1
|
Wang H, Wang S, Wang J, Fang Y, Li J, Shen Y, Guo J. Sorafenib inhibits multiple sclerosis by regulating T cell differentiation. Cell Signal 2025; 133:111872. [PMID: 40389044 DOI: 10.1016/j.cellsig.2025.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/23/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
Multiple sclerosis (MS) is a group of disorder characterized by aberrant T cell reactivity toward self-antigens with loss of immunological tolerance, resulting in chronic inflammation and tissue damage. CD4+ Th cells can differentiate into Th1, Th2, Th17, and Treg cells in response to a specific class of pathogenic microorganisms and to the cytokine milieu. Here, we found that tyrosine kinase inhibitor sorafenib (Sora), which had been approved by FDA for the treatment of tumor, could suppress pro-inflammatory Th1, Th17 cell differentiation, and promote anti-inflammatory Treg cell polarization. Furthermore, Sora suppressed Th1 and Th17 cell differentiation by STAT4 and TGF-β1 signaling, respectively. In addition, treatment with Sora in mice inhibited Th1, Th17 cell accumulation and promoted Treg cell gather in the brain, thus protecting mice from experimental autoimmune encephalomyelitis (EAE). These results suggest that Sora may be a potential treatment for autoimmune diseases.
Collapse
MESH Headings
- Animals
- Sorafenib/pharmacology
- Cell Differentiation/drug effects
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Mice
- Th17 Cells/drug effects
- Th17 Cells/cytology
- Th17 Cells/immunology
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/cytology
- Th1 Cells/drug effects
- Th1 Cells/cytology
- Th1 Cells/immunology
- Signal Transduction/drug effects
- Transforming Growth Factor beta1/metabolism
- Female
- STAT4 Transcription Factor/metabolism
- Phenylurea Compounds/pharmacology
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Hanliang Wang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Shuowang Wang
- Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Jin Wang
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Yue Fang
- Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Junwei Li
- Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Yingying Shen
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China.
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
2
|
Wang M, Guo Z, Zhao S, Liu L, Shi Y, Li H, Su J, Zhang N, Li J, Wu Y. CD49d promotes T-cell senescence in chronic lymphocytic leukaemia. Br J Haematol 2025. [PMID: 40375447 DOI: 10.1111/bjh.20135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
While CD49d (α4 integrin) is an established prognostic marker in chronic lymphocytic leukaemia (CLL) and is associated with aggressive disease, its impact on T-cell biology remains poorly understood. Compared to healthy donors, CLL patients exhibited significantly elevated CD49d expression in both CD4+ and CD8+ T cells (p < 0.001) as detected by flow cytometry, which was also confirmed by the single-cell RNA sequencing (scRNA-seq) (p < 0.001). Differentially expressed genes in CD49d+ T (both CD8+ and CD4+ T cells) versus CD49d- T cells identified in CLL patients were enriched in cellular senescence pathways, while this phenomenon is absent in healthy individuals. Functional validation demonstrated that CD49d+ T cells displayed elevated senescence-associated markers (e.g. interferon-gamma, granzyme B) and a shift towards memory phenotypes, correlating with immunosuppressive signatures. This discovery suggests that targeting CD49d-dependent senescence pathways may reverse T-cell dysfunction in CLL immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Zhen Guo
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Sishu Zhao
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Lu Liu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Yu Shi
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Hui Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Su
- Department of Hematology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Ninghan Zhang
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Yujie Wu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Yang F, Li X, Wang J, Duan Z, Ren C, Guo P, Kong Y, Bi M, Zhang Y. Identification of lipid metabolism-related gene markers and construction of a diagnostic model for multiple sclerosis: An integrated analysis by bioinformatics and machine learning. Anal Biochem 2025; 700:115781. [PMID: 39855613 DOI: 10.1016/j.ab.2025.115781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune inflammatory disorder that causes neurological disability. Dysregulated lipid metabolism contributes to the pathogenesis of MS. This study aimed to identify lipid metabolism-related gene markers and construct a diagnostic model for MS. METHODS Gene expression profiles for MS were obtained from the Gene Expression Omnibus database. Differentially expressed lipid metabolism-related genes (LMRGs) were identified and performed functional enrichment analysis. Least absolute shrinkage and selection operator (LASSO), random forest (RF), and protein-protein interaction (PPI) analysis were employed to screen hub genes. The predictive power of hub genes was evaluated using receiver operating characteristic (ROC) curves. We developed an artificial neural network (ANN) model and validated its performance in three test sets. Immune cell infiltration analysis, Gene set enrichment analysis, and ceRNA network construction were performed to explore the role of lipid metabolism in the pathogenesis of MS. Drugs prediction and molecular docking were utilized to identify potential therapeutic drugs. RESULTS We identified 40 differentially expressed LMRGs, with significant enrichment in Arachidonic acid metabolism, Steroid hormone biosynthesis, Fatty acid elongation, and Sphingolipid metabolism. AKR1C3, NFKB1, and ABCA1 were identified as gene markers for MS, and their expression was upregulated in the MS group. The areas under the ROC curve (AUCs) for AKR1C3, NFKB1, and ABCA1 in the training set were 0.779, 0.703, and 0.726, respectively. The ANN model exhibited good discriminative ability in both the training and test sets, achieving an AUC of 0.826 on the training set and AUC values of 0.822, 0.890, and 0.833 on the test sets. Gamma.delta.T.cell, Natural.killer.T.cell, Plasmacytoid.dendritic.cell, Regulatory.T.cell, and Type.1.T.helper.cell were highly expressed in the MS group. A ceRNA network showed a complex regulatory interplay involving hub genes. Luteolin, isoflavone, and thalidomide had good binding affinities to the hub genes. CONCLUSION Our study emphasized the crucial role of lipid metabolism in MS, identifing AKR1C3, NFKB1, and ABCA1 as gene markers. The ANN model exhibited good performance on both the training and testing sets. These findings offer valuable insights into the molecular mechanisms underlying MS, and establish a scientific foundation for future research.
Collapse
Affiliation(s)
- Fangjie Yang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinmin Li
- School of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Wang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhenfei Duan
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chunlin Ren
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Pengxue Guo
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuting Kong
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengyao Bi
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yasu Zhang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Yang S, Zhang T, Liu J, Liu Z, Zhu L, Li Y, Feng B, Fan M, Shi F, Zhang C. Reconstitution of CXCR3 + CCR6 + Th17.1-Like T Cells in Response to Ofatumumab Therapy in Patients With Multiple Sclerosis. Ann Clin Transl Neurol 2025; 12:1043-1053. [PMID: 40164501 PMCID: PMC12093334 DOI: 10.1002/acn3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Ofatumumab, a fully human anti-CD20 monoclonal antibody, is effective in reducing relapses and disability progression in patients with multiple sclerosis. This study aimed to examine immune profile changes associated with ofatumumab in a prospective cohort of Chinese patients with relapsing-remitting multiple sclerosis (RRMS). METHODS Seventeen RRMS patients were enrolled in this uncontrolled, prospective, observational cohort study (OMNISCIENCE study) and received regular subcutaneous ofatumumab treatments. Immune cell subsets were analyzed by single-cell mass cytometry at baseline and 6 months post-treatment. Peripheral blood monoclonal cells (PBMCs) from a separate cohort of treatment-naive RRMS patients were used for cytokine analysis through ex vivo flow cytometry. RESULTS Following ofatumumab treatment, B cells in peripheral blood remained depleted, with surviving cells predominantly consisting of antibody-secreting cells and transitional B cells. Increased proportions of NK cells and myeloid cells, particularly HLA-DRhi intermediate monocytes, were observed, and FOXP3 and CTLA-4 expression on CD4+ T cells was upregulated. Notably, prior to the subsequent dose of ofatumumab, Th17.1-like CXCR3+CCR6+ memory CD4+ and CD8+ T cell clusters increased significantly, with a transient CD20 expression rebound. In vitro experiments further confirmed that ofatumumab reduced these Th17.1 cell subsets and related pro-inflammatory cytokines. DISCUSSION These findings suggest that ofatumumab impacts interactions among pathogenic B cells, T cells, and myeloid cells, with Th17.1 cells emerging as a potential direct target within T cells. Persistent and regular infusions of ofatumumab appear necessary to sustain clinical efficacy. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05414487.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Female
- Adult
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/blood
- Male
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/immunology
- Receptors, CCR6/metabolism
- Receptors, CCR6/immunology
- Middle Aged
- Prospective Studies
- Th17 Cells/immunology
- Th17 Cells/drug effects
Collapse
Affiliation(s)
- Shu Yang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Tian‐Xiang Zhang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Jia Liu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Zhirui Liu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Lijie Zhu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Yan‐Yan Li
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Bin Feng
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Moli Fan
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Fu‐Dong Shi
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Department of NeurologyChina National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemTianjinChina
| |
Collapse
|
5
|
Petracco G, Faimann I, Reichmann F. Inflammatory bowel disease and neuropsychiatric disorders: Mechanisms and emerging therapeutics targeting the microbiota-gut-brain axis. Pharmacol Ther 2025; 269:108831. [PMID: 40023320 DOI: 10.1016/j.pharmthera.2025.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major entities of inflammatory bowel disease (IBD). These disorders are known for their relapsing disease course and severe gastrointestinal symptoms including pain, diarrhoea and bloody stool. Accumulating evidence suggests that IBD is not only restricted to the gastrointestinal tract and that disease processes are able to reach distant organs including the brain. In fact, up to 35 % of IBD patients also suffer from neuropsychiatric disorders such as generalized anxiety disorder and major depressive disorder. Emerging research in this area indicates that in many cases these neuropsychiatric disorders are a secondary condition as a consequence of the disturbed communication between the gut and the brain via the microbiota-gut-brain axis. In this review, we summarise the current knowledge on IBD-associated neuropsychiatric disorders. We examine the role of different pathways of the microbiota-gut-brain axis in the development of CNS disorders highlighting altered neural, immunological, humoral and microbial communication. Finally, we discuss emerging therapies targeting the microbiota-gut-brain axis to alleviate IBD and neuropsychiatric symptoms including faecal microbiota transplantation, psychobiotics, microbial metabolites and vagus nerve stimulation.
