers associated with CRC prognosis has potential clinical implications, including personalized treatment strategies and reduced healthcare costs. Further research is needed to validate these findings and uncover underlying mechanisms.
Collapse
Affiliation(s)
- Ippokratis Messaritakis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Andreas Koulouris
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Eleni Boukla
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Konstantinos Vogiatzoglou
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Ilias Lagkouvardos
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Evangelia Intze
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Maria Sfakianaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Maria Chondrozoumaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Michaela Karagianni
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Elias Athanasakis
- Department of General Surgery, Heraklion University Hospital, 71100 Heraklion, Greece;
| | - Evangelos Xynos
- Department of Surgery, Creta Interclinic Hospital of Heraklion, 71305 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | | | | | - Eleni S. Tsagkataki
- Department of General Surgery, Venizeleio General Hospital, 71409 Heraklion, Greece (M.E.F.)
| | - Linda Giannikaki
- Histopathology, Venizeleio General Hospital, 71409 Heraklion, Greece
| | - Evdoxia Chliara
- Histopathology, Venizeleio General Hospital, 71409 Heraklion, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Maria Tzardi
- Laboratory of Pathology, University General Hospital of Heraklion, 70013 Heraklion, Greece;
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
30
|
Goswami M, Bose PD. Gut microbial dysbiosis in the pathogenesis of leukemia: an immune-based perspective. Exp Hematol 2024; 133:104211. [PMID: 38527589 DOI: 10.1016/j.exphem.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.
Collapse
Affiliation(s)
- Mayuri Goswami
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India.
| |
Collapse
|
31
|
Zeb F, Naqeeb H, Osaili T, Faris ME, Ismail LC, Obaid RS, Naja F, Radwan H, Hasan H, Hashim M, AlBlooshi S, Alam I. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr Res 2024; 124:21-42. [PMID: 38364552 DOI: 10.1016/j.nutres.2024.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
A growing body of evidence suggests that cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. In recent years, the molecular crosstalk between polyphenols and gut microbiota has emerged as a promising pathway for cancer prevention. Polyphenols, abundant in many plant-based foods, possess diverse bioactive properties, including antioxidant, anti-inflammatory, and anticancer activities. The gut microbiota, a complex microbial community residing in the gastrointestinal tract, plays a crucial role in a host's health and disease risks. This review highlights cancer suppressive and oncogenic mechanisms of gut microbiota, the intricate interplay between gut microbiota modulation and polyphenol biotransformation, and the potential therapeutic implications of this interplay in cancer prevention. Furthermore, this review explores the molecular mechanisms underpinning the synergistic effects of polyphenols and the gut microbiota, such as modulation of signaling pathways and immune response and epigenetic modifications in animal and human studies. The current review also summarizes the challenges and future directions in this field, including the development of personalized approaches that consider interindividual variations in gut microbiota composition and function. Understanding the molecular crosstalk could offer new perspectives for the development of personalized cancer therapies targeting the polyphenol-gut axis. Future clinical trials are needed to validate the potential role of polyphenols and gut microbiota as innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanam Cancer Hospital and Research Center Peshawar, Pakistan; Department of Human Nutrition and Dietetics, Women University Mardan, Pakistan
| | - Tareq Osaili
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - MoezAllslam Ezzat Faris
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Nuffield, Oxford, United Kingdom
| | - Reyad Shakir Obaid
