1
|
Rathmacher JA, Pitchford LM, Stout JR, Townsend JR, Jäger R, Kreider RB, Campbell BI, Kerksick CM, Harty PS, Candow DG, Roberts BM, Arent SM, Kalman DS, Antonio J. International society of sports nutrition position stand: β-hydroxy-β-methylbutyrate (HMB). J Int Soc Sports Nutr 2025; 22:2434734. [PMID: 39699070 PMCID: PMC11740297 DOI: 10.1080/15502783.2024.2434734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on an analysis of the literature regarding the effects of β-Hydroxy-β-Methylbutyrate (HMB). The following 12 points have been approved by the Research Committee of the Society: 1. HMB is a metabolite of the amino acid leucine that is naturally produced in both humans and other animals. Two forms of HMB have been studied: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA appears to lead to increased appearance of HMB in the bloodstream when compared to HMB-Ca, though recent results are mixed. 2. The available safety/toxicity data suggest that chronic HMB-Ca and HMB-FA consumption are safe for oral HMB supplementation in humans up to at least one year. 3. There are no negative effects of HMB-Ca and HMB-FA on glucose tolerance and insulin sensitivity in humans. There may be improvements in glucose metabolism in younger adults. 4. The primary mode of action of HMB appears to be through its dual mechanism to enhance muscle protein synthesis and suppress muscle protein breakdown. HMB's activation of mTORC1 is independent of the leucine-sensing pathway (Sestrin2-GATOR2 complex). 5. HMB may help reduce muscle damage and promote muscle recovery, which can promote muscle growth/repair. HMB may also have anti-inflammatory effects, which could contribute to reducing muscle damage and soreness. 6. HMB consumption in close proximity to an exercise bout may be beneficial to increase muscle protein synthesis and attenuate the inflammatory response. HMB can provide a beneficial physiological effect when consumed both acutely and chronically in humans. 7. Daily HMB supplementation (38 mg/kg body weight) in combination with exercise training may improve body composition through increasing lean mass and/or decreasing fat mass with benefits in participants across age, sex, and training status. The most pronounced of these improvements in body composition with HMB have been observed in studies with robust resistance training programs and dietary control. 8. HMB may improve strength and power in untrained individuals, but its performance benefits in trained athletes are mixed and increase with an increase in study duration (>6 weeks). HMB's beneficial effects on athletic performance are thought to be driven by improved recovery. 9. HMB supplementation appears to potentially have a positive impact on aerobic performance, especially in trained athletes. The mechanisms of the effects are unknown. 10. HMB supplementation may be important in a non-exercising sedentary and aging population to improve muscle strength, functionality, and muscle quality. The effects of HMB supplementation with exercise are varied, but the combination may have a beneficial effect on the treatment of age-associated sarcopenia under select conditions. 11. HMB may be effective in countering muscle disuse atrophy during periods of inactivity due to illness or injury. The modulation of mitochondrial dynamics and lipid metabolism by HMB may be a potential mechanism for preventing disuse atrophy and aiding rehabilitation beyond HMB's effects on rates of muscle protein synthesis and degradation. 12. The efficacy of HMB in combination with certain nutrients may be enhanced under select conditions.
Collapse
Affiliation(s)
- John A. Rathmacher
- MTI Biotech Inc, Ames, IA, USA
- lowa State University, Department of Animal Science, Ames, IA, USA
| | - Lisa M. Pitchford
- MTI Biotech Inc, Ames, IA, USA
- Iowa State University, Department of Kinesiology, Ames, IA, USA
| | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Jeremy R. Townsend
- Research, Nutrition, and Innovation, AG1, Carson City, NV, USA
- Concordia University Chicago, Health & Human Performance, River Forest, IL, USA
| | | | - Richard B. Kreider
- Texas A&M University, Exercise & Sports Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Saint Charles, MO, USA
| | - Patrick S. Harty
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Saint Charles, MO, USA
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Brandon M. Roberts
- 10 General Greene Ave, Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Douglas S. Kalman
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
2
|
Jäger R, Heileson JL, Abou Sawan S, Dickerson BL, Leonard M, Kreider RB, Kerksick CM, Cornish SM, Candow DG, Cordingley DM, Forbes SC, Tinsley GM, Bongiovanni T, Cannataro R, Campbell BI, Arent SM, Stout JR, Kalman DS, Antonio J. International Society of Sports Nutrition Position Stand: Long-Chain Omega-3 Polyunsaturated Fatty Acids. J Int Soc Sports Nutr 2025; 22:2441775. [PMID: 39810703 PMCID: PMC11737053 DOI: 10.1080/15502783.2024.2441775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.Diets rich in ω-3 PUFA, including supplements, are effective strategies for increasing ω-3 PUFA levels.ω-3 PUFA supplementation, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has been shown to enhance endurance capacity and cardiovascular function during aerobic-type exercise.ω-3 PUFA supplementation may not confer a muscle hypertrophic benefit in young adults.ω-3 PUFA supplementation in combination with resistance training may improve strength in a dose- and duration-dependent manner.ω-3 PUFA supplementation may decrease subjective measures of muscle soreness following intense exercise.ω-3 PUFA supplementation can positively affect various immune cell responses in athletic populations.Prophylactic ω-3 PUFA supplementation may offer neuroprotective benefits in athletes exposed to repeated head impacts.ω-3 PUFA supplementation is associated with improved sleep quality.ω-3 PUFA are classified as prebiotics; however, studies on the gut microbiome and gut health in athletes are currently lacking.
Collapse
Affiliation(s)
| | - Jeffery L. Heileson
- Walter Reed National Military Medical Center, Nutrition Services Division, Bethesda, MD, USA
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | | | - Broderick L. Dickerson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Stephen M. Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Graduate Studies, University of Manitoba, Winnipeg, Canada
| | - Scott C. Forbes
- Department of Physical Education Studies, Brandon University, Brandon, Canada
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Tindaro Bongiovanni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Player Health & Performance Department, Palermo Football Club, Palermo, Italy
| | - Roberto Cannataro
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Research Division, Dynamical Business & Science Society – DBSS International SAS, Bogotá, Colombia, USA
| | - Bill I. Campbell
- Performance& Physique Enhancement Laboratory, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Shawn M. Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jeffrey R. Stout
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Douglas S. Kalman
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
3
|
Shirkoohi NM, Mohammadi H, Gallaly DQ, Djafarian K. The effects of probiotic supplementation on body composition, recovery following exercise-induced muscle damage, and exercise performance: A systematic review and meta-analysis of clinical trials. Physiol Rep 2025; 13:e70288. [PMID: 40268884 PMCID: PMC12018167 DOI: 10.14814/phy2.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
The goal of the current systematic review and meta-analysis was to provide a definitive assessment of the impacts of probiotic supplementation on body composition, recovery from exercise-induced muscle damage, and exercise performance in individuals actively participating in exercise. A thorough literature search encompassing Scopus, PubMed, Google Scholar, and Web of Science databases was conducted up to May 2024. The weighted mean difference (WMD) and 95% confidence interval (95% CI) for each outcome were estimated using a random-effects model. The certainty of the assessments was further evaluated utilizing the GRADE approach. The pooled analysis showed a significant effect of probiotics on body weight [(WMD = -0.55 kg; 95% CI, -0.98 to -0.13; p = 0.010)], percent body fat [(WMD = -0.46%; 95% CI, -0.83 to -0.09; p = 0.014)], creatine kinase [(WMD = -45.57 IU. L-1; 95% CI: -65.12, -26.02; p = 0.000)], and VO2max [(WMD = 1.55 mL/kg-1/min-1; 95% CI, 0.61 to 2.49; p = 0.001)]. Despite this, no significant effects were observed on body mass index, lean body mass, lactate dehydrogenase, and myoglobin levels. Probiotic supplementation can have significant effects on body composition and exercise performance. Due to the moderate-to-low certainty of evidence, further studies are warranted.
Collapse
Affiliation(s)
- Nastaran Mahmoudi Shirkoohi
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Sports Medicine Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Dler Q. Gallaly
- Department of Basic Sciences, College of MedicineHawler Medical UniversitykurdistanIraq
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Sports Medicine Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Paulina MK, Monika S, Agata RB, Andrzej K, Maria G, Barbara F. Level of intestinal permeability markers and selected aspects of diet and BMI of Polish e-sports players. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:90. [PMID: 40149005 PMCID: PMC11951726 DOI: 10.1186/s41043-025-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/26/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The intestinal microbiota, also called visceral brain, exhibits high biological activity and influences health status. The aim of this study was to evaluate selected dietary determinants of the levels of intestinal permeability markers (zonulin and LPS endotoxin) in a group of e-sportsmen. MATERIALS AND METHODS The study was conducted among 174 male athletes (18-28 years old), training at the professional (n = 44) and semi-professional level (n = 130). The study included: weight and height measurements (Holtain anthropometer, Tanita TBF300), assessment of BMI, determination of zonulin and LPS levels in fecal samples (ELISA tests) and assessment of frequency of consumption of selected food groups (FFQ). Statistical analysis was performed using chi2 and Student's t tests and Spearman's rank correlation, at a significance level of p < 0.05. RESULTS The group was dominated by e-sportsmen with elevated levels of LPS endotoxin (66.67%), zonulin (85.74%) and normative BMI (59.70%), with no significant differences according to sports level. There was a positive correlation between BMI and levels of zonulin (R = 0.49; p < 0.001) and LPS (R = 0.24; p < 0.05). Zonulin levels also increased with more frequent consumption of sweet cereals (R = 0.21; p < 0.05), pork meats (R = 0.21; p < 0.05) and red meat dishes (R = 0.18; p < 0.05). CONCLUSIONS Excessive body weight and a poor health diet were shown to have a negative effect on increasing intestinal permeability, suggesting the rationale for monitoring and rationalizing diet and nutritional status to optimize the intestinal microbiota of e-sportsmen.
Collapse
Affiliation(s)
- Mazur-Kurach Paulina
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Culture, Jana Pawła II 78, 31-571, Kraków, Poland.
| | - Szot Monika
- Department of Sports Dietetics, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, Gdansk, 80-336, Poland
| | - Rzeszutko-Bełzowska Agata
- Institute of Physical Culture Sciences, College of Medical Sciences, University of Rzeszow, Cicha 2a, Rzeszow, 35-326, Poland
| | - Klimek Andrzej
- Department of Physiology and Biochmistry, Institute of Biomedical Sciences, University of Physical Culture, Jana Pawła II 78, 31-571, Kraków, Poland
| | - Gacek Maria
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Culture, Jana Pawła II 78, 31-571, Kraków, Poland
| | - Frączek Barbara
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Culture, Jana Pawła II 78, 31-571, Kraków, Poland
| |
Collapse
|
5
|
Gong P, Tang X. The impact of probiotic supplementation on gastric motility and nutrient absorption in elderly patients with Gastrointestinal disorders. BMC Gastroenterol 2025; 25:192. [PMID: 40114066 PMCID: PMC11927212 DOI: 10.1186/s12876-025-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Gastrointestinal disorders (GIDs) in the elderly often lead to impaired gastric motility and nutrient absorption, exacerbating malnutrition. Probiotics, particularly Lactobacillus rhamnosus GG (LGG), may enhance gastric motility and nutrient absorption. This study evaluates the impact of LGG supplementation on gastric motility and nutrient absorption in elderly patients with GIDs. METHODS A retrospective analysis was conducted on 231 elderly patients with GIDs, divided into a probiotic supplementation (PS) group (n = 110) and a NPS group (n = 121). The PS group received LGG (1 × 1010 CFU, twice daily) for at least 7 days. Baseline and post-treatment measurements included gastric motility via ultrasonography, gastrointestinal hormone levels using radioimmunoassay, and nutrient absorption markers through ELISA and calorimetry. RESULTS Post-treatment, the PS group exhibited significantly improved gastric motility, with increased antral contraction amplitude (58.65 mm vs. 56.53 mm; P = 0.004), frequency (4.06 vs. 3.81 times/min; P = 0.009), and reduced gastric half-emptying time (28.15 min vs. 29.77 min; P = 0.007). Hormone analyses showed elevated motilin and neuropeptide Y levels and decreased vasoactive intestinal peptide levels in the PS group (P < 0.05). Nutrient absorption markers indicated decreased stool fat, protein, and carbohydrate content, enhanced intestinal permeability, increased weight and digestibility of energy, fat, and protein in the PS group (P < 0.05). CONCLUSION PS with LGG significantly enhances gastric motility and nutrient absorption in elderly patients with GIDs, indicating potential therapeutic benefits for addressing digestive dysfunction and malnutrition in this demographic.
