1
|
Sauzéat L, Moreira M, Holota H, Beaudoin C, Volle DH. Unveiling the hidden impact of long-term metal-rich volcanic pollution on male reproductive functions using isotope metallomics. ENVIRONMENT INTERNATIONAL 2025; 198:109388. [PMID: 40132441 DOI: 10.1016/j.envint.2025.109388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Volcanic eruptions release particles in a range of sizes that can chronically affect the health of communities within tens of kilometers of the volcano. Many years after an eruption, resuspension of volcanic ash can exacerbate the health impact of primary eruptive events. So far, our global understanding of the health effects triggered by chronic exposure to volcanic particles at the whole-body scale is limited. Recently, it has been shown that mice chronically exposed to metal-rich volcanic ash deposits present metallome deregulations associated with pathophysiological changes. These deregulations preferentially impact the reproductive functions, questioning about the impact of ash on fertility. This work aims to further assess the mechanisms driving the ash-related fertility disorders and develop predictive biomarkers. For that, elemental concentrations and Cu-Zn-Fe isotope measurements coupled to metabolomic, proteomic and transcriptomic analyses were measured in blood, liver and two organs of the male reproductive system (testis, seminal vesicle). The samples were collected on wild-type and mice exposed over two months to volcanic ash. Mice exposed to ash are characterized by (i) significant metallomic deregulations, (ii) higher oxidative stress correlating with isotopic variations of redox-sensitive elements and (iii) testicular and hepatic alterations, marked by gains in organ mass, hepatic lipid accumulation and circulating bile acids overload, all of which might exacerbate testicular defects. Together, these results demonstrate that prolonged exposure to metal-rich ash is a threat for male reproduction and that investigating redox-sensitive isotopes might help identifying early signs of oxidative stress-related testicular injuries, with future implications for hepato-testicular disease prevention.
Collapse
Affiliation(s)
- Lucie Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS UMR 6293, Inserm U1103, Institut de Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France.
| | - Mélanie Moreira
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| | - Hélène Holota
- Université Clermont Auvergne, CNRS UMR 6293, Inserm U1103, Institut de Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- Université Clermont Auvergne, CNRS UMR 6293, Inserm U1103, Institut de Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| | - David H Volle
- Université Clermont Auvergne, CNRS UMR 6293, Inserm U1103, Institut de Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Chen S, Yu W, Shen Y, Lu L, Meng X, Liu J. Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral-gut-brain axis: implications for human health and well-being. ASIAN BIOMED 2025; 19:21-35. [PMID: 40231163 PMCID: PMC11994223 DOI: 10.2478/abm-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Air pollution exposure has become an international health issue that poses many risks to life and health. The bidirectional regulatory network, known as the oral-gut-brain axis connects the oral cavity, intestine, and central nervous system, as well as its influence on health outcomes from exposure to air pollution is receiving increased attention. This article systematically details the epidemiological evidence linking air pollutants to diseases affecting the oral, respiratory, intestinal, and nervous systems, while also explaining the route of air pollutants via the oral-gut-brain axis. The oral-gut-brain axis anomalies resulting from air pollution and their underlying molecular processes are also covered. The study provides a fresh viewpoint on how exposure to air pollution affects health and investigates cutting-edge preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Wenlei Yu
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Yiwen Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Linjie Lu
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine,Jiaxing, 314400, China
| | - Xiangyong Meng
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| | - Jun Liu
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| |
Collapse
|
3
|
Kim HM, Kim JH, Park BJ, Park HJ. Chitosan Nanoparticle-Encapsulated Cordyceps militaris Grown on Germinated Rhynchosia nulubilis Reduces Type II Alveolar Epithelial Cell Apoptosis in PM 2.5-Induced Lung Injury. Int J Mol Sci 2025; 26:1105. [PMID: 39940873 PMCID: PMC11817496 DOI: 10.3390/ijms26031105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Chitosan nanoparticles (CNPs) were synthesized in this study to enhance the limited bioactivity and stability of Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) and effectively deliver it to target tissues. Under optimized conditions, stable encapsulation of GRC was achieved by setting the chitosan (CHI)-to-tripolyphosphate (TPP) ratio to 4:1 and adjusting the pH of TPP to 2, resulting in a zeta potential of +22.77 mV, which indicated excellent stability. As the concentration of GRC increased, the encapsulation efficiency decreased, whereas the loading efficiency increased. Fourier-transform infrared (FT-IR) spectroscopy revealed shifts in the amide I and II bands of CHI from 1659 and 1578 to 1639 cm⁻1, indicating hydrogen bonding and successful encapsulation of GRC encapsulated with CNPs (GCN). X-ray diffraction (XRD) examination revealed the transition of the nanoparticles from a crystalline to an amorphous state, further confirming successful encapsulation. In vivo experiments demonstrated that GCN treatment significantly reduced lung injury scores in fine particulate matter (PM2.5)-exposed mice (p < 0.05) and alleviated lung epithelial barrier damage by restoring the decreased expression of occludin protein (p < 0.05). In addition, GCN decreased the PM2.5-induced upregulation of MMP-9 and COL1A1 mRNA expression levels, preventing extracellular matrix (ECM) degradation and collagen accumulation (p < 0.05). GCN exhibited antioxidant effects by reducing the mRNA expression of nitric oxide synthase (iNOS) and enhancing both the protein and mRNA expression of superoxide dismutase (SOD-1) caused by PM2.5, thereby alleviating oxidative stress (p < 0.05). In A549 cells, GCN significantly reduced PM2.5-induced reactive oxygen species (ROS) production compared with GRC (p < 0.05), with enhanced intracellular uptake confirmed using fluorescence microscopy (p < 0.05). In conclusion, GCN effectively alleviated PM2.5-induced lung damage by attenuating oxidative stress, suppressing apoptosis, and preserving the lung epithelial barrier integrity. These results emphasize its potential as a therapeutic candidate for preventing and treating the lung diseases associated with PM2.5 exposure.
Collapse
Affiliation(s)
| | | | | | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea; (H.-M.K.); (J.-H.K.); (B.-J.P.)
| |
Collapse
|
4
|
Kasongo J, Alleman LY, Kanda JM, Kaniki A, Riffault V. Metal-bearing airborne particles from mining activities: A review on their characteristics, impacts and research perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175426. [PMID: 39137842 DOI: 10.1016/j.scitotenv.2024.175426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The presence of various contaminants in airborne dusts from metal mining sites poses obvious risks to human health and the environment. Yet, few studies have thoroughly investigated the properties of airborne particles in terms of their morphology, size distribution and chemical composition, that are associated with health effects around mining activities. This review presents the most recent knowledge on the sources, physicochemical characteristics, and health and environmental risks associated with airborne dusts from various mining and smelting operations. The literature reviewed found only one research on atmospheric dust associated with hydrometallurgical plants compared to a larger number of pyrometallurgical processes/smelters studies. In addition, there are relatively few works comparing the distribution of metals between the fine and coarse size fractions around mining sites. Our analysis suggests that (i) exposure pathways of metal(loid)s to the human body are defined by linking concentration data in human biosamples and contaminated samples such as soils, drinking water and food, and (ii) chitosan and its derivatives may serve as an environmentally friendly and cost-effective method for soil remediation, with removal rates for metal(loid)s around 70-95 % at pH 6-8, and as dust suppressants for unpaved roads around mining sites. The specific limit values for PM and metal(loid)s at mining sites are not well documented. Despite the health risks associated with fine particles around mining areas, regulations have tended to focus on coarse particles. While some air quality agencies have issued regulations for occupational health and safety, there is no global alignment or common regulatory framework for enforcement. Future research priorities should focus on investigating PM and secondary inorganic aerosols associated with hydrometallurgical processes and dust monitoring, using online metal(loid)s analysers to identify the driving parameters in the deposition and resuspension process.
Collapse
Affiliation(s)
- John Kasongo
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France; Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Laurent Y Alleman
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France.
| | - Jean-Marie Kanda
- Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Arthur Kaniki
- Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France
| |
Collapse
|
5
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
6
|
Chang C, Louie A, Zhou Y, Gupta R, Liang F, Xanthou G, Ereso J, Koletic C, Yang JC, Sedighian F, Lagishetty V, Arias-Jayo N, Altuwayjiri A, Tohidi R, Navab M, Reddy ST, Sioutas C, Hsiai T, Araujo JA, Jacobs JP. Ambient Particulate Matter Induces In Vitro Toxicity to Intestinal Epithelial Cells without Exacerbating Acute Colitis Induced by Dextran Sodium Sulfate or 2,4,6-Trinitrobenzenesulfonic Acid. Int J Mol Sci 2024; 25:7184. [PMID: 39000289 PMCID: PMC11241079 DOI: 10.3390/ijms25137184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an immunologically complex disorder involving genetic, microbial, and environmental risk factors. Its global burden has continued to rise since industrialization, with epidemiological studies suggesting that ambient particulate matter (PM) in air pollution could be a contributing factor. Prior animal studies have shown that oral PM10 exposure promotes intestinal inflammation in a genetic IBD model and that PM2.5 inhalation exposure can increase intestinal levels of pro-inflammatory cytokines. PM10 and PM2.5 include ultrafine particles (UFP), which have an aerodynamic diameter of <0.10 μm and biophysical and biochemical properties that promote toxicity. UFP inhalation, however, has not been previously studied in the context of murine models of IBD. Here, we demonstrated that ambient PM is toxic to cultured Caco-2 intestinal epithelial cells and examined whether UFP inhalation affected acute colitis induced by dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid. C57BL/6J mice were exposed to filtered air (FA) or various types of ambient PM reaerosolized in the ultrafine size range at ~300 μg/m3, 6 h/day, 3-5 days/week, starting 7-10 days before disease induction. No differences in weight change, clinical disease activity, or histology were observed between the PM and FA-exposed groups. In conclusion, UFP inhalation exposure did not exacerbate intestinal inflammation in acute, chemically-induced colitis models.
Collapse
Affiliation(s)
- Candace Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Allen Louie
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Zhou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- West China Medical Center, Sichuan University, Chengdu 610017, China
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fengting Liang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Georgina Xanthou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Jason Ereso
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Carolina Koletic
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Julianne Ching Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Farzaneh Sedighian
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Nerea Arias-Jayo
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Abdulmalik Altuwayjiri
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
- Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Ramin Tohidi
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
- Air Quality Planning and Science Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, CA 92507, USA
| | - Mohamad Navab
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
| | - Srinivasa Tadiparthi Reddy
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- West China Medical Center, Sichuan University, Chengdu 610017, China
- Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Constantinos Sioutas
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
| | - Tzung Hsiai
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Ruggles A, Benakis C. Exposure to Environmental Toxins: Potential Implications for Stroke Risk via the Gut- and Lung-Brain Axis. Cells 2024; 13:803. [PMID: 38786027 PMCID: PMC11119296 DOI: 10.3390/cells13100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Recent evidence indicates that exposure to environmental toxins, both short-term and long-term, can increase the risk of developing neurological disorders, including neurodegenerative diseases (i.e., Alzheimer's disease and other dementias) and acute brain injury (i.e., stroke). For stroke, the latest systematic analysis revealed that exposure to ambient particulate matter is the second most frequent stroke risk after high blood pressure. However, preclinical and clinical stroke investigations on the deleterious consequences of environmental pollutants are scarce. This review examines recent evidence of how environmental toxins, absorbed along the digestive tract or inhaled through the lungs, affect the host cellular response. We particularly address the consequences of environmental toxins on the immune response and the microbiome at the gut and lung barrier sites. Additionally, this review highlights findings showing the potential contribution of environmental toxins to an increased risk of stroke. A better understanding of the biological mechanisms underlying exposure to environmental toxins has the potential to mitigate stroke risk and other neurological disorders.