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Farah Naja
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Hayder Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Mona Hashim
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Sharifa AlBlooshi
- College of Natural and Health Sciences, Zayed University, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
32
|
Garvey M. Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation. Biomedicines 2024; 12:740. [PMID: 38672096 PMCID: PMC11048178 DOI: 10.3390/biomedicines12040740] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The human gastrointestinal tract houses a diverse range of microbial species that play an integral part in many biological functions. Several preclinical studies using germ-free mice models have demonstrated that the gut microbiome profoundly influences carcinogenesis and progression. Colorectal cancer appears to be associated with microbial dysbiosis involving certain bacterial species, including F. nucleatum, pks+ E. coli, and B. fragilis, with virome commensals also disrupted in patients. A dysbiosis toward these pro-carcinogenic species increases significantly in CRC patients, with reduced numbers of the preventative species Clostridium butyicum, Roseburia, and Bifidobacterium evident. There is also a correlation between Clostridium infection and CRC. F. nucleatum, in particular, is strongly associated with CRC where it is associated with therapeutic resistance and poor outcomes in patients. The carcinogenic mode of action of pathogenic bacteria in CRC is a result of genotoxicity, epigenetic alterations, ROS generation, and pro-inflammatory activity. The aim of this review is to discuss the microbial species and their impact on colorectal cancer in terms of disease initiation, progression, and metastasis. The potential of anticancer peptides as anticancer agents or adjuvants is also discussed, as novel treatment options are required to combat the high levels of resistance to current pharmaceutical options.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
33
|
Yigit M, Basoglu OF, Unutmaz D. Mucosal-associated invariant T cells in cancer: dual roles, complex interactions and therapeutic potential. Front Immunol 2024; 15:1369236. [PMID: 38545100 PMCID: PMC10965779 DOI: 10.3389/fimmu.2024.1369236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells play diverse roles in cancer, infectious diseases, and immunotherapy. This review explores their intricate involvement in cancer, from early detection to their dual functions in promoting inflammation and mediating anti-tumor responses. Within the solid tumor microenvironment (TME), MAIT cells can acquire an 'exhausted' state and secrete tumor-promoting cytokines. On the other hand, MAIT cells are highly cytotoxic, and there is evidence that they may have an anti-tumor immune response. The frequency of MAIT cells and their subsets has also been shown to have prognostic value in several cancer types. Recent innovative approaches, such as programming MAIT cells with chimeric antigen receptors (CARs), provide a novel and exciting approach to utilizing these cells in cell-based cancer immunotherapy. Because MAIT cells have a restricted T cell receptor (TCR) and recognize a common antigen, this also mitigates potential graft-versus-host disease (GVHD) and opens the possibility of using allogeneic MAIT cells as off-the-shelf cell therapies in cancer. Additionally, we outline the interactions of MAIT cells with the microbiome and their critical role in infectious diseases and how this may impact the tumor responses of these cells. Understanding these complex roles can lead to novel therapeutic strategies harnessing the targeting capabilities of MAIT cells.
Collapse
Affiliation(s)
- Mesut Yigit
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Omer Faruk Basoglu
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
34
|
Rayan M, Sayed TS, Hussein OJ, Therachiyil L, Maayah ZH, Maccalli C, Uddin S, Prehn JHM, Korashy HM. Unlocking the secrets: exploring the influence of the aryl hydrocarbon receptor and microbiome on cancer development. Cell Mol Biol Lett 2024; 29:33. [PMID: 38448800 PMCID: PMC10918910 DOI: 10.1186/s11658-024-00538-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.
