1
|
Fan X, Yan Q, Xu W, Chen H, Xu Y, Lu S, Xu C, Tan J, Yu C, Lai Y, Fan M, Tao L, Li L, Shen W, Cheng H, Sun D. Network pharmacology alliance with experimental validation unveils the anti-colorectal cancer mechanism of Xianlian Jiedu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119361. [PMID: 39842746 DOI: 10.1016/j.jep.2025.119361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/28/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Xianlian Jiedu Decoction (XLJDD), a traditional Chinese medicine (TCM) decoction, which is effective in clinical treatment of colorectal cancer (CRC). Nevertheless, the pharmacodynamic material basis and mechanism of its action have not been explored yet. AIMS OF THE STUDY To investigate the potential functional components and possible mechanism of XLJDD in anti-CRC. MATERIALS AND METHODS The UPLC-Q-TOF-MS method was applied to the qualification of absorbed phytochemical compounds in the plasma of rats administrated with XLJDD. Network pharmacology approach was used to create the compound-target network, GO and KEGG enrichment resolution was used to predict the potential biological mechanism of XLJDD anti-CRC. The binding of potential active ingredients to their targets was demonstrated using AutoDock Tools. And the anti-CRC efficacy of XLJDD was investigated through in vitro and in vivo experiments. Furthermore, the mechanism of XLJDD anti-CRC was validated by Western blot. RESULTS 14 compounds from XLJDD were detected in the plasma of rats administrated with XLJDD. The results of network pharmacology analysis shown that PI3K/AKT and chemokine signaling pathways were strongly linked to XLJDD against CRC. The potential active compounds berberine, 7-methoxycoumarin and 13-methylberberubine may target PRKACA, PIK3CB, and EGFR to regulate PI3K/AKT signaling pathway, which plays a crucial role in cancer cell proliferation. In vitro experimental results revealed that XLJDD apparently inhibits the cell viability and proliferation of HCT116 cells. In vivo experimental results found that in contrast to the model group, the XLJDD treatment obviously cut down the size and weight of tumor. Further, Western blot results demonstrated that XLJDD significantly inhibited the CXCR2/PI3K/AKT signaling axis. CONCLUSION The therapeutic mechanism of XLJDD against CRC involves inhibiting CRC cells proliferation via modulating the CXCR2/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiaoxuan Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiuying Yan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory of Acupuncture and Medicine Research of Minister of Education, Nanjing, 210023, China
| | - Weicheng Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Chen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanru Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sicheng Lu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengtao Yu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueyang Lai
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Minmin Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihuiping Tao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liu Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Ma S, Xue F, Yang L, Chen L, Liu P, Chang J, Wang R. Pharmacokinetic and Pharmacodynamic Study of Folic Acid-Modified Chitosan-Stearic Acid Nanomicelles Loaded with Tetrandrine for Rheumatoid Arthritis. Pharmaceutics 2025; 17:169. [PMID: 40006536 PMCID: PMC11859316 DOI: 10.3390/pharmaceutics17020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease, and it is currently incurable. Tetrandrine (TET) has an obvious curative effect with therapeutic efficacy on RA, but its use is limited due to its poor water-solubility and bioavailability. Therefore, TET-loaded nanomicelles modified with chitosan, stearic acid, and folic acid (FCST) was prepared in the study, and the pharmacokinetics and pharmacodynamics were studied. METHODS The plasma concentrations of FCST and TET were measured by the PLC-MS/MS method at different times, and the pharmacokinetic parameters were calculated. A collagen-induced arthritis (CIA) model was established with rats. On the 16th day after the first immunization, 50 rats were randomized into five groups with 10 rats in each group according to the arthritis score. The drugs were administered by intraperitoneal injection for 30 days. The swelling degree and joint score of the rats were tested during each administration. In addition, the pro-inflammatory factors IL-1β, IL-6, IL-17, and TNF-α in the serum of the rats were tested by an ELISA kit, and their joints were examined by histopathology. RESULTS Pharmacokinetic studies showed that the AUC0-72h of FCST was 1.93 times that of TET. FCST demonstrated higher bioavailability compared to TET (p < 0.05). Pharmacodynamic studies demonstrated that FCST had significant anti-inflammatory effects, and its anti-inflammatory activity was stronger compared to the same dose of TET, as evidenced by measuring toe thickness and observing toe appearance. It significantly reduced the expression of IL-1, IL-6, IL-17, and TNF-α in rats with rheumatoid arthritis (p < 0.05). CONCLUSIONS FCST can significantly improve bioavailability and has a significant therapeutic effect on rheumatoid arthritis.
Collapse
Affiliation(s)
- Shuai Ma
- Hebei Province Key Laboratory of Research and Development for Chinese Materia Medica, Institute of Chinese Materia Medica, Chengde Medical University, Chengde 067000, China
| | - Fei Xue
- Hebei Province Key Laboratory of Research and Development for Chinese Materia Medica, Institute of Chinese Materia Medica, Chengde Medical University, Chengde 067000, China
| | - Lan Yang
- Hebei Province Key Laboratory of Research and Development for Chinese Materia Medica, Institute of Chinese Materia Medica, Chengde Medical University, Chengde 067000, China
| | - Long Chen
- Basic Medical Institute, Chengde Medical University, Chengde 067000, China
| | - Pei Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Materia Medica, Institute of Chinese Materia Medica, Chengde Medical University, Chengde 067000, China
| | - Jinhua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Materia Medica, Institute of Chinese Materia Medica, Chengde Medical University, Chengde 067000, China
| | - Ruxing Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Materia Medica, Institute of Chinese Materia Medica, Chengde Medical University, Chengde 067000, China
| |
Collapse
|
3
|
Sui X, Gao B, Zhang L, Wang Y, Ma J, Wu X, Zhou C, Liu M, Zhang L. Scutellaria barbata D.Don and Hedyotis diffusa Willd herb pair combined with cisplatin synergistically inhibits ovarian cancer progression through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway. J Ovarian Res 2024; 17:246. [PMID: 39702302 DOI: 10.1186/s13048-024-01570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cisplatin (DDP) is one of the most effective anticancer drugs, commonly used to treat advanced ovarian cancer (OC). However, DDP has significant limitations of platinum-based drugs, including chemical resistance and high-dose toxic side effects. Traditional Chinese medicines (TCMs) often presented in the form of formula, in which the herb pair was the basic unit. Scutellaria barbata D.Don and Hedyotis diffusa Willd (SB-HD) are famous TCMs herb pair that have been shown to help treat multiple types of cancers. However, the synergistic effects and mechanism of combination of SB-HD and DDP to enhance DDP chemosensitivity in OC are still unknown. RESULTS In vitro, we found that the optimal proportion of SB-HD to inhibit the proliferation of OC cells was 2:1, SB-HD and DDP were shown to synergistically reduce the viability of OC cells, inhibit the colony formation, promote cell cycle arrest and apoptosis, as well as inhibit cell migration and invasion. In vivo, combination treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice and reduced the toxic side effects of DDP. Mechanistically, SB-HD and DDP combination treatment significantly promoted oxidative stress response, decreased MMP, inhibited ATP production, decreased ROS levels and increased SOD activity, increased the expression of NRF2, HO-1, ATG5 and LC3, decreased the expression of p62 and FTH1 both in OC cells and tumor tissue of mice. Inhibitor 3-MA (Methyladenine, autophagy inhibitor) and Fer-1 (Ferrostatin-1, iron ion inhibitor) can effectively reverse the expression changes of the key target proteins, but not ZnPP (Zinc protoporphyrin, HO-1 inhibitor). Through bioinformatics analysis, it was found that the abnormal expression level of NRF2 and FTH1 mRNA has a high prognostic value, at the same time, the other four key proteins respectively or interacting with NRF2 and FTH1, also play important roles in the occurrence and development of OC. CONCLUSION Our findings uncover a synergistic effect of SB-HD and DDP against OC through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway, which may provide an important theoretical foundation for the use of SB-HD and a new strategy for enhancing DDP chemosensitivity as well as reducing toxic side effects.
Collapse
Affiliation(s)
- Xue Sui
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Bingqing Gao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- School of Pharmacy, Anhui Xinhua University, Hefei, 230088, China
| | - Liu Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Department of Dermatology, Dalian Lvshunkou District Hospital of Traditional Chinese Medicine, Dalian, 116041, China
| | - Yanmin Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Junnan Ma
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xingchen Wu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Chenyu Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Min Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Mamun TI, Younus S, Rahman MH. Gastric cancer-Epidemiology, modifiable and non-modifiable risk factors, challenges and opportunities: An updated review. Cancer Treat Res Commun 2024; 41:100845. [PMID: 39357127 DOI: 10.1016/j.ctarc.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Gastric cancer represents a significant global health challenge due to its high mortality and incidence rates, particularly in Eastern Asia, Eastern Europe, and South America. This comprehensive review synthesizes the latest epidemiological data and explores both modifiable and non-modifiable risk factors associated with gastric cancer, aiming to delineate the multifactorial etiology of this disease. Modifiable risk factors include Helicobacter pylori infection, obesity, dietary habits, smoking and alcohol consumption, whereas nonmodifiable factors comprise genetic predispositions, age, family history and male gender. The interplay of these factors significantly impacts the risk and progression of gastric cancer, suggesting potential preventive strategies. The challenges in treating gastric cancer are considerable, largely because of the late-stage diagnosis and the heterogeneity of the disease, which complicate effective treatment regimens. Current treatment strategies involve a combination of surgery, chemotherapy, radiotherapy, and targeted therapies. The FLOT regimen (5-FU, Leucovorin, Oxaliplatin and Docetaxel) is now a standard for resectable cases in Europe and the US, showing superior survival and response rates over ECF and ECX regimens. For HER2-positive gastric cancer, trastuzumab combined with chemotherapy improves overall survival, as demonstrated by the ToGA trial. Additionally, immune checkpoint inhibitors like pembrolizumab and nivolumab offer promising results. However, the five-year survival rate remains low, underscoring the urgency for improved therapeutic approaches. Recent advancements in molecular biology and cancer genomics have begun to pave the way for personalized medicine in gastric cancer care, focusing on molecular targeted therapies and immunotherapy. This review also highlights the critical need for better screening methods that could facilitate early detection and treatment, potentially improving the prognosis. By integrating epidemiological insights with new therapeutic strategies, this article aims to thoroughly understand of gastric cancer's dynamics and outline a framework for future research and clinical management, advocating for a multidisciplinary approach to tackle this formidable disease.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Sabrina Younus
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Hashibur Rahman
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
5
|
Pan T, Shi X, Bao Y, Wang S, Li T, Diao Y, Meng X. Metabolomics research on treatment of primary liver cancer with Cortex Juglandis Mandshuricae on LC-MS/MS technology. J Pharm Biomed Anal 2024; 248:116320. [PMID: 38959758 DOI: 10.1016/j.jpba.2024.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Diethylnitrosamine (DEN) was applied to create the primary liver cancer (PLC) animal model. In the study, the normal group, model group, cyclophosphamide (CTX) group, Cortex Juglandis Mandshuricae (CJM) extract group, myricetin group and myricitrin group were divided. LC-MS/MS technology was applied to determine the metabolites of liver tissue samples from different locations (nodular and non-nodular parts of liver tissue) in each group of rats. Through metabolomics research, the connection and difference of anti-PLC induced by the CJM extract, myricetin and myricitrin was analyzed. The surface of the liver tissues of rats in the model group was rough, dimly colored, inelastic, on which there were scattered gray white cancer nodules and blood stasis points. The number of cancer nodules was significantly reduced, and the degree of cell malignancy was low, but there were some inflammatory cell infiltrations, necrosis area and karyokinesis in the CJM extract group, myricetin group, myricitrin group and CTX group. The result of metabolic research indicated that 45 potential biomarkers of the PLC were found, as gamma-aminoisobutyrate, taurochenodeoxycholate, xanthurenic acid, etc. There were 22 differential metabolites in the CTX group, 16 differential metabolites in the CJM extract group, 14 differential metabolites in the myricetin group, 14 differential metabolites in the myricitrin group.