Collapse
Affiliation(s)
| | - Corinne Benakis
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81337 Munich, Germany;
| |
Collapse
|
8
|
Chang C, Gupta R, Sedighian F, Louie A, Gonzalez DM, Le C, Cho JM, Park SK, Castellanos J, Ting TW, Dong TS, Arias-Jayo N, Lagishetty V, Navab M, Reddy S, Sioutas C, Hsiai T, Jacobs JP, Araujo JA. Subchronic inhalation exposure to ultrafine particulate matter alters the intestinal microbiome in various mouse models. ENVIRONMENTAL RESEARCH 2024; 248:118242. [PMID: 38242419 PMCID: PMC11737635 DOI: 10.1016/j.envres.2024.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 μg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, β-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.
Collapse
Affiliation(s)
- Candace Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Farzaneh Sedighian
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Allen Louie
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - David M Gonzalez
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Collin Le
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jocelyn Castellanos
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - To-Wei Ting
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, Los Angeles, CA, USA
| | - Nerea Arias-Jayo
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Mohamad Navab
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Srinivasa Reddy
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California (USC) Viterbi School of Engineering, Los Angeles, CA, USA
| | - Tzung Hsiai
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, Los Angeles, CA, USA.
| | - Jesus A Araujo
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology 2024; 504:153799. [PMID: 38608860 DOI: 10.1016/j.tox.2024.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.
Collapse
Affiliation(s)
- Yanxu Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jingyu Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410013, PR China.
| |
Collapse
|
10
|
Imdad S, Kim JH, So B, Jang J, Park J, Lim W, Lee YK, Shin WS, Hillyer T, Kang C. Effect of aerobic exercise and particulate matter exposure duration on the diversity of gut microbiota. Anim Cells Syst (Seoul) 2024; 28:137-151. [PMID: 38601060 PMCID: PMC11005883 DOI: 10.1080/19768354.2024.2338855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Inhalation of ambient particulate matter (PM) can disrupt the gut microbiome, while exercise independently influences the gut microbiome by promoting beneficial bacteria. In this study, we analyzed changes in gut microbial diversity and composition in response to combined interventions of PM exposure and aerobic exercise, extending up to 12 weeks. This investigation was conducted using mice, categorized into five groups: control group (Con), exercise group (EXE), exercise group followed by 3-day exposure to PM (EXE + 3-day PM), particulate matter exposure (PM), and PM exposure with concurrent treadmill exercise (PME). Notably, the PM group exhibited markedly lower alpha diversity and richness compared to the Con group and our analysis of beta diversity revealed significant variations among the intervention groups. Members of the Lachnospiraceae family showed significant enhancement in the exercise intervention groups (EXE and PME) compared to the Con and PM groups. The biomarker Lactobacillus, Coriobacteraceae, and Anaerofustis were enriched in the EXE group, while Desulfovibrionaceae, Mucispirillum schaedleri, Lactococcus and Anaeroplasma were highly enriched in the PM group. Differential abundance analysis revealed that Paraprevotella, Bacteroides, and Blautia were less abundant in the 12-week PM exposure group than in the 3-day PM exposure group. Moreover, both the 3-day and 12-week PM exposure groups exhibited a reduced relative abundance of Bacteroides uniformis, SMB53, and Staphylococcus compared to non-PM exposure groups. These findings will help delineate the possible roles and associations of altered microbiota resulting from the studied interventions, paving the way for future mechanistic research.
Collapse
Affiliation(s)
- Saba Imdad
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Byunghun So
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Junho Jang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Jinhan Park
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Chounghun Kang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Physical Education, College of Education, Inha University, Incheon, South Korea
| |
Collapse
|
11
|
Kim HJ, Yang J, Herath KHINM, Jeon YJ, Son YO, Kwon D, Kim HJ, Jee Y. Oral Administration of Sargassum horneri Suppresses Particulate Matter-Induced Oxidative DNA Damage in Alveolar Macrophages of Allergic Airway Inflammation: Relevance to PM-Mediated M1/M2 AM Polarization. Mol Nutr Food Res 2023; 67:e2300462. [PMID: 37986167 DOI: 10.1002/mnfr.202300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 11/22/2023]
Abstract
SCOPE Particulate matter (PM) can cause cellular oxidative damage and promote respiratory diseases. It has recently shown that Sargassum horneri ethanol extract (SHE) containing sterols and gallic acid reduces PM-induced oxidative stress in mice lung cells through ROS scavenging and metal chelating. In this study, the role of alveolar macrophages (AMs) is identified that are particularly susceptible to DNA damage due to PM-triggered oxidative stress in lungs of OVA-sensitized mice exposed to PM. METHODS AND RESULTS The study scrutinizes if PM exposure causes oxidative DNA damage to AMs differentially depending on their type of polarization. Further, SHE's potential is investigated in reducing oxidative DNA damage in polarized AMs and restoring AM polarization in PM-induced allergic airway inflammation. The study discovers that PM triggers prolonged oxidative stress to AMs, leading to lipid peroxidation in them and alveolar epithelial cells. Particularly, AMs are polarized to M2 phenotype (F4/80+ CD206+ ) with enhanced oxidative DNA damage when subject to PM-induced oxidative stress. However, SHE repairs oxidative DNA damage in M1- and M2-polarized AMs and reduces AMs polarization imbalance due to PM exposure. CONCLUSION These results suggest the possibility of SHE as beneficial foods against PM-induced allergic airway inflammation via suppression of AM dysfunction.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | | | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea
| |
Collapse
|
12
|
Qin J, Wang J. Research progress on the effects of gut microbiome on lung damage induced by particulate matter exposure. ENVIRONMENTAL RESEARCH 2023; 233:116162. [PMID: 37348637 DOI: 10.1016/j.envres.2023.116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Air pollution is one of the top five causes of death in the world and has become a research hotspot. In the past, the health effects of particulate matter (PM), the main component of air pollutants, were mainly focused on the respiratory and cardiovascular systems. However, in recent years, the intestinal damage caused by PM and its relationship with gut microbiome (GM) homeostasis, thereby affecting the composition and function of GM and bringing disease burden to the host lung through different mechanisms, have attracted more and more attention. Therefore, this paper reviews the latest research progress in the effect of PM on GM-induced lung damage and its possible interaction pathways and explores the potential immune inflammatory mechanism with the gut-lung axis as the hub in order to understand the current research situation and existing problems, and to provide new ideas for further research on the relationship between PM pollution, GM, and lung damage.
Collapse
Affiliation(s)
- Jiali Qin
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Kang YJ, Diep YN, Tran M, Tran VTA, Ambrin G, Ngo H, Cho H. Three-dimensional human neural culture on a chip recapitulating neuroinflammation and neurodegeneration. Nat Protoc 2023; 18:2838-2867. [PMID: 37542184 DOI: 10.1038/s41596-023-00861-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/30/2023] [Indexed: 08/06/2023]
Abstract
Neuroinflammation has either beneficial or detrimental effects, depending on risk factors and neuron-glia interactions in neurological disorders. However, studying neuroinflammation has been challenging due to the complexity of cell-cell interactions and lack of physio-pathologically relevant neuroinflammatory models. Here, we describe our three-dimensional microfluidic multicellular human neural culture model, referred to as a 'brain-on-a-chip' (BoC). This elucidates neuron-glia interactions in a controlled manner and recapitulates pathological signatures of the major neurological disorders: dementia, brain tumor and brain edema. This platform includes a chemotaxis module offering a week-long, stable chemo-gradient compared with the few hours in other chemotaxis models. Additionally, compared with conventional brain models cultured with mixed phenotypes of microglia, our BoC can separate the disease-associated microglia out of heterogeneous population and allow selective neuro-glial engagement in three dimensions. This provides benefits of interpreting the neuro-glia interactions while revealing that the prominent activation of innate immune cells is the risk factor leading to synaptic impairment and neuronal loss, validated in our BoC models of disorders. This protocol describes how to fabricate and implement our human BoC, manipulate in real time and perform end-point analyses. It takes 2 d to set up the device and cell preparations, 1-9 weeks to develop brain models under disease conditions and 2-3 d to carry out analyses. This protocol requires at least 1 month training for researchers with basic molecular biology techniques. Taken together, our human BoCs serve as reliable and valuable platforms to investigate pathological mechanisms involving neuroinflammation and to assess therapeutic strategies modulating neuroinflammation in neurological disorders.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Van Thi Ai Tran
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ghuncha Ambrin
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Huyen Ngo
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
14
|
Son YS, Son N, Yu WD, Baek A, Park YJ, Lee MS, Lee SJ, Kim DS, Son MY. Particulate matter 10 exposure affects intestinal functionality in both inflamed 2D intestinal epithelial cell and 3D intestinal organoid models. Front Immunol 2023; 14:1168064. [PMID: 37435069 PMCID: PMC10331606 DOI: 10.3389/fimmu.2023.1168064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Background A growing body of evidence suggests that particulate matter (PM10) enters the gastrointestinal (GI) tract directly, causing the GI epithelial cells to function less efficiently, leading to inflammation and an imbalance in the gut microbiome. PM10 may, however, act as an exacerbation factor in patients with inflamed intestinal epithelium, which is associated with inflammatory bowel disease. Objective The purpose of this study was to dissect the pathology mechanism of PM10 exposure in inflamed intestines. Methods In this study, we established chronically inflamed intestinal epithelium models utilizing two-dimensional (2D) human intestinal epithelial cells (hIECs) and 3D human intestinal organoids (hIOs), which mimic in vivo cellular diversity and function, in order to examine the deleterious effects of PM10 in human intestine-like in vitro models. Results Inflamed 2D hIECs and 3D hIOs exhibited pathological features, such as inflammation, decreased intestinal markers, and defective epithelial barrier function. In addition, we found that PM10 exposure induced a more severe disturbance of peptide uptake in inflamed 2D hIECs and 3D hIOs than in control cells. This was due to the fact that it interferes with calcium signaling, protein digestion, and absorption pathways. The findings demonstrate that PM10-induced epithelial alterations contribute to the exacerbation of inflammatory disorders caused by the intestine. Conclusions According to our findings, 2D hIEC and 3D hIO models could be powerful in vitro platforms for the evaluation of the causal relationship between PM exposure and abnormal human intestinal functions.