Collapse
Affiliation(s)
- Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tahseen S Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
35
|
Abdullah ST, Abdullah SR, Hussen BM, Younis YM, Rasul MF, Taheri M. Role of circular RNAs and gut microbiome in gastrointestinal cancers and therapeutic targets. Noncoding RNA Res 2024; 9:236-252. [PMID: 38192436 PMCID: PMC10771991 DOI: 10.1016/j.ncrna.2023.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Gastrointestinal cancers are a huge worldwide health concern, which includes a wide variety of digestive tract cancers. Circular RNAs (circRNAs), a kind of non-coding RNA (ncRNAs), are a family of single-stranded, covalently closed RNAs that have become recognized as crucial gene expression regulators, having an impact on several cellular functions in cancer biology. The gut microbiome, which consists of several different bacteria, actively contributes to the regulation of host immunity, inflammation, and metabolism. CircRNAs and the gut microbiome interact significantly to greatly affect the growth of GI cancer. Several studies focus on the complex functions of circRNAs and the gut microbiota in GI cancers, including esophageal cancer, colorectal cancer, gastric cancer, hepatocellular cancer, and pancreatic cancer. It also emphasizes how changed circRNA expression profiles and gut microbiota affect pathways connected to malignancy as well as how circRNAs affect hallmarks of gastrointestinal cancers. Furthermore, circRNAs and gut microbiota have been recommended as biological markers for therapeutic targets as well as diagnostic and prognostic purposes. Targeting circRNAs and the gut microbiota for the treatment of gastrointestinal cancers is also being continued to study. Despite significant initiatives, the connection between circRNAs and the gut microbiota and the emergence of gastrointestinal cancers remains poorly understood. In this study, we will go over the most recent studies to emphasize the key roles of circRNAs and gut microbiota in gastrointestinal cancer progression and therapeutic options. In order to create effective therapies and plan for the future gastrointestinal therapy, it is important to comprehend the functions and mechanisms of circRNAs and the gut microbiota.
Collapse
Affiliation(s)
- Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Nagini S, Palrasu M, Bishayee A. Limonoids from neem (Azadirachta indica A. Juss.) are potential anticancer drug candidates. Med Res Rev 2024; 44:457-496. [PMID: 37589457 DOI: 10.1002/med.21988] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Neem (Azadirachta indica A. Juss.), a versatile evergreen tree recognized for its ethnopharmacological value, is a rich source of limonoids of the triterpenoid class, endowed with potent medicinal properties. Extracts of neem have been documented to display anticancer effects in diverse malignant cell lines as well as in preclinical animal models that has largely been attributed to the constituent limonoids. Of late, neem limonoids have become the cynosure of research attention as potential candidate agents for cancer prevention and therapy. Among the various limonoids found in neem, azadirachtin, epoxyazadiradione, gedunin, and nimbolide, have been extensively investigated for anticancer activity. Azadirachtin, a potent biodegradable pesticide, exhibits profound antiproliferative effects by preventing mitotic spindle formation and cell division. The antiproliferative activity of gedunin has been demonstrated to be mediated primarily via inhibition of heat shock protein90 and its client proteins. Epoxyazadiradione inhibits pro-inflammatory and kinase-driven signaling pathways to block tumorigenesis. Nimbolide, the most potent cytotoxic neem limonoid, inhibits the growth of cancer cells by regulating the phosphorylation of keystone kinases that drive oncogenic signaling besides modulating the epigenome. There is overwhelming evidence to indicate that neem limonoids exert anticancer effects by preventing the acquisition of hallmark traits of cancer, such as cell proliferation, apoptosis evasion, inflammation, invasion, angiogenesis, and drug resistance. Neem limonoids are value additions to the armamentarium of natural compounds that target aberrant oncogenic signaling to inhibit cancer development and progression.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Manikandan Palrasu
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
37
|
Kim B, Lee J, Jung ES, Lee S, Suh DH, Park YJ, Kim J, Kwak JM, Lee S. The impact of a modified microbiota-accessible carbohydrate diet on gut microbiome and clinical symptoms in colorectal cancer patients following surgical resection. Front Microbiol 2024; 15:1282932. [PMID: 38380099 PMCID: PMC10877053 DOI: 10.3389/fmicb.2024.1282932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
A high-fiber diet is widely recognized for its positive effects on the gut microbiome. However, the specific impact of a high-fiber diet on the gut microbiome and bowel habits of patients with colon cancer remains poorly understood. In this study, we aimed to assess the effects of a modified microbiota-accessible carbohydrate (mMAC) diet on gut microbiota composition and clinical symptoms in colon cancer patients who underwent surgical resection. To achieve this, we enrolled 40 patients in two groups: those who received adjuvant chemotherapy and those who did not. Fecal samples were collected before and after dietary interventions for microbial and metabolite analyses. Each group was randomized in a 1: 1 ratio to follow either a 3-week conventional diet followed by a 3-week mMAC diet, or the reverse sequence. Although there were no significant differences in the microbial diversity data before and after the mMAC diet in both the non-chemotherapy and chemotherapy groups, distinct differences in gut microbial composition were revealed after the mMAC diet. Specifically, the abundance of Prevotella, which is associated with high-fiber diets, was further elevated with increased concentrations of acetate and propionate after the mMAC diet. Additionally, patients who experienced improved diarrhea and constipation after the mMAC diet exhibited an enrichment of beneficial bacteria and notable changes in metabolites. In conclusion, this study provides valuable insights into the potential benefits of the mMAC diet, specifically its impact on the gut microbiome and clinical symptoms in postoperative colorectal cancer (CRC) patients. These findings emphasize the potential role of a high-fiber diet in influencing the gut microbiome, and the clinical symptoms warrant further investigation.
