1
|
Majumder P, Chatterjee B, Akter K, Ahsan A, Tan SJ, Huang CC, Chu JF, Shen CKJ. Molecular switch of the dendrite-to-spine transport of TDP-43/FMRP-bound neuronal mRNAs and its impairment in ASD. Cell Mol Biol Lett 2025; 30:6. [PMID: 39815169 PMCID: PMC11737055 DOI: 10.1186/s11658-024-00684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive. METHOD Different molecular and imaging techniques, e.g., immunoprecipitation (IP), RNA-IP, Immunofluorescence (IF)/fluorescence in situ hybridization (FISH), live cell imaging, live cell tracking of RNA using beacon, and mouse model study are used to elucidate a novel mechanism regulating dendritic spine transport of mRNAs in mammalian neurons. RESULTS We demonstrate here that brief mGluR1 activation-mediated dephosphorylation of pFMRP (S499) results in the dissociation of FMRP from TDP-43 and handover of TDP-43/Rac1 mRNA complex from the dendritic transport track on microtubules to myosin V track on the spine actin filaments. Rac1 mRNA thus enters the spines for translational reactivation and increases the mature spine density. In contrast, during mGluR1-mediated neuronal LTD, FMRP (S499) remains phosphorylated and the TDP-43/Rac1 mRNA complex, being associated with kinesin 1-FMRP/cortactin/drebrin, enters the spines owing to Ca2+-dependent microtubule invasion into spines, but without translational reactivation. In a VPA-ASD mouse model, this regulation become anomalous. CONCLUSIONS This study, for the first time, highlights the importance of posttranslational modification of RBPs, such as the neurodevelopmental disease-related protein FMRP, as the molecular switch regulating the dendrite-to-spine transport of specific mRNAs under mGluR1-mediated neurotransmissions. The misregulation of this switch could contribute to the pathogenesis of FMRP-related neurodisorders including the autism spectrum disorder (ASD). It also could indicate a molecular connection between ASD and neurodegenerative disease-related protein TDP-43 and opens up a new perspective of research to elucidate TDP-43 proteinopathy among patients with ASD.
Collapse
Affiliation(s)
- Pritha Majumder
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
- Institute of Molecular Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan (R.O.C.).
| | - Biswanath Chatterjee
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Khadiza Akter
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Asmar Ahsan
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Su Jie Tan
- Institute of Molecular Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan (R.O.C.)
| | - Chi-Chen Huang
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Jen-Fei Chu
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
| | - Che-Kun James Shen
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei, 115, Taiwan (R.O.C.).
| |
Collapse
|
2
|
Natale F, Spinelli M, Rinaudo M, Gulisano W, Nifo Sarrapochiello I, Aceto G, Puzzo D, Fusco S, Grassi C. Inhibition of zDHHC7-driven protein S-palmitoylation prevents cognitive deficits in an experimental model of Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2402604121. [PMID: 39589870 PMCID: PMC11626176 DOI: 10.1073/pnas.2402604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024] Open
Abstract
Protein post-translational modifications (PTM) play a crucial role in the modulation of synaptic function and their alterations are involved in the onset and progression of neurodegenerative disorders. S-palmitoylation is a PTM catalyzed by zinc finger DHHC domain containing (zDHHC) S-acyltransferases that affects both localization and activity of proteins regulating synaptic plasticity and amyloid-β (Aβ) metabolism. Here, we found significant increases of both zDHHC7 expression and protein S-palmitoylation in hippocampi of both 3×Tg-AD mice and post-mortem Alzheimer's disease (AD) patients. Chronic intranasal administration of the S-palmitoylation inhibitor 2-bromopalmitate counteracted synaptic plasticity and cognitive deficits, reduced the Aβ deposition in the hippocampus and extended the lifespan of both male and female 3×Tg-AD mice. Moreover, hippocampal silencing of zDHHC7 prevented the onset of cognitive deficits in the same experimental model. We also identified a FoxO1-mediated epigenetic mechanism inducing zDHHC7 expression, which was triggered by brain insulin resistance in 3×Tg-AD mice. Finally, in hippocampi of AD patients S-palmitoylation levels of Beta-Secretase 1 were associated with Aβ 1 to 42 load and they inversely correlated with Mini Mental State Examination scores. Our data reveal a key role of both zDHHC7 overexpression and protein hyperpalmitoylation in the onset and progression of AD-related alterations of synaptic plasticity and memory.