Collapse
Affiliation(s)
- Ye Seul Son
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Naeun Son
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Dong Yu
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Aruem Baek
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Digital Biotech Innovation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Mi-Young Son
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
15
|
Van Pee T, Nawrot TS, van Leeuwen R, Hogervorst J. Ambient particulate air pollution and the intestinal microbiome; a systematic review of epidemiological, in vivo and, in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162769. [PMID: 36907413 DOI: 10.1016/j.scitotenv.2023.162769] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 05/13/2023]
Abstract
A healthy indigenous intestinal microbiome is indispensable for intra- and extra-intestinal human health. Since well-established factors such as diet and antibiotic use only explain 16 % of the inter-individual variation in gut microbiome composition, recent studies have focused on the association between ambient particulate air pollution and the intestinal microbiome. We systematically summarize and discuss all evidence concerning the effect of particulate air pollution on intestinal bacterial diversity indices, specific bacterial taxa, and potential underlying intestinal mechanisms. To this end, all possibly relevant publications published between February 1982 and January 2023 were screened, and eventually, 48 articles were included. The vast majority (n = 35) of these studies were animal studies. The exposure periods investigated in the human epidemiological studies (n = 12) ranged from infancy through elderly. This systematic review found that intestinal microbiome diversity indices were generally negatively associated with particulate air pollution in epidemiological studies, with an increase in taxa belonging to Bacteroidetes (two studies), Deferribacterota (one study), and Proteobacteria (four studies), a decrease in taxa belonging to Verrucomicrobiota (one study), and no consensus for taxa belonging to Actinobacteria (six studies) and Firmicutes (seven studies). There was no unequivocal effect of ambient particulate air pollution exposure on bacterial indices and taxa in animal studies. Only one study in humans examined a possible underlying mechanism; yet, the included in vitro and animal studies depicted higher gut damage, inflammation, oxidative stress, and permeability in exposed versus unexposed animals. Overall, the population-based studies showed a dose-related continuum of short- and long-term ambient particulate air pollution exposure on lower gut diversity and shifts in taxa over the entire life course.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Public Health and Primary Care, Leuven University, Herestraat 49-box 706, 3000 Leuven, Belgium.
| | - Romy van Leeuwen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
16
|
Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol 2022; 19:67. [PMID: 36447278 PMCID: PMC9707232 DOI: 10.1186/s12989-022-00507-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The impacts of air pollution on public health have become a great concern worldwide. Ambient particulate matter (PM) is a major air pollution that comprises a heterogeneous mixture of different particle sizes and chemical components. The chemical composition and physicochemical properties of PM change with space and time, which may cause different impairments. However, the mechanisms of the adverse effects of PM on various systems have not been fully elucidated and systematically integrated. The Adverse Outcome Pathway (AOP) framework was used to comprehensively illustrate the molecular mechanism of adverse effects of PM and its components, so as to clarify the causal mechanistic relationships of PM-triggered toxicity on various systems. The main conclusions and new insights of the correlation between public health and PM were discussed, especially at low concentrations, which points out the direction for further research in the future. With the deepening of the study on its toxicity mechanism, it was found that PM can still induce adverse health effects with low-dose exposure. And the recommended Air Quality Guideline level of PM2.5 was adjusted to 5 μg/m3 by World Health Organization, which meant that deeper and more complex mechanisms needed to be explored. Traditionally, oxidative stress, inflammation, autophagy and apoptosis were considered the main mechanisms of harmful effects of PM. However, recent studies have identified several emerging mechanisms involved in the toxicity of PM, including pyroptosis, ferroptosis and epigenetic modifications. This review summarized the comprehensive evidence on the health effects of PM and the chemical components of it, as well as the combined toxicity of PM with other air pollutants. Based on the AOP Wiki and the mechanisms of PM-induced toxicity at different levels, we first constructed the PM-related AOP frameworks on various systems.
Collapse
Affiliation(s)
- Tianyu Li
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Yang Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
17
|
Jiang J, Ding S, Zhang G, Dong Y. Ambient particulate matter exposure plus a high-fat diet exacerbate renal injury by activating the NLRP3 inflammasome and TGF-β1/Smad2 signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113571. [PMID: 35512472 DOI: 10.1016/j.ecoenv.2022.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a public health problem of which the prevalence is increasing worldwide. Several studies have reported that ambient particulate matter (PM) causes kidney injury, which may be related to the risk of CKD. However, the underlying molecular mechanisms have not been fully clarified. In addition, whether a high-fat diet (HFD) could exacerbate ambient PM-induced nephrotoxicity has not been evaluated. This study aimed to investigate the combined effect of ambient PM and a HFD on renal injury. METHODS AND RESULTS Male C57BL/6 J mice were fed either a normal diet or a HFD and exposed to filtered air (FA) or particulate matter (PM) for 18 weeks. In the present study, we observed that renal function changed (serum blood urea nitrogen and serum creatinine), and exposure to PM and a HFD caused a synergistic effect on renal injury. Histopathological analysis showed that PM exposure induced renal fibrosis in mice, and combined exposure to PM and a HFD exacerbated these adverse effects. Moreover, ambient PM exposure activated the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome and increased the inflammatory response, as indicated by the increases in interleukin-1β, interleukin-6 and tumor necrosis factor-α in the serum and kidney, as well as the upregulation of specific renal fibrosis-related markers (transforming growth factor-β1 and p-Smad2) in the kidney tissues of mice. Furthermore, combined exposure to PM and a HFD augmented these changes in the kidney. In vitro, inhibition of the NLRP3 inflammasome by MCC950 (an inhibitor of NLRP3) reduced the levels of proinflammatory cytokines and the expression of transforming growth factor-β1 and p-Smad2 in HK-2 cells. CONCLUSION Taken together, our data indicated that PM exposure caused renal inflammation and induced profibrotic effects on the kidney, and combined exposure to ambient PM and a HFD exacerbated renal injury, which may involve activation of the NLRP3 inflammasome and the TGF-β1/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China.
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Yaqi Dong
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| |
Collapse
|
18
|
Particulate Matter Exacerbates the Death of Dopaminergic Neurons in Parkinson's Disease through an Inflammatory Response. Int J Mol Sci 2022; 23:ijms23126487. [PMID: 35742931 PMCID: PMC9223534 DOI: 10.3390/ijms23126487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Particulate matter (PM), a component of air pollution, has been epidemiologically associated with a variety of diseases. Recent reports reveal that PM has detrimental effects on the brain. In this study, we aimed to investigate the biological effects of ambient particles on the neurodegenerative disease Parkinson’s disease (PD). We exposed mice to coarse particles (PM10: 2.5–10 μm) for short (5 days) and long (8 weeks) durations via intratracheal instillation. Long-term PM10 exposure exacerbated motor impairment and dopaminergic neuron death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. Short-term PM10 exposure resulted in both pulmonary and systemic inflammatory responses in mice. We further investigated the mechanism underlying PM10-induced neurotoxicity in cocultures of lung LA-4 epithelial cells and RAW264.7 macrophages. PM10 treatment elicited a dramatic increase in proinflammatory mediators in LA-4/RAW264.7 coculture. Treating BV2 microglial cells with PM10-treated conditioned medium induced microglial activation. Furthermore, 1-methyl-4-phenylpyridinium (MPP+) treatment caused notable cell death in N2A neurons cocultured with activated BV2 cells in PM10-conditioned medium. Altogether, our results demonstrated that PM10 plays a role in the neurodegeneration associated with PD. Thus, the impact of PM10 on neurodegeneration could be related to detrimental air pollution-induced systemic effects on the brain.
Collapse
|
19
|
Pero-Gascon R, Hemeryck LY, Poma G, Falony G, Nawrot TS, Raes J, Vanhaecke L, De Boevre M, Covaci A, De Saeger S. FLEXiGUT: Rationale for exposomics associations with chronic low-grade gut inflammation. ENVIRONMENT INTERNATIONAL 2022; 158:106906. [PMID: 34607040 DOI: 10.1016/j.envint.2021.106906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
FLEXiGUT is the first large-scale exposomics study focused on chronic low-grade inflammation. It aims to characterize human life course environmental exposure to assess and validate its impact on gut inflammation and related biological processes and diseases. The cumulative influences of environmental and food contaminants throughout the lifespan on certain biological responses related to chronic gut inflammation will be investigated in two Flemish prospective cohorts, namely the "ENVIRONAGE birth cohort", which provides follow-up from gestation to early childhood, and the "Flemish Gut Flora Project longitudinal cohort", a cohort of adults. The exposome will be characterised through biomonitoring of legacy and emerging contaminants, mycotoxins and markers of air pollution, by analysing the available metadata on nutrition, location and activity, and by applying state-of-the-art -omics techniques, including metagenomics, metabolomics and DNA adductomics, as well as the assessment of telomere length and measurement of inflammatory markers, to encompass both exposure and effect. Associations between exposures and health outcomes will be uncovered using an integrated -omics data analysis framework comprising data exploration, pre-processing, dimensionality reduction and data mining, combined with machine learning-based pathway analysis approaches. This is expected to lead to a more profound insight in mechanisms underlying disease progression (e.g. metabolic disorders, food allergies, gastrointestinal cancers) and/or accelerated biological ageing.
Collapse
Affiliation(s)
- Roger Pero-Gascon
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Lieselot Y Hemeryck
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium; Center for Microbiology, VIB, 3000 Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium; Center for Microbiology, VIB, 3000 Leuven, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
Sánchez-Piñero J, Moreda-Piñeiro J, Moscoso-Pérez C, FernándezGonzález V, Prada-Rodríguez D, López-Mahía P. Development and validation of a multi-pollutant method for the analysis of polycyclic aromatic hydrocarbons, synthetic musk compounds and plasticizers in atmospheric particulate matter (PM2.5). TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
21
|
Fanaei H, Mard SA, Sarkaki A, Goudarzi G, Khorsandi L. Gallic acid protects the liver against NAFLD induced by dust exposure and high-fat diet through inhibiting oxidative stress and repressing the inflammatory signaling pathways NF-kβ/TNF-α/IL-6 in Wistar rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:527-540. [PMID: 34745924 PMCID: PMC8554286 DOI: 10.22038/ajp.2021.17835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022]
Abstract
Objective: The burden of diseases and death related to environmental pollution is becoming a major public health challenge. This study was designed to evaluate the deleterious effects of a combination of dust exposure and high-fat diet on liver function. Gallic acid as a potent antioxidant was used to prevent/alleviate non-alcoholic fatty liver disease (NAFLD) in rats exposed to dust and HFD. Materials and Methods: 24 rats were randomly divided into 3 experimental groups: HFD+Clean air, HFD+N/S+Dust and HFD+gallic acid+Dust. Animals were exposed to CA/ dust for six weeks on alternate days. At the end of the experiments, rats were anesthetized and samples were taken to perform molecular, biomedical, and histopathological evaluations. Results: Dust exposure induced NAFLD features in rats under HFD. Dust exposure and HFD disrupted liver enzymes and lipid profile. Dust exposure and HFD increased liver MDA level, mRNA expression of NF-Kβ, TNF-α, IL-6, Nrf2, HO1 and miRs122, and 34a. Dust+HFD also decreased liver total antioxidant capacity level. Pretreatment with GA improved almost studied variables in the HFD+GA+Dust group. Conclusion: The present study showed that HFD given for 6 weeks and dust exposure induced NAFLD in Wistar rats through inducing oxidative stress. Oxidative stress through activating the inflammatory pathways caused NAFLD features. GA pretreatment by inhibiting oxidative stress, effectively protected liver functions against HFD+Dust induced inflammation.