Collapse
Affiliation(s)
- Taowen Pan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 11644, China
| | - Xiaoli Shi
- Pharmacy Department of Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yunpeng Diao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 11644, China
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
6
|
Ma P, Yuan L, Jia S, Zhou Z, Xu D, Huang S, Meng F, Zhang Z, Nan Y. Lonicerae Japonicae Flos with the homology of medicine and food: a review of active ingredients, anticancer mechanisms, pharmacokinetics, quality control, toxicity and applications. Front Oncol 2024; 14:1446328. [PMID: 39314630 PMCID: PMC11417411 DOI: 10.3389/fonc.2024.1446328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Lonicerae Japonicae Flos (LJF, called Jinyinhua in China), comes from the dried flower buds or flowers to be opened of Lonicera japonica Thunb. in the Lonicera family. It has a long history of medicinal use and has a wide range of application prospects. As modern research advances, an increasing number of scientific experiments have demonstrated the anticancer potential of LJF. However, there is a notable absence of systematic reports detailing the anti-tumor effects of LJF. This review integrates the principles of Traditional Chinese Medicine (TCM) with contemporary pharmacological techniques, drawing upon literature from authoritative databases such as PubMed, CNKI, and WanFang to conduct a comprehensive study of LJF. Notably, a total of 507 compounds have been isolated and characterized from the plant to date, which include volatile oils, organic acids, flavonoids, iridoids, triterpenes and triterpenoid saponins. Pharmacological studies have demonstrated that LJF extract, along with components such as chlorogenic acid, luteolin, rutin, luteoloside, hyperoside and isochlorogenic acid, exhibits potential anticancer activities. Consequently, we have conducted a comprehensive review and summary of the mechanisms of action and clinical applications of these components. Furthermore, we have detailed the pharmacokinetics, quality control, and toxicity of LJF, while also discussing its prospective applications in the fields of biomedicine and preventive healthcare. It is hoped that these studies will provide valuable reference for the clinical research, development, and application of LJF.
Collapse
Affiliation(s)
- Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shumin Jia
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Duojie Xu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
7
|
Tian X, Fu K, Huang X, Zou H, Shi N, Li J, Bao Y, He S, Lv J. Ferroptosis in the adjuvant treatment of lung cancer-the potential of selected botanical drugs and isolated metabolites. Front Pharmacol 2024; 15:1430561. [PMID: 39193342 PMCID: PMC11347298 DOI: 10.3389/fphar.2024.1430561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Ferroptosis represents a distinct form of cell death that is not associated with necrosis, autophagy, apoptosis, or pyroptosis. It is characterised by intracellular iron-dependent lipid peroxidation. The current literature indicates that a number of botanical drugs and isolated metabolites can modulate ferroptosis, thereby exerting inhibitory effects on lung cancer cells or animal models. The aim of this review is to elucidate the mechanisms through which botanical drugs and isolated metabolites regulate ferroptosis in the context of lung cancer, thereby providing potential insights into lung cancer treatment. It is crucial to highlight that these preclinical findings should not be interpreted as evidence that these treatments can be immediately translated into clinical applications. In the future, we will continue to study the pharmacology, pharmacokinetics and toxicology of these drugs, as well as evaluating their efficacy and safety in clinical trials, with the aim of providing new approaches to the development of new agents for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Tian
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunling Fu
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuemin Huang
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Haiyan Zou
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nianmei Shi
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiayang Li
- Office of Drug Clinical Trial Institution, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuxiang Bao
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junyuan Lv
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Lee YS, Mun JG, Park SY, Hong DY, Kim HY, Kim SJ, Lee SB, Jang JH, Han YH, Kee JY. Saikosaponin D Inhibits Lung Metastasis of Colorectal Cancer Cells by Inducing Autophagy and Apoptosis. Nutrients 2024; 16:1844. [PMID: 38931199 PMCID: PMC11206761 DOI: 10.3390/nu16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment.
Collapse
Affiliation(s)
- Yoon-Seung Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Shin-Young Park
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Dah Yun Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ho-Yoon Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Su-Jin Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Sun-Bin Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Ho Jang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Yo-Han Han
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
9
|
Ye G, Sun X, Li J, Mai Y, Gao R, Zhang J. Secondary metabolites of mulberry leaves exert anti-lung cancer activity through regulating the PD-L1/PD-1 signaling pathway. J Pharm Anal 2024; 14:100926. [PMID: 38974523 PMCID: PMC11226898 DOI: 10.1016/j.jpha.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 07/09/2024] Open
Abstract
Lung cancer ranks the top of malignancies that cause cancer-related deaths worldwide. The leaves of Morus alba L are traditional Chinese medicine widely applied in respiratory diseases. Our previous work has demonstrated the anti-lung cancer effect of secondary metabolites of mulberry leaf, but their mechanism of action has still not fully elucidated. We synthesized Moracin N (MAN)-Probe conjugated with alkyne to label lung cancer cells and identified protein targets by chemical proteomic analysis. MAN and its probe exerted similar growth-inhibitory effect on human lung cancer cells. Chemical proteomic results showed that MAN targeted the programmed death ligand 1 (PD-L1) checkpoint pathway and T cell receptor (TCR) signaling pathway, indicating its immune-regulatory function. Cell-free surface plasmon resonance (SPR) results showed the direct interaction of MAN with PD-L1 protein. Molecular docking analysis demonstrated that MAN bound to E158 residue of PD-L1 protein. MAN downregulated the expression levels of PD-L1 in a time- and dose-dependent manner and disrupted the PD-L1/programmed death 1 (PD-1) binding, including other secondary metabolites of mulberry leaves Guangsangon E (GSE) and Chalcomoracin (CMR). Human peripheral blood mononuclear cells (PBMCs) co-cultured with MAN-treated A549 cells, resulting in the increase of CD8+ GZMB+ T cells and the decrease of CD8+ PD-1+ T cells. It suggested that MAN exerts anti-cancer effect through blocking the PD-L1/PD-1 signaling. In vivo, MAN combined with anti-PD-1 antibody significantly inhibited lung cancer development and metastasis, indicating their synergistic effect. Taken together, secondary metabolites of mulberry leaves target the PD-L1/PD-1 signaling, enhance T cell-mediated immunity and inhibit the tumorigenesis of lung cancer. Their modulatory effect on tumor microenvironment makes them able to enhance the therapeutic efficacy of immune checkpoint inhibitors in lung cancer.
Collapse
Affiliation(s)
- Guiqin Ye
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Laboratory, Yuhuan City Hospital, Taizhou, Zhejiang, 317600, China
- Hangzhou Medical College, Hangzhou, 311300, China
| | - Xin Sun
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jiuzhou Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, Shandong, 256600, China
| | - Yuanyuan Mai
- Hangzhou Medical College, Hangzhou, 311300, China
| | - Ruilan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
10
|
Wu Y, Fang Y, Li Y, Au R, Cheng C, Li W, Xu F, Cui Y, Zhu L, Shen H. A network pharmacology approach and experimental validation to investigate the anticancer mechanism of Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through induction of apoptosis via JNK/p38 MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117323. [PMID: 37852337 DOI: 10.1016/j.jep.2023.117323] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Qi-Qin-Hu-Chang Formula (QQHCF) is a traditional Chinese medicine prescription that is clinically used at the Affiliated Hospital of Nanjing University of Chinese Medicine for the treatment of colitis-associated colorectal cancer (CAC). AIM OF THE STUDY To evaluate the potential therapeutic effects of QQHCF on a CAC mouse model and investigate its underlying mechanisms using network pharmacology and experimental validation. MATERIALS AND METHODS The active components and potential targets of QQHCF were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and herb-ingredient-targets gene network were constructed by Cytoscape 3.9.2. Target genes of CAC were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank database. The drug disease target protein-protein interaction (PPI) network was constructed and the core targets were visualized and identified using Cytoscape. The Metascape database was used for GO and KEGG enrichment analysis. UHPLC-MS/MS was used to further identify the active compounds in QQHCF. Subsequently, the therapeutic effects and potential mechanism of QQHCF against CAC were investigated in AOM/DSS-induced CAC mouse in vivo, and HT-29 and HCT116 cells in vitro. Finally, interactions between JNK, p38, and active ingredients were assessed by molecular docking. RESULTS A total of 176 active compounds, 273 potential therapeutic targets, and 2460 CAC-related target genes were obtained. The number of common targets between QQHCF and CAC were 165. KEGG pathway analysis indicated that the MAPK signaling pathway was closely associated with CAC, which may be the potential mechanism of QQHCF against CAC. Network pharmacology and UHPLC-MS/MS analyses showed that the active compounds of QQHCF included quercetin, kaempferol, luteolin, wogonin, oxymatrine, lupanine, and baicalin. Animal experiments demonstrated that QQHCF reduced tumor load, number, and size in AOM/DSS-treated mice, and induced apoptosis in colon tissue. In vitro experiments further showed that QQHCF induced apoptosis and inhibited cell viability, migration, and invasion in HCT116 and HT-29 cells. Notably, QQHCF activated the JNK/p38 MAPK signaling pathway both in vivo and in vitro. Molecular docking analysis revealed an ability for the main components of QQHCF and JNK/p38 to bind. CONCLUSION The present study demonstrated that QQHCF could ameliorate AOM/DSS-induced CAC in mice by activating the JNK/p38 MAPK signaling pathway. These results have important implications for the development of effective treatment strategies for CAC.
Collapse
Affiliation(s)
- Yuguang Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulai Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
| | - Cheng Cheng
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, China
| | - Weiyang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Cui
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
11
|
Jiang H, Bu L. Progress in the treatment of lung adenocarcinoma by integrated traditional Chinese and Western medicine. Front Med (Lausanne) 2024; 10:1323344. [PMID: 38259856 PMCID: PMC10802683 DOI: 10.3389/fmed.2023.1323344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) overwhelmingly represents the predominant histological subtype of lung cancer, with lung adenocarcinoma emerging as the most prevalent form. Conventional Western medical treatments encompass a spectrum of modalities, including surgical interventions, cytotoxic chemotherapy, radiotherapy, targeted pharmacotherapy, and immunotherapy. In contrast, Traditional Chinese Medicine (TCM) methodologies encompass traditional Chinese medicine treatments, acupuncture therapies, and tuina treatments. While conventional Western medicine has made remarkable strides in the treatment of lung cancer, it is important to acknowledge the limitations inherent in singular treatment approaches. Consequently, the quest for a more comprehensive and integrative therapeutic paradigm becomes imperative. A deficiency of evaluation criteria specific to lung adenocarcinoma treatment in the realm of TCM represents an outstanding challenge in need of resolution. Nonetheless, in the backdrop of the continuous evolution of lung adenocarcinoma treatment modalities, the amalgamation of Chinese and Western medical approaches for treating this condition has exhibited a promising trajectory. It not only contributes to mitigating toxicity and augmenting efficacy but also serves to reduce a spectrum of postoperative complications, thereby enhancing the quality of patients' survival and extending life expectancy. This article furnishes a comprehensive survey of the research advancements in the integration of Chinese and Western medical approaches for treating lung adenocarcinoma. It elucidates the merits and demerits of individual and combined therapeutic strategies, surmounts current limitations, underscores the virtues of amalgamating Chinese and Western medical paradigms, and offers a more holistic, integrated, and efficacious treatment blueprint.
Collapse
Affiliation(s)
- Hongxin Jiang
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Lina Bu
- Department of Respiratory and Critical Care Medicine, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| |
Collapse
|
12
|
Chen X, Yu S, Wang P, Zhao X, Sang G. Development and Evaluation of a Novel Hyaluronic Acid and Chitosan-modified Phytosome for Co-delivery of Oxymatrine and Glycyrrhizin for Combination Therapy. Recent Pat Anticancer Drug Discov 2024; 19:154-164. [PMID: 38214355 DOI: 10.2174/1574892818666230215112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) of cancer cells is a major obstacle to efficient cancer chemotherapy. Combination therapy is expected to enhance the anticancer effect and reverse MDR. Numerous patents involve different kinds of nanoparticles for the co-delivery of multiple chemotherapeutics, but the FDA has approved none. OBJECTIVE In this study, oxymatrine (OMT) and glycyrrhizin (GL) were co-loaded into phytosomes as the core of nanocarriers, and the shell was cross-linked with chitosan (CS) and hyaluronic acid (HA) with the capability for the controlled, sequential release and the targeted drug uptake. METHODS Phospholipid complexes of OMT and GL (OGPs) were prepared by a solvent evaporation technique and could self-assemble in an aqueous solution to form phytosomes. CS and HA were sequentially coated on the surface of OGPs via electrostatic interactions to obtain CS coated OGPs (CS-OGPs) and HA modified CS-OGPs (HA-CS-OGPs), respectively. The particle size and zeta potential were measured to optimize the formulations. In vitro cytotoxicity and cellular uptake experiments on HepG2 cells were performed to evaluate the anticancer activity. RESULTS OGPs were obtained with nano-size around 100 nm, and CS and HA coating on phytosomes could change the particle size and surface potential. The drug loading of OMT and GL showed that the nanocarriers could maintain a fixed ratio of 1:1. The in vitro release experiments indicated the release of OMT and GL was pH-dependent and sequential: the release of OMT from CS-OGPs and HA-CS-OGPs was significantly increased at pH 5.0 compared to the release at pH 7.4, while GL exhibited sustained released from CS-OGPs and HA-CS-OGPs at pH 5.0. Furthermore, in vitro cytotoxicity and cellular uptake experiments on HepG2 cells demonstrated that the co-delivery system based on phytosomes had significant synergistic anti-tumor activities, and the effects were enhanced by CS and HA modification. CONCLUSION The delivery of OMT and GL via HA-CS-OGPs might be a promising treatment to reverse MDR in cancer therapy.