Collapse
Affiliation(s)
- Boyeon Kim
- Cancer Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | | | - Sunyoung Lee
- HEM Pharma Inc., Suwon, Gyeonggi, Republic of Korea
| | - Dong Ho Suh
- HEM Pharma Inc., Suwon, Gyeonggi, Republic of Korea
| | - Yu Jin Park
- HEM Pharma Inc., Suwon, Gyeonggi, Republic of Korea
| | - Jin Kim
- Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung-Myun Kwak
- Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soohyeon Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Meng X, Ma G, Zhang X, Yin H, Miao Y, He F. Extracellular vesicles from Fusobacterium nucleatum: roles in the malignant phenotypes of gastric cancer. Cell Cycle 2024; 23:294-307. [PMID: 38446489 PMCID: PMC11057558 DOI: 10.1080/15384101.2024.2324587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
The increase of the Fusobacterium nucleatum level has been previously identified in various cancers including gastric cancer (GC), but how the F. nucleatum exerts its carcinogenic role in GC remains unclear. Several studies revealed that F. nucleatum contributes to cancer progression via its secretion of extracellular vehicles (EVs). Hence, it's designed to reveal the influence of F. nucleatum-derived EVs (Fn-EVs) in GC progression. The tumor and adjacent tissues were collected from 30 GC patients, and the abundance of F. nucleatum was found to be highly expressed in tumor samples. The ultracentrifugation was employed to isolate EVs from F. nucleatum and Escherischia coli (E. coli), which were labeled Fn-EVs and E. coli-EVs, respectively. After treating GC cells with Fn-EVs and E. coli-EVs, cell counting kit 8, colony formation, wound healing as well as transwell assay were performed, which revealed that Fn-EVs effectively enhanced oxaliplatin resistance, and facilitated cell proliferation, migration, invasion, and stemness in GC cells while E. coli-EVs exert no significant effect on GC cells. Besides, the stemness and DNA repair of GC cells were also enhanced by Fn-EVs, as revealed by the sphere-forming assay and the detection of stemness- and DNA repair-associated proteins by western blotting. In vivo analyses demonstrated that Fn-EVs administration not only promoted GC tumor growth and liver metastasis but also conferred GC tumor resistance to oxaliplatin resistance. This study first revealed the contributive role of F. nucleatum in GC development via Fn-EVs, which provided a better perspective for manipulating F. nucleatum in treating GC patients with malignant phenotypes.