Collapse
Affiliation(s)
- Hafseh Fanaei
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| |
Collapse
|
22
|
Kumar S, Rugvedi P, Mani K, Gupta A. Evaluation of anti-inflammatory and immunomodulatory activity of Chyawanprash on particulate matter-induced pulmonary disease in mice. J Ayurveda Integr Med 2021; 12:649-656. [PMID: 34649804 PMCID: PMC8642710 DOI: 10.1016/j.jaim.2021.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Particulate matter (PM) is the major component of air pollution, which includes emissions from both anthropogenic and natural sources. PM, with aerodynamic diameter of 2.5 ± 10 μm can remain in the air for a long time and be deposited in the lungs through inhalation and hence, is a major threat to human health. OBJECTIVE(S) The objective of the present study was to examine the protective effect of Chyawanprash (CP) on PM-induced pulmonary disease through estimation of cytokines and immunoglobulins. MATERIALS AND METHODS CP, standard drug, and vehicle (Group G1 to Group G7) were administered orally at the dose volume of 10 ml/kg, for 28 consecutive days (Prophylactic treatment; i.e., Day 1 to Day 28) and next 10 days (i.e., Day 29 to Day 38) of co-treatment with inducing agent PM2.5 intratracheally. Animals of group G6 (Inhalation + control) and G7 (Inhalation + CP) were exposed group-wise to PM2.5 aerosol (2 mg/5 ml, 15 min) via inhalation in histamine chamber on Days 29, 31, 33, 35, and 37. On Day 38, animals were anesthetised and blood and broncho alveolar lavage fluid (BALF) were collected. Animals were sacrificed and lungs were collected for histology. RESULTS Prophylactic benefit of CP against pulmonary pathology was evidenced by the inhibition of inflammatory cytokines (BALF: TNF a, IFN-g, IL-7, IL-6 and lung: TNFa, Histamine and IL-6), chemokines (Lung: MMP-9), inflammatory cell infiltration (cell counts in BALF), and histopatholoy in experimental mice model. CONCLUSION These findings suggest that CP has potential benefit in protecting from harmful effects caused by air pollutants such as PM2.5.
Collapse
Affiliation(s)
- Satyendra Kumar
- Dabur Research and Development Centre, Dabur India Limited, Sahibabad, Ghaziabad, India
| | - Padmanabha Rugvedi
- Dabur Research and Development Centre, Dabur India Limited, Sahibabad, Ghaziabad, India.
| | | | - Arun Gupta
- Dabur Research and Development Centre, Dabur India Limited, Sahibabad, Ghaziabad, India
| |
Collapse
|
23
|
Xue Z, Wang Y, Yu W, Zhang Z, Kou X. Research Advancement of Natural Active Components in Alleviating Lung Damage Induced by PM2.5. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Pambianchi E, Pecorelli A, Valacchi G. Gastrointestinal tissue as a "new" target of pollution exposure. IUBMB Life 2021; 74:62-73. [PMID: 34289226 DOI: 10.1002/iub.2530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Airborne pollution has become a leading cause of global death in industrialized cities and the exposure to environmental pollutants has been demonstrated to have adverse effects on human health. Among the pollutants, particulate matter (PM) is one of the most toxic and although its exposure has been more commonly correlated with respiratory diseases, gastrointestinal (GI) complications have also been reported as a consequence to PM exposure. Due to its composition, PM is able to exert on intestinal mucosa both direct damaging effects, (by reaching it either via direct ingestion of contaminated food and water or indirect inhalation and consequent macrophagic mucociliary clearance) and indirect ones via generation of systemic inflammation. The relationship between respiratory and GI conditions is well described by the lung-gut axis and more recently, has become even clearer during coronavirus disease 2019 (COVID-19) pandemic, when respiratory symptoms were associated with gastrointestinal conditions. This review aims at pointing out the mechanisms and the models used to evaluate PM induced GI tract damage.
Collapse
Affiliation(s)
- Erika Pambianchi
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA
| | - Alessandra Pecorelli
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA.,Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
25
|
Jheng YT, Putri DU, Chuang HC, Lee KY, Chou HC, Wang SY, Han CL. Prolonged exposure to traffic-related particulate matter and gaseous pollutants implicate distinct molecular mechanisms of lung injury in rats. Part Fibre Toxicol 2021; 18:24. [PMID: 34172050 PMCID: PMC8235648 DOI: 10.1186/s12989-021-00417-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to air pollution exerts direct effects on respiratory organs; however, molecular alterations underlying air pollution-induced pulmonary injury remain unclear. In this study, we investigated the effect of air pollution on the lung tissues of Sprague-Dawley rats with whole-body exposure to traffic-related PM1 (particulate matter < 1 μm in aerodynamic diameter) pollutants and compared it with that in rats exposed to high-efficiency particulate air-filtered gaseous pollutants and clean air controls for 3 and 6 months. Lung function and histological examinations were performed along with quantitative proteomics analysis and functional validation. RESULTS Rats in the 6-month PM1-exposed group exhibited a significant decline in lung function, as determined by decreased FEF25-75% and FEV20/FVC; however, histological analysis revealed earlier lung damage, as evidenced by increased congestion and macrophage infiltration in 3-month PM1-exposed rat lungs. The lung tissue proteomics analysis identified 2673 proteins that highlighted the differential dysregulation of proteins involved in oxidative stress, cellular metabolism, calcium signalling, inflammatory responses, and actin dynamics under exposures to PM1 and gaseous pollutants. The presence of PM1 specifically enhanced oxidative stress and inflammatory reactions under subchronic exposure to traffic-related PM1 and suppressed glucose metabolism and actin cytoskeleton signalling. These factors might lead to repair failure and thus to lung function decline after chronic exposure to traffic-related PM1. A detailed pathogenic mechanism was proposed to depict temporal and dynamic molecular regulations associated with PM1- and gaseous pollutants-induced lung injury. CONCLUSION This study explored several potential molecular features associated with early lung damage in response to traffic-related air pollution, which might be used to screen individuals more susceptible to air pollution.
Collapse
Affiliation(s)
- Yu-Teng Jheng
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan
| | - Denise Utami Putri
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan.
| |
Collapse
|
26
|
Misiukiewicz-Stepien P, Paplinska-Goryca M. Biological effect of PM 10 on airway epithelium-focus on obstructive lung diseases. Clin Immunol 2021; 227:108754. [PMID: 33964432 DOI: 10.1016/j.clim.2021.108754] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
Recently, a continuous increase in environmental pollution has been observed. Despite wide-scale efforts to reduce air pollutant emissions, the problem is still relevant. Exposure to elevated levels of airborne particles increased the incidence of respiratory diseases. PM10 constitute the largest fraction of air pollutants, containing particles with a diameter of less than 10 μm, metals, pollens, mineral dust and remnant material from anthropogenic activity. The natural airway defensive mechanisms against inhaled material, such as mucus layer, ciliary clearance and macrophage phagocytic activity, may be insufficient for proper respiratory function. The epithelium layer can be disrupted by ongoing oxidative stress and inflammatory processes induced by exposure to large amounts of inhaled particles as well as promote the development and exacerbation of obstructive lung diseases. This review draws attention to the current state of knowledge about the physical features of PM10 and its impact on airway epithelial cells, and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stepien
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland.
| | | |
Collapse
|
27
|
Jiang M, Li D, Piao J, Li Y, Chen L, Li J, Yu D, Pi J, Zhang R, Chen R, Chen W, Zheng Y. Nrf2 modulated the restriction of lung function via impairment of intrinsic autophagy upon real-ambient PM 2.5 exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124903. [PMID: 33373951 DOI: 10.1016/j.jhazmat.2020.124903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/28/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Compelling studies approve that fine particle matter (PM2.5) exposure was associated with high risk of respiratory disorders. However, the available data assessing the detailed influence of PM2.5 on lung was limited. To overcome the difficulty of inhalational PM2.5 exposure, the real-ambient PM2.5 exposure system was constructed. The mice were exposed to filtered air (FA) or real-ambient PM2.5 (PM2.5), and the adverse effect on lung was determined. Nuclear factor E2-related factor 2 (Nrf2) as a transcription factor, was reported to affect autophagy. Autophagy was proposed as a two-edge sword in respiratory disorders. Here, our data presented that PM2.5 exposure dramatically reduced the lung function of WT mice rather than Nrf2-/- mice. Consistently, thickened alveolar walls was observed in WT mice in PM2.5 exposure group, whereas the histological phenotype of Nrf2-/- mice exhibited no obvious alteration. Furthermore, PM2.5 exposure triggered low-grade production of inflammatory profile in WT and Nrf2-/- mice. Moreover, the protein levels of p62, Beclin1 and LC3B of WT mice rather than Nrf2-/- mice were also altered in PM2.5 exposure group. Taken together, the present study applied the real-ambient exposure system, revealed the adverse effect of air pollution on lung, and proposed the underlying mechanism.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jianyu Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
28
|
Ran Z, An Y, Zhou J, Yang J, Zhang Y, Yang J, Wang L, Li X, Lu D, Zhong J, Song H, Qin X, Li R. Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115987. [PMID: 33213950 DOI: 10.1016/j.envpol.2020.115987] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 05/21/2023]
Abstract
Exposure to ambient fine particular matter (PM2.5) are linked to an increased risk of metabolic disorders, leading to enhanced rate of many diseases, such as inflammatory bowel disease (IBD), cardiovascular diseases, and pulmonary diseases; nevertheless, the underlying mechanisms remain poorly understood. In this study, BALB/c mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CPM) for 2 months using a versatile aerosol concentration enrichment system(VACES). We found subchronic CPM exposure caused significant lung and intestinal damage, as well as systemic inflammatory reactions. In addition, serum and BALFs (bronchoalveolar lavage fluids) metabolites involved in many metabolic pathways in the CPM exposed mice were markedly disrupted upon PM2.5 exposure. Five metabolites (glutamate, glutamine, formate, pyruvate and lactate) with excellent discriminatory power (AUC = 1, p < 0.001) were identified to predict PM2.5 exposure related toxicities. Furthermore, subchronic exposure to CPM not only significantly decreased the richness and composition of the gut microbiota, but also the lung microbiota. Strong associations were found between several gut and lung bacterial flora changes and systemic metabolic abnormalities. Our study showed exposure to ambient PM2.5 not only caused dysbiosis in the gut and lung, but also significant systemic and local metabolic alterations. Alterations in gut and lung microbiota were strongly correlated with metabolic abnormalities. Our study suggests potential roles of gut and lung microbiota in PM2.5 caused metabolic disorders.