Collapse
Affiliation(s)
- Pingting Gong
- Department of Geriatrics, Liangping District People's Hospital, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuehong Tang
- Department of Gastroenterology, Second People's Hospital of Banan District, No.14, Xincun, Huaxi Street, Banan District, Chongqing, 401320, China.
| |
Collapse
|
6
|
Chen G, Li Y, Wei S, Wang X, Kuang Z, Guo W, Qin J, Huang T, Li Y, Zhu C. Role of gut microbiota in thalassemia: a review of therapeutic prospects. Front Physiol 2025; 16:1523448. [PMID: 40177354 PMCID: PMC11962020 DOI: 10.3389/fphys.2025.1523448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
In recent years, the study of gut microbiota has gradually become a research hotspot in the field of medicine, as gut microbiota dysbiosis is closely related to various diseases. Thalassemia, as a hereditary hemoglobinopathy, has a complex pathophysiological mechanism, and traditional treatment methods show limited efficacy. With a deeper understanding of the gut microbiome, researchers have begun to focus on its role in the pathogenesis of thalassemia and its therapeutic effects. This article aims to review the role of gut microbiota in thalassemia and its potential therapeutic prospects, analyze the latest research findings, and explore the impact and mechanisms of gut microbiota on patients with thalassemia, with the goal of providing new ideas and directions for future research and clinical treatment of thalassemia.
Collapse
Affiliation(s)
- Guanjun Chen
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yulan Li
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shirui Wei
- Shandong Second Medical University, Weifang, Shandong, China
| | - Xinyu Wang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zheshu Kuang
- Chenzhou Third People’s Hospital (Group), Chenzhou, Hunan, China
| | - Weiming Guo
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jianbin Qin
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Tianjun Huang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Youlin Li
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Chunjiang Zhu
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
7
|
Nieto ÁVA, Diaz AH, Hernández M. Are there Effective Vegan-Friendly Supplements for Optimizing Health and Sports Performance? a Narrative Review. Curr Nutr Rep 2025; 14:44. [PMID: 40072649 DOI: 10.1007/s13668-025-00633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE OF REVIEW Veganism, characterized by the exclusion of all animal-derived products, has grown in popularity due to ethical, environmental, and health considerations. However, vegan athletes often face unique nutritional challenges related to dietary deficiencies of critical nutrients such as proteins, vitamin B12, iron, calcium, and omega-3 fatty acids, among others. This narrative review aims to explore the efficacy and benefits of vegan-friendly supplements specifically tailored to athletic performance, focusing on essential micronutrients, ergogenic aids, and nutrient bioavailability. RECENT FINDINGS Nineteen key supplements are discussed, including protein powders, creatine, beta-alanine, caffeine, vitamin B12, vitamin D, omega-3 fatty acids, zinc, calcium, iron, iodine, vitamin K2, selenium, probiotics, nitrates, electrolytes (including sodium and potassium), taurine, vitamin A, and magnesium. Evidence suggests that the integration of these supplements into personalized nutrition plans can bridge dietary gaps while addressing specific performance needs, potentially leveling the competitive field for vegan athletes. Recent studies also highlight research gaps in sex-specific needs, synergistic effects, and strategies to enhance the bioavailability of nutrients from whole foods. Vegan diets, while conferring various benefits, require careful consideration of nutrient intake for athletes seeking optimal performance. Personalized biochemical assessments should be considered when possible for tailoring specific nutritional guidelines for each case. This narrative review provides practical guidelines for clinicians, nutritionists, trainers, sports scientists, and athletes to design personalized supplementation strategies that address common nutritional shortfalls, enhance performance, and serve as a foundation for future research in vegan sports nutrition.
Collapse
Affiliation(s)
- Álvaro Vergara A Nieto
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile
- Facultad de Ciencias de La Salud, Escuela de Nutrición y Dietética, Universidad del Desarrollo, Ainavillo 456, 4070001, Concepción, Chile
| | - Andrés Halabi Diaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida Republica 275, 8370146, Santiago, Chile.
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
- Departamento de I+D+I, CatchPredict SpA, Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
| | - Millaray Hernández
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile
| |
Collapse
|
8
|
Chen J, Qian Y, Xu Y. Predicting Sprint Potential: A Machine Learning Model Based on Blood Metabolite Profiles in Young Male Athletes. Eur J Sport Sci 2025; 25:e12272. [PMID: 39992201 PMCID: PMC11849406 DOI: 10.1002/ejsc.12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 02/25/2025]
Abstract
This study aims to utilize male blood metabolite signatures for (i) distinguishing between healthy individuals and athletes, thereby optimizing the athlete screening process; and (ii) predicting athletic performance in 100, 200, and 400 m sprints, enhancing precompetition preparation and intervention strategies. Initially, we employed nontargeted metabolomics to analyze the blood metabolome of healthy individuals (n = 10) and athletes (n = 10), identifying differential expressed metabolites (DEMs) potentially related to athletic performance through differential analysis, consensus clustering, WGCNA, and UMAP analysis. Subsequently, using LASSO-Cox analysis, we refined our selection to two core DEMs: HMDB0012085 (Sphingomyelin (d18:0/14:0)) and HMDB0009224 (Phosphatidylethanolamine(20:0/18:1(9Z))) associated with athletic performance. We then applied targeted metabolomics to measure the levels of these DEMs in a larger cohort, including healthy individuals (n = 50) and athletes (n = 100), revealing a significant increase in the levels of HMDB0012085 and HMDB0009224 in athletes compared to healthy individuals. Utilizing 13 machine learning classification methods, we demonstrated that the levels of HMDB0012085 and HMDB0009224 in blood effectively differentiate between healthy individuals and athletes. Notably, HMDB0012085 exhibits greater feature importance across multiple algorithms compared to HMDB0009224. Specifically, in decision trees (94.1 vs. 5.9), random forests (60.7 vs. 39.3), gradient boosting trees (91.5 vs. 8.5), CatBoost (61.7 vs. 38.3), ExtraTrees (64.7 vs. 35.3), and XGBoost (74.5 vs. 25.5). Finally, we found a significant negative correlation between the levels of HMDB0012085 and HMDB0009224 in whole blood and sprint times for 100, 200, and 400 m races. In conclusion, HMDB0012085 and HMDB0009224 in whole blood hold promise as biomarkers for predicting athletic potential in males.
Collapse
Affiliation(s)
- Jingfeng Chen
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Yuhang Qian
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Yuansheng Xu
- School of Architecture, Building and Civil EngineeringLoughborough UniversityLoughboroughUK
| |
Collapse
|
9
|
Zhang Z, Zhang Y, Peng H, Yu Q, Kang X, Liu Y, Zheng Y, Cheng F, Wang X, Li F. Decoding TGR5: A comprehensive review of its impact on cerebral diseases. Pharmacol Res 2025; 213:107671. [PMID: 39988005 DOI: 10.1016/j.phrs.2025.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Currently, unraveling the enigmatic realm of drug targets for cerebral disorders poses a formidable challenge. Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1, is a specific bile acid receptor. Widely distributed across various tissues, TGR5 orchestrates a myriad of biological functions encompassing inflammation, energy metabolism, fatty acid metabolism, immune responses, cellular proliferation, apoptosis, and beyond. Alongside its well-documented implications in liver diseases, obesity, type 2 diabetes, tumors, and cardiovascular diseases, a growing body of evidence accentuates the pivotal role of TGR5 in cerebral diseases. Thus, this comprehensive review aimed to scrutinize the current insights into the pathological mechanisms involving TGR5 in cerebral diseases, while contemplating its potential as a promising therapeutic target for cerebral diseases.
Collapse
Affiliation(s)
- Zehan Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yifei Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Hongye Peng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Qingqian Yu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xiangdong Kang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Ying Liu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Feng Li
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| |
Collapse
|
10
|
Secrest AH, Norgan Radler C, Kelly J, Keratsopoulos N, Faterkowski A, Kolodziejczyk K, Rollin M, Mills R, Parra ME, Jäger R, Purpua M, Tinsley GM, Taylor LW. Glycoprotein Matrix-Bound Iron Improves Absorption Compared to Ferrous Bisglycinate Chelate and Ferrous Fumarate: A Randomized Crossover Trial. Cureus 2025; 17:e80224. [PMID: 40190969 PMCID: PMC11972659 DOI: 10.7759/cureus.80224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction The biotransformation of minerals through glycosylation by microorganisms, such as yeast or probiotics, can produce nutrients bound to a food matrix, potentially enhancing their bioavailability. This study aimed to compare the absorption kinetics of iron bound to a glycoprotein matrix (GPM) with those of ferrous bisglycinate chelate (FBC) and ferrous fumarate (FF). Methods In a double-blind, crossover design, 17 participants ingested 11 mg of iron in one of three forms: GPM (Pharmachem Innovation, Kearny, NJ, USA), FBC (Ferrochel®, Balchem Corp., Montvale, NJ, USA), or FF (FerroPharma Chemicals Ltd, Hungary). Blood samples were collected at baseline and 30-, 60-, 90-, 120-, 180-, 240-, 300-, 360-, 420-, and 480-minutes post-ingestion. Water intake was standardized throughout the protocol, and an iron-free snack was provided at four hours post-ingestion. Pharmacokinetic analysis was performed, with key outcome variables including the incremental area under the concentration vs. time curve (iAUC), maximum concentration (Cmax), and time to maximum concentration (Tmax). The a priori significance level was set at p < 0.05. Results Linear mixed-effects models indicated statistically significant effects of the GPM condition for both raw iron concentrations and changes from baseline (p = 0.03). On average, participants had iron concentrations that were 27.1 mcg/dL (95% CI: 2.8 to 51.4) higher after consuming GPM iron compared to the FF reference condition. Changes in iron concentrations from the baseline were 16.6 mcg/dL (95% CI: 1.5 to 31.7) higher after GPM consumption compared to FF. In contrast, iron concentrations and changes in iron levels after FBC consumption did not significantly differ from those observed with FF. Significant effects of time were also observed in both linear mixed-effects models. When expressed as percentage changes from baseline, iron concentrations in the GPM condition were 9.4% to 35.0% higher than FF and 5.9% to 32.6% higher than FBC. Pharmacokinetic analysis revealed a significant effect of condition on the iAUC (p = 0.047), but no significant effects for Cmax (p = 0.15) or Tmax (p = 0.81). Post hoc tests for the iAUC indicated a trend (p = 0.07) for a difference between the GPM and FBC conditions, but no significant differences between GPM and FF (p = 0.17) or FBC and FF (p = 0.75). Conclusion These findings suggest that iron bound to a glycoprotein matrix can improve absorption kinetics without any associated side effects. This data could have important implications for addressing iron deficiency or absorption disorders in a variety of populations.
Collapse
Affiliation(s)
- Ariane H Secrest
- Epidemiology and Public Health, University of Mary Hardin-Baylor, Belton, USA
| | | | - Jaci Kelly
- Exercise and Sports Science, Human Performance Lab, University of Mary Hardin-Baylor, Belton, USA
| | - Nikolas Keratsopoulos
- Exercise and Sports Science, Human Performance Lab, University of Mary Hardin-Baylor, Belton, USA
| | - Alyssa Faterkowski
- Exercise and Sports Science, Human Performance Lab, University of Mary Hardin-Baylor, Belton, USA
| | - Katelyn Kolodziejczyk
- Exercise and Sports Science, Human Performance Lab, University of Mary Hardin-Baylor, Belton, USA
| | - Mathis Rollin
- Exercise and Sports Science, Human Performance Lab, University of Mary Hardin-Baylor, Belton, USA
| | - Robert Mills
- Exercise and Sports Science, Human Performance Lab, University of Mary Hardin-Baylor, Belton, USA
| | - Mandy E Parra
- Exercise and Sports Science, Human Performance Lab, University of Mary Hardin-Baylor, Belton, USA
| | - Ralf Jäger
- Research and Development, Increnovo, LLC, Whitefish Bay, USA
| | - Martin Purpua
- Research and Development, Increnovo, LLC, Whitefish Bay, USA
| | - Grant M Tinsley
- Kinesiology & Sport Management, Texas Tech University, Lubbock, USA
| | - Lem W Taylor
- Physiology and Nutrition, University of Mary Hardin-Baylor, Belton, USA
| |
Collapse
|
11
|
Guo M, Zhao L, Cao L, Li X, Zhang J, Dong Y, Wu Y, Gu S. Weizmannia coagulans BC99: A Novel Adjunct to Protein Supplementation for Enhancing Exercise Endurance and Reducing Fatigue. Foods 2025; 14:801. [PMID: 40077505 PMCID: PMC11898494 DOI: 10.3390/foods14050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
Adequate protein consumption is essential for optimal physical fitness and enhancing athletic performance. This study explored the impact of Weizmannia coagulans BC99 on protein-supplemented male fatigued mice, examining aspects such as protein digestion, exercise endurance, fatigue-related biochemistry, oxidative stress, and gut microbiota alterations. Results indicate that the synergistic effect of probiotics and protein significantly boosts the activity of protein-digesting enzymes, enhances protein absorption, and reduces serum levels of urea nitrogen, lactate, lactate dehydrogenase, creatine kinase, malondialdehyde, and the inflammatory cytokines interleukin-1β and interleukin-6 in skeletal muscle. Additionally, serum catalase, glutathione, superoxide dismutase levels, interleukin-4 in skeletal muscle, and glycogen stores in muscle and liver were notably increased. The study also found elevated mRNA expression levels of Nrf2 and HO-1 in skeletal muscle. Furthermore, an increase in short-chain fatty acids was observed in the probiotic treatment group, and 16S rDNA sequencing revealed that Weizmannia coagulans BC99 enhanced gut microbiota diversity and augmented beneficial bacterial populations including Roseburia, Mucispirillum, Rikenella, and Kineothrix. Collectively, these findings suggest that combining BC99 with protein supplementation can effectively improve gut flora, thereby enhancing exercise capacity and exerting potent anti-fatigue effects. Our research provides a new possibility for alleviating exercise-induced fatigue.