Collapse
Affiliation(s)
- Xiangkun Meng
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Gang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xu Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu Miao
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang He
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
39
|
Liu X, Zhang G, Li S, Liu Y, Ma K, Wang L. Identification of gut microbes-related molecular subtypes and their biomarkers in colorectal cancer. Aging (Albany NY) 2024; 16:2249-2272. [PMID: 38289597 PMCID: PMC10911361 DOI: 10.18632/aging.205480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024]
Abstract
The role of gut microbes (GM) and their metabolites in colorectal cancer (CRC) development has attracted increasing attention. Several studies have identified specific microorganisms that are closely associated with CRC occurrence and progression, as well as key genes associated with gut microorganisms. However, the extent to which gut microbes-related genes can serve as biomarkers for CRC progression or prognosis is still poorly understood. This study used a bioinformatics-based approach to synthetically analyze the large amount of available data stored in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through this analysis, this study identified two distinct CRC molecular subtypes associated with GM, as well as CRC markers related to GM. In addition, these new subtypes exhibit significantly different survival outcomes and are characterized by distinct immune landscapes and biological functions. Gut microbes-related biomarkers (GMRBs), IL7 and BCL10, were identified and found to have independent prognostic value and predictability for immunotherapeutic response in CRC patients. In addition, a systematic collection and review of prior research literature on GM and CRC provided additional evidence to support these findings. In conclusion, this paper provides new insights into the underlying pathological mechanisms by which GM promotes the development of CRC and suggests potentially viable solutions for individualized prevention, screening, and treatment of CRC.
Collapse
Affiliation(s)
- Xuliang Liu
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guolin Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shiyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuechuan Liu
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Ma
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
40
|
Shrestha B, Tallila M, Matilainen O. Folate receptor overexpression induces toxicity in a diet-dependent manner in C. elegans. Sci Rep 2024; 14:1066. [PMID: 38212621 PMCID: PMC10784478 DOI: 10.1038/s41598-024-51700-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Folate receptor (FR) alpha (FOLR1) and beta (FOLR2) are membrane-anchored folate transporters that are expressed at low levels in normal tissues, while their expression is strongly increased in several cancers. Intriguingly, although the function of these receptors in, for example, development and cancer has been studied intensively, their role in aging is still unknown. To address this, we utilized Caenorhabditis elegans, in which FOLR-1 is the sole ortholog of folate receptors. We found that the loss of FOLR-1 does not affect reproduction, physical condition, proteostasis or lifespan, indicating that it is not required for folate transport to maintain health. Interestingly, we found that FOLR-1 is detectably expressed only in uterine-vulval cells, and that the histone-binding protein LIN-53 inhibits its expression in other tissues. Furthermore, whereas knockdown of lin-53 is known to shorten lifespan, we found that the loss of FOLR-1 partially rescues this phenotype, suggesting that elevated folr-1 expression is detrimental for health. Indeed, our data demonstrate that overexpression of folr-1 is toxic, and that this phenotype is dependent on diet. Altogether, this work could serve as a basis for further studies to elucidate the organismal effects of abnormal FR expression in diseases such as cancer.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Milla Tallila
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
41
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
42
|
Park SJ, Greer PL, Lee N. From odor to oncology: non-canonical odorant receptors in cancer. Oncogene 2024; 43:304-318. [PMID: 38087050 DOI: 10.1038/s41388-023-02908-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Odorant receptors, traditionally associated with olfaction as chemoreceptors, have been increasingly recognized for their presence and diverse functions in various non-nasal tissues throughout the body. Beyond their roles in sensory perception, emerging evidence suggests a compelling interplay between odorant receptors and cancer progression as well. Alongside the canonical GPCR odorant receptors, dysregulation of non-canonical odorant receptors such as trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and membrane-spanning 4A family (MS4As) has been observed in various cancer types, suggesting their contributions to cancer progression. The roles of these non-canonical chemoreceptors in cancer are complex, with some receptors promoting tumorigenesis and others acting as tumor-suppressing factors upon activation, depending on the cancer type. These findings shed light on the potential of non-canonical odorant receptors as therapeutic targets and prognostic markers in cancer, inviting further exploration to unravel their precise mechanisms of action and implications in cancer biology. In this review, we provide a comprehensive overview of the intricate relationships between these chemoreceptors and various types of cancer, potentially paving the way for innovative odor-based therapeutics. Ultimately, this review discusses the potential development of novel therapeutic strategies targeting these non-canonical chemoreceptors.