Collapse
Affiliation(s)
- Giulia Petracco
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Isabella Faimann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; BiotechMed-Graz, Austria.
| |
Collapse
|
6
|
Moadab A, Khorramdelazad H, Javar MTA, Nejad MSM, Mirzaie S, Hatami S, Mahdavi N, Ghaffari S, Yazdian FA. Unmasking a Paradox: Roles of the PD-1/PD-L1 Axis in Alzheimer's Disease-Associated Neuroinflammation. J Neuroimmune Pharmacol 2025; 20:46. [PMID: 40285967 DOI: 10.1007/s11481-025-10206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) represents the most prevalent form of dementia, characterized by progressive cognitive impairment and chronic neuroinflammation. Immune checkpoint inhibitors (ICIs), including anti-programmed cell death (PD)-1 and anti-PD-L1, signify a revolutionary advancement in cancer treatment by preventing T-cell exhaustion; however, their therapeutic application in AD presents a conundrum. Hypothesis: Recent preclinical studies indicate that PD-1 inhibition in AD mouse models induces an interferon-gamma (IFN-γ)-mediated response, leading to increased recruitment of monocyte-derived macrophages into the brain, enhanced clearance of amyloid-beta (Aβ) plaques, and improved cognitive performance. Nonetheless, this therapeutic effect is counterbalanced by the potential for exacerbated neuroinflammation, as PD-1/PD-L1 blockade may potentiate pro-inflammatory T helper (Th)1 and Th17 responses. In this review, we critically discuss the pertinent pro-inflammatory and neuroprotective facets of T cell biology in the pathogenesis of AD, emphasizing the potential for modulation of the PD-1/PD-L1 axis to influence both Aβ clearance and the dynamics of neuroinflammatory processes. In summary, we determine that ICIs are promising tools for reducing AD pathology and improving cognition. However, it is essential to refine treatment protocols and carefully select patients to optimize neuroprotective effects while adequately considering inflammatory risks.
Collapse
Affiliation(s)
- Ali Moadab
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Taha Akbari Javar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Saber Mohammadian Nejad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shahrzad Mirzaie
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sina Hatami
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nima Mahdavi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Ghaffari
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari Yazdian
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
7
|
Jiang YP, Wen JJ, Ma X, Yuan CR, Zhou F, Zheng MJ, Tang X, Yu XK, Lai WD, Zhou YH, Yu WH, You WT, Jin Y, Park KD, Khanna R, Wen CP, Yu J. CRMP2 phosphorylation regulates polarization and spinal infiltration of CD4+ T lymphocytes, inhibits spinal glial activation, and arthritic pain. Pain 2025:00006396-990000000-00879. [PMID: 40258133 DOI: 10.1097/j.pain.0000000000003599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/17/2025] [Indexed: 04/23/2025]
Abstract
ABSTRACT Chronic pain, a hallmark symptom of rheumatoid arthritis (RA), is strongly linked to central sensitization driven by spinal glial cell activation. Despite its clinical significance, the precise mechanisms remain unclear. Recent findings highlight the crucial role of interactions between circulating monocytes and central nervous system glial cells in chronic pain associated with autoimmune conditions. Our study focuses on CD4+ T-cell infiltration into the spinal dorsal horn (SDH) after collagen-induced arthritis (CIA) immunization. Immunohistochemistry results indicate that CD4+ T cells are critical in initiating arthritic pain. Intrathecal injection of CD4+ T cells in naïve mice induced glial activation and pain-like behaviors, while neutralizing antibodies suppressed these effects. Elevated phosphorylation of collapsin response mediator protein 2 (CRMP2) in CIA-derived CD4+ T lymphocytes was closely associated with pathological spinal infiltration. To modulate CRMP2 phosphorylation, we used naringenin (NAR), a known CRMP2 regulator, and (S)-Lacosamide ((S)-LCM), a specific inhibitor of phosphorylated CRMP2. Both compounds reduced CD4+ T-cell infiltration into the SDH and attenuated central sensitization in CIA rats. CRMP2 conditional knockout (cKO) in CD4+ T cells significantly alleviated arthritic pain. In addition, in vitro blood brain barrier models and Transwell assays showed impaired CD4+ T-cell migration and transendothelial invasion upon cKO or treatment with NAR and (S)-LCM. These interventions also decreased the proportion of polarized CD4+ T cells in CIA-induced mice. Our research highlights the role of CRMP2 phosphorylation in CD4+ T-cell behavior, spinal infiltration, and pain modulation, suggesting potential novel therapeutic strategies for RA-associated chronic pain.
Collapse
Affiliation(s)
- Yue-Peng Jiang
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Jun-Jun Wen
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Xiao Ma
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Cun-Rui Yuan
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Feng Zhou
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
- Department of Neurosurgery, Hangzhou First People's Hospital Affiliated to Westlake University School of Medicine, Hangzhou, China
| | - Meng-Jia Zheng
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Xin Tang
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Xi-Kang Yu
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Wei-Dong Lai
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Yi-Han Zhou
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Wen-Hua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital Affiliated to Westlake University School of Medicine, Hangzhou, China
| | - Wen-Ting You
- The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, PR China
| | - Yan Jin
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Ki Duk Park
- Korea Institute of Science and Technology, Seoul, South Korea
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics; Pain Research and Integrated Neuroscience Center (PRINC), University of Florida College of Medicine, Gainesville, FL, United States
| | - Cheng-Ping Wen
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| |
Collapse
|
8
|
Wang SH, Serr I, Digigow R, Metzler B, Surnov A, Gottwick C, Alsamman M, Krzikalla D, Heine M, Zahlten M, Widera A, Mungalpara D, Şeleci M, Fanzutti M, Marques Mesquita LM, Vocaturo AL, Herkel J, Carambia A, Schröter C, Sarko D, Pohlner J, Daniel C, de Min C, Fleischer S. Nanoparticle platform preferentially targeting liver sinusoidal endothelial cells induces tolerance in CD4+ T cell-mediated disease models. Front Immunol 2025; 16:1542380. [PMID: 40165970 PMCID: PMC11955608 DOI: 10.3389/fimmu.2025.1542380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Treating autoimmune diseases without nonspecific immunosuppression remains challenging. To prevent or treat these conditions through targeted immunotherapy, we developed a clinical-stage nanoparticle platform that leverages the tolerogenic capacity of liver sinusoidal endothelial cells (LSECs) to restore antigen-specific immune tolerance. Methods In vivo efficacy was evaluated in various CD4+ T cell-mediated disease models, including preventive and therapeutic models of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE), ovalbumin-sensitized delayed-type hypersensitivity (DTH), and the spontaneous type 1 diabetes model. Nanoparticle-induced antigen-specific immune responses were also analyzed through adoptive transfers of 2D2 transgenic T cells into wild-type mice, followed by nanoparticle administration. Results The peptide-conjugated nanoparticles displayed a uniform size distribution (25-30 nm). Their coupling efficiency for peptides with unfavorable physicochemical properties was significantly enhanced by a proprietary linker technology. Preferential LSEC targeting of nanoparticles coupled with fluorescently labeled peptides was confirmed via intravital microscopy and flow cytometry. Intravenous nanoparticle administration significantly reduced disease severity and demyelination in EAE, independent of prednisone at maintenance doses, and suppressed target tissue inflammation in the DTH model. Furthermore, prophylactic administration of a mixture of nanoparticles coupled with five autoantigenic peptides significantly lowered the hyperglycemia incidence of the non-obese diabetic mice. Mechanistically, the tolerizing effects were associated with the induction of antigen-specific regulatory T cells and T cell anergy, which counteract proinflammatory T cells in the target tissue. Conclusion Our findings demonstrate that peptide-loaded nanoparticles preferentially deliver disease-relevant peptides to LSECs, thereby inducing antigen-specific immune tolerance. This versatile clinical-stage nanoparticle platform holds promise for clinical application across multiple autoimmune diseases.