Collapse
Affiliation(s)
- Minghan Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Li Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Yao Dong
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
12
|
Florez CM, Zaragoza J, Prather J, Parra M, Davis J, Vargas A, Ross A, Jäger R, Purpura M, Guglielmetti S, Tinsley GM, Taylor L. Postbiotic Supplementation Increases Amino Acid Absorption from Plant-Based Meal: A Placebo-Controlled, Randomized, Double-Blind, Crossover Study. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10480-y. [PMID: 39992622 DOI: 10.1007/s12602-025-10480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Supplementation of probiotic strains can enhance the absorption of amino acids from protein in the gut. The purpose of this study was to assess if supplementation of a multi-strain probiotic or a postbiotic, consisting of the same strains, would alter the absorption of individual and total amino acids following ingestion of a plant-based meal. Sixteen male participants consumed either probiotic (PRO) or postbiotic (cells inactivated by γ-irradiation; POST), both consisting of L. paracasei LP-DG® (CNCM I-1572) plus L. paracasei LPC-S01 (DSM 26760), or a placebo (PLA) for 2 weeks in a randomized, double-blind, crossover design study separated by a 4-week washout period. During the testing session, blood samples were taken at baseline, 30-, 60-, 120-, and 180-min post-ingestion of a plant-based vegan burger patty. Plasma amino acid levels were analyzed, and percent changes from baseline were assessed using linear mixed-effects models, with the PLA condition as the reference group. There was statistically significant POST condition-by-time interactions for percent changes in alanine, asparagine, citrulline, cystine, glycine, methionine, proline, and total amino acids (p < 0.05, for all). Additionally, there was a statistically significant condition (PRO) by time interactions for cystine (p = 0.02). Two weeks of POST supplementation resulted in significant improvements in amino acid absorption profiles for various individual amino acids and total amino acids compared to PLA. This is the first study to report improved amino acid absorption from a mixed macronutrient meal following a period of postbiotic supplementation.
Collapse
Affiliation(s)
- Christine M Florez
- Energy Balance & Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Javier Zaragoza
- Department of Health and Human Performance, Concordia University Chicago, River Forest, IL, 60305, USA
| | - Jessica Prather
- Department of Health and Human Performance, Concordia University Chicago, River Forest, IL, 60305, USA
| | - Mandy Parra
- Human Performance Lab, School of Exercise Sport and Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Jaci Davis
- Human Performance Lab, School of Exercise Sport and Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Amie Vargas
- Human Performance Lab, School of Exercise Sport and Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Audrey Ross
- Human Performance Lab, School of Exercise Sport and Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | | | | | - Simone Guglielmetti
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), Università Degli Studi Di Milano-Bicocca, Milan, Italy
| | - Grant M Tinsley
- Energy Balance & Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Lem Taylor
- Human Performance Lab, School of Exercise Sport and Science, University of Mary Hardin-Baylor, Belton, TX, USA.
- Doctor of Physical Therapy Program, School of Health Professions, University of Mary Hardin-Baylor, Belton, TX, USA.
| |
Collapse
|
13
|
Aitkenhead R, Waldron M, Conway GE, Horner K, Heffernan SM. The Influence of Dietary Supplements on Exercise-Induced Gut Damage and Gastrointestinal Symptoms: A Systematic Review and Meta-Analysis. Nutrients 2025; 17:443. [PMID: 39940302 PMCID: PMC11820470 DOI: 10.3390/nu17030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
Endurance exercise, especially under heat stress, temporarily compromises the integrity of the intestinal barrier in healthy individuals. Consequently, there is growing interest in developing effective dietary strategies to alleviate exercise-induced gastrointestinal symptoms and gut damage. This meta-analysis investigated the effects of dietary supplements on mitigating these challenges. The search was performed in November 2024 following PRISMA guidelines, and 26 peer-reviewed studies were included across three meta-analyses: (1) gastrointestinal symptoms, (2) circulating intestinal fatty acid-binding protein (i-FABP), and (3) exercise performance. The moderating effect of variables was assessed via sub-group analysis and meta-regression. Overall, there was no pooled effect of supplement interventions on gastrointestinal symptoms (Hedges' g = 0.42, 95% CI -0.17: 1.02, p = 0.15), and probiotics had a moderate significant effect for gastrointestinal symptoms (Hedges' g = -0.62, 95% CI -1.01; 1.01, p = 0.05). There was a significant increase in i-FABP concentrations pre- to post exercise (∆ 106%; Hedges' g = 1.01, 95% CI 0.63; 1.38, p = 0.01). There were no pooled or sub-group differences for exercise performance for any supplements (p = 0.53). Moderate-to-large heterogeneity was observed across studies (I2 ≥ 58.6%), and candidate moderators (exercise duration, modality, and environmental temperature) had no significant effect on any outcomes (p > 0.05). A significant increase in circulating i-FABP during exercise was observed. However, when examining the effects of different supplement categories, although significance was observed for a select few supplements, the changes in i-FABP, gastrointestinal symptoms, and exercise performance were outside of clinical relevance. Although probiotics showed a moderate significant effect for gastrointestinal symptoms, the conflicting findings across studies may have been due to inadequate control of confounding variables across studies. Further research is required to assess the alternative dietary supplements' effects on gastrointestinal health and exercise performance, particularly under varied environmental conditions, where more rigorous control for cofounding factors is implemented.
Collapse
Affiliation(s)
- Robyn Aitkenhead
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK; (R.A.); (S.M.H.)
| | - Mark Waldron
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK; (R.A.); (S.M.H.)
- Welsh Institute of Performance Science, Swansea University, Swansea SA1 8EN, UK
- School of Health and Behavioral Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Gillian E. Conway
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK;
| | - Katy Horner
- School of Public Health, Physiotherapy and Sport Science, University College, Belfield, D04 V1W8 Dublin, Ireland;
| | - Shane M. Heffernan
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK; (R.A.); (S.M.H.)
| |
Collapse
|
14
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
15
|
Hwang DJ, Yang HJ. Nutritional Strategies for Enhancing Performance and Training Adaptation in Weightlifters. Int J Mol Sci 2024; 26:240. [PMID: 39796095 PMCID: PMC11720227 DOI: 10.3390/ijms26010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Weightlifting demands explosive power and neuromuscular coordination in brief, repeated intervals. These physiological demands underscore the critical role of nutrition, not only in optimizing performance during competitions but also in supporting athletes' rigorous training adaptations and ensuring effective recovery between sessions. As weightlifters strive to enhance their performance, well-structured nutritional strategies are indispensable. In this comprehensive review, we explored how weightlifters can optimize their performance through targeted nutritional strategies, including carbohydrate intake for glycogen replenishment and proteins for muscle growth and recovery. Additionally, the roles of key supplements, such as creatine, beta-alanine, and branch-chained amino acids in enhancing strength, delaying fatigue, and supporting muscle repair were discussed. A comprehensive literature review was conducted using PubMed, Google Scholar, and Web of Science to gather studies on nutritional strategies for weightlifting performance and training adaptation. The review focused on English-language articles relevant to weightlifters, including studies on powerlifting, while excluding those involving non-human subjects. Weightlifting requires explosive power, and proper nutrition is vital for performance and recovery, emphasizing the role of carbohydrate, protein, and fat intake. Nutrient timing and personalized strategies, informed by genetic and metabolomic analyses, enhance recovery and performance, while supplements like creatine, caffeine, and beta-alanine can significantly improve results when used correctly. Sustainable nutritional strategies are essential for enhancing weightlifter performance, emphasizing a balanced approach over extreme diets or excessive supplements. Further research is needed to refine these strategies based on individual athlete characteristics, ensuring consistent top-level performance throughout competitive seasons.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Sport Science Institute, Korea National Sport University, Seoul 05541, Republic of Korea;
| | - Hong-Jun Yang
- Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
O'Donnell A, Murray A, Nguyen A, Salmon T, Taylor S, Morton JP, Close GL. Nutrition and Golf Performance: A Systematic Scoping Review. Sports Med 2024; 54:3081-3095. [PMID: 39347918 PMCID: PMC11608286 DOI: 10.1007/s40279-024-02095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Golf is played both recreationally and professionally by approximately 66.6 million people worldwide. Despite the potential for nutrition to influence golf performance, research in this area is somewhat limited. OBJECTIVE To identify the existing literature regarding nutrition and golf and where the current research gaps lie. DESIGN Scoping review. Online databases were used to retrieve data from 2003 to the present day. DATA SOURCES A three-step search strategy identified relevant primary and secondary articles as well as grey literature. Published and unpublished articles in the English language, identified by searching electronic databases (ProQuest Central, Web of Science, Scopus, SPORTDiscus and PubMed) and reference searching. REVIEW METHODS Relevant identified studies were screened for final inclusion. Data were extracted using a standardised tool to create a descriptive analysis and a thematic summary. In summary, studies were included if they focused on nutrition, hydration, energy requirements, supplements, or body composition in relation to golf. RESULTS AND DISCUSSION Our initial search found 3616 relevant articles. Eighty-two of these articles were included for the scoping review. Nutrition has the potential to impact golf performance in areas including the maintenance of energy levels, cognitive function, and body composition. Currently, there is limited research available discussing the effects of nutrition interventions related specifically to golf performance. CONCLUSION This scoping review highlights that more work is needed to provide golfers and practitioners with golf-specific nutrition research. The key areas for future golf-specific nutrition research include nutrition on cognitive performance, body composition, energy requirements, supplementation, and the potential role of nutrition for the travelling golfer. Systematic reviews could also be used to identify future priorities for nutrition and golf research.
Collapse
Affiliation(s)
- Amy O'Donnell
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
- Ladies European Tour Performance Institute, Denham, UK
- Medical and Scientific Department, The R&A, St Andrews, UK
| | - Andrew Murray
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
- Ladies European Tour Performance Institute, Denham, UK
- Medical and Scientific Department, The R&A, St Andrews, UK
- PGA European Tour Health and Performance Institute, Virginia Water, UK
| | - Alice Nguyen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Thomas Salmon
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Sam Taylor
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
- Medical and Scientific Department, The R&A, St Andrews, UK.
- PGA European Tour Health and Performance Institute, Virginia Water, UK.
| |
Collapse
|
17
|
Kearns R, Dooley J, Matthews M, McNeilly A. "Do probiotics mitigate GI-induced inflammation and perceived fatigue in athletes? A systematic review". J Int Soc Sports Nutr 2024; 21:2388085. [PMID: 39193818 PMCID: PMC11360638 DOI: 10.1080/15502783.2024.2388085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/28/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Fatigue and gastrointestinal (GI) distress are common among athletes with an estimated 30-90% of athletes participating in marathons, triathlons, or similar events experiencing GI complaints. Intense exercise can lead to increased intestinal permeability, potentially allowing members of the gut microbiota to permeate into the bloodstream, resulting in an inflammatory response and cascade of performance-limiting outcomes. Probiotics, through their capacity to regulate the composition of the gut microbiota, may act as an adjunctive therapy by enhancing GI and immune function while mitigating inflammatory responses. This review investigates the effectiveness of probiotic supplementation on fatigue, inflammatory markers, and exercise performance based on randomized controlled trials (RCTs). METHODS This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and PICOS (Population, Intervention, Comparison, Outcome, Study design) framework. A comprehensive search was conducted in Sportdiscus, PubMed, and Scopus databases, and the screening of titles, abstracts, and full articles was performed based on pre-defined eligibility criteria. Of the 3505 records identified, 1884 were screened using titles and abstracts, of which 450 studies were selected for full-text screening. After final screening, 13 studies met the eligibility criteria and were included for review. The studies contained 513 participants, consisting of 351 males and 115 females, however, two studies failed to mention the sex of the participants. Among the participants, 246 were defined as athletes, while the remaining participants were classified as recreationally active (n = 267). All trials were fully described and employed a double- or triple-blind placebo-controlled intervention using either a single probiotic strain or a multi-strain synbiotic (containing both pro- and pre-biotics). RESULTS This review assesses the effects of daily probiotic supplementation, ranging from 13 to 90 days, on physical performance and physiological markers in various exercise protocols. Ten studies reported improvements in various parameters, such as, enhanced endurance performance, improved anxiety and stress levels, decreased GI symptoms, and reduced upper respiratory tract infections (URTI). Moreover, despite no improvements in maximal oxygen uptake (VO2), several studies demonstrated that probiotic supplementation led to amelioration in lactate, creatine kinase (CK), and ammonia concentrations, suggesting beneficial effects on mitigating exercise-induced muscular stress and damage. CONCLUSION Probiotic supplementation, specifically at a minimum dosage of 15 billion CFUs daily for a duration of at least 28 days, may contribute to the reduction of perceived or actual fatigue.