Collapse
Affiliation(s)
- Zihan Ran
- Department of Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, 201318, Shanghai, China; Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318, Shanghai, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, 200438, China
| | - Ji Zhou
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China
| | - Jingmin Yang
- Key Laboratory of Birth Defects and Reproductive Health of National Health and Family Planning Commission (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute), Chongqing, 400020, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Youyi Zhang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Lei Wang
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Xin Li
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China; Key Laboratory of Birth Defects and Reproductive Health of National Health and Family Planning Commission (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute), Chongqing, 400020, China
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200011, China
| | - Xingjun Qin
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Rui Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
29
|
Vignal C, Guilloteau E, Gower-Rousseau C, Body-Malapel M. Review article: Epidemiological and animal evidence for the role of air pollution in intestinal diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143718. [PMID: 33223187 DOI: 10.1016/j.scitotenv.2020.143718] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Ambient air pollution is recognized as one of the leading causes of global burden of disease. Involvement of air pollution in respiratory and cardiovascular diseases was first recognized, and then cumulative data has indicated that the intestinal tract could be also damaged. AIM To review and discuss the current epidemiological and animal data on the effects of air pollution on intestinal homeostasis. METHODS An extensive literature search was conducted using Google Scholar and Pubmed to gather relevant human and animal studies that have reported the effects of any air pollutant on the intestine. RESULTS Exposure to several gaseous and particulate matter components of air pollution have been associated either positively or negatively with the onset of various intestinal diseases including appendicitis, gastroenteric disorders, irritable bowel syndrome, inflammatory bowel diseases, and peptic ulcers. Several atmospheric pollutants have been associated with modifications of gut microbiota in humans. Animal studies have showed that inhalation of atmospheric particulate matter can lead to modifications of gut microbiota, impairments of oxidative and inflammatory intestinal balances, and disruption of gut epithelial permeability. CONCLUSIONS Overall, the literature appears to indicate that the gut is an underestimated target of adverse health effects induced by air pollution. It is therefore important to develop additional studies that aim to better understand the link between air pollutants and gastro-intestinal diseases.
Collapse
Affiliation(s)
- Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for translational research in inflammation, F-59000 Lille, France
| | - Eva Guilloteau
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for translational research in inflammation, F-59000 Lille, France
| | - Corinne Gower-Rousseau
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for translational research in inflammation, F-59000 Lille, France; Epidemiology Unit, Epimad Registry, Lille University Hospital, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for translational research in inflammation, F-59000 Lille, France.
| |
Collapse
|
30
|
Liu S, Yang R, Chen Y, Zhao X, Chen S, Yang X, Cheng Z, Hu B, Liang X, Yin N, Liu Q, Wang H, Liu S, Faiola F. Development of Human Lung Induction Models for Air Pollutants' Toxicity Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2440-2451. [PMID: 33535745 DOI: 10.1021/acs.est.0c05700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is an urgent need for reliable and effective models to study air pollution health effects on human lungs. Here, we report the utilization of human pluripotent stem cell (hPSC) induction models for human lung progenitor cells (hLPs) and alveolar type 2 epithelial cell-like cells (ATLs) for the toxicity assessment of benzo(a)pyrene, nano-carbon black, and nano-SiO2, as common air pollutants. We induced hPSCs to generate ATLs, which recapitulated key features of human lung type 2 alveolar epithelial cells, and tested the induction models for cellular uptake of nanoparticles and toxicity evaluations. Our findings reveal internalization of nano-carbon black, dose-dependent uptake of nano-SiO2, and interference with surfactant secretion in ATLs exposed to benzo(a)pyrene/nano-SiO2. Thus, hLP and ATL induction models could facilitate the evaluation of environmental pollutants potentially affecting the lungs. In conclusion, this is one of the first studies that managed to adopt hPSC pulmonary induction models in toxicology studies.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaokun Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuezhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanwen Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Nie X, Li L, Yi M, Qin W, Zhao W, Li F, Wu B, Yuan X. The Intestinal Microbiota Plays as a Protective Regulator Against Radiation Pneumonitis. Radiat Res 2020; 194:52-60. [PMID: 32330075 DOI: 10.1667/rr15579.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/23/2020] [Indexed: 11/03/2022]
Abstract
Radiation pneumonitis is a common complication of thoracic irradiation for lung cancer patients. The healthy gut microbiota plays an important role in the local mucosal defense process as well as pulmonary immunomodulation of the host. However, the effect of the intestinal microbiota on radiation pneumonitis is not well understood. Here we studied how the intestinal microbiota affected the host response to radiation pneumonitis. C57BL/6 mice were administered antibiotics to induce disequilibrium in the gut microbiota, and subsequently irradiated. We found that the intestinal microbiota served as a protective mediator against radiation pneumonitis, as indicated by decreased body weight and increased mortality in antibiotic-treated mice. In mice with gut microbiota disequilibrium, more serious pathological lung damage was observed at two and four weeks postirradiation. Fecal microbiota transplantation into irradiated mice led to improvement from radiation-induced inflammation two weeks postirradiation. High-throughput sequencing of murine feces displayed conversion of flora diversity, bacterial composition and community structure in the absence of normal intestinal flora. We filtered the potentially important species among the gut microbiota and considered that the tissue-type plasminogen activator might be involved in the inflammatory process. This study reveals that the gut microbiota functions as a protective regulator against radiation pneumonitis. Additionally, fecal microbiota transplantation was shown to alleviate lung injury in the irradiated model. The protective role of the healthy gut microbiota and the utilization of the gut-lung axis show potential for innovative therapeutic strategies in radiation-induced lung injury.
Collapse
Affiliation(s)
- Xiaoqi Nie
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fang Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bili Wu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
32
|
Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Signorelli SS, Conti GO, Ferrante M. The role of air pollution (PM and NO 2) in COVID-19 spread and lethality: A systematic review. ENVIRONMENTAL RESEARCH 2020; 191:110129. [PMID: 32853663 PMCID: PMC7444490 DOI: 10.1016/j.envres.2020.110129] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 05/19/2023]
Abstract
A new coronavirus (SARS-CoV-2) has determined a pneumonia outbreak in China (Wuhan, Hubei Province) in December 2019, called COVID-19 disease. In addition to the person-to person transmission dynamic of the novel respiratory virus, it has been recently studied the role of environmental factors in accelerate SARS-CoV-2 spread and its lethality. The time being, air pollution has been identified as the largest environmental cause of disease and premature death in the world. It affects body's immunity, making people more vulnerable to pathogens. The hypothesis that air pollution, resulting from a combination of factors such as meteorological data, level of industrialization as well as regional topography, can acts both as a carrier of the infection and as a worsening factor of the health impact of COVID-19 disease, has been raised recently. With this review, we want to provide an update state of art relating the role of air pollution, in particular PM2.5, PM10 and NO2, in COVID-19 spread and lethality. The Authors, who first investigated this association, often used different research methods or not all include confounding factors whenever possible. In addition, to date incidence data are underestimated in all countries and to a lesser extent also mortality data. For this reason, the cases included in the reviewed studies cannot be considered conclusive. Although it determines important limitations for direct comparison of results, and more studies are needed to strengthen scientific evidences and support firm conclusions, major findings are consistent, highlighting the important contribution of PM2.5 and NO2 as triggering of the COVID-19 spread and lethality, and with a less extent also PM10, although the potential effect of airborne virus exposure it has not been still demonstrated.
Collapse
Affiliation(s)
- Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Antonio Cristaldi
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, Catania, 95123, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| |
Collapse
|
33
|
Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol 2020; 17:57. [PMID: 33183327 PMCID: PMC7661204 DOI: 10.1186/s12989-020-00387-7] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Together with poor biodegradability and insufficient recycling, the massive production and use of plastics have led to widespread environmental contamination by nano- and microplastics. These particles accumulate across ecosystems - even in the most remote habitats - and are transferred through food chains, leading to inevitable human ingestion, that adds to the highest one due to food processes and packaging. OBJECTIVE The present review aimed at providing a comprehensive overview of current knowledge regarding the effects of nano- and microplastics on intestinal homeostasis. METHODS We conducted a literature search focused on the in vivo effects of nano- and microplastics on gut epithelium and microbiota, as well as on immune response. RESULTS Numerous animal studies have shown that exposure to nano- and microplastics leads to impairments in oxidative and inflammatory intestinal balance, and disruption of the gut's epithelial permeability. Other notable effects of nano- and microplastic exposure include dysbiosis (changes in the gut microbiota) and immune cell toxicity. Moreover, microplastics contain additives, adsorb contaminants, and may promote the growth of bacterial pathogens on their surfaces: they are potential carriers of intestinal toxicants and pathogens that can potentially lead to further adverse effects. CONCLUSION Despite the scarcity of reports directly relevant to human, this review brings together a growing body of evidence showing that nano- and microplastic exposure disturbs the gut microbiota and critical intestinal functions. Such effects may promote the development of chronic immune disorders. Further investigation of this threat to human health is warranted.
Collapse
Affiliation(s)
- Nell Hirt
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France.
| |
Collapse
|
34
|
Qiu H, Wang L, Zhou L, Pan J. Coarse particles (PM 2.5-10) and cause-specific hospitalizations in southwestern China: Association, attributable risk and economic costs. ENVIRONMENTAL RESEARCH 2020; 190:110004. [PMID: 32745536 DOI: 10.1016/j.envres.2020.110004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
The short-term morbidity effects of the coarse particle (diameter in 2.5-10 μm, PM2.5-10), as well as the corresponding morbidity burden and economic costs, remain understudied, especially in developing countries. This study aimed to examine the associations of PM2.5-10 with cause-specific hospitalizations in a multi-city setting in southwestern China and assess the attributable risk and economic costs. City-specific associations were firstly estimated using generalized additive models with quasi-poisson distribution to handle over-dispersion, and then combined to obtain the regional average association. City-specific and pooled concentration-response (C-R) associations of PM2.5-10 with cause-specific hospitalizations were also modeled. Subgroup analyses were performed by age, sex, season and region. The health and economic burden of hospitalizations for multiple outcomes due to PM2.5-10 were further evaluated. A total of 4,407,601 non-accidental hospitalizations were collected from 678 hospitals. The estimates of percentage change in hospitalizations per 10 μg/m³ increase in PM2.5-10 at lag01 was 0.68% (95%CI: 0.33%-1.03%) for non-accidental causes, 0.86% (95% CI: 0.36%-1.37%) for circulatory diseases, 1.52% (95% CI: 1.00%-2.05%) for respiratory diseases, 1.08% (95% CI: 0.47%-1.69%) for endocrine diseases, 0.66% (95% CI: 0.12%-1.21%) for nervous system diseases, and 0.84% (95% CI: 0.42%-1.25%) for genitourinary diseases, respectively. The C-R associations of PM2.5-10 with cause-specific hospitalizations suggested some evidence of nonlinearity, except for endocrine diseases. Meanwhile, the adverse effects were modified by age and season. Overall, about 0.70% (95% CI: 0.35%-1.06%) of non-accidental hospitalizations and 0.78% (95% CI: 0.38%-1.17%) of total hospitalization expenses could be attributed to PM2.5-10. The largest morbidity burden and economic costs were observed in respiratory diseases. Our findings indicate that PM2.5-10 exposure may increase the risk of hospitalizations for multiple outcomes, and account for considerable morbidity and economic burden.