Collapse
Affiliation(s)
- Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania95131, Italy
| | | | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania95131, Italy
- Oasi Research Institute-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Troina94018, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| |
Collapse
|
3
|
Bączyńska E, Zaręba-Kozioł M, Ruszczycki B, Krzystyniak A, Wójtowicz T, Bijata K, Pochwat B, Magnowska M, Roszkowska M, Figiel I, Masternak J, Pytyś A, Dzwonek J, Worch R, Olszyński K, Wardak A, Szymczak P, Labus J, Radwańska K, Jahołkowski P, Hogendorf A, Ponimaskin E, Filipkowski R, Szewczyk B, Bijata M, Włodarczyk J. Stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. Neurobiol Stress 2024; 33:100683. [PMID: 39524934 PMCID: PMC11543545 DOI: 10.1016/j.ynstr.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Stress resilience is the ability of neuronal networks to maintain their function despite the stress exposure. Using a mouse model we investigate stress resilience phenomenon. To assess the resilient and anhedonic behavioral phenotypes developed after the induction of chronic unpredictable stress, we quantitatively characterized the structural and functional plasticity of excitatory synapses in the hippocampus using a combination of proteomic, electrophysiological, and imaging methods. Our results indicate that stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. We reveal that chronic stress influences palmitoylation of synaptic proteins, whose profiles differ between resilient and anhedonic animals. The changes in palmitoylation are predominantly related with the glutamate receptor signaling thus affects synaptic transmission and associated structures of dendritic spines. We show that stress resilience is associated with structural compensatory plasticity of the postsynaptic parts of synapses in CA1 subregion of the hippocampus.
Collapse
Affiliation(s)
- E. Bączyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, 02-781, Poland
| | - M. Zaręba-Kozioł
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - B. Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - A. Krzystyniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - T. Wójtowicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - K. Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - B. Pochwat
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - M. Magnowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - M. Roszkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - I. Figiel
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Masternak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - A. Pytyś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Dzwonek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - R. Worch
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - K.H. Olszyński
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - A.D. Wardak
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - P. Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - J. Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - K. Radwańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - P. Jahołkowski
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - A. Hogendorf
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - E. Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - R.K. Filipkowski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - B. Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - M. Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Włodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| |
Collapse
|
4
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
5
|
Kodaka M, Kikuchi A, Kawahira K, Kamada H, Katsuta R, Ishigami K, Suzuki T, Yamamoto Y, Inoue J. Identification of a novel target of sulforaphane: Sulforaphane binds to acyl-protein thioesterase 2 (APT2) and attenuates its palmitoylation. Biochem Biophys Res Commun 2024; 726:150244. [PMID: 38905785 DOI: 10.1016/j.bbrc.2024.150244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Sulforaphane (SFaN) is a food-derived compound with several bioactive properties, including atherosclerosis, diabetes, and obesity treatment. However, the mechanisms by which SFaN exerts its various effects are still unclear. To elucidate the mechanisms of the various effects of SFaN, we explored novel SFaN-binding proteins using SFaN beads and identified acyl protein thioesterase 2 (APT2). We also found that SFaN binds to the APT2 via C56 residue and attenuates the palmitoylation of APT2, thereby reducing plasma membrane localization of APT2. This study reveals a novel bioactivity of SFaN as a regulator of APT2 protein palmitoylation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Akito Kikuchi
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Kotaro Kawahira
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| | - Ryo Katsuta
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan.
| | - Ken Ishigami
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan.