Collapse
Affiliation(s)
- R.P. Kearns
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - J.S.G. Dooley
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - M. Matthews
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - A.M. McNeilly
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| |
Collapse
|
18
|
Imanian B, Hemmatinafar M, Daryanoosh F, Koureshfard N, Sadeghi R, Niknam A, Rezaei R, Qashqaei A. The effect of probiotics and casein supplementation on aerobic capacity parameters of male soccer players. J Int Soc Sports Nutr 2024; 21:2382165. [PMID: 39039903 PMCID: PMC11268215 DOI: 10.1080/15502783.2024.2382165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND In the realm of sports science, nutrition is a well-established pillar for athletes' training, performance, and post-workout recovery. However, the role of gut microbiota, often overlooked, is a novel and intriguing aspect that can significantly impact athletic performance. With this in mind, our study ventures into uncharted territory, investigating the effect of probiotic and casein supplementation on the aerobic capacity of male soccer players. METHOD A double-blinded and placebo-controlled study was conducted with 44 male soccer players (Age: 22.81 ± 2.76 yr, Height: 177.90 ± 6.75 cm, Weight: 67.42 ± 8.44 kg). The participants were subjected to the Bruce test in the beginning; then, they were randomly divided into four groups, each consisting of 11 people: probiotics (PRO), casein (CAS), probiotics with casein (PRO+CAS), and placebo (PLA). PRO group was given one probiotic capsule (containing strains of Lactiplantibacillus plantarum BP06, Lacticaseibacillus casei BP07, Lactobacillus acidophilus BA05, Lactobacillus delbrueckii BD08 bulgaricus, Bifidobacterium infantis BI04, Bifidobacterium longum BL03, Bifidobacterium breve BB02 and Streptococcus salivarius thermophilus BT01, with a total dose of 4.5 × 1011 CFU) during dinner, while the CAS group consumed 20 grams of casein powder 45 minutes before bed. The PRO+CAS group was given one probiotic capsule during dinner and 20 grams of casein powder 45 minutes before bed. The participants in the PLA group were given one red capsule (containing 5 grams of starch) during dinner. All participants were instructed to take the supplements only on training days, three times a week for four weeks. The maximal oxygen consumption (VO2max), Ventilatory Threshold (VT), Time-to-exhaustion (TTE), Respiratory Compensation Point (RCP), Isocapnic area Time (Time-IC), Isocapnic area oxygen consumption (VO2-IC), and Hypocapnic Hyperventilation area Time (Time-HHV), after the Bruce test were Measured. All data were analyzed using SPSS Windows software, mixed repeated measure ANOVA, and Bonferroni post hoc test at p < 0.05 level. RESULTS The current study's findings illustrated that, after the intervention, TTE (p = 0.01) and RCP (p = 0.01) were significantly improved in PRO+CAS compared to the PLA group. No significant difference was observed between PRO and PLA (p = 0.52), PRO and CAS (p = 0.999), PRO and PRO+CAS (p = 0.9), CAS and PLA (p = 0.65), CAS and PRO+CAS (p = 0.73) in TTE. In addition, no significant difference was observed between PRO and CAS (p = 0.999), PRO and PLA (p = 0.40), PRO and PRO+CAS (p = 0.999), CAS and PLA (p = 0.263), CAS and PRO+CAS (p = 0.999) in RCP. Time-HHV was significantly higher in PRO+CAS (p = 0.000) and CAS (p = 0.047) compared to the PLA group. However, no significant difference was observed in the Time-HHV between PRO and CAS (p = 0.999), PRO and PRO+CAS (p = 0.25), PRO and PLA (p = 0.12), and CAS and PRO+CAS (p = 0.57). Additionally, all the groups had no significant differences in VO2max, VT1, VO2-IC and Time-IC. CONCLUSION The findings showed that consuming probiotics and casein could relatively improve the aerobic capacity of male soccer players. Nevertheless, simultaneous consumption of probiotics and casein had a more pronounced effect on aerobic capacity indicators, especially TTE and Time-HHV.
Collapse
Affiliation(s)
- Babak Imanian
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Mohammad Hemmatinafar
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Farhad Daryanoosh
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Negar Koureshfard
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Reza Sadeghi
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Alireza Niknam
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Rasoul Rezaei
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Ali Qashqaei
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| |
Collapse
|
19
|
Kistler W, Villiger M, Villiger B, Yazici D, Pat Y, Mitamura Y, Ardicli S, Skolnick S, Dhir R, Akdis M, Nadeau K, Ogulur I, Akdis CA. Epithelial barrier theory in the context of nutrition and environmental exposure in athletes. Allergy 2024; 79:2912-2923. [PMID: 39011970 DOI: 10.1111/all.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Exposure to toxic substances, introduced into our daily lives during industrialization and modernization, can disrupt the epithelial barriers in the skin, respiratory, and gastrointestinal systems, leading to microbial dysbiosis and inflammation. Athletes and physically active individuals are at increased risk of exposure to agents that damage the epithelial barriers and microbiome, and their extreme physical exercise exerts stress on many organs, resulting in tissue damage and inflammation. Epithelial barrier-damaging substances include surfactants and enzymes in cleaning products, laundry and dishwasher detergents, chlorine in swimming pools, microplastics, air pollutants such as ozone, particulate matter, and diesel exhaust. Athletes' high-calorie diet often relies on processed foods that may contain food emulsifiers and other additives that may cause epithelial barrier dysfunction and microbial dysbiosis. The type of the material used in the sport equipment and clothing and their extensive exposure may increase the inflammatory effects. Excessive travel-related stress, sleep disturbances and different food and microbe exposure may represent additional factors. Here, we review the detrimental impact of toxic agents on epithelial barriers and microbiome; bring a new perspective on the factors affecting the health and performance of athletes and physically active individuals.
Collapse
Affiliation(s)
- Walter Kistler
- Medical Committee International Ice Hockey Federation, Zürich, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Michael Villiger
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Beat Villiger
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Seed Health Inc., Los Angeles, California, USA
| | - Raja Dhir
- Seed Health Inc., Los Angeles, California, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
20
|
Bocchio F, Mancabelli L, Milani C, Lugli GA, Tarracchini C, Longhi G, Conto FD, Turroni F, Ventura M. Compendium of Bifidobacterium-based probiotics: characteristics and therapeutic impact on human diseases. MICROBIOME RESEARCH REPORTS 2024; 4:2. [PMID: 40207278 PMCID: PMC11977362 DOI: 10.20517/mrr.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 04/11/2025]
Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for further research to confirm their clinical efficacy across different body systems.
Collapse
Affiliation(s)
- Fabiana Bocchio
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Christian Milani
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| |
Collapse
|
21
|
Wu Y, Hou D, Zhan S, Wang L, Cao J, Guo J, Li L, Zhang H, Niu L, Zhong T. Colonization profiles of gut microbiota in goat kids from neonatal to weaning period. Front Microbiol 2024; 15:1467205. [PMID: 39411440 PMCID: PMC11473314 DOI: 10.3389/fmicb.2024.1467205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Understanding the colonization and change patterns of gut microbiota is pivotal for comprehending host health. As a newly cultured breed, the studies on the gut microbiota of Tianfu goats remain limited. This study aimed to address this gap by analyzing the microbial composition and colonization patterns of fecal samples collected from goat kids from birth to weaning. Fecal samples were collected on days 0, 7, 14, 21, 28, 35, 42, 49, 53, 55, 57, and 64, and the changes and colonization patterns of microorganisms were analyzed through high-throughput 16S rRNA sequencing. The results showed that the abundance of fecal microbiota in goat kids gradually increased over time, followed by a decrease after weaning and stabilization, with reduced individual differences. The colonization of fecal microorganisms mainly presented three different stages: days 0-14, days 21-49, and days 53-64. During the suckling period, the relative abundance of Proteobacteria (72.34%) was the highest, followed by Firmicutes (21.66%). From 21 days old, the microbiota in goat kids gradually to be diverse, with Lachnospiraceae and Ruminococcaceae being dominant. During post-weaning, Ruminococcaceae (30.98-33.34%) was becoming prominence which helpful for cellulose decomposition. LEfSe analyzed three important time points (d0 vs. d7, d7 vs. d14, d49 vs. d53, LDA score > 4 and p < 0.05), 53 microbial communities with stage differences were identified. Functional prediction using PICRUSt revealed that differential microbial communities are mainly related to carbohydrate and amino acid metabolism pathways. Overall, this study addresses the intricate relationship between ages, diets, and microbiota compositions in Tianfu goat kids, and also offering insights into microorganisms-host interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Wang L, Meng FJ, Jin YH, Wu LQ, Tang RY, Xu KH, Guo Y, Mao JJ, Ding JP, Li J. Effects of probiotic supplementation on 12 min run performance, mood management, body composition and gut microbiota in amateur marathon runners: A double-blind controlled trial. J Exerc Sci Fit 2024; 22:297-304. [PMID: 38706951 PMCID: PMC11066675 DOI: 10.1016/j.jesf.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Background Probiotic supplementation has a positive effect on endurance exercise performance and body composition in athletes, but the underlying mechanisms remain unclear. Gut microbiota can provide measurable markers of immune function in athletes, and microbial composition analysis may be sensitive enough to detect stress and metabolic disorders caused by exercise. Methods Nineteen healthy active amateur marathon runners (15 male and 4 female) with a mean age of 29.11 years volunteered to participate in this double-blind controlled study. Based on the performance of the Cooper 12-min running test (CRT), the participants were allocated into two groups to receive either a probiotic formulation comprising lactobacillus acidophilus and bifidobacterium longum (n = 10) or placebo containing maltodextrin (n = 9) for five weeks. Consistency of diet and exercise was ensured throughout the experimental period. Before and after the intervention, all participants were assessed for CRT, emotional stability and gastrointestinal symptoms, gut microbiota composition, body composition and magnetic resonance imaging (MRI) indicators of skeletal muscle microcirculation. Results Compared to before the intervention, the probiotics group showed an increase in CRT score (2.88 ± 0.57 vs 3.01 ± 0.60 km, P<0.05), significant improvement in GSRS and GIQLI (9.20 ± 4.64 vs 7.40 ± 3.24, 118.90 ± 12.30 vs 127.50 ± 9.85, P<0.05), while these indicators remained unchanged in the control group, with a significant time-group interaction effect on gastrointestinal symptoms. Additionally, some MRI metabolic cycling indicators of the thigh skeletal muscle also changed in the probiotics group (P<0.05). Regarding microbiota abundance, the probiotics group exhibited a significant increase in the abundance of beneficial bacteria and a significant decrease in the abundance of harmful bacteria post-intervention (P<0.05). Conclusion As a sports nutritional supplement, probiotics have the potential to improve athletic performance by optimizing the balance of gut microbiota, alleviating gastrointestinal symptoms.
Collapse
Affiliation(s)
- Le Wang
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Women's Hospital School of Medicine Zhejiang University, China
| | - Fan-Jing Meng
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yi-Han Jin
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Li-Qiang Wu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Ruo-Yu Tang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Kuang-Hui Xu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yun Guo
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun-Jie Mao
- School of Physical Education, Hangzhou Normal University, China
| | - Jian-Ping Ding
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
- Hangzhou Institute of Sports Medicine for Marathon, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
- Hangzhou Institute of Sports Medicine for Marathon, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, China
| |
Collapse
|
23
|
Yang Y, Zhao Y, Lei H. Alleviating effect of Lactobacillus rhamnosus SDSP202418 on exercise-induced fatigue in mice. Front Microbiol 2024; 15:1420872. [PMID: 39391603 PMCID: PMC11464290 DOI: 10.3389/fmicb.2024.1420872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, the effects of Lactobacillus rhamnosus SDSP202418 isolated from shrimp paste on the exercise performance of fatigued mice were analyzed, and the potential action mechanism was revealed. L. rhamnosus SDSP202418 significantly improved the exhaustion time of the mice and regulated the biochemical indices (lactate dehydrogenase, nitrogen, and uric acid) of the fatigued mice to resist fatigue. L. rhamnosus SDSP202418 also upregulated the mRNA expression of slow muscle fibers and downregulated the mRNA expression of fast muscle fibers in the exercise mice by activating the AMPK/PGC-1α pathway in the fatigued mice. It also increased the contents of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH)) in the liver and muscle. These enzymes removed and repaired oxidative free radicals to achieve antifatigue. In addition, L. rhamnosus SDSP202418 can change the gut microbial structure and modulate the abundance and balance of fatigue-related gut microbiota, which in turn exerts antifatigue effects. L. rhamnosus SDSP202418 is a functional food component that relieves fatigue after exercise.