Collapse
MESH Headings
- Animals
- Immune Tolerance
- Mice
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- CD4-Positive T-Lymphocytes/immunology
- Liver/immunology
- Disease Models, Animal
- Mice, Inbred C57BL
- Female
- Ovalbumin/immunology
- Hypersensitivity, Delayed/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Peptides
- Mice, Transgenic
Collapse
Affiliation(s)
- Shu-Hung Wang
- Department of Clinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Isabelle Serr
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Reinaldo Digigow
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Barbara Metzler
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Alexey Surnov
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cornelia Gottwick
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Muhammad Alsamman
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Daria Krzikalla
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology (N30), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Zahlten
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Agata Widera
- Department of Preclinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Disha Mungalpara
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Muharrem Şeleci
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Marco Fanzutti
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | | | - Anna-Lisa Vocaturo
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Johannes Herkel
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Antonella Carambia
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schröter
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Dikran Sarko
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Johannes Pohlner
- Department of Chemistry, Manufacturing & Controls, Topas Therapeutics GmbH, Hamburg, Germany
| | - Carolin Daniel
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cristina de Min
- Department of Clinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| | - Sabine Fleischer
- Department of Clinical Development, Topas Therapeutics GmbH, Hamburg, Germany
| |
Collapse
|
9
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
10
|
Lai S, Wu X, Liu Y, Liu B, Wu H, Ma K. Interaction between Th17 and central nervous system in multiple sclerosis. Brain Behav Immun Health 2025; 43:100928. [PMID: 39845807 PMCID: PMC11751430 DOI: 10.1016/j.bbih.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Shixin Lai
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaomin Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yue Liu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bo Liu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
11
|
Proschinger S, Belen S, Adammek F, Schlagheck ML, Rademacher A, Schenk A, Warnke C, Bloch W, Zimmer P. Sportizumab - Multimodal progressive exercise over 10 weeks decreases Th17 frequency and CD49d expression on CD8 + T cells in relapsing-remitting multiple sclerosis: A randomized controlled trial. Brain Behav Immun 2025; 124:397-408. [PMID: 39675643 DOI: 10.1016/j.bbi.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) represents a neuroinflammatory autoimmune disease characterized by the predominance of circulating T cell subsets with proinflammatory characteristics and increased central nervous system (CNS)-homing potential. Substantial evidence confirms various beneficial effects of chronic exercise interventions in MS, but it is unknown how long-term multi-modal intense exercise affects MS-associated lymphocytes that are commonly targeted by medication in persons with relapsing remitting MS (pwRRMS). METHODS A total of 45 participants with defined RRMS were randomized to either the exercise (n = 22) or passive waitlist-control group (n = 23). A 10-week intervention consisting of progressive resistance and strength-endurance exercises was applied (3x/week à 60 min). Blood was drawn before (T1) and after (T2) the intervention period. Flow cytometry was used for phenotyping lymphocyte subsets. RESULTS Relative protein expression of CD49d within CD8+ T cells, quantified via mean fluorescence intensity (MFI), is significantly associated with the Expanded Disability Status Scale (p = 0.007, r = 0.440), decreased in the exercise group (p = 0.001) only, and was significantly lower in the exercise compared to the control group at T2 (p < 0.001). T helper (Th) 17 cell frequency decreased only in the exercise group (p < 0.001). CD8+CD20+ T cell frequency was significantly lower in the exercise compared to the control group at T2 (p = 0.003), without showing significant time effects. CONCLUSION The 10-week multimodal exercise intervention mainly affected circulating T cells harboring a pathophysiological phenotype in MS. The findings of a decreased frequency of pathogenic Th17 cells and the reduced CNS-homing potential of CD8+ T cells, indicated by reduced CD49d MFI, substantiate the positive effects of exercise on cellular biomarkers involved in disease activity and progression in MS. To confirm exercise-mediated beneficial effects on both disease domains, clinical endpoints (i.e., relapse rate, lesion formation, EDSS score) should be assessed together with these cellular and molecular markers in studies with a larger sample size and a duration of six to twelve months or longer.
Collapse
Affiliation(s)
- Sebastian Proschinger
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Sergen Belen
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany; Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Frederike Adammek
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Marit Lea Schlagheck
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | | | - Alexander Schenk
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany.
| |
Collapse
|
12
|
Stiepel RT, Simpson SR, Lukesh NR, Middleton DD, Hendy DA, Ontiveros-Padilla L, Ehrenzeller SA, Islam MJ, Pena ES, Carlock MA, Ross TM, Bachelder EM, Ainslie KM. Induction of Antigen-Specific Tolerance in a Multiple Sclerosis Model without Broad Immunosuppression. ACS NANO 2025; 19:3764-3780. [PMID: 39812522 DOI: 10.1021/acsnano.4c14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disorder that wreaks havoc on the central nervous system, leading to a spectrum of motor and cognitive impairments. There is no cure, and current treatment strategies rely on broad immunosuppression, leaving patients vulnerable to infections. To address this problem, our approach aims to induce antigen-specific tolerance, a much-needed shift in MS therapy. We have engineered a tolerogenic therapy consisting of spray-dried particles made of a degradable biopolymer, acetalated dextran, and loaded with an antigenic peptide and tolerizing drug, rapamycin (Rapa). After initial characterization and optimization, particles were tested in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis model of MS. Representing the earliest possible time of diagnosis, mice were treated at symptom onset in an early therapeutic model, where particles containing MOG and particles containing Rapa+MOG evoked significant reductions in clinical score. Particles were then applied to a highly clinically relevant late therapeutic model during peak disease, where MOG particles and Rapa+MOG particles each elicited a dramatic therapeutic effect, reversing hind limb paralysis and restoring fully functional limbs. To confirm the antigen specificity of our therapy, we immunized mice against the influenza antigen hemagglutinin (HA) and treated them with MOG particles or Rapa+MOG particles. The particles did not suppress antibody responses against HA. Our findings underscore the potential of this particle-based therapy to reverse autoimmunity in disease-relevant models without compromising immune competence, setting it apart from existing treatments.
Collapse
Affiliation(s)
- Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sean R Simpson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dylan A Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luis Ontiveros-Padilla
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen A Ehrenzeller
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Jahirul Islam
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Michael A Carlock
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, Florida 34987, United States
| | - Ted M Ross
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, Florida 34987, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
- Department of Infectious Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Mokaram Doust Delkhah A. Identification of shared pathogenic signatures of multiple sclerosis and chronic obstructive pulmonary disease: an integrated transcriptomic analysis of blood specimens. Mol Genet Genomics 2024; 300:8. [PMID: 39725779 DOI: 10.1007/s00438-024-02215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Patients with multiple sclerosis (MS) face a heightened risk of developing chronic obstructive pulmonary disease (COPD). Despite this widely reported association, the pathogenic contributors and processes that may favor the development of COPD in MS patients have yet to be identified. Recent studies have suggested peripheral blood leukocytes as a potential link between COPD and autoimmune disorders. Therefore, this study aimed to unveil shared molecular signatures between MS and COPD using blood transcriptomes. To this end, gene expression datasets obtained from MS and COPD blood specimens were retrieved from the Gene Expression Omnibus (GEO) database. By integrating datasets belonging to each disorder, differentially expressed genes (DEGs) were determined for each disease. Then, the protein-protein interaction (PPI) network was constructed for shared DEGs between MS and COPD. Subsequently, the network was analyzed to identify hub genes and key regulatory miRNAs. The integrated data for MS encompassed 51 samples (28 from MS patients and 23 from controls), and the integrated data for COPD included 450 samples (275 from COPD patients and 175 from controls). A total of 246 genes were found to exhibit identical directions of expression in both MS and COPD. By applying a high confidence threshold (0.7), a PPI network with 74 nodes was constructed. TP53, H4C6, SNRPE, and RPS11 were identified as hub genes according to the degree measure. In addition, 8 miRNAs were identified as key regulators, each interacting with 6 mRNAs. Among these miRNAs, miR-218-5p and miR-142-5p have been previously reported to contribute to the pathogenesis of these diseases, and here they were identified as key regulators of the shared PPI network, suggesting a potential epigenetic link between MS and COPD. In conclusion, the results highlighted the potential role of peripheral blood leucocytes as a bridge between MS and COPD. These findings broaden our understanding of pathogenic contributors linking MS and COPD. While this transcriptomics study identified multiple key players, such as TP53, miR-218-5p, and miR-142-5p, the assessment of their therapeutic efficacy demands further experimental studies.
Collapse
Affiliation(s)
- Arman Mokaram Doust Delkhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
14
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
15
|
Simpson SR, Middleton DD, Lukesh NR, Islam MJ, Ehrenzeller SA, Bachelder EM, Ainslie KM. Microparticles incorporating dual apoptotic factors to inhibit inflammatory effects in macrophages. J Pharm Sci 2024; 113:3196-3205. [PMID: 38852674 PMCID: PMC11560629 DOI: 10.1016/j.xphs.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
New approaches to treat autoimmune diseases are needed, and we can be inspired by mechanisms in immune tolerance to guide the design of these approaches. Efferocytosis, the process of phagocyte-mediated apoptotic cell (AC) disposal, represents a potent tolerogenic mechanism that we could draw inspiration from to restore immune tolerance to specific autoantigens. ACs engage multiple avenues of the immune response to redirect aberrant immune responses. Two such avenues are: phosphatidylserine on the outer leaflet of the cell and engaging the aryl hydrocarbon receptor (AhR) pathway. We incorporated these two avenues into one acetalated dextran (Ace-DEX) microparticle (MP) for evaluation in vitro. First phosphatidylserine (PS) was incorporated into Ace-DEX MPs and evaluated for cellular association and mediators of cell tolerance including IL-10 production and M2 associated gene expression when particles were cultured with peritoneal macrophages (PMacs). Further PS Ace-DEX MPs were evaluated as an agent to suppress LPS stimulated PMacs. Then, AhR agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) was incorporated into Ace-DEX MPs and expression of M2 and IL-10 genes was evaluated in PMacs. Further the ITE and PS Ace-DEX MPs (PS/ITE MPs) were evaluated for suppression of T cell priming and Th1 polarization. Our results indicate that the PS/ITE-MPs stimulated anti-inflammatory cytokine expression and suppressed inflammation following LPS stimulation of PMacs. Moreover, PS/ITE MPs induced the anti-inflammatory enzyme IDO1 and suppressed macrophage-mediated T cell priming and Th1 polarization. These findings suggest that PS and ITE-loaded Ace-DEX MPs could be a promising therapeutic tool for suppressing inflammation.