Collapse
Affiliation(s)
- Xiaojin Chen
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou 310014, Zhejiang, China
| | - Shuying Yu
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Pingping Wang
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - XinFeng Zhao
- Department of Clinical Laboratory, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Gao Sang
- Department of Traditional Medicine, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
13
|
Jiao JY, Cheng CS, Cao ZQ, Chen LY, Chen Z. Evidence-Based Dampness-Heat ZHENG (Syndrome) in Cancer: Current Progress toward Establishing Relevant Animal Model with Pancreatic Tumor. Chin J Integr Med 2024; 30:85-95. [PMID: 35723813 DOI: 10.1007/s11655-022-3675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Cancer is one of the deadliest diseases affecting the health of human beings. With limited therapeutic options available, complementary and alternative medicine has been widely adopted in cancer management and is increasingly becoming accepted by both patients and healthcare workers alike. Chinese medicine characterized by its unique diagnostic and treatment system is the most widely applied complementary and alternative medicine. It emphasizes symptoms and ZHENG (syndrome)-based treatment combined with contemporary disease diagnosis and further stratifies patients into individualized medicine subgroups. As a representative cancer with the highest degree of malignancy, pancreatic cancer is traditionally classified into the "amassment and accumulation". Emerging perspectives define the core pathogenesis of pancreatic cancer as "dampness-heat" and the respective treatment "clearing heat and resolving dampness" has been demonstrated to prolong survival in pancreatic cancer patients, as has been observed in many other cancers. This clinical advantage encourages an exploration of the essence of dampness-heat ZHENG (DHZ) in cancer and investigation into underlying mechanisms of action of herbal formulations against dampness-heat. However, at present, there is a lack of understanding of the molecular characteristics of DHZ in cancer and no standardized and widely accepted animal model to study this core syndrome in vivo. The shortage of animal models limits the ability to uncover the antitumor mechanisms of herbal medicines and to assess the safety profile of the natural products derived from them. This review summarizes the current research on DHZ in cancer in terms of the clinical aspects, molecular landscape, and animal models. This study aims to provide comprehensive insight that can be used for the establishment of a future standardized ZHENG-based cancer animal model.
Collapse
Affiliation(s)
- Ju-Ying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhang-Qi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lian-Yu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Zheng H, Wang G, Liu M, Cheng H. Traditional Chinese medicine inhibits PD-1/PD-L1 axis to sensitize cancer immunotherapy: a literature review. Front Oncol 2023; 13:1168226. [PMID: 37397393 PMCID: PMC10312112 DOI: 10.3389/fonc.2023.1168226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Programmed death-1 (PD-1) and its programmed death-ligand 1 (PD-L1) comprise the PD-1/PD-L1 axis and maintain tumor immune evasion. Cancer immunotherapy based on anti-PD-1/PD-L1 antibodies is the most promising anti-tumor treatment available but is currently facing the thorny problem of unsatisfactory outcomes. Traditional Chinese Medicine (TCM), with its rich heritage of Chinese medicine monomers, herbal formulas, and physical therapies like acupuncture, moxibustion, and catgut implantation, is a multi-component and multi-target system of medicine known for enhancing immunity and preventing the spread of disease. TCM is often used as an adjuvant therapy for cancer in clinical practices, and recent studies have demonstrated the synergistic effects of combining TCM with cancer immunotherapy. In this review, we examined the PD-1/PD-L1 axis and its role in tumor immune escape while exploring how TCM therapies can modulate the PD-1/PD-L1 axis to improve the efficacy of cancer immunotherapy. Our findings suggest that TCM therapy can enhance cancer immunotherapy by reducing the expression of PD-1 and PD-L1, regulating T-cell function, improving the tumor immune microenvironment, and regulating intestinal flora. We hope this review may serve as a valuable resource for future studies on the sensitization of immune checkpoint inhibitors (ICIs) therapy.
Collapse
Affiliation(s)
- Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Tan JQ, Zhang L, Xu HX. Garcinia oligantha: A comprehensive overview of ethnomedicine, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116130. [PMID: 36621661 DOI: 10.1016/j.jep.2022.116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Garcinia oligantha Merr. is an ethnomedicine plant mainly distributed in Guangdong and Hainan, China. It has the effects of heat-clearing and detoxicating, which has been used by local ethnic minorities to treat a variety of diseases, including inflammation, internal heat, toothache and scald. THE AIM OF THE REVIEW This review summarizes and discusses the progress of the chemical compounds and biological activities of G. oligantha that have been studied in recent years to provide the direction for the prospective research and applications of G. oligantha. MATERIALS AND METHODS The relevant literature about G. oligantha was accessible from ancient Chinese medical books and records, theses, as well as major scientific databases such as Google Scholar, PubMed, Web of Science, ScienceDirect, SciFinder, Baidu Scholar and China National Knowledge Infrastructure (CNKI). RESULTS To date, more than 150 chemical compounds were isolated from this plant, including xanthones, volatile oil, fatty acid, benzofurane derivative and biphenyl compounds. Xanthones are the main bioactive compounds that exhibit diverse biological effects, such as antitumor, analgesic, anti-inflammatory, antioxidative, neuroprotective, antimalarial and antibacterial effects, which are consistent with its traditional uses as a folk medicine. Modern pharmacological studies show that these compounds participate in a variety of signaling pathways underlying different pathophysiologies, making them a valuable medicinal resource. CONCLUSION G. oligantha is an ethnomedicine with a long history. However, due to regional and cultural constraints, the popularisation and use of ethnomedicine are still limited. Modern pharmacological and chemical research suggest that G. oligantha contains a variety of bioactive compounds and showed diverse biological functions, which is worthy of comprehensive and in-depth research. This review summarizes and discusses the recent progress in studies on G. oligantha, looking forward to promote further research and sustainable development of folk medicinal plants.
Collapse
Affiliation(s)
- Jia-Qi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
Li J, Yuan M, Qiu T, Lu M, Zhan S, Bai Y, Yang M, Liu X, Zhang X. A glutathione-sensitive drug delivery system based on carboxymethyl chitosan co-deliver Rose Bengal and oxymatrine for combined cancer treatment. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:650-673. [PMID: 36272104 DOI: 10.1080/09205063.2022.2139977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
At present, monotherapy of tumor has not met the clinical needs, due to high doses, poor efficacy, and the emergence of drug resistance. Combination therapy can effectively solve these problems, which is a better option for tumor suppression. Based on this, we developed a novel glutathione-sensitive drug delivery nanoparticle system (OMT/CMCS-CYS-RB NPs) for oral cancer treatment. Briefly, carboxymethyl chitosan (CMCS) was used as a carrier to simultaneously load Rose Bengal (RB) and oxymatrine (OMT). The OMT/CMCS-CYS-RB NPs prepared by ion crosslinking were spheres with a stable structure. In addition, the nanoparticles can be excited in vitro to generate a large amount of singlet oxygen, which has a good photodynamic effect. In vitro anti-tumor activity study showed that the nanoparticles after the laser enhanced therapeutic efficacy on tumor cells compared with the free drug and exhibited well security. Furthermore, OMT/CMCS-CYS-RB NPs could inhibit the PI3K/AKT signaling pathway in oxidative stress, and realize tumor apoptosis through mitochondria-related pathways. In conclusion, this combination delivery system for delivering RB and OMT is a safe and effective strategy, which may provide a new avenue for the tumor treatment.
Collapse
Affiliation(s)
- Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ming Yuan
- Wuhan Wuchang District Center for Disease Control and Prevention, Wuhan, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Siwen Zhan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yuting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
17
|
Shen P, Jia Y, Shi S, Sun J, Han X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Xu L, Jiao Y, Cui W, Wang B, Guo D, Xue F, Mu X, Li H, Lin Y, Lin H. Quality Evaluation of Traditional Chinese Medicine Prescription in Naolingsu Capsule Based on Combinative Method of Fingerprint, Quantitative Determination, and Chemometrics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:1429074. [PMID: 36046660 PMCID: PMC9424029 DOI: 10.1155/2022/1429074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Naolingsu capsule (NLSC) is a well-known traditional Chinese medicine (TCM) prescription in China. It is widely used to treat neurasthenia, insomnia, cardiovascular and cerebrovascular disease, and other diseases. However, its inalienable chemical groups have not been carried out. METHODS We first established the nontargeted investigation based on fingerprinting coupled with UHPLC-Q/TOF-MS/MS. Second, the quantitative methods based on HPLC-DAD and LC-MS/MS were connected to the synchronous quantitative assurance of eleven and fourteen marker compounds. Finally, the quantitative information was processed with SIMCA-P for differentiating the distinctive bunches of samples to screen the foremost appropriate chemical markers. RESULTS The similarity of HPLC fingerprints of 24 batches of NLSC samples was 0.645-0.992. In total, 37 flavonoids, 21 organic acids, 22 lignans, 13 saponins, and 20 other compounds were recognized in NLSC by the UHPLC-Q/TOF-MS/MS method. The quantitative determination was approved for linearity, discovery limits, accuracy, repeatability, soundness, and precision. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) models accomplished the great classification of the samples from the five enterprises, respectively. Rehmannioside D (RD), methylophiopogonanone A (MPA), 3,6'-disinapoyl sucrose (DS), schisandrin B (SSB), epimedin C (EC), icariin (ICA), and jujuboside B (JB) were considered as the potential chemical markers for NLSC quality control. CONCLUSION The experimental results illustrated that the combinative strategy was valuable for quick pharmaceutical quality assessment, which can potentially differentiate the origin, decide the realness, and assess the overall quality of the formulation.