Collapse
Affiliation(s)
- Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Namgyu Lee
- Department of Biomedical Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
43
|
Tong L, Wan Y, Shi X, Liu X, Liu Z, Li Y, Zhang Y, Luo D, Zhu J. Evaluating Oral Probiotic Supplements as Complementary Treatment in Advanced Lung Cancer Patients Receiving ICIs: A Prospective Real-World Study. Cancer Control 2024; 31:10732748241253959. [PMID: 38736182 PMCID: PMC11089945 DOI: 10.1177/10732748241253959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
OBJECTIVE To evaluate the effectiveness of oral probiotic supplements in patients undergoing immune checkpoint inhibitors (ICIs) for the treatment of advanced lung cancer. METHODS This prospective real-world study enrolled patients with advanced lung cancer who were receiving ICIs as part of their treatment. The patients were divided into 2 groups: Group OPS received oral probiotic supplements along with ICIs, while Group C did not. The primary endpoint was progression-free survival (PFS). The secondary outcome measure was the objective response rate (ORR). RESULTS A total of 253 patients were included in the study, with 71 patients in Group OPS and 182 patients in the control group (Group C). No significant differences were observed in the median PFS between the 2 groups for all patients. However, for small cell lung cancer (SCLC) patients, the median PFS was significantly better in the Group OPS compared to the Group C (11.1 months vs 7.0 months, P = .049). No significant differences were observed in median PFS for the non-small cell lung cancer (NSCLC) cohort between the 2 groups, but a trend towards better median PFS in Group OPS was noticed (16.5 months vs 12.3 months, P = .56). The ORR for the entire cohort was 58.0%. CONCLUSION Oral probiotics supplements in combination with ICIs included regimen may improve the outcome in patients with advanced SCLC. The above points should be proved by further study.
Collapse
Affiliation(s)
- Liping Tong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Shangjin Nanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Yuming Wan
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Shangjin Nanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxiao Shi
- Department of Medical Oncology, Shangjin Nanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Xianguo Liu
- Department of Oncology, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, China
| | - Zhe Liu
- Department of Medical Oncology, Shangjin Nanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehua Li
- Department of Medical Oncology, Shangjin Nanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Deyun Luo
- Department of Medical Oncology, Shangjin Nanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Zhu
- Department of Medical Oncology, Shangjin Nanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Limami Y, Pinon A, Wahnou H, Oudghiri M, Liagre B, Simon A, Duval RE. Ursolic Acid's Alluring Journey: One Triterpenoid vs. Cancer Hallmarks. Molecules 2023; 28:7897. [PMID: 38067626 PMCID: PMC10707789 DOI: 10.3390/molecules28237897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is a multifactorial disease characterized by various hallmarks, including uncontrolled cell growth, evasion of apoptosis, sustained angiogenesis, tissue invasion, and metastasis, among others. Traditional cancer therapies often target specific hallmarks, leading to limited efficacy and the development of resistance. Thus, there is a growing need for alternative strategies that can address multiple hallmarks concomitantly. Ursolic acid (UA), a naturally occurring pentacyclic triterpenoid, has recently emerged as a promising candidate for multitargeted cancer therapy. This review aims to summarize the current knowledge on the anticancer properties of UA, focusing on its ability to modulate various cancer hallmarks. The literature reveals that UA exhibits potent anticancer effects through diverse mechanisms, including the inhibition of cell proliferation, induction of apoptosis, suppression of angiogenesis, inhibition of metastasis, and modulation of the tumor microenvironment. Additionally, UA has demonstrated promising activity against different cancer types (e.g., breast, lung, prostate, colon, and liver) by targeting various cancer hallmarks. This review discusses the molecular targets and signaling pathways involved in the anticancer effects of UA. Notably, UA has been found to modulate key signaling pathways, such as PI3K/Akt, MAPK/ERK, NF-κB, and Wnt/β-catenin, which play crucial roles in cancer development and progression. Moreover, the ability of UA to destroy cancer cells through various mechanisms (e.g., apoptosis, autophagy, inhibiting cell growth, dysregulating cancer cell metabolism, etc.) contributes to its multitargeted effects on cancer hallmarks. Despite promising anticancer effects, this review acknowledges hurdles related to UA's low bioavailability, emphasizing the need for enhanced therapeutic strategies.