Collapse
Affiliation(s)
- Yang Yang
- College of Physical Education, Chengdu Sport University, Chengdu, China
| | - Yuanji Zhao
- School of Physical Education, Wuhan Sports University, Wuhan, China
| | - Huan Lei
- College of Physical Education, Chengdu Sport University, Chengdu, China
| |
Collapse
|
24
|
Fu T, Liu H, Shi C, Zhao H, Liu F, Xia Y. Global hotspots and trends of nutritional supplements in sport and exercise from 2000 to 2024: a bibliometric analysis. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:146. [PMID: 39267150 PMCID: PMC11397053 DOI: 10.1186/s41043-024-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Nutritional supplements for sports and exercise (NSSE) can facilitate the exogenous replenishment of the body. This study provides the first extensive overview of NSSE research through bibliometric and visual analyses. METHODS We searched the Web of Science Core Collection database for literature related to "NSSE" from 1st January 2000 to 8th March 2024. A total of 1744 articles were included. CiteSpace, VOSviewer, and Bibliometrix R package software were used to analyze the data. RESULTS Research in the NSSE can be divided into steady growth, exponential growth, fluctuating stage, and surge stages. The United States is the most active country in this field. In recent years, the leading countries have been Croatia, Colombia, Slovenia, Chile, Egypt, China, and Thailand. The Australian Institute of Sports is the top research institution in terms of number of publications. Burke, LM from Australia published the most articles. Research in this area has primarily been published in Nutrients in Switzerland. The study population mainly consisted of men, and postmenopausal women were the main focus of the female group. Coronary heart and cardiovascular diseases continue to dominate research. CONCLUSION Research on the NSSE is developing rapidly, with an annual growth trend. Insulin resistance, sports nutrition, inflammation, alpha-linolenic acid, limb strength performance, female sex, and gut microbiota are the focus of the current research and trends for future research. Future research should focus on improving the scientific training system for athletes and quality of training and life for the general public.
Collapse
Affiliation(s)
- Te Fu
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| | - Haitao Liu
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China.
- Research Center of Sports Reform and Development, Henan University, Kaifeng, Henan, 475001, China.
- Institute of Physical Fitness and Health, Henan University, Kaifeng, Henan, 475001, China.
| | - Chaofan Shi
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| | - Haichang Zhao
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| | - Feiyue Liu
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| | - Yingjian Xia
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| |
Collapse
|
25
|
Harlow J, Blodgett K, Stedman J, Pojednic R. Dietary Supplementation on Physical Performance and Recovery in Active-Duty Military Personnel: A Systematic Review of Randomized and Quasi-Experimental Controlled Trials. Nutrients 2024; 16:2746. [PMID: 39203882 PMCID: PMC11357047 DOI: 10.3390/nu16162746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Warfighters, often called tactical athletes, seek dietary supplementation to enhance training and recovery. Roughly 69% of active-duty US military personnel have reported consuming dietary supplements. The objective of this systematic review was to examine the impact of dietary supplements on muscle-related physical performance and recovery in active-duty military personnel. METHODS Randomized controlled trials and quasi-experimental controlled trials of oral dietary supplementation in active-duty military members were examined. A protocol was registered (PROSPERO CRD42023401472), and a systematic search of MEDLINE and CINAHL was undertaken. Inclusion criteria consisted of studies published between 1990-2023 with outcomes of muscle performance and recovery among active-duty military populations. The risk of bias was assessed with the McMaster University Guidelines and Critical Review Form for Quantitative Studies. RESULTS Sixteen studies were included. Four were conducted on protein or carbohydrate; four on beta-alanine alone, creatine alone, or in combination; two on mixed nutritional supplements; two on probiotics alone or in combination with beta hydroxy-beta methylbutyrate calcium; and four on phytonutrient extracts including oregano, beetroot juice, quercetin, and resveratrol. Ten examined outcomes related to physical performance, and six on outcomes of injury or recovery. Overall, protein, carbohydrate, beta-alanine, creatine, and beetroot juice modestly improved performance, while quercetin did not. Protein, carbohydrates, beta-alanine, probiotics, and oregano reduced markers of inflammation, while resveratrol did not. CONCLUSIONS Nutrition supplementation may have small benefits on muscle performance and recovery in warfighters. However, there are significant limitations in interpretation due to the largely inconsistent evidence of ingredients and comparable outcomes. Thus, there is inadequate practical evidence to suggest how dietary supplementation may affect field performance.
Collapse
Affiliation(s)
- Jacie Harlow
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
| | - Kylie Blodgett
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
| | - Jenna Stedman
- Department of Nutrition & Dietetics, Kansas University Medical Center, Kansas City, KS 66103, USA;
| | - Rachele Pojednic
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
- Stanford Lifestyle Medicine, Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Merenstein DJ, Tancredi DJ, Karl JP, Krist AH, Lenoir-Wijnkoop I, Reid G, Roos S, Szajewska H, Sanders ME. Is There Evidence to Support Probiotic Use for Healthy People? Adv Nutr 2024; 15:100265. [PMID: 38977065 PMCID: PMC11342770 DOI: 10.1016/j.advnut.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Probiotics are typically marketed as foods and dietary supplements, categories for products intended to maintain health in generally healthy populations and which, unlike drugs, cannot claim to treat or cure disease. This review addresses the existing evidence that probiotics are beneficial to healthy people. Our approach was to perform a descriptive review of efficacy evidence that probiotics can prevent urinary, vaginal, gastrointestinal, and respiratory infections, and improve risk factors associated with cardiovascular health or reduce antibiotic use. Other endpoints such as mental, dental, or immune health were not specifically addressed. We concluded that there is sufficient evidence of efficacy and safety for clinicians and consumers to consider using specific probiotics for some indications - such as the use of probiotics to support gut function during antibiotic use or to reduce the risk of respiratory tract infections - for certain people. However, we did not find a sufficiently high level of evidence to support unconditional, population-wide recommendations for other preventive endpoints we reviewed for healthy people. Although evidence for some indications is suggestive of the preventive benefits of probiotics, additional research is needed.
Collapse
Affiliation(s)
- Daniel J Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis, CA, United States
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Alex H Krist
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Gregor Reid
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON, Canada
| | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Uppsala, Sweden; Research & Development, BioGaia AB, Stockholm, Sweden
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, United States.
| |
Collapse
|
27
|
Yang X, Wang Y, Yang Y. Impact of Pediococcus pentosaceus YF01 on the exercise capacity of mice through the regulation of oxidative stress and alteration of gut microbiota. Front Microbiol 2024; 15:1421209. [PMID: 38989023 PMCID: PMC11233450 DOI: 10.3389/fmicb.2024.1421209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
Using treadmill training, this study replicated human exercise conditions and triggered exercise-induced fatigue in mice to examine the potential of Pediococcus pentosaceus YF01 in delaying this fatigue by regulating oxidative stress and its impact on the exercise capacity and gut microbiota of mice. The exercise capacity of mice was tested by conducting exhaustion tests, determining histopathological changes in mouse tissues, detecting the levels of serum biochemical markers, and evaluating the mRNA expression levels of relevant genes. YF01 prolonged the exhaustion time of mice, increased the serum levels of oxidative stress-related markers T-AOC, CAT, and GSH, as well as GLU and LA levels in the mice. YF01 decreased the levels of hepatic-related markers AST and ALT, as well as exercise-related markers LDH, BUN, UA, and CRE in the mice. YF01 upregulated the mRNA expression of MyHc I, SIRT1, and PGC in muscle tissues, as well as SOD1, SOD2, and CAT in both liver and muscle tissues. YF01 also downregulated the mRNA expression of MyHc IIa, MyHc IIb, and MyHc IIx in muscle tissues. Furthermore, YF01 increased the abundance of beneficial bacteria such as Lactobacillus and Lachnospiraceae in the gut microbiota of mice. In conclusion, P. pentosaceus YF01 may affect the exercise capacity of mice by modulating oxidative stress levels, thereby offering novel ideas for developing of sports science and human health.
Collapse
Affiliation(s)
- Xiaoguang Yang
- School of Physical Education, Yan'an University, Yan'an, Shaanxi, China
| | - Yeni Wang
- Ministry of Sports, Xiamen Institute of Technology, Xiamen, Fujian, China
| | - Yuhua Yang
- Department of Social Sports Management, College of Humanities and Law, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
28
|
Cinca-Morros S, Álvarez-Herms J. The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization. Microorganisms 2024; 12:1160. [PMID: 38930542 PMCID: PMC11205789 DOI: 10.3390/microorganisms12061160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Exposure to passive heat (acclimation) and exercise under hot conditions (acclimatization), known as heat acclimation (HA), are methods that athletes include in their routines to promote faster recovery and enhance physiological adaptations and performance under hot conditions. Despite the potential positive effects of HA on health and physical performance in the heat, these stimuli can negatively affect gut health, impairing its functionality and contributing to gut dysbiosis. Blood redistribution to active muscles and peripheral vascularization exist during exercise and HA stimulus, promoting intestinal ischemia. Gastrointestinal ischemia can impair intestinal permeability and aggravate systemic endotoxemia in athletes during exercise. Systemic endotoxemia elevates the immune system as an inflammatory responses in athletes, impairing their adaptive capacity to exercise and their HA tolerance. Better gut microbiota health could benefit exercise performance and heat tolerance in athletes. This article suggests that: (1) the intestinal modifications induced by heat stress (HS), leading to dysbiosis and altered intestinal permeability in athletes, can decrease health, and (2) a previously acquired microbial dysbiosis and/or leaky gut condition in the athlete can negatively exacerbate the systemic effects of HA. Maintaining or improving the healthy gut microbiota in athletes can positively regulate the intestinal permeability, reduce endotoxemic levels, and control the systemic inflammatory response. In conclusion, strategies based on positive daily habits (nutrition, probiotics, hydration, chronoregulation, etc.) and preventing microbial dysbiosis can minimize the potentially undesired effects of applying HA, favoring thermotolerance and performance enhancement in athletes.
Collapse
Affiliation(s)
- Sergi Cinca-Morros
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Jesús Álvarez-Herms
- Physiology and Molecular Laboratory (Phymolab), 40170 Collado Hermoso, Spain;
| |
Collapse
|
29
|
Valido E, Capossela S, Glisic M, Hertig-Godeschalk A, Bertolo A, Stucki G, Flueck JL, Stoyanov J. Gut microbiome and inflammation among athletes in wheelchair in a crossover randomized pilot trial of probiotic and prebiotic interventions. Sci Rep 2024; 14:12838. [PMID: 38834634 PMCID: PMC11150429 DOI: 10.1038/s41598-024-63163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Disorders related to gut health are a significant cause of morbidity among athletes in wheelchair. This pilot feasibility trial aims to investigate whether probiotics compared to prebiotics can improve inflammatory status and gut microbiome composition in elite athletes in wheelchair. We conducted a 12-week, randomized, cross-over controlled trial involving 14 elite Swiss athletes in wheelchair. Participants were given a multispecies-multistrain probiotic or prebiotic (oat bran) daily for 4 weeks (Clinical trials.gov NCT04659408 09/12/2020). This was followed by a 4-week washout and then crossed over. Thirty inflammatory markers were assessed using bead-based multiplex immunoassays (LegendPlex) from serum samples. The gut microbiome was characterized via 16S rRNA sequencing of stool DNA samples. Statistical analyses were conducted using linear mixed-effect models (LMM). At baseline, most athletes (10/14) exhibited low levels of inflammation which associated with higher gut microbiome alpha diversity indices compared to those with high inflammation levels. The use of probiotic had higher decrease in 25 (83%) inflammatory markers measured compared to prebiotic use. Probiotic has the potential in lowering inflammation status and improving the gut microbiome diversity. The future trial should focus on having sufficient sample sizes, population with higher inflammation status, longer intervention exposure and use of differential abundance analysis.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland.
| | | | - Marija Glisic
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012, Bern, Switzerland
| | | | - Alessandro Bertolo
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Department of Orthopedic Surgery, University of Bern, Bern Inselspital, 3012, Bern, Switzerland
| | - Gerold Stucki
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, 6003, Lucerne, Switzerland
| | - Joelle Leonie Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre, 6207, Nottwil, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
30
|
Chen K, Jin S, Ma Y, Cai L, Xu P, Nie Y, Luo L, Yu Q, Shen Y, Zhou Z, Liu C. Adjudicative efficacy of Bifidobacterium animalis subsp. lactis BLa80 in treating acute diarrhea in children: a randomized, double-blinded, placebo-controlled study. Eur J Clin Nutr 2024; 78:501-508. [PMID: 38467857 PMCID: PMC11182741 DOI: 10.1038/s41430-024-01428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The goal of this study is to assess the efficacy and safety of Bifidobacterium animalis subsp. lactis BLa80, as an adjunct treatment for diarrhea in children with a randomized, double-blinded, placebo-controlled study design. Eligible diarrheal children, aged 0-3 years without the need for antibiotic treatment based on clinical diagnosis when recruited, were randomized into the intervention group (IG, n = 58, with probiotic) or the control group (CG, n = 53, placebo). The primary assessment was the duration of diarrhea. Fecal samples were collected for biochemical index measurement, analysis of gut microbiome composition, and prediction of gene family abundances. The total duration of diarrhea in the IG (122.6 ± 13.1 h) was significantly shorter than in the CG (148.4 ± 17.6 h, p < 0.001). More children in the IG showed improvements in diarrhea compared to the CG, both in intention-to-treat analysis (81.7% vs. 40.0%, p < 0.001) and per protocol analysis (84.4% vs 45.3%, p < 0.001). Cathelicidin level in the IG was significantly higher than that in the CG after the intervention (4415.00 ± 1036.93 pg/g vs. 3679.49 ± 871.18 pg/g, p = 0.0175). The intervention led to an increased abundance of Bifidobacterium breve and Collinsella aerofaciens species, higher alpha-diversity (p < 0.05), and enrichment of functional genes in the gut microbiota related to immunity regulation. Administration of BLa80 at a dose of 5 × 109 CFU/day resulted in a shorter duration of diarrhea and alterations in gut microbiome composition and gene functions.