Collapse
Affiliation(s)
- Lili Xu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Yang Jiao
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Weiliang Cui
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Bing Wang
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Dongxiao Guo
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Fei Xue
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Xiangrong Mu
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Huifen Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yongqiang Lin
- Shandong Institute of Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center of Generic Technologies for TCM Formula Granules, Jinan 250101, Shandong, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan 250014, Shandong, China
| |
Collapse
|
19
|
Yang SY, Livneh H, Jhang JS, Yen SW, Huang HL, Chan MWY, Lu MC, Yeh CC, Wei CK, Tsai TY. Association of Chinese herbal medicine use with the depression risk among the long-term breast cancer survivors: A longitudinal follow-up study. Front Psychol 2022; 13:884337. [PMID: 36059752 PMCID: PMC9434377 DOI: 10.3389/fpsyg.2022.884337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Breast cancer patients are at elevated risk of depression during treatment, thus provoking the chance of poor clinical outcomes. This retrospective cohort study aimed to investigate whether integrating Chinese herbal medicines citation(CHM) into conventional cancer therapy could decrease the risk of depression in the long-term breast cancer survivors. Methods A cohort of patients aged 20–70 years and with newly diagnosed breast cancer during 2000–2008 was identified from a nationwide claims database. In this study, we focused solely on survivors of breast cancer at least1 year after diagnosis. After one-to-one matching for age, sex, and baseline comorbidities, breast cancer patients who received (n = 1,450) and did not receive (n = 1,450) CHM treatment were enrolled. The incidence rate and hazard ratio citation(HR) for depression between the two groups was estimated at the end of 2012. A Cox proportional hazard model was constructed to examine the impact of the CHM use on the risk of depression. Results During the study period, the incidence rate of depression was significantly lower in the treated cohort than in the untreated cohort [8.57 compared with 11.01 per 1,000 person-years citation(PYs)], and the adjusted HR remained significant at 0.74 (95% CI 0.58–0.94) in a Cox proportional hazards regression model. The corresponding risk further decreasing to 43% among those using CHM for more than 1 year. Conclusion Finding from this investigation indicated that the lower risk of depression observed in breast cancer patients treated with CHM, suggesting that CHM treatment should be considered for disease management toward breast cancer. Yet, the optimal administered dose should be determined in further clinical trials.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR, United States
| | - Jing-Siang Jhang
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Shu-Wen Yen
- Department of Rehabilitation, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Hua-Lung Huang
- Department of Rehabilitation, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chou Yeh
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Chia-Chou Yeh,
| | - Chang-Kuo Wei
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of General Surgery, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- Chang-Kuo Wei,
| | - Tzung-Yi Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- Tzung-Yi Tsai,
| |
Collapse
|
20
|
Xiao X, Guo L, Dai W, Yan B, Zhang J, Yuan Q, Zhou L, Shan L, Efferth T. Green tea-derived theabrownin suppresses human non-small cell lung carcinoma in xenograft model through activation of not only p53 signaling but also MAPK/JNK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115167. [PMID: 35271947 DOI: 10.1016/j.jep.2022.115167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory and practice of traditional Chinese medicine (TCM), the pathogenesis of lung carcinoma is associated with many syndromes, such as "sputum stasis", "cough", "lung fever", "lung toxin", and "hemoptysis", which should be removed for therapeutic purpose. Tea is not only a world-wide beverage, but also a TCM herb, possessing activities against the above syndromes. Recently, green tea extract exerted inhibitory effects on a variety of tumor cells. As a pigment active substance of green tea, theabrownin (TB) has been found to inhibit many cancer cells. AIM OF THE STUDY This study focused on the efficacy and mechanism of TB on non-small cell lung cancer (NSCLC) cell lines. The in vivo efficacy of TB on p53-deficient NSCLC (H1299) cells and p53-wild type NSCLC (A549) cells NSCLC cells were determined, and its mechanism of action was explored. MATERIALS AND METHODS In vivo, two lung cancer cell lines, H1299 (p53-deficient) and A549 (p53-wild type) were selected to establish xenograft models of larval zebrafish, respectively. For in vitro experiments, wound healing assay, DAPI staining, TUNEL assay, immunofluorescence assay, and flow cytometry were conducted in these two cell lines. RNA sequencing (RNAseq), real time PCR (qPCR) and Western blot (WB) were performed for the mechanism study. RESULTS The in vivo results showed that TB significantly inhibited the H1299 and the A549 xenograft tumor growth in larval zebrafish (dosage ranged from 2.13 to 21.3 μg/ml). Wound healing assay results showed that TB suppressed the migration of H1299 cells. DAPI staining, TUNEL assay, and immunofluorescence assay results showed that TB inhibited the growth of H1299 cells by inducing apoptosis. RNAseq, qPCR and WB data showed that TB significantly up-regulated the MAPK/JNK pathway-related proteins (ASK-1, JNK and c-JUN) through phosphorylation activation, accompanying with down-regulation of the epithelial-mesenchymal transition (EMT)-associated genes (N-CADHERIN, SLUG, FIBROWNECTIN and ZEB1) and anti-apoptotic molecules (BCL-2), and up-regulation of the metastasis-related gene HSPA6 and the pro-apoptotic molecules (BIM, BAX, PARP, c-PARP, γ-H2A.X, c-CASP3, c-CASP8, c-CASP9, DDIT3 and DUSP8). CONCLUSION This study determined the in vivo efficacy of green tea-derived TB on p53-deficient NSCLC (H1299) cells and p53-wild type NSCLC (A549) cells and clarified its p53-independent mechanism mediated by the activation of MAPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Le Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Weiyou Dai
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jin Zhang
- Theabio Co., Ltd, Hangzhou, 310000, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
21
|
Song YC, Lee DY, Yeh PY. A Novel Chinese Herbal and Corresponding Chemical Formula for Cancer Treatment by Targeting Tumor Maintenance, Progression, and Metastasis. Front Pharmacol 2022; 13:907826. [PMID: 35721174 PMCID: PMC9204638 DOI: 10.3389/fphar.2022.907826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
We characterized a so-called "heirloom recipe" Chinese herbal formula (temporarily named Formula X) that contains five Chinese medical botanical drugs, Huang-Lian (Coptis chinensis Franch. [Ranunculaceae]), Huang-Qin (Scutellaria baicalensis Georgi [Lamiaceae]), Bai-Wei (Vincetoxicum atratum (Bunge) C. Morren and Decne. [Apocynaceae]), E-Zhu (Curcuma aromatica Salisb. [Zingiberaceae]) and Bai-Zhu (Atractylodes macrocephala Koidz. [Asteraceae]). Formula X inhibited the growth of various cancer cells and decreased the expression levels of a panel of proteins, including CD133, Myc, PD-L1, and Slug, in cancer cells. We further found that the inhibition of growth and protein expression were exerted by Huang-Lian, Huang-Qin, and Bai-Wei (formula HHB), which exhibited the same biological effects as those of Formula X. Furthermore, we selected three active chemicals, berberine, baicalin, and saponin from Huang-Lian, Huang-Qin, and Bai-Wei, respectively, to produce a chemical formulation (formula BBS), which exhibited similar effects on cell growth and protein expression as those induced by formula HHB. Both the formulae HHB and BBS suppressed tumor growth in an animal study. Moreover, they decreased the protein levels of Myc and PD-L1 in tumor cells in vivo. In summary, we established a novel Chinese herbal formula and a chemical formula that targeted three important processes, tumor maintenance (tumor stem cells), progression, and metastasis, and that influenced the response of tumors to host immunosuppression, for the potentially effective treatment of cancer patients.
Collapse
Affiliation(s)
- Ying-Chyi Song
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Yen Yeh
- TCM division, Jin-Mi company, Taipei, Taiwan
| |
Collapse
|
22
|
Khan SA, Lee TKW. Network-Pharmacology-Based Study on Active Phytochemicals and Molecular Mechanism of Cnidium monnieri in Treating Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:5400. [PMID: 35628212 PMCID: PMC9140548 DOI: 10.3390/ijms23105400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a high mortality rate globally. For thousands of years, Cnidium monnieri has been used to treat human ailments and is regarded as a veritable treasure trove for drug discovery. This study has investigated the key active phytochemicals and molecular mechanisms of Cnidium monnieri implicated in curing HCC. We utilized the TCMSP database to collect data on the phytochemicals of Cnidium monnieri. The SwissTargetPrediction website tool was used to predict the targets of phytochemicals of Cnidium monnieri. HCC-related genes were retrieved from OncoDB.HCC and Liverome, two liver-cancer-related databases. Using the DAVID bioinformatic website tool, Gene Ontology (GO) and KEGG enrichment analysis were performed on the intersecting targets of HCC-related genes and active phytochemicals in Cnidium monnieri. A network of active phytochemicals and anti-HCC targets was constructed and analyzed using Cytoscape software. Molecular docking of key active phytochemicals was performed with anti-HCC targets using AutoDock Vina (version 1.2.0.). We identified 19 active phytochemicals in Cnidium monnieri, 532 potential targets of these phytochemicals, and 566 HCC-related genes. Results of GO enrichment indicated that Cnidium monnieri might be implicated in affecting gene targets involved in multiple biological processes, such as protein phosphorylation, negative regulation of the apoptotic process, which could be attributed to its anti-HCC effects. KEGG pathway analyses indicated that the PI3K-AKT signaling pathway, pathways in cancer, proteoglycans in cancer, the TNF signaling pathway, VEGF signaling pathway, ErbB signaling pathway, and EGFR tyrosine kinase inhibitor resistance are the main pathways implicated in the anti-HCC effects of Cnidium monnieri. Molecular docking analyses showed that key active phytochemicals of Cnidium monnieri, such as ar-curcumene, diosmetin, and (E)-2,3-bis(2-keto-7-methoxy-chromen-8-yl)acrolein, can bind to core therapeutic targets EGFR, CASP3, ESR1, MAPK3, CCND1, and ERBB2. The results of the present study offer clues for further investigation of the anti-HCC phytochemicals and mechanisms of Cnidium monnieri and provide a basis for developing modern anti-HCC drugs based on phytochemicals in Cnidium monnieri.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Kowloon 999077, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
23
|
Yang Z, Liu Z, Xu J, Zhu J, Pu Y, Bao Y. Study on the physicochemical properties and immunomodulatory anti-tumor effect of the Pholiota adiposa polysaccharide. Food Funct 2022; 13:5153-5165. [PMID: 35420612 DOI: 10.1039/d1fo03628a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, the extraction, purification, physical and chemical properties, and biological activity of the Pholiota adiposa (PAP) polysaccharide were investigated. One fraction (PAP-1a) of Pholiota adiposa polysaccharides was isolated using DEAE Sepharose™ Fast Flow and Sephacryl™ S-300 High-Resolution columns. The HPLGPC results revealed that the molecular weight of PAP-1a was 16.453 kDa. PAP-1a was composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose and their molar % was 33.41, 0.53, 1.33, 0.07, 0.27, 5.28, 38.31, 0.83, 18.04 and 2.23, respectively. PAP-1a could activate macrophages to secrete NO and cytokines such as TNF-a, IL-6, and IL-12p70. When hepatocellular carcinoma cells (HCCs) and macrophages were co-cultured, it was observed that PAP-1a inhibited the growth of Hep-G2, Hep-3B, and Huh7 via immunoregulation. It triggered cell apoptosis by blocking the cell cycle in the G0/G1 stage. Furthermore, PAP-1a had no direct cytotoxicity against the hepatocyte cell line L02 and macrophages RAW264.7.
Collapse
Affiliation(s)
- Zhongwei Yang
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zijing Liu
- Department of Gastroenterology, The Third Affliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jie Xu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Junmo Zhu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
24
|
Effects of Traditional Chinese Medicine Anticancer Decoction Combined with Basic Chemotherapy and Nursing Intervention on Oral Cancer Patients after Surgery and Its Effect on Tumor Markers and Immune Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6341381. [PMID: 35402612 PMCID: PMC8986392 DOI: 10.1155/2022/6341381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Objective To prospectively study the application effect of traditional Chinese medicine (TCM) anticancer decoction with basic chemotherapy and nursing intervention on oral cancer patients after surgery and the effect on tumor markers and immune function. Methods Eighty-four postoperative oral cancer patients in our hospital from May 2017 to February 2019 were selected and divided into observation group (42 cases) and control group (42 cases). The control group was treated with basic chemotherapy combined with basic nursing care, and the observation group was treated with TCM anticancer decoction and comprehensive nursing intervention on the basis of the control group. The clinical efficacy, the occurrence of adverse reactions, the satisfaction of nursing care, and the two-year cumulative survival rate of the two groups were compared. The immune function, tumor marker level, VAS score, QoR40 score, and survival quality score of the two groups were compared before and after nursing care. Results The total clinical treatment efficiency of the observation group (88.10%) was significantly higher than that of the control group (69.05%), and the differences between the two groups in oral cleanliness, aspiration frequency, and oral comfort were statistically significant (P < 0.05). The differences in the occurrence of halitosis, oral fungal infection, leukopenia, gastrointestinal reaction, and fever in the observation group were statistically significant compared with the control group (P < 0.05). The nursing satisfaction rate in the observation group (95.24%) was significantly higher than that in the control group (78.57%). The two-year cumulative survival rate of the observation group (92.86%) was significantly higher than that of the control group (73.81%). After nursing care, CD4+, CD4+/CD8+, VAS scores, QoR40 scores, and quality of survival scores in both groups all increased, and CD8+, CD56+, CEA level, NSE level, and CA19-9 level all decreased (all P < 0.05). Conclusion The clinical efficacy of TCM anticancer decoction with basic chemotherapy and nursing interventions in the treatment of postoperative oral cancer patients was remarkable, which could significantly improve patients' oral cleanliness and comfort, reduce the frequency of sputum aspiration, improve patients' immunity, reduce tumor marker levels, inhibit tumor activity, improve patients' nursing satisfaction, further improve patients' treatment compliance, reduce patients' pain level, improve patients' survival quality, and prolong patients' survival time with high safety. It could be used as a theoretical basis for subsequent clinical research.
Collapse
|
25
|
Du J, Tao Q, Liu Y, Huang Z, Jin H, Lin W, Huang X, Zeng J, Zhao Y, Liu L, Xu Q, Han X, Chen L, Chen XL, Wen Y. Assessment of the targeted effect of Sijunzi decoction on the colorectal cancer microenvironment via the ESTIMATE algorithm. PLoS One 2022; 17:e0264720. [PMID: 35303006 PMCID: PMC8932555 DOI: 10.1371/journal.pone.0264720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Sijunzi decoction (SJZD) was used to treat patients with colorectal cancer (CRC) as an adjuvant method. The aim of the study was to investigate the therapeutic targets and pathways of SJZD towards the tumor microenvironment of CRC via network pharmacology and the ESTIMATE algorithm. Methods The ESTIMATE algorithm was used to calculate immune and stromal scores to predict the level of infiltrating immune and stromal cells. The active targets of SJZD were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and UniProt database. The core targets were obtained by matching the differentially expressed genes in CRC tissues and the targets of SJZD. Then, GO, KEGG and validation in TCGA were carried out. Results According to the ESTIMATE algorithm and survival analysis, the median survival time of the low stromal score group was significantly higher than that of the high stromal score group (P = 0.018), while the patients showed no significant difference of OS between different immune groups (P = 0.19). A total of 929 genes were upregulated and 115 genes were downregulated between the stromal score groups (|logFC| > 2, adjusted P < 0.05); 357 genes were upregulated and 472 genes were downregulated between the immune score groups. The component-target network included 139 active components and 52 related targets. The core targets were HSPB1, SPP1, IGFBP3, and TGFB1, which were significantly associated with poor prognosis in TCGA validation. GO terms included the response to hypoxia, the extracellular space, protein binding and the TNF signaling pathway. Immunoreaction was the main enriched pathway identified by KEGG analysis. Conclusion The core genes (HSPB1, SPP1, IGFBP3 and TGFB1) affected CRC development and prognosis by regulating hypoxia, protein binding and epithelial-mesenchymal transition in the extracellular matrix.