Collapse
Affiliation(s)
- Hang Qiu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Liya Wang
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Zhou
- Health Information Center of Sichuan Province, Chengdu, China
| | - Jingping Pan
- Health Information Center of Sichuan Province, Chengdu, China
| |
Collapse
|
35
|
Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. Particulate Matter Induces Tissue OxInflammation: From Mechanism to Damage. Antioxid Redox Signal 2020; 33:308-326. [PMID: 32443938 DOI: 10.1089/ars.2019.8015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress and oxidative damage are central hypothetical mechanisms for the adverse effects of airborne particulate matter (PM). Activation of inflammatory cells capable of generating reactive oxygen and nitrogen species is another proposed damage pathway. Understanding the interplay between these responses can help us understand the adverse health effects attributed to breathing polluted air. Recent Advances: The consequences of PM exposure on different organs are oxidative damage, decreased function, and inflammation, which can lead to the development/exacerbation of proinflammatory disorders. Mitochondrial damage is also an important event in PM-induced cytotoxicity. Critical Issues: Reactive oxygen species (ROS) are generated during phagocytosis of the particles, leading to enhancement of oxidative stress and triggering the inflammatory response. The activation of inflammatory signaling pathways results in the release of cytokines and other mediators, which can further induce ROS production by activating endogenous enzymes, leading to a positive feedback loop, which can aggravate the effects triggered by PM exposure. Future Directions: Further research is required to elucidate the exact mechanisms by which PM exposure results in adverse health effects, in terms of the relationship between the redox responses triggered by the presence of the particles and the inflammation observed in the different organs, so the development/exacerbation of PM-associated health problems can be prevented.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA.,Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Brittany Woodby
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sandra María Ferreira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
36
|
Jia Y, Li X, Nan A, Zhang N, Chen L, Zhou H, Zhang H, Qiu M, Zhu J, Ling Y, Jiang Y. Circular RNA 406961 interacts with ILF2 to regulate PM 2.5-induced inflammatory responses in human bronchial epithelial cells via activation of STAT3/JNK pathways. ENVIRONMENT INTERNATIONAL 2020; 141:105755. [PMID: 32388272 DOI: 10.1016/j.envint.2020.105755] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) has been verified to augmented the incidence of pneumonia, asthma, pulmonary fibrosis, and other pulmonary diseases. Airway inflammation is the pathological basis of the respiratory system, and understanding the molecular mechanisms responsible for airway inflammation may thus support the diagnosis and treatment of respiratory diseases. In our study, human bronchial epithelial cells (BEAS-2B) were exposed to various concentrations of PM2.5 for 48 h. PM2.5 entered the cells, resulting in increased production of interleukin 6 (IL-6) and interleukin 8 (IL-8) and decreased the expression of circular RNA 406961 (circ_406961). Further, PM2.5 with a concentration of 75 μg/mL was applied to mechanism study. Functional experiments further confirmed that circ_406961 inhibited PM2.5-induced BEAS-2B cell inflammation. RNA pull-down and mass spectrometry showed that circ_406961 interacted with interleukin enhancer-binding factor 2 (ILF2), which could regulate phosphorylation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase 8 (MAPK8, JNK). Our studies showed that circ_406961 inhibited activation of STAT3/JNK pathways via interacting with ILF2 protein, thereby inhibiting the PM2.5-induced inflammatory reaction.
Collapse
Affiliation(s)
- Yangyang Jia
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Aruo Nan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Nan Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Lijian Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Miaoyun Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Jialu Zhu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
37
|
Particulate Matter Decreases Intestinal Barrier-Associated Proteins Levels in 3D Human Intestinal Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093234. [PMID: 32384765 PMCID: PMC7246573 DOI: 10.3390/ijerph17093234] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
(1) Background: The gastrointestinal tract (GI) tract is one of the main organs exposed to particulate matter (PM) directly through ingestion of contaminated food or indirectly through inhalation. Previous studies have investigated the effects of chronic PM exposure on intestinal epithelia in vitro using Caco-2 cells and in vivo using mice. In this study, we hypothesized that chronic PM exposure would increase epithelial permeability and decrease barrier function due to altered redox homeostasis, which alters levels and/or localization of barrier-associated proteins in human three-dimensional (3D) intestinal tissues. (2) Methods: Transepithelial electrical resistance (TEER) in tissues exposed to 50, 100, 150, 250, and 500 µg/cm2 of PM for 1 week and 2 weeks was analyzed. Levels and localization of tight junction proteins zonula occludens protein 1 (ZO-1) and claudin-1 and desmosome-associated desmocollin were analyzed using immunofluorescence. As a marker of oxidative stress, levels of 4-hydroxy-nonenal (4HNE) adducts were measured. (3) Results: No differences in TEER measurements were observed between exposed and un-exposed tissues. However, increased levels of 4HNE adducts in exposed tissues were observed. Additionally, decreased levels of ZO-1, claudin-1, and desmocollin were demonstrated. (4) Conclusion: These data suggest that chronic PM exposure results in an increase of oxidative stress; modified levels of barrier-associated proteins could possibly link to GI tract inflammatory conditions.
Collapse
|
38
|
Fitch MN, Phillippi D, Zhang Y, Lucero J, Pandey RS, Liu J, Brower J, Allen MS, Campen MJ, McDonald JD, Lund AK. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice. ENVIRONMENTAL RESEARCH 2020; 181:108913. [PMID: 31753468 PMCID: PMC6982581 DOI: 10.1016/j.envres.2019.108913] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Air pollution exposure is known to contribute to the progression of cardiovascular disease (CVD) and there is increasing evidence that dysbiosis of the gut microbiome may also play a role in the pathogenesis of CVD, including atherosclerosis. To date, the effects of inhaled air pollution mixtures on the intestinal epithelial barrier (IEB), and microbiota profiles are not well characterized, especially in susceptible individuals with comorbidity. Thus, we investigated the effects of inhaled ubiquitous air-pollutants, wood-smoke (WS) and mixed diesel and gasoline vehicle exhaust (MVE) on alterations in the expression of markers of integrity, inflammation, and microbiota profiles in the intestine of atherosclerotic Apolipoprotein E knockout (ApoE-/-) mice. To do this, male 8 wk-old ApoE-/- mice, on a high-fat diet, were exposed to either MVE (300 μg/m3 PM), WS; (∼450 μg/m3 PM), or filtered air (FA) for 6 h/d, 7 d/wk, for 50 d. Immunofluorescence and RT-PCR were used to quantify the expression of IEB components and inflammatory factors, including mucin (Muc)-2, tight junction (TJ) proteins, matrix metalloproteinase (MMP)-9, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, as well as Toll-like receptor (TLR)-4. Microbial profiling of the intestine was done using Illumina 16S sequencing of V4 16S rRNA PCR amplicons. We observed a decrease in intestinal Muc2 and TJ proteins in both MVE and WS exposures, compared to FA controls, associated with a significant increase in MMP-9, TLR-4, and inflammatory marker expression. Both WS and MVE-exposure resulted in decreased intestinal bacterial diversity, as well as alterations in microbiota profiles, including the Firmicutes: Bacteroidetes ratio at the phylum level. Our findings suggest inhalation exposure to either MVE or WS result in alterations in components involved in mucosal integrity, and also microbiota profiles and diversity, which are associated with increased markers of an inflammatory response.
Collapse
Affiliation(s)
- Megan N Fitch
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Danielle Phillippi
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Yan Zhang
- Center for Medical Genetics, Institute of Molecular Medicine, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
| | - JoAnn Lucero
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Ravi S Pandey
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - June Liu
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Jeremy Brower
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Michael S Allen
- Center for Medical Genetics, Institute of Molecular Medicine, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
| | - Matthew J Campen
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA
| | - Amie K Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA.
| |
Collapse
|
39
|
Huang F, Wang P, Pan X, Wang Y, Ren S. Effects of short-term exposure to particulate matters on heart rate variability: A systematic review and meta-analysis based on controlled animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113306. [PMID: 31733955 DOI: 10.1016/j.envpol.2019.113306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to particulate matters (PM) is recognized as an important risk factor for cardiovascular disease. A change in cardiac autonomic function is one postulated mechanism leading to PM related cardiovascular events. This study therefore evaluated the associations of short-term exposure to PM and heart rate variability (HRV) parameters, which can reflect the cardiac autonomic function. METHODS Four electronic databases were searched for controlled studies of rodents published prior to December 2018. A systematic review and meta-analysis was conducted. Effect sizes were calculated for five main HRV parameters, including standard deviation of normal-to-normal intervals (SDNN), square root of mean squared differences between successive normal-to-normal intervals (rMSSD), low frequency (LF), high frequency (HF), and the ratio of LF and HF (LF/HF). RESULTS The review included 23 studies with 401 animals. Short-term exposure to PM by instillation yielded statistically significant effects on SDNN (Standardized Mean Difference [SMD] = -1.11, 95% Confidence Intervals [CI] = -2.22 to -0.01, P = 0.05), LF (SMD = -1.19, 95% CI = -1.99 to -0.40, P = 0.003) and LF/HF (SMD = -1.05, 95% CI = -2.03 to -0.07, P = 0.04). Short-term exposure to PM by inhalation only yielded statistically significant effect on LF/HF (SMD = -0.83, 95% CI = -1.39 to -0.27, P = 0.004). There was no evidence that animal model and exposure frequency influenced the relationship of PM and HRV. CONCLUSIONS Short-term exposure to PM can decrease HRV of rodents, affecting cardiac autonomic function. Exposure methods can influence the relationships of PM and HRV parameters. Further studies should focus on the effects of long-term PM exposure, on human beings, and potential influential factors of PM-HRV associations.