Collapse
Affiliation(s)
- Sean R Simpson
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Denzel D Middleton
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Md Jahirul Islam
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Stephen A Ehrenzeller
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
17
|
Chandra S, Vassar RJ. Gut microbiome-derived metabolites in Alzheimer's disease: Regulation of immunity and potential for therapeutics. Immunol Rev 2024; 327:33-42. [PMID: 39440834 DOI: 10.1111/imr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and cause of dementia. Despite the prevalence of AD, there is a lack of effective disease modifying therapies. Recent evidence indicates that the gut microbiome (GMB) may play a role in AD through its regulation of innate and adaptive immunity. Gut microbes regulate physiology through their production of metabolites and byproducts. Microbial metabolites may be beneficial or detrimental to the pathogenesis and progression of inflammatory diseases. A better understanding of the role GMB-derived metabolites play in AD may lead to the development of therapeutic strategies for AD. In this review, we summarize the function of bioactive GMB-derived metabolites and byproducts and their roles in AD models. We also call for more focus on this area in the gut-brain axis field in order to create effective therapies for AD.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert J Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
19
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
20
|
Ma YZ, Cao JX, Zhang YS, Su XM, Jing YH, Gao LP. T Cells Trafficking into the Brain in Aging and Alzheimer's Disease. J Neuroimmune Pharmacol 2024; 19:47. [PMID: 39180590 DOI: 10.1007/s11481-024-10147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
The meninges, choroid plexus (CP) and blood-brain barrier (BBB) are recognized as important gateways for peripheral immune cell trafficking into the central nervous system (CNS). Accumulation of peripheral immune cells in brain parenchyma can be observed during aging and Alzheimer's disease (AD). However, the mechanisms by which peripheral immune cells enter the CNS through these three pathways and how they interact with resident cells within the CNS to cause brain injury are not fully understood. In this paper, we review recent research on T cells recruitment in the brain during aging and AD. This review focuses on the possible pathways through which T cells infiltrate the brain, the evidence that T cells are recruited to the brain, and how infiltrating T cells interact with the resident cells in the CNS during aging and AD. Unraveling these issues will contribute to a better understanding of the mechanisms of aging and AD from the perspective of immunity, and hopefully develop new therapeutic strategies for brain aging and AD.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
21
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
22
|
Santos SIP, Ortiz-Peñuela SJ, de Paula Filho A, Tomiyama ALMR, Coser LDO, da Silveira JC, Martins DDS, Ciena AP, de Oliveira ALR, Ambrósio CE. Oligodendrocyte precursor cell-derived exosomes combined with cell therapy promote clinical recovery by immunomodulation and gliosis attenuation. Front Cell Neurosci 2024; 18:1413843. [PMID: 39109218 PMCID: PMC11301646 DOI: 10.3389/fncel.2024.1413843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 01/22/2025] Open
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system characterized by autoimmune destruction of the myelin sheath, leading to irreversible and progressive functional deficits in patients. Pre-clinical studies involving the use of neural stem cells (NSCs) have already demonstrated their potential in neuronal regeneration and remyelination. However, the exclusive application of cell therapy has not proved sufficient to achieve satisfactory therapeutic levels. Recognizing these limitations, there is a need to combine cell therapy with other adjuvant protocols. In this context, extracellular vesicles (EVs) can contribute to intercellular communication, stimulating the production of proteins and lipids associated with remyelination and providing trophic support to axons. This study aimed to evaluate the therapeutic efficacy of the combination of NSCs and EVs derived from oligodendrocyte precursor cells (OPCs) in an animal model of multiple sclerosis. OPCs were differentiated from NSCs and had their identity confirmed by gene expression analysis and immunocytochemistry. Exosomes were isolated by differential ultracentrifugation and characterized by Western, transmission electron microscopy and nanoparticle tracking analysis. Experimental therapy of C57BL/6 mice induced with experimental autoimmune encephalomyelitis (EAE) were grouped in control, treated with NSCs, treated with OPC-derived EVs and treated with a combination of both. The treatments were evaluated clinically using scores and body weight, microscopically using immunohistochemistry and immunological profile by flow cytometry. The animals showed significant clinical improvement and weight gain with the treatments. However, only the treatments involving EVs led to immune modulation, changing the profile from Th1 to Th2 lymphocytes. Fifteen days after treatment revealed a reduction in reactive microgliosis and astrogliosis in the groups treated with EVs. However, there was no reduction in demyelination. The results indicate the potential therapeutic use of OPC-derived EVs to attenuate inflammation and promote recovery in EAE, especially when combined with cell therapy.
Collapse
Affiliation(s)
- Sarah Ingrid Pinto Santos
- Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), São Paulo, Brazil
| | | | - Alessandro de Paula Filho
- Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), São Paulo, Brazil
| | | | | | | | | | | | | | - Carlos Eduardo Ambrósio
- Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), São Paulo, Brazil
| |
Collapse
|
23
|
Prapas P, Anagnostouli M. Macrophages and HLA-Class II Alleles in Multiple Sclerosis: Insights in Therapeutic Dynamics. Int J Mol Sci 2024; 25:7354. [PMID: 39000461 PMCID: PMC11242320 DOI: 10.3390/ijms25137354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the molecular basis of antigen presentation and the clinical course of patients with both Adult-Onset MS (AOMS) and Pediatric-Onset MS (POMS). Among the numerous polymorphisms of the Human Leucocyte Antigens (HLA), within MHC II complex, HLA-DRB1*15:01 has been labeled, in Caucasian ethnic groups, as a high-risk allele for MS due to the ability of its structure to increase affinity to Myelin Basic Protein (MBP) epitopes. This characteristic, among others, in the context of the trimolecular complex or immunological synapsis, provides the foundation for autoimmunity triggered by environmental or endogenous factors. As with all professional antigen presenting cells, macrophages are characterized by the expression of MHC II and are often implicated in the formation of MS lesions. Increased presence of M1 macrophages in MS patients has been associated both with progression and onset of the disease, each involving separate but similar mechanisms. In this critical narrative review, we focus on macrophages, discussing how HLA genetic alterations can promote dysregulation of this population's homeostasis in the periphery and the Central Nervous System (CNS). We also explore the potential interconnection in observed pathological macrophage mechanisms and the function of the diverse structure of HLA alleles in neurodegenerative CNS, seen in MS, by comparing available clinical with molecular data through the prism of HLA-immunogenetics. Finally, we discuss available and experimental pharmacological approaches for MS targeting the trimolecular complex that are based on cell phenotype modulation and HLA genotype involvement and try to reveal fertile ground for the potential development of novel drugs.
Collapse
Affiliation(s)
- Petros Prapas
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
| | - Maria Anagnostouli
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens NKUA, Aeginition University Hospital, Vas. Sofias 72-74, 11528 Athens, Greece
| |
Collapse
|
24
|
Wu Y, Wang Q, Jia S, Lu Q, Zhao M. Gut-tropic T cells and extra-intestinal autoimmune diseases. Autoimmun Rev 2024; 23:103544. [PMID: 38604462 DOI: 10.1016/j.autrev.2024.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Gut-tropic T cells primarily originate from gut-associated lymphoid tissue (GALT), and gut-tropic integrins mediate the trafficking of the T cells to the gastrointestinal tract, where their interplay with local hormones dictates the residence of the immune cells in both normal and compromised gastrointestinal tissues. Targeting gut-tropic integrins is an effective therapy for inflammatory bowel disease (IBD). Gut-tropic T cells are further capable of entering the peripheral circulatory system and relocating to multiple organs. There is mounting evidence indicating a correlation between gut-tropic T cells and extra-intestinal autoimmune disorders. This review aims to systematically discuss the origin, migration, and residence of gut-tropic T cells and their association with extra-intestinal autoimmune-related diseases. These discoveries are expected to offer new understandings into the development of a range of autoimmune disorders, as well as innovative approaches for preventing and treating the diseases.
Collapse
Affiliation(s)
- Yutong Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
25
|
Milne SM, Lahiri A, Sanchez CL, Marshall MJ, Jahan I, Meares GP. Myelin oligodendrocyte glycoprotein reactive Th17 cells drive Janus Kinase 1 dependent transcriptional reprogramming in astrocytes and alter cell surface cytokine receptor profiles during experimental autoimmune encephalomyelitis. Sci Rep 2024; 14:13146. [PMID: 38849434 PMCID: PMC11161502 DOI: 10.1038/s41598-024-63877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease affecting the central nervous system (CNS). T helper (Th) 17 cells are involved in the pathogenesis of MS and its animal model of experimental autoimmune encephalomyelitis (EAE) by infiltrating the CNS and producing effector molecules that engage resident glial cells. Among these glial cells, astrocytes have a central role in coordinating inflammatory processes by responding to cytokines and chemokines released by Th17 cells. In this study, we examined the impact of pathogenic Th17 cells on astrocytes in vitro and in vivo. We identified that Th17 cells reprogram astrocytes by driving transcriptomic changes partly through a Janus Kinase (JAK)1-dependent mechanism, which included increased chemokines, interferon-inducible genes, and cytokine receptors. In vivo, we observed a region-specific heterogeneity in the expression of cell surface cytokine receptors on astrocytes, including those for IFN-γ, IL-1, TNF-α, IL-17, TGFβ, and IL-10. Additionally, these receptors were dynamically regulated during EAE induced by adoptive transfer of myelin-reactive Th17 cells. This study overall provides evidence of Th17 cell reprogramming of astrocytes, which may drive changes in the astrocytic responsiveness to cytokines during autoimmune neuroinflammation.