Collapse
Affiliation(s)
- Jiaxin Du
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quyuan Tao
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanming Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - He Jin
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Lin
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinying Huang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyan Zeng
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongchang Zhao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingyu Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Xu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Han
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixia Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- * E-mail: (XC); (YW)
| | - Yi Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- * E-mail: (XC); (YW)
| |
Collapse
|
26
|
Jamal Gilani S, Nasser Bin-Jumah M, Al-Abbasi FA, Shahid Nadeem M, Afzal M, Sayyed N, Kazmi I. Fustin ameliorates hyperglycemia in streptozotocin induced type-2 diabetes via modulating glutathione/Superoxide dismutase/Catalase expressions, suppress lipid peroxidation and regulates histopathological changes. Saudi J Biol Sci 2021; 28:6963-6971. [PMID: 34866996 PMCID: PMC8626260 DOI: 10.1016/j.sjbs.2021.07.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Streptozotocin (STZ) 60 mg/kg, i.p.-induced diabetes in rat’s results into hyperglycemia, impaired oxidative stress, lipid profile, insulin levels and changes in body weight. Treatment with antihyperglycemics and antioxidants are accounted to produce favorable effect in this paradigm. Fustin, a flavonoid derived from Rhus verniciflua, extract of Rhus verniciflua reported to exhibit anti-hyperglycemic, antioxidant, anti-microbial, anti-arthritic effects, anti-obesity effects, antiplatelet effects and anti-cancer effects. However, no evidence is existing on effect of fustin on STZ-induction diabetes. Thus, we evaluated its effects against diabetes in STZ-induced rodents. Blood glucose, Insulin, lipid peroxidation (MDA), superoxide dismutase (SOD), catalase activity (CAT), glutathione (GSH) and lipid profile levels was assessed. After 30 days diabetes induction rodents showed a severe increased blood sugar level, MDA, high density lipid and decreased cholestrol, triglyceride, GSH, SOD, CAT, respectively. Oppositely, treatment with fustin (50–100 mg/kg/p.o., two times daily, 30 days) enhanced blood glucose, lipid profile levels Insulin. Meanwhile, reduced MDA and enhanced GSH, SOD, and CAT in diabetic rats. Glibenclamide 5 mg/kg/p.o. also enhanced diabetes-induced complications and decreased oxidative stress. Further histopathology of pancreas confirms the protective effect fustin in STZ-induction diabetes in animals. In conclusion, the study revealed treatments with fustin avoid the changes in body weight, blood glucose, lipid profile and oxidative stress. As a results of these finding may lead to the growth of a choice of medicine for hyperglycemic in the future.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | - Nadeem Sayyed
- Clinical Research Department, Meril Life Sciences Pvt. Ltd., India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Corresponding author.
| |
Collapse
|
27
|
The Efficacy of Long-Term Chinese Herbal Medicine Use on Lung Cancer Survival Time: A Retrospective Two-Center Cohort Study with Propensity Score Matching. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5522934. [PMID: 34475962 PMCID: PMC8407994 DOI: 10.1155/2021/5522934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/13/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023]
Abstract
Objective To explore the efficacy of long-term use of Chinese herbal medicine (CHM) on survival time of lung cancer. Methods We conducted a retrospective cohort study on lung cancer patients. A propensity score matching (PSM) was performed to balance the covariates. Progression-free survival (PFS) was the primary endpoint and overall survival (OS) was the secondary endpoint. Patients who received CHM therapy from the initial date of diagnosis of lung cancer were included in the CHM group. Patients who were not treated with CHM during the same interval were categorized in the control group. A Cox regression model was used to explore the prognostic factors related to lung cancer. Hazard ratios of different subgroups were also analyzed. Results A total of 1134 patients were included in our study: 761 patients were in the CHM group and 373 patients were in the control group. After PSM, the mPFS and mOS in the CHM group were 70.4 months and 129.1 months, respectively, while the mPFS and mOS in the control group were 23.8 months and 99.7 months, respectively. The results of survival analysis on each stage demonstrated that patients may benefit from the long-term CHM treatment especially for patients with early stage. One-year to ten-year progression-free survival rates in the CHM group were higher than those in the control group (p < 0.001). COX multivariate regression analysis indicated that CHM treatment, female, low age at diagnosis, early tumor stage, and surgery were independent protective factors against recurrence and metastasis of lung cancer. Subgroup analysis showed that CHM treatment could reduce the risk of recurrence and metastasis in each subgroup (p < 0.01). Conclusion Long-term CHM treatment with the Fuzheng Quxie Formula, which can be flexibly applied in the course of lung cancer treatment, not only has a positive influence on the progression-free survival time of lung cancer patients, but also reduces the risk of recurrence and metastasis of lung cancer.
Collapse
|
28
|
Yeh TH, Lin JY. Active Ingredients from Euodia ruticarpa Steam Distilled Essential Oil Inhibit PC-3 Prostate Cancer Cell Growth via Direct Action and Indirect Immune Cells Conditioned Media In Vitro. Curr Issues Mol Biol 2021; 43:996-1018. [PMID: 34563040 PMCID: PMC8928987 DOI: 10.3390/cimb43020071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Active constituents isolated from Euodia ruticarpa (ER) steam distilled essential oil (SDEO) against PC-3 prostate cancer cell growth remain unclear. To clarify the puzzle, ER SDEO was extracted and further resolved into six isolated fractions ERF1-F6 with Sephadex LH-20 gel filtration chromatography to analyze their biological activities. Active ingredients in the isolated fractions were analyzed with GC-MS. Potential isolated fractions were selected to treat PC-3 cells with direct action and indirect treatment by mouse splenocyte- (SCM) and macrophage-conditioned media (MCM). The relationship between PC-3 cell viabilities and corresponding total polyphenols, flavonoid contents as well as Th1/Th2 cytokine profiles in SCM was analyzed using the Pearson product-moment correlation coefficient (r). As a result, ERF1-F3 was abundant in total polyphenols and flavonoids contents with diverse active ingredients. Treatments with ERF1-F3 at appropriate concentrations more or less inhibit PC-3 cell growth in a direct action manner. Only SCM, respectively, cultured with ER SDEO and ERF1-F3 markedly enhanced the effects to inhibit PC-3 cell growth, suggesting that secretions by splenocytes might involve anti-PC-3 effects. There are significantly negative correlations between PC-3 cell viabilities and IL-2, IL-10 as well as IL-10/IL-2 ratios in the corresponding SCM. Total polyphenol and flavonoid contents in the media cultured with ER SDEO isolated fractions positively correlated with IL-10 (Th2) and IL-10/IL-2 (Th2/Th1) cytokine secretion ratios by splenocytes, indicating that polyphenol and flavonoid components in ER SDEO isolated fractions promote Th2-polarized and anti-inflammatory characteristics. These new findings concluded that the inhibitory effects against PC-3 prostate cancer cell growth are attributed to active anti-inflammatory ingredients in ER SDEO and its active ERF1-F3 fractions through direct action and indirect treatment by modulating splenocytes' cytokine secretion profiles.
Collapse
Affiliation(s)
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan;
| |
Collapse
|
29
|
Jaye K, Li CG, Bhuyan DJ. The complex interplay of gut microbiota with the five most common cancer types: From carcinogenesis to therapeutics to prognoses. Crit Rev Oncol Hematol 2021; 165:103429. [PMID: 34293459 DOI: 10.1016/j.critrevonc.2021.103429] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
The association between human gut microbiota and cancers has been an evolving field of biomedical research in recent years. The gut microbiota is composed of the microorganisms residing in the gastrointestinal system that interact with the host to regulate behaviours and biochemical processes within the gut. This symbiotic physiological interaction between the gut and the microbiota plays a significant role in the modulation of gut homeostasis, in which perturbations to the microbiota, also known as dysbiosis can lead to the onset of diseases, including cancer. In this review, we analysed the current literature to understand the role of gut microbiota in the five most prevalent cancer types, namely colon (colorectal), lung, breast, prostate, and stomach cancers. Recent studies have observed the immunomodulatory and anti-tumoural effects of gut microbiota in cancers. Furthermore, gut microbial dysbiosis can induce the release of toxic metabolites and exhibit pro-tumoural effects in the host. The gut microbiota was observed to have clinical implications in each cancer type in addition to regulating the efficacy of standard chemotherapy and natural anticancer agents. However, further research is warranted to understand the complex role of gut microbiota in the prevention, diagnosis, treatment, and prognoses of cancer.
Collapse
Affiliation(s)
- Kayla Jaye
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
30
|
Thirunavukkarasu MK, Shin WH, Karuppasamy R. Exploring safe and potent bioactives for the treatment of non-small cell lung cancer. 3 Biotech 2021; 11:241. [PMID: 33968584 DOI: 10.1007/s13205-021-02797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/28/2022] Open
Abstract
Activating and suppressing mutations in the MAPK pathway receptors are the primary causes of NSCLC. Of note, MEK inhibition is considered a promising strategy because of the diverse structures and harmful effects of upstream receptors in MAPK pathway. Thus, we explore a total of 1574 plant-based bioactive compounds activity against MEK using an energy-based virtual screening strategy. Molecular docking, binding free energy, and drug-likeness analysis were performed through GLIDE, Prime MM-GBSA, and QikProp module, respectively. The findings indicate that 5-O-caffeoylshikimic acid has an increased binding affinity to MEK protein. Further, molecular dynamic simulations and MM-PBSA analysis were performed to explore the ligand activity in real-life situations. In essence, compounds inhibitory activity was validated across 77 lung cancer cell lines using multimodal attention-based neural network algorithm. Eventually, our analysis highlight that 5-O-caffeoylshikimic acid obtained from the bark of Rhizoma smilacis glabrae would be developed as a potential compound for treating NSCLC.
Collapse
Affiliation(s)
- Muthu Kumar Thirunavukkarasu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014 India
| | - Woong-Hee Shin
- Department of Chemical Science Education, College of Education, Sunchon National University, Suncheon, Republic of Korea
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014 India
| |
Collapse
|
31
|
Xie Y, Chen G. Dioscin induces ferroptosis and synergistic cytotoxicity with chemotherapeutics in melanoma cells. Biochem Biophys Res Commun 2021; 557:213-220. [PMID: 33878610 DOI: 10.1016/j.bbrc.2021.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
In this study, we evaluated the anti-tumor effects of dioscin, a steroidal saponin, on melanoma cells. Dioscin significantly inhibited cell viability and induced cell death of melanoma cells in a time- and dose- dependent manner. Furthermore, dioscin increased the concentration of intracellular ferrous irons, MDA and ROS. This effect could be inhibited by L-g-glutamyl-p-nitroanilide (GPNA), compound 968 and ferroptosis inhibitor ferrostatin-1 (Fer-1). Furthermore, dioscin induced ferroptosis by affecting the expression of transferrin and ferroportin which are regulators of intracellular levels of iron. Finally, dioscin in combination with various chemotherapeutic agents showed synergistic effects against melanoma cells. Our data suggested that dioscin exerted anti-tumor effects in melanoma cells by inducing ferroptosis. Dioscin alone or with other agents might be applied as a promising strategy to treat melanoma.