Collapse
Affiliation(s)
- Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Alain Simon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | | |
Collapse
|
45
|
Mehra Y, Chalif J, Mensah-Bonsu C, Spakowicz D, O’Malley DM, Chambers L. The microbiome and ovarian cancer: insights, implications, and therapeutic opportunities. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023. [DOI: 10.20517/2394-4722.2023.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer death in the United States. Most ovarian cancer patients are diagnosed with advanced-stage disease, which poses a challenge for early detection and effective treatment. At present, cytoreductive surgery and platinum-based chemotherapy are foundational for patients with newly diagnosed ovarian cancer, but unfortunately, most patients will recur and die of their disease. Therefore, there is a significant need to seek innovative, novel approaches for early detection and to overcome chemoresistance for ovarian cancer patients. The microbiome, comprising diverse microbial communities inhabiting various body sites, is vital in maintaining human health. Changes to the diversity and composition of the microbial communities impact the microbiota-host relationship and are linked to diseases, including cancer. The microbiome contributes to carcinogenesis through various mechanisms, including altered host immune response, modulation of DNA repair, upregulation of pro-inflammatory pathways, altered gene expression, and dysregulated estrogen metabolism. Translational and clinical studies have demonstrated that specific microbes contribute to ovarian cancer development and impact chemotherapy’s efficacy. The microbiome is malleable and can be altered through different approaches, including diet, exercise, medications, and fecal microbiota transplantation. This review provides an overview of the current literature regarding ovarian cancer and the microbiome of female reproductive and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and options for modulating the microbiota for cancer prevention and treatment. Advancing our understanding of the complex relationship between the microbiome and ovarian cancer may provide a novel approach for prevention and therapeutic modulation in the future.
Collapse
|
46
|
Czarnecka-Chrebelska KH, Kordiak J, Brzeziańska-Lasota E, Pastuszak-Lewandoska D. Respiratory Tract Oncobiome in Lung Carcinogenesis: Where Are We Now? Cancers (Basel) 2023; 15:4935. [PMID: 37894302 PMCID: PMC10605430 DOI: 10.3390/cancers15204935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of microbiota in developing and treating diseases, including lung cancer (LC), is becoming increasingly recognized. Studies have shown differences in microorganism populations in the upper and lower respiratory tracts of patients with lung cancer compared to healthy individuals, indicating a link between dysbiosis and lung cancer. However, it is not only important to identify "which bacteria are present" but also to understand "how" they affect lung carcinogenesis. The interactions between the host and lung microbiota are complex, and our knowledge of this relationship is limited. This review presents research findings on the bacterial lung microbiota and discusses the mechanisms by which lung-dwelling microorganisms may directly or indirectly contribute to the development of lung cancer. These mechanisms include influences on the host immune system regulation and the local immune microenvironment, the regulation of oncogenic signaling pathways in epithelial cells (causing cell cycle disorders, mutagenesis, and DNA damage), and lastly, the MAMPs-mediated path involving the effects of bacteriocins, TLRs signaling induction, and TNF release. A better understanding of lung microbiota's role in lung tumor pathology could lead to identifying new diagnostic and therapeutic biomarkers and developing personalized therapeutic management for lung cancer patients.