Collapse
Affiliation(s)
- Ke Chen
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shanshan Jin
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Ma
- Department of Neonatology, Dayi Maternal and Child Health Care Hospital, Chengdu, China
| | - Limei Cai
- Department of Neonatology, Qingbaijiang Maternal and Child Health Care Hospital, Chengdu, China
| | - Ping Xu
- Department of Child Health Care, Qingbaijiang Maternal and Child Health Care Hospital, Chengdu, China
| | - Yang Nie
- Department of Child Health Care, Chongzhou Maternal and Child Health Care Hospital, Chengdu, China
| | - Li Luo
- Department of Pediatrics, Dayi Maternal and Child Health Care Hospital, Chengdu, China
| | - Qinghua Yu
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co., Limited, Shanghai, China
| | - Yang Shen
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co., Limited, Shanghai, China
| | - Zengyuan Zhou
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
31
|
Aykut MN, Erdoğan EN, Çelik MN, Gürbüz M. An Updated View of the Effect of Probiotic Supplement on Sports Performance: A Detailed Review. Curr Nutr Rep 2024; 13:251-263. [PMID: 38470560 PMCID: PMC11133216 DOI: 10.1007/s13668-024-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW Modulation of the host microbiota through probiotics has been shown to have beneficial effects on health in the growing body of research. Exercise increases the amount and diversity of beneficial microorganisms in the host microbiome. Although low- and moderate-intensity exercise has been shown to reduce physiological stress and improve immune function, high-intensity prolonged exercise can suppress immune function and reduce microbial diversity due to intestinal hypoperfusion. The effect of probiotic supplementation on sports performance is still being studied; however, questions remain regarding the mechanisms of action, strain used, and dose. In this review, the aim was to investigate the effects of probiotic supplements on exercise performance through modulation of gut microbiota and alleviation of GI symptoms, promotion of the immune system, bioavailability of nutrients, and aerobic metabolism. RECENT FINDINGS Probiotic supplementation may improve sports performance by reducing the adverse effects of prolonged high-intensity exercise. Although probiotics have been reported to have positive effects on sports performance, information about the microbiome and nutrition of athletes has not been considered in most current studies. This may have limited the evaluation of the effects of probiotic supplementation on sports performance.
Collapse
Affiliation(s)
- Miray Nur Aykut
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Esma Nur Erdoğan
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Gürbüz
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey.
| |
Collapse
|
32
|
Bertuccioli A, Zonzini GB, Cazzaniga M, Cardinali M, Di Pierro F, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Palazzi CM. Sports-Related Gastrointestinal Disorders: From the Microbiota to the Possible Role of Nutraceuticals, a Narrative Analysis. Microorganisms 2024; 12:804. [PMID: 38674748 PMCID: PMC11051759 DOI: 10.3390/microorganisms12040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Intense physical exercise can be related to a significant incidence of gastrointestinal symptoms, with a prevalence documented in the literature above 80%, especially for more intense forms such as running. This is in an initial phase due to the distancing of the flow of blood from the digestive system to the skeletal muscle and thermoregulatory systems, and secondarily to sympathetic nervous activation and hormonal response with alteration of intestinal motility, transit, and nutrient absorption capacity. The sum of these effects results in a localized inflammatory process with disruption of the intestinal microbiota and, in the long term, systemic inflammation. The most frequent early symptoms include abdominal cramps, flatulence, the urge to defecate, rectal bleeding, diarrhea, nausea, vomiting, regurgitation, chest pain, heartburn, and belching. Promoting the stability of the microbiota can contribute to the maintenance of correct intestinal permeability and functionality, with better control of these symptoms. The literature documents various acute and chronic alterations of the microbiota following the practice of different types of activities. Several nutraceuticals can have functional effects on the control of inflammatory dynamics and the stability of the microbiota, exerting both nutraceutical and prebiotic effects. In particular, curcumin, green tea catechins, boswellia, berberine, and cranberry PACs can show functional characteristics in the management of these situations. This narrative review will describe its application potential.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
| | - Massimiliano Cazzaniga
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
| | - Marco Cardinali
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy
| | - Francesco Di Pierro
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| |
Collapse
|
33
|
Wu J, Li Y. Relationship between type 1 narcolepsy and gut microbiota: sleepy people, sleepy microbiota? Sleep 2024; 47:zsae050. [PMID: 38416066 PMCID: PMC11009015 DOI: 10.1093/sleep/zsae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 02/29/2024] Open
Affiliation(s)
- Jun Wu
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Guangdong, China
- Sleep Medicine Center, Shantou University Medical College, Guangdong, China
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, China
| | - Yun Li
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Guangdong, China
- Sleep Medicine Center, Shantou University Medical College, Guangdong, China
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, China
| |
Collapse
|
34
|
Kerksick CM, Moon JM, Jäger R. It's Dead! Can Postbiotics Really Help Performance and Recovery? A Systematic Review. Nutrients 2024; 16:720. [PMID: 38474848 PMCID: PMC10933997 DOI: 10.3390/nu16050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, postbiotics have increased in popularity, but the potential relevancy of postbiotics for augmenting exercise performance, recovery, and health is underexplored. A systematic literature search of Google Scholar and PubMed databases was performed with the main objective being to identify and summarize the current body of scientific literature on postbiotic supplementation and outcomes related to exercise performance and recovery. Inclusion criteria for this systematic review consisted of peer-reviewed, randomized, double-blind, and placebo-controlled trials, with a population including healthy men or women >18 years of age. Studies required the incorporation of a postbiotic supplementation regimen and an outcome linked to exercise. Search terms included paraprobiotics, Tyndallized probiotics, ghost biotics, heat-killed probiotics, inactivated probiotics, nonviable probiotics, exercise, exercise performance, and recovery. Only investigations written in English were considered. Nine peer-reviewed manuscripts and two published abstracts from conference proceedings were included and reviewed. Supplementation periods ranged from 13 days to 12 weeks. A total of 477 subjects participated in the studies (n = 16-105/study) with reported results spanning a variety of exercise outcomes including exercise performance, recovery of lost strength, body composition, perceptual fatigue and soreness, daily logs of physical conditions, changes in mood states, and biomarkers associated with muscle damage, inflammation, immune modulation, and oxidative stress. Early evidence has provided some indication that postbiotic supplementation may help to support mood, reduce fatigue, and increase the readiness of athletes across several weeks of exercise training. However, more research is needed to further understand how postbiotics may augment health, resiliency, performance, and recovery. Future investigations should include longer supplementation periods spanning a wider variety of competitive athletes and exercising populations.
Collapse
Affiliation(s)
- Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Jessica M. Moon
- Exercise Physiology, Intervention, and Collaboration Lab, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, 12494 University Blvd, Orlando, FL 32816, USA;
| | - Ralf Jäger
- Increnovo, LLC, Whitefish Bay, WI 53217, USA;
| |
Collapse
|
35
|
Paoli A, Cerullo G, Bianco A, Neri M, Gennaro F, Charrier D, Moro T. Not Only Protein: Dietary Supplements to Optimize the Skeletal Muscle Growth Response to Resistance Training: The Current State of Knowledge. J Hum Kinet 2024; 91:225-244. [PMID: 38689582 PMCID: PMC11057611 DOI: 10.5114/jhk/18666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
Regarding skeletal muscle hypertrophy, resistance training and nutrition, the most often discussed and proposed supplements include proteins. Although, the correct amount, quality, and daily distribution of proteins is of paramount importance for skeletal muscle hypertrophy, there are many other nutritional supplements that can help and support the physiological response of skeletal muscle to resistance training in terms of muscle hypertrophy. A healthy muscle environment and a correct whole muscle metabolism response to the stress of training is a prerequisite for the increase in muscle protein synthesis and, therefore, muscle hypertrophy. In this review, we discuss the role of different nutritional supplements such as carbohydrates, vitamins, minerals, creatine, omega-3, polyphenols, and probiotics as a support and complementary factors to the main supplement i.e., protein. The different mechanisms are discussed in the light of recent evidence.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonino Bianco
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Marco Neri
- Italian Fitness Federation, Ravenna, Italy
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Davide Charrier
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Gross KN, Harty PS, Krieger JM, Mumford PW, Sunderland KL, Hagele AM, Kerksick CM. Milk or Kefir, in Comparison to Water, Do Not Enhance Running Time-Trial Performance in Endurance Master Athletes. Nutrients 2024; 16:717. [PMID: 38474845 DOI: 10.3390/nu16050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
This study compared flavored kefir (KFR) and flavored milk (MLK) as a recovery drink in endurance master athletes. Using a randomized, placebo-controlled, non-blinded crossover design, 11 males and females completed three testing visits whilst acutely ingesting either KFR, MLK, or water as a placebo (PLA). KFR supplementation occurred for 14 days before the KFR-testing day, followed by a 3-week washout period. Testing visits consisted of an exhausting-exercise (EE) bout, a 4-h rest period where additional carbohydrate feeding was provided, and a treadmill 5 km time trial (TT). The Gastrointestinal Symptom Rating Scale (GSRS) survey was assessed at four timepoints. Blood was collected at baseline and after the TT and was analyzed for I-FABP levels. No significant difference (PLA: 33:39.1 ± 6:29.0 min, KFR: 33:41.1 ± 5:44.4 min, and MLK: 33:36.2 ± 6:40.5 min, p = 0.99) was found between the groups in TT performance. The KFR GSRS total score was significantly lower than the PLA after EE (p = 0.005). No differences in I-FABP were observed between conditions. In conclusion, acute KFR supplementation did not impact TT performance or I-FABP levels but may have reduced subjective GI symptoms surrounding exercise when compared to MLK or PLA.
Collapse
Affiliation(s)
- Kristen N Gross
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Patrick S Harty
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Joesi M Krieger
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Petey W Mumford
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Kyle L Sunderland
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Anthony M Hagele
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| |
Collapse
|
37
|
Walden KE, Hagele AM, Orr LS, Gross KN, Krieger JM, Jäger R, Kerksick CM. Probiotic BC30 Improves Amino Acid Absorption from Plant Protein Concentrate in Older Women. Probiotics Antimicrob Proteins 2024; 16:125-137. [PMID: 36515888 PMCID: PMC10850210 DOI: 10.1007/s12602-022-10028-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Weizmannia coagulans GBI-30, 6086 (BC30) has previously been shown to increase protein digestion in an in vitro model of the stomach and small intestine and amino acid appearance in healthy men and women after ingestion of milk protein concentrate. The impact of ingesting BC30 with other protein sources or in other demographics is largely unknown. The purpose of this study was to examine the impact of adding BC30 to a 20-g dose of a blend of rice and pea protein on postprandial changes in blood amino acids concentrations in healthy, older women. Healthy, older females (n = 30, 58.5 ± 5.2 years, 165.4 ± 6.8 cm, 65.6 ± 8.8 kg, 23.7 ± 3.2 kg/m2) completed two separate 14-day supplementation protocols separated by a 3-week washout period. Participants were instructed to ingest a 20-g protein dose of a blend of rice and pea protein concentrates (ProDiem Plant Protein Solutions, Kerry) with (PPCBC30) or without (PPC) the addition of 1 × 109 CFU BC30 (Kerry). Body composition and demographics were assessed upon arrival to the laboratory. Upon ingestion of their final assigned supplemental dose, blood samples were taken at 0 (baseline), 30-, 60-, 90-, 120-, 180-, and 240-min post-consumption and analyzed for amino acid concentrations. Alanine (p = 0.018), tryptophan (p = 0.003), cysteine (p = 0.041), essential amino acids (p = 0.050), and total amino acids (p = 0.039) all exhibited significantly (p ≤ 0.05) greater AUC with PPCBC30 when compared to PPC. In addition, tryptophan (p = 0.003), cysteine (p = 0.021), essential amino acids (p = 0.049), and total amino acids (p = 0.035) displayed significantly greater (p ≤ 0.05) concentration maximum (CMax) values in PPCBC30 when compared to PPC. Finally, time to reach CMax (TMax) was similar between conditions with 80% of all measured amino acids and amino acid combinations achieving CMax at a similar time (~ 60 min). Only phenylalanine TMax was found to be different (p = 0.01) between the two conditions with PPC displaying a greater proportion of TMax values after 30 min. Following qualitative (non-inferential) assessment, 88% of all measured outcomes achieved a higher AUC with PPCBC30 and 100% of all outcomes achieved a higher CMax with PPCBC30. In concert with previous findings in a younger mixed gender cohort with milk protein, the addition of BC30 to a daily 20-g dose of plant protein concentrate in healthy older women improved AUC and CMax values in several individual amino acids and amino acid combinations. Retrospectively registered on April 6, 2022, at ClinicalTrials.gov as NCT05313178.