Collapse
Affiliation(s)
- Yijie Xie
- Department of Dermatology, The Affiliated People's Hospital of Ningbo University, 315100, Ningbo, Zhejiang, China.
| | - Guangxiong Chen
- Department of Dermatology, The Affiliated People's Hospital of Ningbo University, 315100, Ningbo, Zhejiang, China
| |
Collapse
|
32
|
Li JK, Chou JY, Yin CL, Fu XQ, Wu Y, Chen YJ, Bai JX, Wu JY, Liang C, Yu ZL. A two-herb formula inhibits STAT3 signaling and exerts anti-melanoma effects in cell and animal models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113671. [PMID: 33307054 DOI: 10.1016/j.jep.2020.113671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malignant melanoma is a fatal cancer. Signal transducer and activator of transcription 3 (STAT3) has been proposed as a therapeutic target of melanoma. An herbal formula Huai-Hua-San (HHS) comprising Sophorae Flos (SF) and Gardeniae Fructus (GF) is traditionally used for treating cancers including melanoma, but the pharmacological basis is unknown. AIMS OF THIS STUDY This study aimed to investigate the anti-melanoma effects of an ethanolic extract of HHS (HHSE), and explore the involvement of STAT3 signaling in the effects. MATERIALS AND METHODS An UPLC-TOF/MS method was developed to control the quality of HHSE. A B16F10 allograft mouse model and three melanoma cell lines (B16F10, A375 and A2058) were used to determine the anti-melanoma effects of HHSE. Dacarbazine (DTIC) and Stattic were used as positive controls. Cell viability was detected using MTT and crystal violet staining assays. Cell apoptosis was analyzed by flow cytometry after the cells were stained with Annexin-V/PI. Cell invasive ability was examined using the transwell assay. Protein levels were determined by Western blotting. RESULTS The contents of crocin I, crocin II, quercetin and kaempferol in HHSE were 0.59%, 0.98%, 4.66% and 1.15%, respectively. A clinically relevant dose of HHSE (0.1 g/kg/day, i.g. for 15 consecutive days) significantly suppressed B16F10 tumor growth in mice. HHSE dose-dependently reduced cell viability and dampened invasion of, and induced apoptosis in, melanoma cells. Mechanistic studies revealed that HHSE inhibited the phosphorylation/activation of STAT3 in B16F10 allografts and in cultured melanoma cells. In cell models, HHSE also inhibited the phosphorylation of STAT3 upstream kinases, JAK2 (Tyr1007/1008) and Src (Tyr416), lowered STAT3 nuclear levels, and down-regulated the protein levels of STAT3-targeted molecules. Over-activation of STAT3 in A375 cells significantly attenuated the cytotoxic effects of HHSE. CONCLUSIONS HHSE exhibits anti-melanoma effects in cell and mouse models. Inhibition of STAT3 signaling contributes to the anti-melanoma mechanisms of HHSE. Our findings lay a groundwork for developing HHSE as a modern agent for melanoma management, and provide pharmacological justifications for the traditional use of HHS in treating melanoma.
Collapse
Affiliation(s)
- Jun-Kui Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ji-Yao Chou
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Cheng-Le Yin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jing-Xuan Bai
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jia-Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research and State Key Lab of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
33
|
Lee YC, Chen YH, Huang YC, Lee YF, Tsai MY. Effectiveness of Combined Treatment with Traditional Chinese Medicine and Western Medicine on the Prognosis of Patients with Breast Cancer. J Altern Complement Med 2021; 26:833-840. [PMID: 32924556 DOI: 10.1089/acm.2019.0200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: Traditional Chinese Medicine (TCM) can be used to balance the body's immunity and tumor development during different stages of cancer treatment. Recently, TCM has been an important part of the health care system for breast cancer in Taiwan. This study was conducted as a prospective observation of the prognosis of Western medicine and combined treatment of TCM and Western medicine. Methods: Between April 2014 and March 2015, eligible participants were treated with Western medicine (n = 16) or TCM plus Western medicine (n = 29). The TCM treatment for patients followed the principles of a breast cancer protocol that had been developed in the Integrative Cancer Center. The outcome measures included quality of life, frequency of symptom distress, and clinical safety, and were measured with the Functional Assessment of Cancer Therapy-General (FACT-G), the Common Terminology Criteria for Adverse Events (CTCAE) Scale, and laboratory examinations, respectively. Data on these measures were collected at baseline and at 3 months after treatment initiation. Survival was estimated by Kaplan-Meier curves. Results: The two treatment groups did not differ significantly at baseline in terms of demographic information, FACT-G score, or frequency of symptom distress, except for fatigue, sleep disturbance, and mucositis. Most laboratory examinations did not differ significantly between the two groups, but higher red blood cell counts and lower liver function were found with the combined treatment than with Western medicine alone (p < 0.05). The mean overall survival rates were 25.5 months for the combined group and 22.7 months for the Western medicine group (p = 0.037). Conclusion: The results of this study suggest that combining Western and TCM therapy may have a favorable effect on the prognosis of breast cancer patients. Chinese herbal medicine is worth studying in a future larger cohort with a control group. It also warrants verification as a preventive intervention.
Collapse
Affiliation(s)
- Yi-Chiao Lee
- Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Hao Chen
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yun-Fang Lee
- Department of Nursing, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Yen Tsai
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
34
|
A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Artemisia annua on the Treatment of Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8947304. [PMID: 33688369 PMCID: PMC7920725 DOI: 10.1155/2021/8947304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/07/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
Objective To investigate the potential active ingredients and underlying mechanisms of Artemisia annua (AA) on the treatment of hepatocellular carcinoma (HCC) based on network pharmacology. Methods In the present study, we used a network pharmacological method to predict its underlying complex mechanism of treating HCC. First, we obtained relative compounds of AA based on the traditional Chinese medicine systems pharmacology (TCMSP) database and collected potential targets of these compounds by target fishing. Then, we built HCC-related targets target by the oncogenomic database of hepatocellular carcinoma (OncoDB.HCC) and biopharmacological network (PharmDB-K) database. Based on the matching results between AA potential targets and HCC targets, we built a protein-protein interaction (PPI) network to analyze the interactions among these targets and screen the hub targets by topology. Furthermore, the function annotation and signaling pathways of key targets were performed by Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using DAVID tools. Finally, the binding capacity between active ingredients and key targets was validated by molecular docking. Results A total of 19 main active ingredients of AA were screened as target prediction; then, 25 HCC-related common targets were seeked out via multiple HCC databases. The areas of nodes and corresponding degree values of EGFR, ESR1, CCND1, MYC, EGF, and PTGS2 were larger and could be easily found in the PPI network. Furthermore, GO and KEGG enrichment analysis showed that these key targets were significantly involved in multiple biological processes and pathways which participated in tumor cell proliferation, apoptosis, angiogenesis, tumor invasion, and metastasis to accomplish the anti-HCC activity. The molecular docking analysis showed that quercetin could stably bind to the active pocket of EGFR protein 4RJ5 via LibDock. Conclusion The anticancer effects of AA on HCC were predicted to be associated with regulating tumor cell proliferation, apoptosis, angiogenesis, tumor invasion, and metastasis via various pathways such as the EGFR signaling pathway, ESR1 signaling pathway, and CCND1 signaling pathway. It is suggested that AA might be developed as a broad-spectrum antitumor drug based on its characteristics of multicomponent, multipath, and multitarget.
Collapse
|
35
|
Wang CY, Wang TC, Liang WM, Hung CH, Chiou JS, Chen CJ, Tsai FJ, Huang ST, Chang TY, Lin TH, Liao CC, Huang SM, Li TM, Lin YJ. Effect of Chinese Herbal Medicine Therapy on Overall and Cancer Related Mortality in Patients With Advanced Nasopharyngeal Carcinoma in Taiwan. Front Pharmacol 2021; 11:607413. [PMID: 33708119 PMCID: PMC7941275 DOI: 10.3389/fphar.2020.607413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/29/2020] [Indexed: 01/03/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer involving epithelial squamous-cell carcinoma of the nasopharynx that mainly occurs in individuals from East and Southeast Asia. We investigated whether Chinese herbal medicine (CHM) as a complementary therapy offers benefits to these patients. We retrospectively evaluated the Taiwan Cancer Registry (Long Form) database for patients with advanced NPC, using or not using CHM, between 2007–2013. Cox proportional-hazard model and Kaplan‒Meier survival analyses were applied for patient survival. CHM-users showed a lower overall and cancer-related mortality risk than non-users. For advanced NPC patients, the overall mortality risk was 0.799-fold for CHM-users, after controlling for age, gender, and Charlson comorbidity index (CCI) score (Cancer stages 3 + 4: adjusted hazard ratio [aHR]: 0.799, 95% confidence interval [CI]: 0.676–0.943, p = 0.008). CHM-users also showed a lower cancer-related mortality risk than non-users (aHR: 0.71, 95% CI: 0.53–0.96, p = 0.0273). Association rule analysis showed that CHM pairs were Ban-Zhi-Lian (BZL; Scutellaria barbata D.Don) and For single herbs, Bai-Hua-She-She-Cao (Herba Hedyotis Diffusae; Scleromitrion diffusum (Willd.) R.J.Wang (syn. Hedyotis diffusa Willd.) and Mai-Men-Dong (MMD; Ophiopogon japonicus (Thunb.) Ker Gawl.), and Gan-Lu-Yin (GLY) and BHSSC. Network analysis revealed that BHSSC was the core CHM, and BZL, GLY, and Xin-Yi-Qing-Fei-Tang (XYQFT) were important CHMs in cluster 1. In cluster 2, ShengDH, MMD, Xuan-Shen (XS; Scrophularia ningpoensis Hensl.), and Gua-Lou-Gen (GLG; Trichosanthes kirilowii Maxim.) were important CHMs. Thus, as a complementary therapy, CHM, and particularly the 8 CHMs identified, are important for the treatment of advanced NPC patients.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tang-Chuan Wang
- Department of Public Health, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
36
|
Network Pharmacology-Based Study on the Mechanism of Scutellariae Radix for Hepatocellular Carcinoma Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8897918. [PMID: 33163086 PMCID: PMC7607277 DOI: 10.1155/2020/8897918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 10/17/2020] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor without effective therapeutic drugs for most patients in advanced stages. Scutellariae Radix (SR) is a well-known anti-inflammatory and anticarcinogenic herbal medicine. However, the mechanism of SR against HCC remains to be clarified. In the present study, network pharmacology was utilized to characterize the mechanism of SR on HCC. The active components of SR and their targets were collected from the traditional Chinese medicine systems pharmacology database and the traditional Chinese medicine integrated database. HCC-related targets were acquired from the liver cancer databases OncoDB.HCC and Liverome. The gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway were analyzed using the Database for Annotation, Visualization, and Integrated Discovery. Component-component target and protein-protein interaction networks were set up. A total of 143 components of SR were identified, and 37 of them were considered as candidate active components. Fifty targets corresponding to 29 components of SR were mapped with targets of HCC. Functional enrichment analysis indicated that SR exerted an antihepatocarcinoma effect by regulating pathways in cancer, hepatitis B, viral carcinogenesis, and PI3K-Akt signaling. The holistic approach of network pharmacology can provide novel insights into the mechanistic study and therapeutic drug development of SR for HCC treatment.