Collapse
Affiliation(s)
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-151 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska 251, 90-151 Lodz, Poland;
| |
Collapse
|
47
|
Hoskinson C, Jiang RY, Stiemsma LT. Elucidating the roles of the mammary and gut microbiomes in breast cancer development. Front Oncol 2023; 13:1198259. [PMID: 37664075 PMCID: PMC10470065 DOI: 10.3389/fonc.2023.1198259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The mammary microbiome is a newly characterized bacterial niche that might offer biological insight into the development of breast cancer. Together with in-depth analysis of the gut microbiome in breast cancer, current evidence using next-generation sequencing and metabolic profiling suggests compositional and functional shifts in microbial consortia are associated with breast cancer. In this review, we discuss the fundamental studies that have progressed this important area of research, focusing on the roles of both the mammary tissue microbiome and the gut microbiome. From the literature, we identified the following major conclusions, (I) There are unique breast and gut microbial signatures (both compositional and functional) that are associated with breast cancer, (II) breast and gut microbiome compositional and breast functional dysbiosis represent potential early events of breast tumor development, (III) specific breast and gut microbes confer host immune responses that can combat breast tumor development and progression, and (IV) chemotherapies alter the microbiome and thus maintenance of a eubiotic microbiome may be key in breast cancer treatment. As the field expectantly advances, it is necessary for the role of the microbiome to continue to be elucidated using multi-omic approaches and translational animal models in order to improve predictive, preventive, and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | - Leah T. Stiemsma
- Natural Science Division, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
48
|
O’Shaughnessy M, Sheils O, Baird AM. The Lung Microbiome in COPD and Lung Cancer: Exploring the Potential of Metal-Based Drugs. Int J Mol Sci 2023; 24:12296. [PMID: 37569672 PMCID: PMC10419288 DOI: 10.3390/ijms241512296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer 17 are two of the most prevalent and debilitating respiratory diseases worldwide, both associated with high morbidity and mortality rates. As major global health concerns, they impose a substantial burden on patients, healthcare systems, and society at large. Despite their distinct aetiologies, lung cancer and COPD share common risk factors, clinical features, and pathological pathways, which have spurred increasing research interest in their co-occurrence. One area of particular interest is the role of the lung microbiome in the development and progression of these diseases, including the transition from COPD to lung cancer. Exploring novel therapeutic strategies, such as metal-based drugs, offers a potential avenue for targeting the microbiome in these diseases to improve patient outcomes. This review aims to provide an overview of the current understanding of the lung microbiome, with a particular emphasis on COPD and lung cancer, and to discuss the potential of metal-based drugs as a therapeutic strategy for these conditions, specifically concerning targeting the microbiome.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| |
Collapse
|
49
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
50
|
Puig-Saenz C, Pearson JRD, Thomas JE, McArdle SEB. A Holistic Approach to Hard-to-Treat Cancers: The Future of Immunotherapy for Glioblastoma, Triple Negative Breast Cancer, and Advanced Prostate Cancer. Biomedicines 2023; 11:2100. [PMID: 37626597 PMCID: PMC10452459 DOI: 10.3390/biomedicines11082100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy represents an attractive avenue for cancer therapy due to its tumour specificity and relatively low frequency of adverse effects compared to other treatment modalities. Despite many advances being made in the field of cancer immunotherapy, very few immunotherapeutic treatments have been approved for difficult-to-treat solid tumours such as triple negative breast cancer (TNBC), glioblastoma multiforme (GBM), and advanced prostate cancer (PCa). The anatomical location of some of these cancers may also make them more difficult to treat. Many trials focus solely on immunotherapy and have failed to consider or manipulate, prior to the immunotherapeutic intervention, important factors such as the microbiota, which itself is directly linked to lifestyle factors, diet, stress, social support, exercise, sleep, and oral hygiene. This review summarises the most recent treatments for hard-to-treat cancers whilst factoring in the less conventional interventions which could tilt the balance of treatment in favour of success for these malignancies.
Collapse
Affiliation(s)
- Carles Puig-Saenz
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Joshua R. D. Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Jubini E. Thomas
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Stéphanie E. B. McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| |
Collapse
|