Collapse
MESH Headings
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Animals
- Astrocytes/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
- Myelin-Oligodendrocyte Glycoprotein
- Receptors, Cytokine/metabolism
- Receptors, Cytokine/genetics
- Janus Kinase 1/metabolism
- Mice, Inbred C57BL
- Cytokines/metabolism
- Cellular Reprogramming
- Female
- Cells, Cultured
Collapse
Affiliation(s)
- Sarah M Milne
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Anirudhya Lahiri
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Cristina L Sanchez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Micah J Marshall
- Department of Neurology, The Ohio State University College of Medicine, IBMR 415D, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Ishrat Jahan
- Department of Neurology, The Ohio State University College of Medicine, IBMR 415D, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neurology, The Ohio State University College of Medicine, IBMR 415D, 460 Medical Center Drive, Columbus, OH, 43210, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
- Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA.
| |
Collapse
|
26
|
Dai HY, Zhang ZX, Tan C, Xian X, Ji D, Yang J, Sun J, Yao H. Propionic acid ameliorates cognitive function through immunomodulatory effects on Th17 cells in perioperative neurocognitive disorders. Heliyon 2024; 10:e28817. [PMID: 38699705 PMCID: PMC11063405 DOI: 10.1016/j.heliyon.2024.e28817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Background Elderly patients undergoing surgery are prone to cognitive decline known as perioperative neurocognitive disorders (PND). Several studies have shown that the microglial activation and the decrease of short-chain fatty acids (SCFAs) in gut induced by surgery may be related to the pathogenesis of PND. The purpose of this study was to determine whether microglia and short-chain fatty acids were involved in cognitive dysfunction in aged rats. Methods Male wild-type Wistar rats aged 11-12 months were randomly divided into control group (Ctrl: Veh group), propionic acid group (Ctrl: PA group), exploratory laparotomy group (LP: Veh group) and propionic acid + exploratory laparotomy group (LP: PA group) according to whether exploratory laparotomy (LP) or PA pretreatment for 21 days was performed. The motor ability of the rats was evaluated by open field test on postoperative day 3 (POD3), and then the cognitive function was evaluated by Y-maze test and fear conditioning test. The expression of IL-1β, IL-6, RORγt and IL-17A mRNA in hippocampus was detected by RT-qPCR, the expression of IL-17A and IL-17RA in hippocampus was detected by Western blot, and the activation of microglia was detected by immunofluorescence. Results The PND rat model was successfully established by laparotomy. Compared with Ctrl: Veh group, the body weight of LP: Veh group decreased, the percentage of spontaneous alternations in Y maze decreased (P < 0.001), and the percentage of freezing time in contextual fear test decreased (P < 0.001). Surgery triggers neuroinflammation, manifested as the elevated levels of the inflammatory cytokines IL-1β (P < 0.001) and IL-6 (P < 0.001), the increased expression of the transcription factor RORγt (P = 0.0181, POD1; P = 0.0073, POD5)and major inflammatory cytokines IL-17A (P = 0.0215, POD1; P = 0.0071, POD5), and the increased average fluorescence intensity of Iba1 (P < 0.001, POD1; P < 0.001, POD5). After PA preconditioning, the recovery of rats in LP: PA group was faster than that in LP: Veh group as the body weight lost on POD1 (P = 0.0148) was close to the baseline level on POD5 (P = 0.1846), and they performed better in behavioral tests. The levels of IL-1β (P < 0.001) and IL-6 (P = 0.0035) inflammatory factors in hippocampus decreased on POD1 and the average fluorescence intensity of Iba1 decreased (P = 0.0024, POD1; P < 0.001, POD5), representing the neuroinflammation was significantly improved. Besides, the levels of RORγt mRNA (P = 0.0231, POD1; P = 0.0251, POD5) and IL-17A mRNA (P = 0.0208, POD1; P = 0.0071, POD5) in hippocampus as well as the expression of IL-17A (P = 0.0057, POD1; P < 0.001, POD5) and IL-17RA (P = 0.0388) decreased. Conclusion PA pretreatment results in reduced postoperative neuroinflammation and improved cognitive function, potentially attributed to the regulatory effects of PA on Th17-mediated immune responses.
Collapse
Affiliation(s)
- Hong-yu Dai
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ze-xin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Tan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Xian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Ji
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili S, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 PMCID: PMC10936236 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
| | - Sepehr Dadfar
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Shadab
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Niloufar Orooji
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - MohammadHossein Nemati
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Pazoki
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Rasoul Baharlou
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| | - Dariush Haghmorad
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
28
|
Karunakaran KB, Jain S, Brahmachari SK, Balakrishnan N, Ganapathiraju MK. Parkinson's disease and schizophrenia interactomes contain temporally distinct gene clusters underlying comorbid mechanisms and unique disease processes. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:26. [PMID: 38413605 PMCID: PMC10899210 DOI: 10.1038/s41537-024-00439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Genome-wide association studies suggest significant overlaps in Parkinson's disease (PD) and schizophrenia (SZ) risks, but the underlying mechanisms remain elusive. The protein-protein interaction network ('interactome') plays a crucial role in PD and SZ and can incorporate their spatiotemporal specificities. Therefore, to study the linked biology of PD and SZ, we compiled PD- and SZ-associated genes from the DisGeNET database, and constructed their interactomes using BioGRID and HPRD. We examined the interactomes using clustering and enrichment analyses, in conjunction with the transcriptomic data of 26 brain regions spanning foetal stages to adulthood available in the BrainSpan Atlas. PD and SZ interactomes formed four gene clusters with distinct temporal identities (Disease Gene Networks or 'DGNs'1-4). DGN1 had unique SZ interactome genes highly expressed across developmental stages, corresponding to a neurodevelopmental SZ subtype. DGN2, containing unique SZ interactome genes expressed from early infancy to adulthood, correlated with an inflammation-driven SZ subtype and adult SZ risk. DGN3 contained unique PD interactome genes expressed in late infancy, early and late childhood, and adulthood, and involved in mitochondrial pathways. DGN4, containing prenatally-expressed genes common to both the interactomes, involved in stem cell pluripotency and overlapping with the interactome of 22q11 deletion syndrome (comorbid psychosis and Parkinsonism), potentially regulates neurodevelopmental mechanisms in PD-SZ comorbidity. Our findings suggest that disrupted neurodevelopment (regulated by DGN4) could expose risk windows in PD and SZ, later elevating disease risk through inflammation (DGN2). Alternatively, variant clustering in DGNs may produce disease subtypes, e.g., PD-SZ comorbidity with DGN4, and early/late-onset SZ with DGN1/DGN2.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India.
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| | - Sanjeev Jain
- National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India.
| | | | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Computer Science, Carnegie Mellon University Qatar, Doha, Qatar.
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Dejbakht M, Akhzari M, Jalili S, Faraji F, Barazesh M. Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment. Curr Drug Res Rev 2024; 16:175-197. [PMID: 37724675 DOI: 10.2174/2589977516666230915103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIMS This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Majid Dejbakht
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Fouziyeh Faraji
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, Cellular and Molecular Research Center, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
31
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
32
|
Soeda M, Ohka S, Nishizawa D, Iseki M, Yamaguchi K, Arita H, Hanaoka K, Kato J, Ogawa S, Hiranuma A, Hasegawa J, Nakayama K, Ebata Y, Hayashida M, Ichinohe T, Fukuda KI, Ikeda K. Single-Nucleotide Polymorphisms of the PAR2 and IL-17A Genes Are Significantly Associated with Chronic Pain. Int J Mol Sci 2023; 24:17627. [PMID: 38139455 PMCID: PMC10744199 DOI: 10.3390/ijms242417627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Patients with chronic pain are affected psychologically and socially. There are also individual differences in treatment efficacy. Insufficient research has been conducted on genetic polymorphisms that are related to individual differences in the susceptibility to chronic pain. Autoimmune disorders can lead to inflammation and chronic pain; therefore, we focused on the autoimmune-related protease-activated receptor 2 (PAR2/F2RL1) and interleukin 17A (IL-17A/IL17A) genes. PAR2 and IL-17A are associated with autoimmune diseases that lead to chronic pain, and PAR2 regulates T-helper (Th) cell activation and differentiation. We hypothesized that the PAR2 and IL-17A genes are associated with chronic pain. The present study used a case-control design to statistically examine associations between genetic polymorphisms and the vulnerability to chronic pain. The rs2243057 polymorphism of the PAR2 gene and rs3819025 polymorphism of the IL-17A gene were previously reported to be associated with pain- or autoimmune-related phenotypes. Thus, these polymorphisms were investigated in the present study. We found that both rs2243057 and rs3819025 were significantly associated with a susceptibility to chronic pain. The present findings revealed autoimmune-related genetic factors that are involved in individual differences in chronic pain, further aiding understanding of the pathomechanism that underlies chronic pain and possibly contributing to future personalized medicine.