Collapse
|
37
|
Lin T, Liang C, Peng W, Qiu Y, Peng L. Mechanisms of Core Chinese Herbs against Colorectal Cancer: A Study Based on Data Mining and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8325076. [PMID: 33193800 PMCID: PMC7641702 DOI: 10.1155/2020/8325076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is now the second most deadly cancer globally. Chinese herbal medicine (CHM) plays an indispensable role in CRC treatment in China. However, the core herbs (the CHs) in the treatment of CRC and their underlying therapeutic mechanisms remain unclear. This study aims to uncovering the CHs and their mechanisms of action of CRC treatment, applying data mining and network pharmacology approach. First, CHM prescriptions treating CRC were collected from clinical studies from the Chinese National Knowledge Infrastructure (CNKI) and MEDLINE databases, and the CHs were identified through data mining. Then, the bioactive compounds and the corresponding putative targets of the CHs were obtained from three traditional Chinese medicine (TCM) databases. CRC related targets were acquired from three disease databases; the overlapping targets between the CHs and CRC were identified as the therapeutic targets. Subsequently, functional enrichment analysis was performed to elucidate the mechanisms of the CHs on CRC. Moreover, networks were constructed to screen the major bioactive compounds and therapeutic targets. Finally, prognostic values of the major target genes were evaluated by survival analysis, and molecular docking simulation was performed to assess the binding affinity of key targets and major bioactive compounds. It came out that 10 the CHs from 113 prescriptions and 190 bioactive compounds with 118 therapeutic targets were identified. The therapeutic targets were mainly enriched in the biological progress of transcription, apoptosis, and response to cytokine. Various cancer-associated signaling pathways, including microRNAs, TNF, apoptosis, PI3K-Akt, and p53, were involved. Furthermore, 15 major bioactive compounds and five key target genes (VEGFA, CASP3, MYC, CYP1Y1, and NFKB1) with prognostic significance were identified. Additionally, most major bioactive compounds might bind firmly to the key target proteins. This study provided an overview of the anti-CRC mechanisms of the CHs, which might refer to the regulation of apoptosis, transcription, and inflammation.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Caijun Liang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Wenya Peng
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yuqin Qiu
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Lisheng Peng
- Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen 518033, China
| |
Collapse
|
38
|
Mosaddad SA, Beigi K, Doroodizadeh T, Haghnegahdar M, Golfeshan F, Ranjbar R, Tebyanian H. Therapeutic applications of herbal/synthetic/bio-drug in oral cancer: An update. Eur J Pharmacol 2020; 890:173657. [PMID: 33096111 DOI: 10.1016/j.ejphar.2020.173657] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Oral cancer, as one of the most prevalent and invasive cancers that invade local tissue, can cause metastasis, and have high mortality. In 2018, around 355,000 worldwide oral cancers occurred and resulted in 177,000 deaths. Estimates for the year 2020 include about 53,260 new cases added to previous year's cases, and the estimated death toll from this cancer in 2020 is about 10,750 deaths more than previous years. Despite recent advances in cancer diagnosis and treatment, unfortunately, 50% of people with cancer cannot be cured. Of course, it should be remembered that the type of treatment used greatly influences patient recovery. There are not many choices when it comes to treating oral cancer. Research efforts focusing on the discovery and evolution of innovative therapeutic approaches for oral cancer are essential. Such traditional methods of treating this type of cancer like surgery and chemotherapy, have evolved dramatically during the past thirty to forty years, but they continue to cause panic among patients due to their side effects. Therefore, it is necessary to study and use drugs that are less risky for the patient as well as to provide solutions to reduce chemotherapy-induced adverse events that prevent many therapeutic risks. As mentioned above, this study examines low-risk therapies such as herbal remedies, biological drugs, and synthetic drugs in the hope that they will be useful to physicians, researchers, and scientists around the world.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Beigi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Doroodizadeh
- Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Haghnegahdar
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Golfeshan
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Network Pharmacology-Based and Clinically Relevant Prediction of the Potential Targets of Chinese Herbs in Ovarian Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8965459. [PMID: 33150184 PMCID: PMC7603558 DOI: 10.1155/2020/8965459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/01/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Reports increasingly suggest that Chinese herbal medicine (CHM) has been used to treat ovarian cancer (OvCa) with a good curative effect; however, the molecular mechanisms underlying CHM are still unclear. In this retrospective study, we explored CHM's molecular targets for the treatment of OvCa based on clinical data and network pharmacology. We used the Kaplan-Meier method and Cox regression analysis to verify the survival rate of 202 patients with CHM-treated OvCa. The association between CHM and survival time was analyzed by bivariate correlation. A target network of CHM active ingredients against OvCa was established via network pharmacology. Cox regression analysis showed that CHM is an independent favorable prognostic factor. The median survival time was 91 months in the CHM group and 65 months in the non-CHM group. The survival time of FIGO stage III patients in the two groups was 91 months and 52 months, and the median survival period of FIOG stage IV patients was 60 months and 22 months, respectively (p < 0.001). Correlation analysis demonstrated that 12 herbs were closely associated with prognosis, especially in regard to the long-term benefits. Bioinformatics analysis indicated that the anti-OvCa activity of these 12 herbs occurs mainly through the regulation of apoptosis-related protein expression, which promotes OvCa cell apoptosis and inhibits OvCa development. They also regulate the progress of OvCa treatment by promoting or inhibiting protein expression on the p53 signaling pathway and by inhibiting the NF-κB signaling pathway by directly inhibiting NF-κB.
Collapse
|
40
|
Li J, Meng X, Wang C, Zhang H, Chen H, Deng P, Liu J, Huandike M, Wei J, Chai L. Coptidis alkaloids extracted from Coptis chinensis Franch attenuate IFN-γ-induced destruction of bone marrow cells. PLoS One 2020; 15:e0236433. [PMID: 32706801 PMCID: PMC7380622 DOI: 10.1371/journal.pone.0236433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Coptidis alkaloids are the primary active components of Coptis chinensis Franch. Clinical and pharmacodynamic studies have confirmed that Coptidis alkaloids have multiple therapeutic effects including anti-inflammatory, antioxidant and antitumor effects, and they are usually used to treat various inflammatory disorders and related diseases. Mouse bone marrow cells (BMCs) were isolated from BALB/c mice. Immune-mediated destruction of BMCs was induced by interferon (IFN) -γ. High-performance liquid chromatography-electrospray ionization/ mass spectrometry was used to analyze the ingredients of the aqueous extract from Coptis chinensis Franch. The results confirmed that Coptidis alkaloids were the predominant ingredients in the aqueous extract from Coptis chinensis. The functional mechanism of Coptidis alkaloids in inhibiting immune-mediated destruction of BMCs was studied in vitro. After Coptidis alkaloid treatment, the percentages of apoptotic BMCs and the proliferation and differentiation of helper T (Th) cells and regulatory T (Treg) cells were measured by flow cytometry. The expression and distribution of T-bet in BMCs were observed by immunofluorescence. Western blotting analysis was used to assay the expression of key molecules in the Fas apoptosis and Jak/Stats signaling pathways in BMCs. We identified five alkaloids in the aqueous extract of Coptis chinensis. The apoptotic ratios of BMCs induced by IFN-γ were decreased significantly after Coptidis alkaloid treatment. The levels of key molecules (Fas, Caspase-3, cleaved Caspase-3, Caspase-8 and Caspase-8) in Fas apoptosis signaling pathways also decreased significantly after treatment with low concentrations of Coptidis alkaloids. Coptidis alkaloids were also found to inhibit the proliferation of Th1 and Th17 cells and induce the differentiation of Th2 and Treg cells; further, the distribution of T-bet in BMCs was decreased significantly. In addition, the levels of Stat-1, phospho-Stat-1 and phospho-Stat-3 were also reduced after Coptidis alkaloid treatment. These results indicate that Coptidis alkaloids extracted by water decoction from Coptis chinensis Franch could inhibit the proliferation and differentiation of T lymphocytes, attenuate the apoptosis of BMCs, and suppress the immune-mediated destruction of the BMCs induced by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Jinyu Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Meng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changzhi Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijie Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hening Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peiying Deng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyier Huandike
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wei
- Pharmaceutical Departments, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- * E-mail: (LC); (JW)
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- * E-mail: (LC); (JW)
| |
Collapse
|
41
|
Niu W, Xu L, Li J, Zhai Y, Sun Z, Shi W, Jiang Y, Ma C, Lin H, Guo Y, Liu Z. Polyphyllin II inhibits human bladder cancer migration and invasion by regulating EMT-associated factors and MMPs. Oncol Lett 2020; 20:2928-2936. [PMID: 32782609 PMCID: PMC7399771 DOI: 10.3892/ol.2020.11839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) serves vital roles in the angiogenesis, cell invasion and metastasis of various malignant tumors, including bladder cancer. Traditional Chinese medicinal herbs have been demonstrated to exhibit anticancer properties. The present study aimed to screen the sensitivity of bladder cancer to natural compounds by using six classic anti-inflammatory and detoxifying herbs, including the ethanol extract of Paris polyphylla (PPE), Scutellaria barbata, Pulsatillae decoction, Dahuang Huanglian Xiexin decoction, Bazhengsan and Hedyotis diffusa combined with S. barbata, were used to treat bladder cancer cells in vitro. Bladder cancer was more sensitive to PPE compared with the other tested herbs, and PPE significantly suppressed bladder cancer cell migration and invasion. Thus, the present study focused on PPE. Bladder cancer cells were treated with monomer components of PPE, including polyphyllin (PP) I, PPII, PPVI and PPVII. The results demonstrated that PPII treatment significantly inhibited cancer cell migration and invasion, increased the expression level of E-cadherin and decreased the levels of N-cadherin, snail family transcriptional repressor 2, twist family bHLH transcription factor 1, matrix metallopeptidase (MMP) 2 and MMP9 compared with those in the control group (untreated cells). These results suggested that PPII treatment may suppress bladder cancer cell migration and invasion by regulating the expression of EMT-associated genes and MMPs. Therefore, PPE and PPII may have antimetastatic effects and PPII may serve as a potential therapeutic option for inhibiting bladder cancer metastasis.
Collapse
Affiliation(s)
- Weipin Niu
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Li Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jingwei Li
- Department of Breast Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yi Zhai
- Medical Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Zhonghua Sun
- Medical Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Wei Shi
- Department of Gynecology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuehua Jiang
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Chenchen Ma
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Haiqing Lin
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yanxia Guo
- Engineering Laboratory of Shandong Province for Structure and Functional Reconstruction of Urinary Organs, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhiyong Liu
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
42
|
Zhang SQ, Xu HB, Zhang SJ, Li XY. Identification of the Active Compounds and Significant Pathways of Artemisia Annua in the Treatment of Non-Small Cell Lung Carcinoma based on Network Pharmacology. Med Sci Monit 2020; 26:e923624. [PMID: 32474568 PMCID: PMC7285955 DOI: 10.12659/msm.923624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Artemisia annua exerts powerful effects in non-small cell lung carcinoma (NSCLC). Some studies have shown that Artemisia annua possesses the characteristics of new therapeutic drugs for NSCLC patients. However, the underlying molecular mechanism of Artemisia annua anti-NSCLC is not yet fully elucidated because Artemisia annua contains hundreds of ingredients. This study aimed to conduct network pharmacological analysis on the mechanism of action of Artemisia annua against NSCLC. Material/Methods The active ingredients and corresponding potential targets of Artemisia annua were searched and screened in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Then through The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI) databases to establish NSCLC related targets. Based on the matching results of Artemisia annua potential targets and NSCLC targets, a protein–protein interaction (PPI) network was constructed to analyze the interactions between these targets and topologically screen the central targets. Furthermore, Gene Ontology (GO) biological functions analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways enrichment were carried out. Results There were 19 main active ingredients of Artemisia annua screened for target prediction; 40 NSCLC-related common targets were identified via multiple NSCLC databases. The node area and corresponding degree value of AKT1, MYC, CCND1, VEGFA, JUN, MAPK1, EGFR, and ESR1 were large and could be easily found in the PPI network. The aforementioned results were further verified by the analysis of GO biological function and KEGG enrichment analysis. Conclusions The network pharmacology analysis reveals the molecular biological mechanism of Artemisia annua anti-NSCLC via multiple active components, multi-channels, and multi-targets. This suggests that Artemisia annua might be developed as a promising anti-NSCLC drug.
Collapse
Affiliation(s)
- Shu Qiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| | - Hai Bo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| | - Shi Jun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Xin Yu Li
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
43
|
Huang WT, Hung HH, Kao YW, Ou SC, Lin YC, Cheng WZ, Yen ZR, Li J, Chen M, Shia BC, Huang ST. Application of Neural Network and Cluster Analyses to Differentiate TCM Patterns in Patients With Breast Cancer. Front Pharmacol 2020; 11:670. [PMID: 32457636 PMCID: PMC7227602 DOI: 10.3389/fphar.2020.00670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Pattern differentiation is a critical element of the prescription process for Traditional Chinese Medicine (TCM) practitioners. Application of advanced machine learning techniques will enhance the effectiveness of TCM in clinical practice. The aim of this study is to explore the relationships between clinical features and TCM patterns in breast cancer patients. Methods The dataset of breast cancer patients receiving TCM treatment was recruited from a single medical center. We utilized a neural network model to standardize terminologies and address TCM pattern differentiation in breast cancer cases. Cluster analysis was applied to classify the clinical features in the breast cancer patient dataset. To evaluate the performance of the proposed method, we further compared the TCM patterns to therapeutic principles of Chinese herbal medication in Taiwan. Results A total of 2,738 breast cancer cases were recruited and standardized. They were divided into 5 groups according to clinical features via cluster analysis. The pattern differentiation model revealed that liver-gallbladder dampness-heat was the primary TCM pattern identified in patients. The main therapeutic goals of the top 10 Chinese herbal medicines prescribed for breast cancer patients were to clear heat, drain dampness, and detoxify. These results demonstrated that the neural network successfully identified patterns from a dataset similar to the prescriptions of TCM clinical practitioners. Conclusion This is the first study using machine-learning methodology to standardize and analyze TCM electronic medical records. The patterns revealed by the analyses were highly correlated with the therapeutic principles of TCM practitioners. Machine learning technology could assist TCM practitioners to comprehensively differentiate patterns and identify effective Chinese herbal medicine treatments in clinical practice.