Collapse
Affiliation(s)
- Fangfang Huang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ping Wang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xinjuan Pan
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yingfang Wang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Shuai Ren
- Luoyang Fifth People's Hospital, The Fifth Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
40
|
Li X, Sun H, Li B, Zhang X, Cui J, Yun J, Yang Y, Zhang L, Meng Q, Wu S, Duan J, Yang H, Wu J, Sun Z, Zou Y, Chen R. Probiotics Ameliorate Colon Epithelial Injury Induced by Ambient Ultrafine Particles Exposure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900972. [PMID: 31559135 PMCID: PMC6755525 DOI: 10.1002/advs.201900972] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Indexed: 05/06/2023]
Abstract
Diesel exhaust particles (DEPs) are common airborne ultrafine particles (UFPs); however, few studies have examined their effects on the gastrointestinal tract. To investigate the interaction of gut microbiota and DEPs-induced colonic injury, adult C57BL/6 mice are kept in whole-body inhalation chambers and exposed to filtered room air (FRA) or DEPs (300 µg m-3) 1 h per day for 28 consecutive days. DEPs exposure results in colon epithelial injury with inflammatory cell infiltration and mucus depletion. Abundance of Lactobacillus in murine feces is transiently increased following 7-day DEPs exposure and then decreased until the end of 28-day exposure. A reduction of the colonic mucus layer thickness is observed in mice receiving gut microbiota from DEPs-exposed mice. Mechanistically, RNA-sequencing suggests disruption of the nitrogen metabolism pathway in DEPs-exposed NCM460 cells. Upregulation of carbonic anhydrase 9 (CA9) expression levels is observed in epithelia following DEPs exposure both in vivo and in vitro. Oral administration of probiotics protects the mice against DEPS-induced colon epithelial injury. The results strongly suggest the involvement of gut microbiota in response to DEPs exposure and subsequently epithelial injury in vivo. Supplementation with probiotic may be a potential way to protect against UFPs-induced colon epithelial injury.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Public HealthAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijing100069P. R. China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Hao Sun
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Bin Li
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Xinwei Zhang
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Jian Cui
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Jun Yun
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Yiping Yang
- Department of ToxicologySchool of Public HealthGuangxi Medical UniversityNanningGuangxi530021P. R. China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningGuangxi530021P. R. China
| | - Li'e Zhang
- Department of ToxicologySchool of Public HealthGuangxi Medical UniversityNanningGuangxi530021P. R. China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningGuangxi530021P. R. China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Shenshen Wu
- School of Public HealthAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijing100069P. R. China
| | - Junchao Duan
- School of Public HealthAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijing100069P. R. China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and ResearchChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Jiong Wu
- School of Life SciencesJiangsu Normal UniversityXuzhou221116China
| | - Zhiwei Sun
- School of Public HealthAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijing100069P. R. China
| | - Yunfeng Zou
- Department of ToxicologySchool of Public HealthGuangxi Medical UniversityNanningGuangxi530021P. R. China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningGuangxi530021P. R. China
| | - Rui Chen
- School of Public HealthAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijing100069P. R. China
- Institute for Chemical CarcinogenesisGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
41
|
Chen HL, Hung KF, Yen CC, Laio CH, Wang JL, Lan YW, Chong KY, Fan HC, Chen CM. Kefir peptides alleviate particulate matter <4 μm (PM 4.0)-induced pulmonary inflammation by inhibiting the NF-κB pathway using luciferase transgenic mice. Sci Rep 2019; 9:11529. [PMID: 31395940 PMCID: PMC6687726 DOI: 10.1038/s41598-019-47872-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/26/2019] [Indexed: 12/29/2022] Open
Abstract
Kefir peptides, generated by kefir grain fermentation of milk proteins, showed positive antioxidant effects, lowered blood pressure and modulated the immune response. In this study, kefir peptide was evaluated regarding their anti-inflammatory effects on particulate matter <4 μm (PM4.0)-induced lung inflammation in NF-κB-luciferase+/+ transgenic mice. The lungs of mice under 20 mg/kg or 10 mg/kg PM4.0 treatments, both increased significantly the generation of reactive oxygen species (ROS) and inflammatory cytokines; increased the protein expression levels of p-NF-κB, NLRP3, caspase-1, IL-1β, TNF-α, IL-6, IL-4 and α-SMA. Thus, we choose the 10 mg/kg of PM4.0 for animal trials; the mice were assigned to four treatment groups, including control group (saline treatment), PM4.0 + Mock group (only PM4.0 administration), PM4.0 + KL group (PM4.0 + 150 mg/kg low-dose kefir peptide) and PM4.0 + KH group (PM4.0 + 500 mg/kg high-dose kefir peptide). Data showed that treatment with both doses of kefir peptides decreased the PM4.0-induced inflammatory cell infiltration and the expression of the inflammatory mediators IL-lβ, IL-4 and TNF-α in lung tissue by inactivating NF-κB signaling. The oral administrations of kefir peptides decrease the PM4.0-induced lung inflammation process through the inhibition of NF-κB pathway in transgenic luciferase mice, proposing a new clinical application to particulate matter air pollution-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Hsiao-Ling Chen
- Department of Bioresources, Da-Yeh University, Changhua, 515, Taiwan
| | - Kuan-Fei Hung
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chun-Huei Laio
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jiun-Long Wang
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, and Department of Medical Research, Tung's Taichung Metro-harbor Hospital, Wuchi, Taichung, 435, Taiwan. .,Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 356, Taiwan.
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan. .,The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
42
|
Li X, Cui J, Yang H, Sun H, Lu R, Gao N, Meng Q, Wu S, Wu J, Aschner M, Chen R. Colonic Injuries Induced by Inhalational Exposure to Particulate-Matter Air Pollution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900180. [PMID: 31179224 PMCID: PMC6548988 DOI: 10.1002/advs.201900180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/09/2019] [Indexed: 05/03/2023]
Abstract
Particulate matter (PM) exposure has been associated with intestinal disorders. Therefore, there is an urgent need to understand the precise molecular mechanism involved and explore potential prevention strategies. In this study, inhaled PM is shown to activate inflammatory pathways in murine colon. In a panel study, it is found that ambient PM levels are significantly associated with elevated number of fecal white blood cells in healthy subjects. Acting as a promoter, PM exposure accelerates chemical carcinogenesis-induced colonic tumor formation in a murine model. Mechanistically, RNA-seq assays suggest activation of phosphoinositide 3-kinase (PI3K)/AKT cascades in chronically PM-exposed human colon mucosal epithelial cells. Ablation of up-stream driver fibroblast growth factor receptor 4 (FGFR4) effectively inhibits inflammation and neoplasia in PM-exposed murine colons. Notably, dietary curcumin supplement is shown to protect against PM-induced colonic injuries in mice. Collectively, these findings identify that PM exposure accelerates colonic tumorigenesis in a PI3K/AKT-dependent manner and suggests potential nutrient supplement for prevention.
Collapse
Affiliation(s)
- Xiaobo Li
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Jian Cui
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and ResearchChina Pharmaceutical UniversityNanjing211198China
| | - Hao Sun
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Runze Lu
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Na Gao
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Jiong Wu
- Jiangsu Key Laboratory for Bioresources of Saline SoilsJiangsu Synthetic Innovation Center for Coastal BioagricultureYancheng Teachers UniversityYancheng224002China
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineForchheimer 209, 1300 Morris Park AvenueBronxNY10461USA
| | - Rui Chen
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009China
- Institute for Chemical CarcinogenesisGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
43
|
Gonzalez-Pech NI, Stebounova LV, Ustunol IB, Park JH, Anthony TR, Peters TM, Grassian VH. Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:387-399. [PMID: 30570411 PMCID: PMC7086472 DOI: 10.1080/15459624.2018.1559925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is great concern regarding the adverse health implications of engineered nanoparticles. However, there are many circumstances where the production of incidental nanoparticles, i.e., nanoparticles unintentionally generated as a side product of some anthropogenic process, is of even greater concern. In this study, metal-based incidental nanoparticles were measured in two occupational settings: a machining center and a foundry. On-site characterization of substrate-deposited incidental nanoparticles using a field-portable X-ray fluorescence provided some insights into the chemical characteristics of these metal-containing particles. The same substrates were then used to carry out further off-site analysis including single-particle analysis using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Between the two sites, there were similarities in the size and composition of the incidental nanoparticles as well as in the agglomeration and coagulation behavior of nanoparticles. In particular, incidental nanoparticles were identified in two forms: submicrometer fractal-like agglomerates from activities such as welding and supermicrometer particles with incidental nanoparticles coagulated to their surface, herein referenced as nanoparticle collectors. These agglomerates will affect deposition and transport inside the respiratory system of the respirable incidental nanoparticles and the corresponding health implications. The studies of incidental nanoparticles generated in occupational settings lay the groundwork on which occupational health and safety protocols should be built.
Collapse
Affiliation(s)
| | - Larissa V. Stebounova
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA
| | - Irem B. Ustunol
- Department of Nanoengineering, University of California San Diego, La Jolla, CA
| | - Jae Hong Park
- School of Health Sciences, Purdue University, West Lafayette, IN
| | - T. Renee Anthony
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA
| | - Thomas M. Peters
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA
| |
Collapse
|
44
|
Particulate Matter Mortality Rates and Their Modification by Spatial Synoptic Classification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16111904. [PMID: 31146484 PMCID: PMC6603550 DOI: 10.3390/ijerph16111904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 02/01/2023]
Abstract
Air pollution levels are highly correlated with temperature or humidity, so we investigated the relationship between PM10 and the spatial synoptic classification (SSC) scheme on daily mortality, according to age group and season. Daily death data for 2000-2014 from Seoul, Korea, were acquired, and time-series analysis was applied with respect to season and to each of seven distinct SSC types: dry moderate (DM); dry polar (DP); dry tropical (DT); moist moderate (MM); moist polar (MP); moist tropical (MT); and transition (T). Modification effects were estimated for daily, non-accidental, cardiovascular, and respiratory mortality between PM10 and SSC types. The following SSC-type-specific increased mortalities were observed, by cause of death: non-accidental mortality: DT (1.86%) and MT (1.86%); cardiovascular mortality: DT (2.83%) and MM (3.00%); respiratory mortality: MT (3.78%). Based on simplified weather types, increased PM10 effects in non-accidental mortality rates were observed in dry (1.54%) and moist (2.32%) conditions among those aged 40-59 years and were detected regardless of conditions in other age groups: 60-74 (1.11%), 75-84 (1.55%), and 85+ (1.75%). The effects of particulate air pollution, by SSC, suggest the applicability of SSC to the comparison and understanding of acute effects of daily mortality based on weather type.