Collapse
Affiliation(s)
- Moe Soeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Masako Iseki
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8431, Japan; (M.I.)
| | - Keisuke Yamaguchi
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8431, Japan; (M.I.)
| | - Hideko Arita
- Department of Anesthesiology, Pain Relief Center, JR Tokyo General Hospital, Tokyo 151-8528, Japan; (H.A.); (K.H.)
| | - Kazuo Hanaoka
- Department of Anesthesiology, Pain Relief Center, JR Tokyo General Hospital, Tokyo 151-8528, Japan; (H.A.); (K.H.)
| | - Jitsu Kato
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Setsuro Ogawa
- University Research Center, Nihon University, Tokyo 173-8610, Japan
| | - Ayako Hiranuma
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
- Department of Surgery, Toho University Sakura Medical Center, Chiba 285-8741, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Masakazu Hayashida
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8431, Japan; (M.I.)
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo 101-0061, Japan;
| | - Ken-ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| |
Collapse
|
33
|
Lee HG, Lee JH, Flausino LE, Quintana FJ. Neuroinflammation: An astrocyte perspective. Sci Transl Med 2023; 15:eadi7828. [PMID: 37939162 DOI: 10.1126/scitranslmed.adi7828] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that play active roles in health and disease. Recent technologies have uncovered the functional heterogeneity of astrocytes and their extensive interactions with other cell types in the CNS. In this Review, we highlight the intricate interactions between astrocytes, other CNS-resident cells, and CNS-infiltrating cells as well as their potential therapeutic value in the context of inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas E Flausino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
34
|
Carvajal Gonczi CM, Hajiaghayi M, Gholizadeh F, Xavier Soares MA, Touma F, Lopez Naranjo C, Rios AJ, Pozzebon C, Daigneault T, Burchell-Reyes K, Darlington PJ. The β2-adrenergic receptor agonist terbutaline upregulates T helper-17 cells in a protein kinase A-dependent manner. Hum Immunol 2023; 84:515-524. [PMID: 37438188 DOI: 10.1016/j.humimm.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND T helper 17 (Th17) cells produce IL-17A cytokine and can exacerbate autoimmune diseases and asthma. The β2 adrenergic receptor is a g protein-coupled receptor that induces cAMP second messenger pathways. We tested the hypothesis that terbutaline, a β2-adrenergic receptor-specific agonist, promotes IL-17 secretion by memory Th17 cells in a cAMP and PKA-dependent manner. METHODS Venous peripheral blood mononuclear cells (PBMC) from healthy human participants were activated with anti-CD3 and anti-CD28 antibodies. Secreted IL-17A was measured by enzyme linked immunosorbent assay, intracellular IL-17A, and RORγ were measured using flow cytometry, and RORC by qPCR. Memory CD3+CD4+CD45RA-CD45RO+ T cells were obtained by immunomagnetic negative selection and activated with tri-antibody complex CD3/CD28/CD2. Secreted IL-17A, intracellular IL-17A, RORC were measured, and phosphorylated-serine133-CREB was measured by western blotting memory Th cells. RESULTS Terbutaline increased IL-17A (p < 0.001), IL-17A+ cells (p < 0.05), and RORC in activated PBMC and memory Th cells. The PKA inhibitors H89 (p < 0.001) and Rp-cAMP (p < 0.01) abrogated the effects of terbutaline on IL-17A secretion in PBMC and memory T cells. Rolipram increased IL-17A (p < 0.01) to a similar extent as terbutaline. P-Ser133-CREB was increased by terbutaline (p < 0.05) in memory T cells. CONCLUSION Terbutaline augments memory Th17 cells in lymphocytes from healthy participants. This could exacerbate autoimmune diseases or asthma, in cases where Th17 cells are considered to be pro-inflammatory.
Collapse
Affiliation(s)
| | - Mehri Hajiaghayi
- Department of Biology, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Fatemeh Gholizadeh
- Department of Biology, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | | | - Fadi Touma
- Department of Biology, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | | | - Amanda J Rios
- Department of Biology, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Chelsea Pozzebon
- Department of Psychology, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Tina Daigneault
- Department of Biology, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Kelly Burchell-Reyes
- Department of Chemistry and Biochemistry, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Peter J Darlington
- Department of Biology, PERFORM Centre, Concordia University, Montreal, Quebec, Canada; Department of Psychology, PERFORM Centre, Concordia University, Montreal, Quebec, Canada; Department of Health, Kinesiology & Applied Physiology, PERFORM Centre, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Matsuzaka Y, Yashiro R. Unraveling the Immunopathogenesis of Multiple Sclerosis: The Dynamic Dance of Plasmablasts and Pathogenic T Cells. BIOLOGICS 2023; 3:232-252. [DOI: 10.3390/biologics3030013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in the number of patients, and it often occurs in young people, with an average age of onset of around 30 years old, but it can also occur in children and the elderly. It is more common in women than men, with a male-to-female ratio of approximately 1:3. As the immunopathogenesis of MS, a group of B cells called plasmablasts controls encephalomyelitis via IL-10 production. These IL-10-producing B cells, called regulatory B cells, suppress inflammatory responses in experimental mouse models of autoimmune diseases including MS. Since it has been clarified that these regulatory B cells are plasmablasts, it is expected that the artificial control of plasmablast differentiation will lead to the development of new treatments for MS. Among CD8-positive T cells in the peripheral blood, the proportion of PD-1-positive cells is decreased in MS patients compared with healthy controls. The dysfunction of inhibitory receptors expressed on T cells is known to be the core of MS immunopathology and may be the cause of chronic persistent inflammation. The PD-1+ CD8+ T cells may also serve as indicators that reflect the condition of each patient in other immunological neurological diseases such as MS. Th17 cells also regulate the development of various autoimmune diseases, including MS. Thus, the restoration of weakened immune regulatory functions may be a true disease-modifying treatment. So far, steroids and immunosuppressants have been the mainstream for autoimmune diseases, but the problem is that this kills not only pathogenic T cells, but also lymphocytes, which are necessary for the body. From this understanding of the immune regulation of MS, we can expect the development of therapeutic strategies that target only pathogenic immune cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryu Yashiro
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
36
|
Zolfaghari Baghbadorani P, Rayati Damavandi A, Moradi S, Ahmadi M, Bemani P, Aria H, Mottedayyen H, Rayati Damavandi A, Eskandari N, Fathi F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev Neurosci 2023; 34:613-633. [PMID: 36496351 DOI: 10.1515/revneuro-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.
Collapse
Affiliation(s)
| | - Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Keshavarz Blvrd, Vesal Shirazi St., Tehran 1417613151, Iran
| | - Samira Moradi
- School of Medicine, Hormozgan University of Medical Sciences Chamran Blvrd., Hormozgan 7919693116, Bandar Abbass, Iran
| | - Meysam Ahmadi
- School of Medicine, Shiraz University of Medical Sciences, Fars, Zand St., Shiraz 7134814336, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fars, Ibn Sina Sq., Fasa 7461686688, Iran
| | - Hossein Mottedayyen
- Department of Immunology, School of Medicine, Kashan University of Medical Sciences, Ravandi Blvrd, Isfahan, Kashan 8715988141, Iran
| | - Amirhossein Rayati Damavandi
- Student's Research Committee, Pharmaceutical Sciences Branch, Islamic Azad University, Yakhchal St., Tehran 193951498, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| |
Collapse
|
37
|
Almulla AF, Abdul Jaleel AKK, Abo Algon AA, Tunvirachaisakul C, Hassoun HK, Al-Hakeim HK, Maes M. Mood Symptoms and Chronic Fatigue Syndrome Due to Relapsing-Remitting Multiple Sclerosis Are Associated with Immune Activation and Aberrations in the Erythron. Brain Sci 2023; 13:1073. [PMID: 37509005 PMCID: PMC10377656 DOI: 10.3390/brainsci13071073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune and neuroinflammatory disease of the central nervous system characterized by peripheral activation of immune-inflammatory pathways which culminate in neurotoxicity causing demyelination of central neurons. Nonetheless, the pathophysiology of relapsing-remitting MS (RRMS)-related chronic fatigue, depression, anxiety, cognitive impairments, and autonomic disturbances is not well understood. OBJECTIVES The current study aims to delineate whether the remitted phase of RRMS is accompanied by activated immune-inflammatory pathways and if the latter, coupled with erythron variables, explain the chronic fatigue and mood symptoms due to RRMS. MATERIAL AND METHODS We recruited 63 MS patients, 55 in the remitted phase of RRMS and 8 with secondary progressive MS, and 30 healthy controls and assessed erythron variables, and used a bio-plex assay to measure 27 serum cytokines. RESULTS A significant proportion of the MS patients (46%) displayed activation of the immune-inflammatory response (IRS) and compensatory immune response (CIRS) systems, and T helper (Th)1 and Th17 cytokine profiles. Remitted RRMS patients showed increased chronic fatigue, depression, anxiety, physiosomatic, autonomic, and insomnia scores, which could partly be explained by M1 macrophage, Th1, Th-17, growth factor, and CIRS activation, as well as aberrations in the erythron including lowered hematocrit and hemoglobin levels. CONCLUSIONS Around 50% of remitted RRMS patients show activation of immune-inflammatory pathways in association with mood and chronic-fatigue-like symptoms. IRS and CIRS activation as well as the aberrations in the erythron are new drug targets to treat chronic fatigue and affective symptoms due to MS.