Collapse
Affiliation(s)
- Wei-Te Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Hsiu Hung
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Wei Kao
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan.,Research Center of Big Data, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuan Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Zen Cheng
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zi-Rong Yen
- Information Technology Office, China Medical University Hospital, Taichung, Taiwan
| | - Jian Li
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Mingchih Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ben-Chang Shia
- Research Center of Big Data, College of Management, Taipei Medical University, Taipei, Taiwan.,College of Management, Taipei Medical University, Taipei, Taiwan.,Executive Master Program of Business Administration in Biotechnology, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, An-Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
44
|
Lu Z, Xiong W, Xiao S, Lin Y, Yu K, Yue G, Liu Q, Li F, Liang J. Huanglian Jiedu Decoction ameliorates DSS-induced colitis in mice via the JAK2/STAT3 signalling pathway. Chin Med 2020; 15:45. [PMID: 32411291 PMCID: PMC7206681 DOI: 10.1186/s13020-020-00327-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ulcerative colitis (UC) is an intestinal disease which was characterized by intestinal inflammation, mucosal injury and fibrosis. In this paper, the effect of Huanglian Jiedu Decoction (HJD), a well-known traditional Chinese medicine with significant anti-inflammatory effect, on dextran sulphate sodium (DSS)-induced UC in mice and inhibition of JAK2/STAT3 pathway were investigated. Methods BALB/c mice were randomly divided into 6 groups: HJD group (high, medium and low dose), USAN group, UC group, and control group. UC in mice were induced through free access to 3% DSS solution. After being treated with HJD for 8 days, all animals were sacrifice. Pathological examination of colonic specimen was performed by H&E staining. Cytokines (TNF-α, IL-6, and IL-1β) in colon were assayed by ELISA and immunofluorescence, MPO in colon and ATT in serum were detected by ELISA. Moreover, mice in HJD group and UC group were treated with AG490 to inhibit the expression of JAK2 protein, then the expression of JAK2 and STAT3 protein in colon was determined by western blotting and immunofluorescence staining. Furthermore, KI67 in colon was examined by immunohistochemistry, and apoptosis was detected by TUNEL staining, and collagen deposition was assayed by Masson staining after JAK2/STAT3 pathway in UC mice was inhibited by HJD. Results After mice being treated with HJD, the symptoms (weight loss and haematochezia) of UC were alleviated, and the contents of inflammatory cytokines (TNF-α, IL-6 and IL-1β) and MPO in colon were significantly decreased. The expression of JAK2 and STAT3 protein was reduced after administration with HJD. After JAK2/STAT3 pathway being inhibited with HJD, the cell apoptosis, collagen deposition and immunoreactivity of macrophage in colon were significantly reduced, but the expression of Ki67 was markedly enhanced in both UC group and HJD group compare with control group. Conclusions HJD treatment can alleviate intestinal mucosal damage and has the protective effect on UC by downregulating JAK2 and STAT3 expression to reduce inflammation via JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Zhuo Lu
- 1Guangxi University of Chinese Medicine, Nanning, 530001 China
| | - Wanna Xiong
- 2Department of Pharmacy, Guangxi Medical College, Nanning, 530023 China
| | - Simeng Xiao
- 1Guangxi University of Chinese Medicine, Nanning, 530001 China
| | - Yilong Lin
- 1Guangxi University of Chinese Medicine, Nanning, 530001 China
| | - Kai Yu
- 3College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Guihua Yue
- 2Department of Pharmacy, Guangxi Medical College, Nanning, 530023 China
| | - Qiaoming Liu
- 1Guangxi University of Chinese Medicine, Nanning, 530001 China
| | - Fang Li
- 1Guangxi University of Chinese Medicine, Nanning, 530001 China
| | - Jianqin Liang
- 1Guangxi University of Chinese Medicine, Nanning, 530001 China
| |
Collapse
|
45
|
Hoffman RD, Li CY, He K, Wu X, He BC, He TC, Gao JL. Chinese Herbal Medicine and Its Regulatory Effects on Tumor Related T Cells. Front Pharmacol 2020; 11:492. [PMID: 32372963 PMCID: PMC7186375 DOI: 10.3389/fphar.2020.00492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine is an accepted and integral part of clinical cancer management alongside Western medicine in China. However, historically TCM physicians were unaware of the chemical constituents of their formulations, and the specific biological targets in the body. Through HPLC, flow cytometry, and other processes, researchers now have a much clearer picture of how herbal medicine works in conjunction with the immune system in cancer therapy. Among them, the regulation of tumor-related T cells plays the most important role in modulating tumor immunity by traditional Chinese medicine. Encouraging results have been well-documented, including an increase in T cell production along with their associated cytokines, enhanced regulation of Tregs and important T cell ratios, the formation and function of Tregs in tumor microenvironments, and the promotion of the number and function of normal T Cells to reduce conventional cancer therapy side effects. Chinese herbal medicine represents a rich field of research from which to draw further inspiration for future studies. While promising agents have already been identified, the vast majority of Chinese herbal mechanisms remain undiscovered. In this review, we summarize the effects and mechanisms of specific Chinese herbs and herbal decoctions on tumor related T cells.
Collapse
Affiliation(s)
- Robert D Hoffman
- International Education College, Zhejiang Chinese Medical University, Hangzhou, China.,DAOM Department, Five Branches University, San Jose, CA, United States
| | - Chang-Yu Li
- Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kai He
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States.,School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Bai-Cheng He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States.,School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jian-Li Gao
- Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Xu QN, Zhu D, Wang GH, Lin T, Sun CL, Ding R, Tian WJ, Chen HF. Phenolic glycosides and flavonoids with antioxidant and anticancer activities from Desmodium caudatum. Nat Prod Res 2020; 35:4534-4541. [PMID: 32162979 DOI: 10.1080/14786419.2020.1739044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Descaudatine A (1), an undescribed phenolic glycoside, along with a known analogue (2) and ten flavonoids (3-12), were isolated from the whole plant of Desmodium caudatum. Compounds 1 and 4 exhibited potent antioxidant activities with the IC50 of 58.59 μM and 31.31 μM, respectively, which were approached to that of the positive control Vitamin C (IC50 = 46.32 μM). Meanwhile, 12 showed moderate antioxidant activity with the IC50 of 173.9 μM. Besides, compounds 3 and 6 inhibited the proliferation of HeLa cells with IC50 values of 56.14 μM and 69.04 μM, respectively. Further studies indicated that 3 and 6 could dose-dependently induce PARP cleavage and might trigger caspase-3, 8, 9 activation to induce apoptosis. RXRα is an ideal anticancer target of nuclear receptor. The reporter gene assay of RXRα indicated that 3 and 6 could inhibited the 9-cis-RA induced RXRα transcription in a concentration-dependent manner.
Collapse
Affiliation(s)
- Qian-Nan Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Dan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Guang-Hui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Cui-Ling Sun
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Rong Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Wen-Jing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Hai-Feng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
47
|
Song Z, Xiang X, Li J, Deng J, Fang Z, Zhang L, Xiong J. Ruscogenin induces ferroptosis in pancreatic cancer cells. Oncol Rep 2020; 43:516-524. [PMID: 31894321 PMCID: PMC6967081 DOI: 10.3892/or.2019.7425] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is characterized by aggressive and highly metastatic phenotypes. This disease exhibits a poor patient prognosis and is considered a challenge due to the limited treatment options encountered in clinical practice. Previous studies have shown that ruscogenin, a saponin found in the root of Ophiopogon japonicus, exerts a wide range of biological functions including anticancer activity. In the present study, the effects of ruscogenin were investigated on pancreatic cancer cells and the potential molecular mechanism of this compound was explored. Cell viability was assessed using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. Cell death was measured by trypan blue staining and by flow cytometry. The number of iron oxide nanoparticles was measured using Prussian blue staining. Reactive oxygen species (ROS) production was assessed using flow cytometry with dihydroethidium staining. Protein expression of the associated genes was assayed by western blotting. Furthermore, in vivo experiments were conducted to confirm the antitumor effects and assay the potential toxicity of ruscogenin in a nude mouse xenograft model. The results indicated that ruscogenin significantly repressed cell viability and induced cell death of pancreatic cancer cells in vitro in a dose‑ and time‑dependent manner. Furthermore, ruscogenin increased the concentration of intracellular ferrous irons and the production of ROS. This effect was inhibited by deferoxamine (DFO). Ruscogenin induced ferroptosis by regulating the levels of transferrin and ferroportin. These two proteins were involved in ruscogenin‑induced pancreatic cancer cell death. Finally, in vivo experiments demonstrated the antitumor effect of ruscogenin on pancreatic cancer xenografts in the absence of apparent toxicity. Taken collectively, the data demonstrated that ruscogenin exhibited anticancer effects in pancreatic cancer cells by inducing ferroptosis. The findings suggested that this compound may be further developed as a promising anticancer candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwang Song
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
48
|
Liu H, Liao W, Fan L, Zheng Z, Liu D, Zhang QW, Yang A, Liu F. Ethanol extract of Ophiorrhiza pumila suppresses liver cancer cell proliferation and migration. Chin Med 2020; 15:11. [PMID: 32021647 PMCID: PMC6995237 DOI: 10.1186/s13020-020-0291-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/16/2020] [Indexed: 01/20/2023] Open
Abstract
Background Ophiorrhiza pumila, belonging to the genus Ophiorrhiza (Rubiaceae), is distributed throughout tropical and subtropical Asia. In this study, we evaluated for the first time the anti-proliferation and anti-migration effects of ethanol extract of O. pumila (OPE) on HepG2 and SMMC-7721 cells, and explored the related mechanism. Methods OPE was prepared by percolation with 95% ethanol and its main compounds were analyzed by HPLC-MS2. The anti-proliferation effect of OPE was evaluated by the CCK-8 assay and colony formation assay. Cell cycle distribution, apoptosis, and reactive oxygen species (ROS) level were detected by flow cytometry. Migration and invasion abilities were detected by Transwell migration/invasion assays. The expression of correlated proteins was determined using western blotting. Results A total of 5 tentative compounds were identified from OPE, including pumiloside, deoxypumiloside, camptothecin, aknadinine, and β-stigmasterol. OPE displayed strong cytostatic effects on HepG2 and SMMC-7721 cells. OPE induced G2/M phase cell cycle arrest, increased apoptosis, and augmented ROS production in these cell lines. In addition, OPE possessed a significant inhibition on cell migration and invasion by reduction of MMP-9 and MMP-2 expression. Moreover, OPE significantly suppressed the phosphorylation of p65. Conclusions Our data showed that OPE suppresses liver cancer cell proliferation and migration, which is possibly involved with the inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Hui Liu
- 1Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, People's Republic of China
| | - Wanqin Liao
- 1Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, People's Republic of China
| | - Lixia Fan
- 1Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, People's Republic of China
| | - Zhaoguang Zheng
- 1Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, People's Republic of China
| | - Dahai Liu
- 1Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Sar, People's Republic of China
| | - Anping Yang
- 1Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, People's Republic of China
| | - Fang Liu
- 1Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, People's Republic of China
| |
Collapse
|
49
|
Wang G, Luo Y, Yang J, Hou C, Li J. Inhibitory effects of polyphenols-enriched extracts from Debregeasia orientalis leaf against human cervical cancer in vitro & in vivo. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1712330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Guoliang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an, People’s Republic of China
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an, People’s Republic of China
| | - Junqi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an, People’s Republic of China
| | - Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an, People’s Republic of China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an, People’s Republic of China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Xi’an, People’s Republic of China
| |
Collapse
|
50
|
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019; 10:E47. [PMID: 31892257 PMCID: PMC7022400 DOI: 10.3390/biom10010047] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/24/2022] Open
Abstract
The rising burden of cancer worldwide calls for an alternative treatment solution. Herbal medicine provides a very feasible alternative to western medicine against cancer. This article reviews the selected plant species with active phytochemicals, the animal models used for these studies, and their regulatory aspects. This study is based on a meticulous literature review conducted through the search of relevant keywords in databases, Web of Science, Scopus, PubMed, and Google Scholar. Twenty plants were selected based on defined selection criteria for their potent anticancer compounds. The detailed analysis of the research studies revealed that plants play an indispensable role in fighting different cancers such as breast, stomach, oral, colon, lung, hepatic, cervical, and blood cancer cell lines. The in vitro studies showed cancer cell inhibition through DNA damage and activation of apoptosis-inducing enzymes by the secondary metabolites in the plant extracts. Studies that reported in vivo activities of these plants showed remarkable results in the inhibition of cancer in animal models. Further studies should be performed on exploring more plants, their active compounds, and the mechanism of anticancer actions for use as standard herbal medicine.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Ajmal Khan
- Department of Zoology, University of Buner, Sowari 17290, Pakistan;
| | - Parveen Nisar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Sohail Ahmad Jan
- Department of Biotechnology, Hazara University, Mansehra 21120, Pakistan;
| | - Shakeeb Afridi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
- National Council for Tibb, Islamabad, Pakistan
| |
Collapse
|