Collapse
Affiliation(s)
- Kylie E Walden
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Anthony M Hagele
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Logan S Orr
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Kristen N Gross
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Joesi M Krieger
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | | | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| |
Collapse
|
38
|
Gross K, Santiago M, Krieger JM, Hagele AM, Zielinska K, Scheiman J, Jäger R, Kostic A, Kerksick CM. Impact of probiotic Veillonella atypica FB0054 supplementation on anaerobic capacity and lactate. iScience 2024; 27:108643. [PMID: 38222109 PMCID: PMC10784697 DOI: 10.1016/j.isci.2023.108643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/28/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Seven healthy, physically active men (n = 3) and women (n = 4) (30.7 ± 7.5 years, 172.7 ± 8.7 cm, 70.4 ± 11.6 kg, 23.6 ± 4.1 kg/m2, 49.2 ± 8.4 mL/kg/min) supplemented for 14 days with a placebo (PLA) or 1 × 1010 CFU doses of the probiotic Veillonella atypica FB0054 (FitBiomics, New York, NY). Participants had safety panels, hemodynamics, lactate, and anaerobic capacity assessed. Stool samples were collected to evaluate for metagenomic and metabolomic changes. Exhaustion times were not different between groups, whereas anaerobic capacity tended to shorten with PLA (61.14 ± 72.04 s; 95% CI: -5.49, 127.77 s, p = 0.066) with no change with VA (13.29 ± 100.13 s, 95% CI: -79.32, 105.89 s, p = 0.738). No changes in lactate, hemodynamics, or bacterial community changes were observed, whereas 14 metabolites exhibited differential expression patterns with VA supplementation. In conclusion, VA maintained exercise performance that tended to decline in PLA. Supplementation was well tolerated with no changes in safety markers or reported adverse events.
Collapse
Affiliation(s)
- Kristen Gross
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | | | - Joesi M. Krieger
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Anthony M. Hagele
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Kinga Zielinska
- FitBiomics, Inc, New York City, NY, USA
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | | | - Alex Kostic
- FitBiomics, Inc, New York City, NY, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| |
Collapse
|
39
|
Gacek M, Wojtowicz A, Popek A. Personality Determinants Related to the Use of Selective and Effective Dietary Supplements by Elite Polish Team Sport Athletes. Sports (Basel) 2024; 12:29. [PMID: 38251303 PMCID: PMC10819768 DOI: 10.3390/sports12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION The purpose of this research was to analyse relationships between personality traits and the use of selected dietary supplements among Polish athletes training in team sports. This subject matter has not been explored in prior research. MATERIAL AND METHODS This research was carried out among a group of 213 athletes (men) in the 18-36 age range, with the implementation of a proprietary validated questionnaire for the use of dietary supplements and the NEO-PI-R inventory (Neuroticism-Extraversion-Openness Personality Inventory-Revised). Statistical analyses were performed with the Kruskal-Wallis and Mann-Whitney tests, assuming the following level of significance: α = 0.05. RESULTS It was shown that athletes who periodically and regularly consumed isotonic drinks, as well as energy bars and gels, were characterised by a lower level of neuroticism than those who did not consume them. Athletes who periodically took multivitamin preparations were characterised by a lower level of extraversion and openness, and those periodically using multimineral preparations were characterised by a higher level of agreeableness than those who did not use these agents. Athletes not taking creatine were characterised by the lowest level of conscientiousness among the study participants. The use of protein nutrients, probiotics and caffeine was not associated with any personality traits in the athletes. CONCLUSIONS Further relationships of the Big Five personality traits were demonstrated with the use of effective dietary supplements by athletes; the most unambiguous correlations were described for neuroticism and conscientiousness in such a way that the use of isotonic drinks, as well as energy bars and gels, was connected with a low level of neuroticism, while the use of creatine was connected with high conscientiousness.
Collapse
Affiliation(s)
- Maria Gacek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Education in Kraków, 31-571 Krakow, Poland
| | - Agnieszka Wojtowicz
- Department of Psychology, Institute of Social Sciences, University of Physical Education in Kraków, 31-571 Krakow, Poland;
| | - Adam Popek
- Department of Recreation and Biological Renewal, Institute of Recreation and Sports, University of Physical Education in Kraków, 31-571 Krakow, Poland;
| |
Collapse
|
40
|
Mohr AE, Pyne DB, Leite GSF, Akins D, Pugh J. A systematic scoping review of study methodology for randomized controlled trials investigating probiotics in athletic and physically active populations. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:61-71. [PMID: 36539062 PMCID: PMC10818115 DOI: 10.1016/j.jshs.2022.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The purported ergogenic and health effects of probiotics have been a topic of great intrigue among researchers, practitioners, and the lay public alike. There has also been an increased research focus within the realm of sports science and exercise medicine on the athletic gut microbiota. However, compared to other ergogenic aids and dietary supplements, probiotics present unique study challenges. The objectives of this systematic scoping review were to identify and characterize study methodologies of randomized controlled trials investigating supplementation with probiotics in athletes and physically active individuals. METHODS Four databases (MEDLINE, CINAHL, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews) were searched for randomized controlled studies involving healthy athletes or physically active individuals. An intervention with probiotics and inclusion of a control and/or placebo group were essential. Only peer-reviewed articles in English were considered, and there were no date restrictions. Results were extracted and presented in tabular form to detail study protocols, characteristics, and outcomes. Bias in randomized controlled trials was determined with the RoB 2.0 tool. RESULTS A total of 45 studies were included in the review, with 35 using a parallel group design and 10 using a cross-over design. Approximately half the studies used a single probiotic and the other half a multi-strain preparation. The probiotic dose ranged from 2 × 108 to 1 × 1011 colony forming units daily, and the length of intervention was between 7 and 150 days. Fewer than half the studies directly assessed gastrointestinal symptoms, gut permeability, or the gut microbiota. The sex ratio of participants was heavily weighted toward males, and only 3 studies exclusively investigated females. Low-level adverse events were reported in only 2 studies, although the methodology of reporting varied widely. The risk of bias was generally low, although details on randomization were lacking in some studies. CONCLUSION There is a substantial body of research on the effects of probiotic supplementation in healthy athletes and physically active individuals. Considerable heterogeneity in probiotic selection and dosage as well as outcome measures has made clinical and mechanistic interpretation challenging for both health care practitioners and researchers. Attention to issues of randomization of participants, treatments and interventions, selection of outcomes, demographics, and reporting of adverse events will facilitate more trustworthy interpretation of probiotic study results and inform evidence-based guidelines.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia
| | - Geovana Silva Fogaça Leite
- Laboratory of Functional Fermented Food, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-030, Brazil
| | - Deborah Akins
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
41
|
Pittia P, Blanc S, Heer M. Unraveling the intricate connection between dietary factors and the success in long-term space missions. NPJ Microgravity 2023; 9:89. [PMID: 38092789 PMCID: PMC10719368 DOI: 10.1038/s41526-023-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
In recent decades of spaceflight, inadequate caloric intake has posed significant nutritional challenges, contributing to muscle degradation, weakened immune and cardiovascular systems during and after space missions. This challenge becomes more acute on longer exploration missions, where transporting all food for the entire mission becomes a logistical challenge. This places immense pressure on the food system, requiring energy-dense, varied, stable, and palatable food options. Prolonged storage can lead to nutrient degradation, reducing their bioavailability and bioaccessibility to astronauts. Research is essential not only to improve the quality and stability of space food but also to enhance nutrient bioavailability, thereby reducing weight and volume of food. Muscle and bone loss represent major risks during extended spaceflight, prompting extensive efforts to find exercise countermeasures. However, increased exercise requires additional energy intake, and finding the optimal balance between energy needs and the preservation of muscle and bone mass is challenging. Currently, there is no reliable way to measure total energy expenditure and activity-related energy expenditures in real-time. Systematic research is necessary to develop onboard technology for accurate energy expenditure and body composition monitoring. This research should aim to establish an optimal exercise regimen that balances energy requirements while maintaining astronaut strength and minimizing food transport. In summary, this overview outlines key actions needed for future exploration missions to maintain body mass and physical strength of space travellers. It addresses the requirements for food processing and preservation, considerations for space food formulation and production, and the essential measures to be implemented.
Collapse
Affiliation(s)
| | | | - Martina Heer
- IU International University of Applied Sciences, Erfurt, Germany.
- University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany.
| |
Collapse
|
42
|
Ji J, Jin W, Liu S, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm (Beijing) 2023; 4:e420. [PMID: 37929014 PMCID: PMC10625129 DOI: 10.1002/mco2.420] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
The gut microbiota and its homeostasis play a crucial role in human health. However, for some diseases related to the gut microbiota, current traditional medicines can only relieve symptoms, and it is difficult to solve the root causes or even cause side effects like disturbances in the gut microbiota. Increasing clinical studies and evidences have demonstrated that probiotics, prebiotics, and postbiotics can prevent and treat various diseases, but currently they can only be used as dietary supplements rather than medicines, which restricts the application of probiotics in the field of medicine. Here, this review analyzes the importance of gut microbiota in human health and the current problems of traditional medicines, and systematically summarizes the effectiveness and mechanisms of probiotics, prebiotics, and postbiotics in maintaining health and treating diseases based on animal models and clinical trials. And based on current research outcomes and development trends in this field, the challenges and prospects of their clinical application in maintaining health, alleviating and treating diseases are analyzed. It is hoped to promote the application of probiotics, prebiotics, and postbiotics in disease treatment and open up new frontiers in probiotic research.
Collapse
Affiliation(s)
- Jing Ji
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Weilin Jin
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityThe First Clinical Medical College of Lanzhou UniversityLanzhouGansuChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zuoyi Jiao
- Cuiying Biomedical Research CenterThe Second Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
43
|
Li X, Lin Y, Chen Y, Sui H, Chen J, Li J, Zhang G, Yan Y. The effects of race and probiotic supplementation on the intestinal microbiota of 10-km open-water swimmers. Heliyon 2023; 9:e22735. [PMID: 38144321 PMCID: PMC10746432 DOI: 10.1016/j.heliyon.2023.e22735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
This study collected the stools of 10-km open-water swimmers after race and probiotic supplementation, and 16S rRNA sequencing and metabolomic analysis were performed to clarify their intestinal microbiota characteristics. The findings revealed a relatively high proportion of Firmicutes in all the athletes. Firmicutes in female athletes were significantly higher after probiotic supplementation. The intestinal microbiota of athletes was closely associated with the pathways of exercise against cancer, exercise against aging, exercise for improving cognition, sphingolipid metabolism and endocrine resistance. Future research should focus on the relationship between Firmicutes and Proteobacteria with super class metabolites in athletes. This report initially explored the changes in intestinal microbiota involved in metabolic pathways in athletes after race and after probiotic supplementation and provided a theoretical basis for the further improvement of the monitoring of their physical function after race and selection of nutritional strategies during exercise training.
Collapse
Affiliation(s)
- Xuehan Li
- Sport Science School, Beijing Sport University, Beijing, China
| | - Yihsuan Lin
- Sport Science School, Beijing Sport University, Beijing, China
| | - Yue Chen
- Sport Science School, Beijing Sport University, Beijing, China
| | - Hongtao Sui
- Sport Science School, Beijing Sport University, Beijing, China
| | - Jianhao Chen
- Sport Science School, Beijing Sport University, Beijing, China
| | - Jiaqi Li
- Sport Science School, Beijing Sport University, Beijing, China
| | - Guoqing Zhang
- Shandong Swimming Sports Management Center, Shandong, China
| | - Yi Yan
- Sport Science School, Beijing Sport University, Beijing, China
- Key Laboratory of Exercise and Physical Fitness (Beijing Sport University), Ministry of Education, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing, China
| |
Collapse
|
44
|
Clark A, Mach N. The gut mucin-microbiota interactions: a missing key to optimizing endurance performance. Front Physiol 2023; 14:1284423. [PMID: 38074323 PMCID: PMC10703311 DOI: 10.3389/fphys.2023.1284423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 01/22/2025] Open
Abstract
Endurance athletes offer unique physiology and metabolism compared to sedentary individuals. Athletes training at high intensities for prolonged periods are at risk for gastrointestinal disturbances. An important factor in endurance performance is the integrity and function of the gut barrier, which primarily depends on heavily O-glycosylated mucins. Emerging evidence shows a complex bidirectional dialogue between glycans on mucins and gut microorganisms. This review emphasizes the importance of the crosstalk between the gut microbiome and host mucus mucins and some of the mechanisms underlying this symbiosis. The contribution of mucin glycans to the composition and functionality of the gut microbiome is discussed, as well as the persuasive impact of the gut microbiome on mucin composition, thickness, and immune and metabolic functions. Lastly, we propose natural and synthetic glycans supplements to improve intestinal mucus production and barrier function, offering new opportunities to enhance endurance athletes' performance and gut health.