Collapse
Affiliation(s)
- Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | | | | | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Hussein K Al-Hakeim
- Department of Chemistry, College of Science, University of Kufa, Kufa 54002, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
38
|
Milicevic KD, Bataveljic DB, Bogdanovic Pristov JJ, Andjus PR, Nikolic LM. Astroglial Cell-to-Cell Interaction with Autoreactive Immune Cells in Experimental Autoimmune Encephalomyelitis Involves P2X7 Receptor, β 3-Integrin, and Connexin-43. Cells 2023; 12:1786. [PMID: 37443820 PMCID: PMC10340259 DOI: 10.3390/cells12131786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In multiple sclerosis (MS), glial cells astrocytes interact with the autoreactive immune cells that attack the central nervous system (CNS), which causes and sustains neuroinflammation. However, little is known about the direct interaction between these cells when they are in close proximity in the inflamed CNS. By using an experimental autoimmune encephalomyelitis (EAE) model of MS, we previously found that in the proximity of autoreactive CNS-infiltrated immune cells (CNS-IICs), astrocytes respond with a rapid calcium increase that is mediated by the autocrine P2X7 receptor (P2X7R) activation. We now reveal that the mechanisms regulating this direct interaction of astrocytes and CNS-IICs involve the coupling between P2X7R, connexin-43, and β3-integrin. We found that P2X7R and astroglial connexin-43 interact and concentrate in the immediate proximity of the CNS-IICs in EAE. P2X7R also interacts with β3-integrin, and the block of astroglial αvβ3-integrin reduces the P2X7R-dependent calcium response of astrocytes upon encountering CNS-IICs. This interaction was dependent on astroglial mitochondrial activity, which regulated the ATP-driven P2X7R activation and facilitated the termination of the astrocytic calcium response evoked by CNS-IICs. By further defining the interactions between the CNS and the immune system, our findings provide a novel perspective toward expanding integrin-targeting therapeutic approaches for MS treatment by controlling the cell-cell interactions between astrocytes and CNS-IICs.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela B. Bataveljic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena J. Bogdanovic Pristov
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Pavle R. Andjus
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ljiljana M. Nikolic
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
39
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
40
|
Nociti V, Romozzi M. The Role of BDNF in Multiple Sclerosis Neuroinflammation. Int J Mol Sci 2023; 24:ijms24098447. [PMID: 37176155 PMCID: PMC10178984 DOI: 10.3390/ijms24098447] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and degenerative disease of the central nervous system (CNS). Inflammation is observed in all stages of MS, both within and around the lesions, and can have beneficial and detrimental effects on MS pathogenesis. A possible mechanism for the neuroprotective effect in MS involves the release of brain-derived neurotrophic factor (BDNF) by immune cells in peripheral blood and inflammatory lesions, as well as by microglia and astrocytes within the CNS. BDNF is a neurotrophic factor that plays a key role in neuroplasticity and neuronal survival. This review aims to analyze the current understanding of the role that inflammation plays in MS, including the factors that contribute to both beneficial and detrimental effects. Additionally, it explores the potential role of BDNF in MS, as it may modulate neuroinflammation and provide neuroprotection. By obtaining a deeper understanding of the intricate relationship between inflammation and BDNF, new therapeutic strategies for MS may be developed.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Centro Sclerosi Multipla, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marina Romozzi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
41
|
Anwar MJ, Alenezi SK, Alhowail AH. Molecular insights into the pathogenic impact of vitamin D deficiency in neurological disorders. Biomed Pharmacother 2023; 162:114718. [PMID: 37084561 DOI: 10.1016/j.biopha.2023.114718] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
Neurological disorders are the major cause of disability, leading to a decrease in quality of life by impairing cognitive, sensorimotor, and motor functioning. Several factors have been proposed in the pathogenesis of neurobehavioral changes, including nutritional, environmental, and genetic predisposition. Vitamin D (VD) is an environmental and nutritional factor that is widely distributed in the central nervous system's subcortical grey matter, neurons of the substantia nigra, hippocampus, thalamus, and hypothalamus. It is implicated in the regulation of several brain functions by preserving neuronal structures. It is a hormone rather than a nutritional vitamin that exerts a regulatory role in the pathophysiology of several neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and multiple sclerosis. A growing body of epidemiological evidence suggests that VD is critical in neuronal development and shows neuroprotective effects by influencing the production and release of neurotrophins, antioxidants, immunomodulatory, regulation of intracellular calcium balance, and direct effect on the growth and differentiation of nerve cells. This review provides up-to-date and comprehensive information on vitamin D deficiency, risk factors, and clinical and preclinical evidence on its relationship with neurological disorders. Furthermore, this review provides mechanistic insight into the implications of vitamin D and its deficiency on the pathogenesis of neurological disorders. Thus, an understanding of the crucial role of vitamin D in the neurobiology of neurodegenerative disorders can assist in the better management of vitamin D-deficient individuals.
Collapse
Affiliation(s)
- Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia.
| | - Ahmad Hamad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Buraydah 51452, Saudi Arabia
| |
Collapse
|
42
|
Qiuping L, Pan P, Zhenzhen L, Zhen Z, Xuezhu Z, Shuting L. Acupuncture regulates the Th17/Treg balance and improves cognitive deficits in a rat model of vascular dementia. Heliyon 2023; 9:e13346. [PMID: 36816326 PMCID: PMC9929319 DOI: 10.1016/j.heliyon.2023.e13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Objective The present study was developed to explore the impact of acupuncture on the Th17/Treg balance in the brain and the periphery and associated changes in cognitive deficits in a rat model of vascular dementia (VD). Methods Male Wistar rats (8 weeks old) were randomly assigned to sham-operated (Gs, n = 10), and operation (n = 30) groups. A VD model was established for all rats in the operation group via the permanent bilateral occlusion of the common carotid artery. Behavioral screening of these rats was conducted via a hidden platform trial at 2 months post-operation. These operation group rats were then further subdivided into impaired (Gi) and acupuncture (Ga) groups (n = 10/group). Acupuncture was performed over a 21-day period for rats in the Ga group. A Morris water maze (MWM) test was used to assess cognitive function for rats in all groups. Flow cytometry and fluorescent staining were used to detect Th17 and Treg cells in samples from these animals based on IL-17/FoxP3 or CD4+FoxP3+/CD4+RORγt+ staining profiles. Results Relative to the Gs group, escape latency values for rats in the Gi group were significantly increased. Following treatment, rats in the Ga group exhibited significant reductions in escape latency values as compared to rats in the Gi group (P < 0.05). The relative Treg proportion in the peripheral blood and spleen additionally trended upwards in these Ga rats as compared to those in the Gi group (P > 0.05), whereas the frequency of Th17 cells in the peripheral blood and spleen of Ga group rats trended downward relative to the Gi group (P > 0.05). Significantly fewer CD4+RORγt+ and RORγt+ cells were detected in the Ga group relative to the Gi group, whereas CD4+FoxP3+ and FoxP3+ cell counts were increased (P < 0.01). Conclusion In summary, VD model rats exhibited dysregulated Th17/Treg homeostasis. Acupuncture treatment was sufficient to reduce the frequency and numbers of Th17 cells in these animals while increasing Treg cell levels, thereby alleviating cognitive deficits with respect to both spatial learning and memory impairment. Consequently, the therapeutic benefits of such acupuncture treatment may be attributable to the regulation of the Th17/Treg balance and associated improvements in cognitive function.
Collapse
Affiliation(s)
- Liu Qiuping
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pan Pan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
- Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, 650500, China
| | - Ling Zhenzhen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Zhang Zhen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
- Weifang Traditional Chinese Hospital, Shandong Province, 261031, China
| | - Zhang Xuezhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Shuting
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
43
|
Sher AA, Lao YT, Coombs KM. HLA-A, HSPA5, IGFBP5 and PSMA2 Are Restriction Factors for Zika Virus Growth in Astrocytic Cells. Viruses 2022; 15:97. [PMID: 36680137 PMCID: PMC9863221 DOI: 10.3390/v15010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
(1) Background: Zika virus (ZIKV), an arbo-flavivirus, is transmitted via Aeges aegyptii mosquitoes Following its major outbreaks in 2013, 2014 and 2016, WHO declared it a Public Health Emergency of International Concern. Symptoms of ZIKV infection include acute fever, conjunctivitis, headache, muscle & joint pain and malaise. Cases of its transmission also have been reported via perinatal, sexual and transfusion transmission. ZIKV pathologies include meningo-encephalitis and myelitis in the central nervous system (CNS) and Guillain-Barré syndrome and acute transient polyneuritis in the peripheral nervous system (PNS). Drugs like azithromycin have been tested as inhibitors of ZIKV infection but no vaccines or treatments are currently available. Astrocytes are the most abundant cells in the CNS and among the first cells in CNS infected by ZIKV; (2) Methods: We previously used SOMAScan proteomics to study ZIKV-infected astrocytic cells. Here, we use mass spectrometric analyses to further explain dysregulations in the cellular expression profile of glioblastoma astrocytoma U251 cells. We also knocked down (KD) some of the U251 cellular proteins using siRNAs and observed the impact on ZIKV replication and infectivity; (3) Results & Conclusions: The top ZIKV dysregulated cellular networks were antimicrobial response, cell death, and energy production while top dysregulated functions were antigen presentation, viral replication and cytopathic impact. Th1 and interferon signaling pathways were among the top dysregulated canonical pathways. siRNA-mediated KD of HLA-A, IGFBP5, PSMA2 and HSPA5 increased ZIKV titers and protein synthesis, indicating they are ZIKV restriction factors. ZIKV infection also restored HLA-A expression in HLA-A KD cells by 48 h post-infection, suggesting interactions between this gene product and ZIKV.