Collapse
|
45
|
Anti-inflammatory effects of Morchella esculenta polysaccharide and its derivatives in fine particulate matter-treated NR8383 cells. Int J Biol Macromol 2019; 129:904-915. [DOI: 10.1016/j.ijbiomac.2019.02.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/29/2022]
|
46
|
Zhu Z, Chen X, Sun J, Li Q, Lian X, Li S, Wang Y, Tian L. Inhibition of nuclear thioredoxin aggregation attenuates PM 2.5-induced NF-κB activation and pro-inflammatory responses. Free Radic Biol Med 2019; 130:206-214. [PMID: 30420332 DOI: 10.1016/j.freeradbiomed.2018.10.438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022]
Abstract
Exposure to fine particulate matter (PM2.5) can induce oxidative stress and proinflammatory cytokine production, which are central for the induction of PM2.5-mediated adverse effects on public health. Nuclear factor kappa B (NF-κB) signaling is essential for inflammation. The subcellular distribution of thioredoxin (Trx) is related to the activation of NF-κB, but the mechanism involved is unclear. In the current study, we focused on the relationship between the antioxidant Trx and NF-κB in human bronchial epithelial cells (BEAS-2B) after PM2.5 exposure. We inhibited the nuclear translocation of Trx by cHCEU (4-cyclohexyl-[3-(2-chloroethyl)ureido]benzene) and subsequently increased the transcriptional activity of Nrf2 to upregulate the expression of Trx by t-BHQ. Our data suggest that PM2.5 exposure induces the activation of NF-κB and the expression of the downstream proinflammatory cytokines IL-1, IL-6, IL-8 and TNF-α in BEAS-2B cells. CHCEU alleviates inflammatory cytokines by blocking Trx nuclear translocation and inhibits the DNA binding activity of NF-κB. T-BHQ could promote the transcriptional activity of Nrf2 but failed to alleviate the production of inflammatory cytokines. Furthermore, the synergistic effect of t-BHQ and cHCEU on alleviating PM2.5-induced inflammation is more effective than the use of cHCEU alone. Our findings characterize the underlying molecular mechanisms of proinflammatory responses induced by PM2.5 and show that the nuclear translocation and accumulation of Trx in nuclei play important roles in PM2.5-induced NF-κB activation and proinflammatory responses.
Collapse
Affiliation(s)
- Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaowei Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jingping Sun
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ximeng Lian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
47
|
Chen R, Yin P, Meng X, Wang L, Liu C, Niu Y, Liu Y, Liu J, Qi J, You J, Kan H, Zhou M. Associations between Coarse Particulate Matter Air Pollution and Cause-Specific Mortality: A Nationwide Analysis in 272 Chinese Cities. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:17008. [PMID: 30702928 PMCID: PMC6378682 DOI: 10.1289/ehp2711] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Coarse particulate matter with aerodynamic diameter between 2.5 and [Formula: see text] ([Formula: see text]) air pollution is a severe environmental problem in developing countries, but its challenges to public health were rarely evaluated. OBJECTIVE We aimed to investigate the associations between day-to-day changes in [Formula: see text] and cause-specific mortality in China. METHODS We conducted a nationwide daily time-series analysis in 272 main Chinese cities from 2013 to 2015. The associations between [Formula: see text] concentrations and mortality were analyzed in each city using overdispersed generalized additive models. Two-stage Bayesian hierarchical models were used to estimate national and regional average associations, and random-effect models were used to pool city-specific concentration-response curves. Two-pollutant models were adjusted for fine particles with aerodynamic diameter [Formula: see text] ([Formula: see text]) or gaseous pollutants. RESULTS Overall, we observed positive and approximately linear concentration-response associations between [Formula: see text] and daily mortality. A [Formula: see text] increase in [Formula: see text] was associated with higher mortality due to nonaccidental causes [0.23%; 95% posterior interval (PI): 0.13, 0.33], cardiovascular diseases (CVDs; 0.25%; 95% PI: 0.13, 0.37), coronary heart disease (CHD; 0.21%; 95% PI: 0.05, 0.36), stroke (0.21%; 95% PI: 0.08, 0.35), respiratory diseases (0.26%; 95% PI: 0.07, 0.46), and chronic obstructive pulmonary disease (COPD; 0.34%; 95% PI: 0.12, 0.57). Associations were stronger for cities in southern vs. northern China, with significant differences for total and cardiovascular mortality. Associations with [Formula: see text] were of similar magnitude to those for [Formula: see text] in both single- and two-pollutant models with mutual adjustment. Associations were robust to adjustment for gaseous pollutants other than nitrogen dioxide and sulfur dioxide. Meta-regression indicated that a larger positive correlation between [Formula: see text] and [Formula: see text] predicted stronger city-specific associations between [Formula: see text] and total mortality. CONCLUSIONS This analysis showed significant associations between short-term [Formula: see text] exposure and daily nonaccidental and cardiopulmonary mortality based on data from 272 cities located throughout China. Associations appeared to be independent of exposure to [Formula: see text], carbon monoxide, and ozone. https://doi.org/10.1289/EHP2711.
Collapse
Affiliation(s)
- Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xia Meng
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lijun Wang
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yunning Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiangmei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinlei Qi
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinling You
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
48
|
Lebedová J, Nováková Z, Večeřa Z, Buchtová M, Dumková J, Dočekal B, Bláhová L, Mikuška P, Míšek I, Hampl A, Hilscherová K. Impact of acute and subchronic inhalation exposure to PbO nanoparticles on mice. Nanotoxicology 2018; 12:290-304. [DOI: 10.1080/17435390.2018.1438679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- J. Lebedová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Z. Nováková
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Z. Večeřa
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - M. Buchtová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno, Czech Republic
| | - J. Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - B. Dočekal
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - L. Bláhová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - P. Mikuška
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - I. Míšek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno, Czech Republic
| | - A. Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - K. Hilscherová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
49
|
Liu CW, Lee TL, Chen YC, Liang CJ, Wang SH, Lue JH, Tsai JS, Lee SW, Chen SH, Yang YF, Chuang TY, Chen YL. PM 2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Part Fibre Toxicol 2018; 15:4. [PMID: 29329563 PMCID: PMC5767014 DOI: 10.1186/s12989-018-0240-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epidemiological studies have shown that ambient air pollution is closely associated with increased respiratory inflammation and decreased lung function. Particulate matters (PMs) are major components of air pollution that damages lung cells. However, the mechanisms remain to be elucidated. This study examines the effects of PMs on intercellular adhesion molecule-1 (ICAM-1) expression and the related mechanisms in vitro and in vivo. RESULT The cytotoxicity, reactive oxygen species (ROS) generation, and monocyte adherence to A549 cells were more severely affected by treatment with O-PMs (organic solvent-extractable fraction of SRM1649b) than with W-PMs (water-soluble fraction of SRM1649b). We observed a significant increase in ICAM-1 expression by O-PMs, but not W-PMs. O-PMs also induced the phosphorylation of AKT, p65, and STAT3. Pretreating A549 cells with N-acetyl cysteine (NAC), an antioxidant, attenuated O-PMs-induced ROS generation, the phosphorylation of the mentioned kinases, and the expression of ICAM-1. Furthermore, an AKT inhibitor (LY294002), NF-κB inhibitor (BAY11-7082), and STAT3 inhibitor (Stattic) significantly down-regulated O-PMs-induced ICAM-1 expression as well as the adhesion of U937 cells to epithelial cells. Interleukin-6 (IL-6) was the most significantly changed cytokine in O-PMs-treated A549 cells according to the analysis of the cytokine antibody array. The IL-6 receptor inhibitor tocilizumab (TCZ) and small interfering RNA for IL-6 significantly reduced ICAM-1 secretion and expression as well as the reduction of the AKT, p65, and STAT3 phosphorylation in O-PMs-treated A549 cells. In addition, the intratracheal instillation of PMs significantly increased the levels of the ICAM-1 and IL-6 in lung tissues and plasma in WT mice, but not in IL-6 knockout mice. Pre-administration of NAC attenuated those PMs-induced adverse effects in WT mice. Furthermore, patients with chronic obstructive pulmonary disease (COPD) had higher plasma levels of ICAM-1 and IL-6 compared to healthy subjects. CONCLUSION These results suggest that PMs increase ICAM-1 expression in pulmonary epithelial cells in vitro and in vivo through the IL-6/AKT/STAT3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Jaw-Shiun Tsai
- Department of Family Medicine, College of Medicine and Hospital, Taipei, Taiwan.,Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Wei Lee
- Department of Internal Medicine, Taoyuan General Hospital, Department of Health and Welfare, No.1492, Zhongshan Road, Taoyuan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Fan Yang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yi Chuang
- Department of Internal Medicine, Taoyuan General Hospital, Department of Health and Welfare, No.1492, Zhongshan Road, Taoyuan, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan.
| |
Collapse
|
50
|
Dumková J, Smutná T, Vrlíková L, Le Coustumer P, Večeřa Z, Dočekal B, Mikuška P, Čapka L, Fictum P, Hampl A, Buchtová M. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part Fibre Toxicol 2017; 14:55. [PMID: 29268755 PMCID: PMC5740755 DOI: 10.1186/s12989-017-0236-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs. METHODS Adult female mice (ICR strain) were continuously exposed to lead oxide nanoparticles (PbO-NPs) with an average concentration approximately 106 particles/cm3 for 6 weeks (24 h/day, 7 days/week). At the end of the exposure period, lung, brain, liver, kidney, spleen, and blood were collected for chemical, histological, immunohistochemical and electron microscopic analyses. RESULTS Lead content was found to be the highest in the kidney and lungs, followed by the liver and spleen; the smallest content of lead was found in brain. Nanoparticles were located in all analysed tissues and their highest number was found in the lung and liver. Kidney, spleen and brain contained lower number of nanoparticles, being about the same in all three organs. Lungs of animals exposed to lead oxide nanoparticles exhibited hyperaemia, small areas of atelectasis, alveolar emphysema, focal acute catarrhal bronchiolitis and also haemostasis with presence of siderophages in some animals. Nanoparticles were located in phagosomes or formed clusters within cytoplasmic vesicles. In the liver, lead oxide nanoparticle exposure caused hepatic remodeling with enlargement and hydropic degeneration of hepatocytes, centrilobular hypertrophy of hepatocytes with karyomegaly, areas of hepatic necrosis, occasional periportal inflammation, and extensive accumulation of lipid droplets. Nanoparticles were accumulated within mitochondria and peroxisomes forming aggregates enveloped by an electron-dense mitochondrial matrix. Only in some kidney samples, we observed areas of inflammatory infiltrates around renal corpuscles, tubules or vessels in the cortex. Lead oxide nanoparticles were dispersed in the cytoplasm, but not within cell organelles. There were no significant morphological changes in the spleen as a secondary target organ. Thus, pathological changes correlated with the amount of nanoparticles found in cells rather than with the concentration of lead in a given organ. CONCLUSIONS Sub-chronic exposure to lead oxide nanoparticles has profound negative effects at both cellular and tissue levels. Notably, the fate and arrangement of lead oxide nanoparticles were dependent on the type of organs.
Collapse
Affiliation(s)
- J Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - T Smutná
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - L Vrlíková
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - P Le Coustumer
- Bordeaux University, UF STE, Allée G. Saint-Hilaire, 33615, Pessac Cedex, France
- UMR 5254 IPREM, CNRS/UPPA, Technopole Hélioparc, 2 av P. Angot, 64053, Pau Cedex9, France
- EA 4592 Georessources & Environnement/ Bordeaux Montaigne University-IPNB ENSEGID, Allée F. Daguin, 33615, Pessac Cedex, France
| | - Z Večeřa
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - B Dočekal
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - P Mikuška
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - L Čapka
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - P Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42, Brno, Czech Republic
| | - A Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - M Buchtová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic.
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|