Collapse
Affiliation(s)
- Allison Clark
- Universitat Oberta de Catalunya, Universitat de Catalunya, Barcelona, Spain
| | - Núria Mach
- Interactions hôtes-agents pathogènes, Université de Toulouse, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, École nationale vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
45
|
Zhang WX, Xiao CL. Streptococcus strain D19 T as a probiotic candidate to modulate oral health. BMC Microbiol 2023; 23:339. [PMID: 37974101 PMCID: PMC10652534 DOI: 10.1186/s12866-023-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND As probiotics protect host cells, they are used to treat bacterial infections. It has been indicated that probiotics may prevent or reduce the attachment of pathogens to host cells. In this study, Streptococcus strain D19T was isolated from the oropharynx of a healthy child, and its adhesion performance and Staphylococcus aureus adhesion inhibition effect were analysed using human bronchial epithelial (16-HBE) cells, as an in vitro cell model. We evaluated the probiotic properties of the D19T strain based on its acid-base, bile salt, and lysozyme tolerance; antibacterial activity; cytotoxicity; antibiotic sensitivity; in vitro adhesion to 16-HBE cells; and competitive, exclusion, and displacement effects against S. aureus. RESULTS Streptococcus strain D19T showed tolerance to a PH range of 2-5 and 0.5-1% bile. However, it was more tolerant to 0.5% bile than to 1% bile. The strain also demonstrated an ability to adapt to maladaptive oropharyngeal conditions (i.e., tolerating 200 µg/mL lysozyme). It was resistant to 0.8 mM H2O2. The results also demonstrated that D19T exhibited inhibitory activities against various common pathogenic bacteria. Furthermore, D19T was not toxic to 16-HBE cells at different multiplicities of infection and was sensitive to most antibiotics tested. The adhesion rate of D19T cells to 16-HBE cells was 47% ± 1.2%, which was significantly higher than that of S. aureus to 16-HBE cells. The competition, exclusion, and displacement assay results showed that D19T has good inhibitory effect against S. aureus adhesion. CONCLUSIONS The present study revealed that Streptococcus strain D19T has the potential to be developed as a respiratory microbiota preparations.
Collapse
Affiliation(s)
- Wen Xiao Zhang
- Microbiology Department of the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Chun Ling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huang he North Street, Shenyang, Liao Ning, People's Republic of China.
| |
Collapse
|
46
|
Gleeson M, West NP. Allan William Cripps: a mucosal immunologist and mentor from beginning to end. Immunol Cell Biol 2023; 101:916-920. [PMID: 37885423 DOI: 10.1111/imcb.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Allan Cripps was internationally recognized in the field of mucosal immunology, in particular the relationship between respiratory diseases and mucosal immunization strategies. Allan's career spanned scientific and applied research, commercialization, health education, and evolved into leadership roles in public-health and academic administration. Allan published over 400 papers and mentored over 40 research higher degree candidates. Allan was renowned for his mentorship, that did not end with the awarding of a PhD or Master's degree, but continued across a lifetime of professional engagement. Allan's key contributions to immunology included characterizing the ontogeny of the human mucosal immune system, understanding the impact of respiratory infections and otitis media in children, developing diagnostic technologies and mucosal vaccine strategies, and identifying the roles of the common mucosal immune system in human health. In this biography for the 100th anniversary of the Journal, we follow his journey of discovery and contributions to immunological research.
Collapse
Affiliation(s)
- Maree Gleeson
- School of Biomedical Sciences, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas P West
- School of Pharmacy and Medical Science and Mucosal Immunology Research Group, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| |
Collapse
|
47
|
Li T, Rui Z, Mao L, Chang Y, Shao J, Chen Y, Han Q, Sui X, An N, Li H, Feng H, Jiang T, Wang Q. Eight Weeks of Bifidobacterium lactis BL-99 Supplementation Improves Lipid Metabolism and Sports Performance through Short-Chain Fatty Acids in Cross-Country Skiers: A Preliminary Study. Nutrients 2023; 15:4554. [PMID: 37960207 PMCID: PMC10648242 DOI: 10.3390/nu15214554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: Probiotics in the form of nutritional supplements are safe and potentially useful for strategic application among endurance athletes. Bifidobacterium animalis lactis BL-99 (BL-99) was isolated from the intestines of healthy Chinese infants. We combined plasma-targeted metabolomics and fecal metagenomics to explore the effect of 8 weeks of BL-99 supplementation on cross-country skiers' metabolism and sports performance. (2) Methods: Sixteen national top-level male cross-country skiers were recruited and randomly divided into a placebo group (C) and a BL-99 group (E). The participants took the supplements four times/day (with each of three meals and at 21:00) consistently for 8 weeks. The experiment was conducted in a single-blind randomized fashion. The subject's dietary intake and total daily energy consumption were recorded. Blood and stool samples were collected before and after the 8-week intervention, and body composition, muscle strength, blood biochemical parameters, plasma-targeted metabolomic data, and fecal metagenomic data were then analyzed. (3) Results: The following changes occurred after 8 weeks of BL-99 supplementation: (a) There was no significant difference in the average total daily energy consumption and body composition between the C and E groups. (b) The VO2max and 60°/s and 180°/s knee joint extensor strength significantly increased in both the C and E groups. By the eighth week, the VO2max and 60 s knee-joint extensor strength were significantly higher in the E group than in the C group. (c) The triglyceride levels significantly decreased in both the C and E groups. In addition, the LDL-C levels significantly decreased in the E group. (d) The abundance of Bifidobacterium animalis increased two-fold in the C group and forty-fold in the E group. (e) Plasma-targeted metabolomic analysis showed that, after eight weeks of BL-99 supplementation, the increases in DHA, adrenic acid, linoleic acid, and acetic acid and decreases in glycocholic acid and glycodeoxycholic acid in the E group were significantly higher than those in the C group. (f) Spearman correlation analysis showed that there was a significant positive correlation between Bifidobacterium animalis' abundance and SCFAs, PUFAs, and bile acids. (g) There was a significant correlation between the most significantly regulated metabolites and indicators related to sports performance and lipid metabolism. (4) Conclusions: Eight weeks of BL-99 supplementation combined with training may help to improve lipid metabolism and sports performance by increasing the abundance of Bifidobacterium, which can promote the generation of short-chain fatty acids and unsaturated fatty acids, and inhibit the synthesis of bile acids.
Collapse
Affiliation(s)
- Tieying Li
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Zihan Rui
- College of Exercise Science, Beijing Sport University, Beijing 100084, China
| | - Letian Mao
- College of Exercise & Health Science, Xi’an Physical Education University, Xi’an 710068, China
| | - Yashan Chang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Jing Shao
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Yue Chen
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Xuemei Sui
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Nan An
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing 100029, China
| | - Haoqiu Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Haotian Feng
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Tao Jiang
- College of Exercise & Health Science, Xi’an Physical Education University, Xi’an 710068, China
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
| |
Collapse
|
48
|
Toon A, Bailey S, Roelands B. Effects of Nutritional Interventions on Athletic Performance. Nutrients 2023; 15:4498. [PMID: 37960151 PMCID: PMC10649019 DOI: 10.3390/nu15214498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
The search to comprehend the fundamental physiological factors that contribute to the exceptional endurance performance of elite human athletes is a long-standing endeavor within the field of sports science research [...].
Collapse
Affiliation(s)
- Ampe Toon
- Human Physiology & Sport Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Ixelles, Belgium;
| | - Stephen Bailey
- Department of Physical Therapy Education, Elon University, Elon, NC 27244, USA;
| | - Bart Roelands
- Human Physiology & Sport Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Ixelles, Belgium;
| |
Collapse
|
49
|
Xia Q, Lei Y, Wang J, Wang Q. Probiotic management and inflammatory factors as a novel treatment in cirrhosis: A systematic review and meta-analysis. Open Life Sci 2023; 18:20220741. [PMID: 37872967 PMCID: PMC10590617 DOI: 10.1515/biol-2022-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/25/2023] Open
Abstract
The interaction between intestinal microecological dysregulation, altered inflammatory factors, and cirrhosis is unclear. The aim of this systematic review and meta-analysis was to synthesize the results of previous studies to assess the efficacy of probiotics in the treatment of cirrhosis and their effect on inflammatory factors, as well as to explore the relationship between gut microecological dysregulation and liver disease to gain a deeper understanding of this interaction. Up to December 2022, eligible studies were identified by searching the following databases: National Knowledge Infrastructure (CNKI), Wanfang Data, Web of Science, PubMed, Embase, Medline, and the Cochrane Library. Statistical analysis was performed using software RevMan Version 5.4. A total of 33 eligible randomized controlled trials were included in the study, and data on probiotic strains, duration of intervention, measures in the control group, and outcomes were extracted and evaluated. Compared to the control group, the experimental group had significant improvements in overall efficacy. The results of the meta-analysis revealed that probiotic use significantly decreased biochemical parameters for liver function, including aspartate transaminase, alanine aminotransferase, and total bilirubin. Similar result was obtained in interleukin-6, tumor necrosis factor-α, and endotoxin. However, probiotic intervention did not significantly affect interleukin-2 and interleukin-10. The current meta-analysis illustrates that probiotic supplementation reduces inflammatory markers and biochemical parameters for liver function in patients with cirrhosis, suggesting that probiotic management may be a novel treatment for cirrhosis. Furthermore, the interaction of the gut microbiota, associated metabolites, and inflammation factors with cirrhosis may provide a promising therapeutic target for the pharmacological and clinical treatment of cirrhosis.
Collapse
Affiliation(s)
- Qinglan Xia
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Jiadun Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
- Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan430056, China
| |
Collapse
|
50
|
Przewłócka K, Folwarski M, Kaczmarczyk M, Skonieczna-Żydecka K, Palma J, Bytowska ZK, Kujach S, Kaczor JJ. Combined probiotics with vitamin D 3 supplementation improved aerobic performance and gut microbiome composition in mixed martial arts athletes. Front Nutr 2023; 10:1256226. [PMID: 37885441 PMCID: PMC10599147 DOI: 10.3389/fnut.2023.1256226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Mixed Martial Arts (MMA) is characterized as an interval sport in which the training program focuses on enhancing both aerobic and anaerobic capacities. Therefore, strategies targeting the intestinal microbiome may be beneficial for MMA athletes. Moreover, vitamin D supplementation may amplify the positive effects of certain bacterial strains. We previously demonstrated that the combined of probiotics and vitamin D3 supplementation improved the lactate utilization ratio, total work, and average power achieved during anaerobic tests in MMA. Therefore, this study aimed to investigate whether combined probiotic and vitamin D3 ingestion can modify the composition of the gut microbiome and epithelial cell permeability, influence the inflammatory response, and ultimately enhance aerobic capacity. Methods A 4-week clinical trial was conducted with 23 male MMA athletes randomly assigned to either the probiotic + vitamin D3 (PRO + VIT D) group or the vitamin D3 group (VIT D). The trial employed a double-blind, placebo-controlled design and involved measurements of serum inflammatory markers, gut microbiome composition, epithelial cell permeability, and aerobic performance. Results After 4-week of supplementation, we found a significantly lower concentration of calprotectin in the PRO + VIT D group (34.79 ± 24.38 mmol/L) compared to the value before (69.50 ± 46.91) supplementation (p = 0.030), augmentation of beta diversity after the intervention in the PRO + VIT D group (p = 0.0005) and an extended time to exhaustion to 559.00 ± 68.99; compared to the value before (496.30 ± 89.98; p = 0.023) after combined probiotic and vitamin D3 supplementation in MMA athletes. No effect was observed in the VIT D group. Conclusion Our results indicate that combined treatment of probiotics and vitamin D3 may cause alterations in alpha and beta diversity and the composition of the gut microbiota in MMA athletes. We observed an improvement in epithelial cell permeability and an extended time to exhaustion during exercise in MMA athletes following a 4-week combined probiotic and vitamin D3 treatment.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Joanna Palma
- Department of Biochemical Research, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Zofia Kinga Bytowska
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Department of Physiology, Gdansk University of Physical Education and Sport, Gdańsk, Poland
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Jacek Kaczor
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|