Collapse
Affiliation(s)
- Affan A. Sher
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ying Tenny Lao
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
44
|
Shu Y, Ma X, Chen C, Wang Y, Sun X, Zhang L, Lu Z, Petersen F, Qiu W, Yu X. Myelin oligodendrocyte glycoprotein-associated disease is associated with BANK1, RNASET2 and TNIP1 polymorphisms. J Neuroimmunol 2022; 372:577937. [PMID: 36054934 DOI: 10.1016/j.jneuroim.2022.577937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
AIM Here we aimed to compare association of common immune-related genetic variants with three autoimmune central nervous system (CNS) demyelinating diseases, namely myelin oligodendrocyte glycoprotein-associated disease (MOGAD), multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). METHODS In this retrospective cross-sectional study, 26 common immune-related single nucleotide polymorphisms were genotyped in 102 patients with MOGAD, 100 patients with MS, 198 patients with NMOSD and 541 healthy control subjects recruited from Guangzhou, China. RESULTS Among all tested genetic variations, one polymorphism, B cell scaffold protein with ankyrin repeats 1 (BANK1) rs4522865 was associated with multiple disorders, namely MOGAD (OR = 1.94, 95% CI:1.19-3.17, P = 0.0059) and NMOSD (OR = 1.69, 95% CI:1.17-2.45). Besides BANK1 rs4522865, two other non-HLA loci, ribonuclease T2 (RNASET2) rs9355610 (OR = 0.47, 95% CI: 0.26-0.85) and TNFAIP3 interacting protein 1 (TNIP1) rs10036748 (OR = 1.76, 95% CI: 1.16-2.71), were associated with MOGAD. In addition, NMOSD was associated with signal transducer and activator of transcription 4 (STAT4) rs7574865 (OR = 1.58, 95% CI: 1.12-2.24) and general transcription factor Iii (GTF2I) rs73366469 (OR = 1.60, 95% CI:1.12-2.29), while MS was associated with a killer cell lectin like receptor G1 (KLRG1) rs1805673 (OR = 0.61, 95% CI: 0.40-0.94) and T-box transcription factor 21 (TBX21) rs17244587 (OR = 2.25, 95% CI: 1.25-4.06). CONCLUSION The current study suggests for the first time three non-HLA susceptibility loci for MOGAD. In addition, comparison of association of 26 immune-related polymorphisms with three autoimmune CNS demyelinating diseases demonstrates substantial difference in genetic basis of those disorders.
Collapse
Affiliation(s)
- Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Zhang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
| |
Collapse
|
45
|
Cognitive dysfunction in SLE: An understudied clinical manifestation. J Autoimmun 2022; 132:102911. [PMID: 36127204 DOI: 10.1016/j.jaut.2022.102911] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric lupus (NPSLE) is a debilitating manifestation of SLE which occurs in a majority of SLE patients and has a variety of clinical manifestations. In the central nervous system, NPSLE may result from ischemia or penetration of inflammatory mediators and neurotoxic antibodies through the blood brain barrier (BBB). Here we focus on cognitive dysfunction (CD) as an NPSLE manifestation; it is common, underdiagnosed, and without specific therapy. For a very long time, clinicians ignored cognitive dysfunction and researchers who might be interested in the question struggled to find an approach to understanding mechanisms for this manifestation. Recent years, however, propelled by a more patient-centric approach to disease, have seen remarkable progress in our understanding of CD pathogenesis. This has been enabled through the use of novel imaging modalities and numerous mouse models. Overall, these studies point to a pivotal role of an impaired BBB and microglial activation in leading to neuronal injury. These insights suggest potential therapeutic modalities and make possible clinical trials for cognitive impairment.
Collapse
|
46
|
Bonanno S, Cavalcante P, Salvi E, Giagnorio E, Malacarne C, Cattaneo M, Andreetta F, Venerando A, Pensato V, Gellera C, Zanin R, Arnoldi MT, Dosi C, Mantegazza R, Masson R, Maggi L, Marcuzzo S. Identification of a cytokine profile in serum and cerebrospinal fluid of pediatric and adult spinal muscular atrophy patients and its modulation upon nusinersen treatment. Front Cell Neurosci 2022; 16:982760. [PMID: 36035258 PMCID: PMC9406526 DOI: 10.3389/fncel.2022.982760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectivesMultisystem involvement in spinal muscular atrophy (SMA) is gaining prominence since different therapeutic options are emerging, making the way for new SMA phenotypes and consequent challenges in clinical care. Defective immune organs have been found in preclinical models of SMA, suggesting an involvement of the immune system in the disease. However, the immune state in SMA patients has not been investigated so far. Here, we aimed to evaluate the innate and adaptive immunity pattern in SMA type 1 to type 3 patients, before and after nusinersen treatment.MethodsTwenty one pediatric SMA type 1, 2, and 3 patients and 12 adult SMA type 2 and 3 patients were included in this single-center retrospective study. A Bio-Plex Pro-Human Cytokine 13-plex Immunoassay was used to measure cytokines in serum and cerebrospinal fluid (CSF) of the study cohort before and after 6 months of therapy with nusinersen.ResultsWe detected a significant increase in IL-1β, IL-4, IL-6, IL-10, IFN-γ, IL-17A, IL-22, IL-23, IL-31, and IL-33, in serum of pediatric and adult SMA patients at baseline, compared to pediatric reference ranges and to adult healthy controls. Pediatric patients showed also a significant increase in TNF-α and IL-17F levels at baseline. IL-4, IFN-γ, Il-22, IL-23, and IL-33 decreased in serum of pediatric SMA patients after 6 months of therapy when compared to baseline. A significant decrease in IL-4, IL-6, INF-γ, and IL-17A was detected in serum of adult SMA patients after treatment. CSF of both pediatric and adult SMA patients displayed detectable levels of all cytokines with no significant differences after 6 months of treatment with nusinersen. Notably, a higher baseline expression of IL-23 in serum correlated with a worse motor function outcome after treatment in pediatric patients. Moreover, after 6 months of treatment, patients presenting a higher IL-10 concentration in serum showed a better Hammersmith Functional Motor Scale Expanded (HFMSE) score.DiscussionPediatric and adult SMA patients show an inflammatory signature in serum that is reduced upon SMN2 modulating treatment, and the presence of inflammatory mediators in CSF. Our findings enhance SMA knowledge with potential clinical and therapeutic implications.
Collapse
Affiliation(s)
- Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Silvia Bonanno,
| | - Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Paola Cavalcante,
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Giagnorio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Malacarne
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Marco Cattaneo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Andreetta
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Venerando
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riccardo Zanin
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Teresa Arnoldi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Dosi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
47
|
Interleukin-31 and soluble CD40L: new candidate serum biomarkers that predict therapeutic response in multiple sclerosis. Neurol Sci 2022; 43:6271-6278. [DOI: 10.1007/s10072-022-06276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
|
48
|
Brummer T, Zipp F, Bittner S. T cell-neuron interaction in inflammatory and progressive multiple sclerosis biology. Curr Opin Neurobiol 2022; 75:102588. [PMID: 35732103 DOI: 10.1016/j.conb.2022.102588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune condition of the central nervous system (CNS) characterized by acute inflammatory relapses, chronic neuro-axonal degeneration, and subsequent disability progression. T cells - in interaction with B cells and CNS-resident glial cells - are key initiators and drivers of neurodegeneration in MS. However, it is not entirely clear how encephalitogenic T cells orchestrate the local immune response within the brain and how they overtake disease stage-specific roles in MS pathogenesis. This review highlights recent advances in understanding direct and indirect T cell-neuron interactions in inflammatory and progressive MS. Finally, we discuss new diagnostic tools such as neurofilament light chain (NfL), which is on the cusp of becoming a key factor in clinical and therapeutic decision-making.
Collapse
Affiliation(s)
- Tobias Brummer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
49
|
Fu J, Huang Y, Bao T, Liu C, Liu X, Chen X. The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J Neuroinflammation 2022; 19:98. [PMID: 35459141 PMCID: PMC9034482 DOI: 10.1186/s12974-022-02446-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive loss of certain populations of neurons, which eventually lead to dysfunction. These diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Immune pathway dysregulation is one of the common features of neurodegeneration. Recently, there is growing interest in the specific role of T helper Th 17 cells and Interleukin-17A (IL-17A), the most important cytokine of Th 17 cells, in the pathogenesis of the central nervous system (CNS) of neurodegenerative diseases. In the present study, we summarized current knowledge about the function of Th17/IL-17A, the physiology of Th17/IL-17A in diseases, and the contribution of Th17/IL-17A in AD, PD, and ALS. We also update the findings on IL-17A-targeting drugs as potentially immunomodulatory therapeutic agents for neurodegenerative diseases. Although the specific mechanism of Th17/IL-17A in this group of diseases is still controversial, uncovering the molecular pathways of Th17/IL-17A in neurodegeneration allows the identification of suitable targets to modulate these cellular processes. Therapeutics targeting IL-17A might represent potentially novel anti-neurodegeneration drugs.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China
| | - Yan Huang
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Bao
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China.
| |
Collapse
|
50
|
Mickael ME, Bhaumik S, Chakraborti A, Umfress AA, van Groen T, Macaluso M, Totenhagen J, Sorace AG, Bibb JA, Standaert DG, Basu R. RORγt-Expressing Pathogenic CD4 + T Cells Cause Brain Inflammation during Chronic Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2054-2066. [PMID: 35379749 PMCID: PMC10103644 DOI: 10.4049/jimmunol.2100869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
Abstract
Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.
Collapse
Affiliation(s)
| | - Suniti Bhaumik
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Ayanabha Chakraborti
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Alan A Umfress
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew Macaluso
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; and
| | - James A Bibb
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Rajatava Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL;
| |
Collapse
|