| | - Tsukasa Suzuki
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Yuji Yamamoto
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| | - Jun Inoue
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
6
|
Xu X, Li F, Liu C, Wang Y, Yang Z, Xie G, Zhang T. Low-frequency repetitive transcranial magnetic stimulation alleviates abnormal behavior in valproic acid rat model of autism through rescuing synaptic plasticity and inhibiting neuroinflammation. Pharmacol Biochem Behav 2024; 240:173788. [PMID: 38734150 DOI: 10.1016/j.pbb.2024.173788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Autism is a complex neurodevelopmental disorder with no effective treatment available currently. Repetitive transcranial magnetic stimulation (rTMS) is emerging as a promising neuromodulation technique to treat autism. However, the mechanism how rTMS works remains unclear, which restrict the clinical application of magnetic stimulation in the autism treatment. In this study, we investigated the effect of low-frequency rTMS on the autistic-like symptoms and explored if this neuroprotective effect was associated with synaptic plasticity and neuroinflammation in the hippocampus. A rat model of autism was established by intraperitoneal injection of valproic acid (VPA) in pregnant rats and male offspring were treated with 1 Hz rTMS daily for two weeks continuously. Behavior tests were performed to identify behavioral abnormality. Synaptic plasticity was measured by in vivo electrophysiological recording and Golgi-Cox staining. Synapse and inflammation associated proteins were detected by immunofluorescence and Western blot analyses. Results showed prenatal VPA-exposed rats exhibited autistic-like and anxiety-like behaviors, and cognitive impairment. Synaptic plasticity deficits and the abnormality expression of synapse-associated proteins were found in the hippocampus of prenatal VPA-exposed rats. Prenatal VPA exposure increased the level of inflammation cytokines and promoted the excessive activation of microglia. rTMS significantly alleviated the prenatal VPA-induced abnormalities including behavioral and synaptic plasticity deficits, and excessive neuroinflammation. TMS maybe a potential strategy for autism therapy via rescuing synaptic plasticity and inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300130 Tianjin, China; College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China
| | - Fangjuan Li
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China
| | - Chunhua Liu
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Yue Wang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, China
| | - Guoming Xie
- Ningbo Medical Center Lihuili Hospital, 315040 Ningbo, Zhejiang, China.
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
7
|
Antunes BC, Mateus T, Morais VA. In the Brain, It Is Not All about Sugar. NEUROSCI 2024; 5:209-221. [PMID: 39483499 PMCID: PMC11493208 DOI: 10.3390/neurosci5020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 11/03/2024] Open
Abstract
The maintenance of energetic homeostasis relies on a tight balance between glycolysis and mitochondrial oxidative phosphorylation. The case of the brain is a peculiar one, as although entailing a constant demand for energy, it is believed to rely mostly on glucose, particularly at the level of neurons. Nonetheless, this has been challenged by studies that show that alternatives such as lactate, ketone bodies, and glutamate can be used as fuels to sustain neuronal activity. The importance of fatty acid (FA) metabolism to this extent is still unclear, albeit sustaining a significant energetic output when compared to glucose. While several authors postulate a possible role of FA for the energetic homeostasis of the brain, several others point out the intrinsic features of this pathway that make its contribution difficult to explain in the context of neuronal bioenergetics. Moreover, fueling preference at the synapse level is yet to be uncovered. In this review, we discuss in detail the arguments for and against the brain usage of FA. Furthermore, we postulate that the importance of this fuel may be greater at the synapse, where local mitochondria possess a set of features that enable a more effective usage of this fuel source.
Collapse
Affiliation(s)
- Bernardo C Antunes
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Tomás Mateus
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| | - Vanessa A Morais
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (B.C.A.); (T.M.)
| |
Collapse
|
8
|
Zhang L, Chen Y, Fan Y, Shi L. Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in vascular dementia rat and improved recognition memory. Sci Rep 2024; 14:7116. [PMID: 38531892 PMCID: PMC10965903 DOI: 10.1038/s41598-024-57080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
This study aimed to investigate structural synaptic plasticity in the medial prefrontal cortex of rats under treadmill exercise pretreatment or naive conditions in a vascular dementia model, followed by recognition memory performance in a novel object recognition task. In this study, 24 Sprague-Dawley rats were obtained and randomly assigned into 4 groups as follows: control group (Con group, n = 6), vascular dementia (VD group, n = 6), exercise and vascular dementia group (Exe + VD group, n = 6), and exercise group (Exe group, n = 6). Initially, 4 weeks of treadmill exercise intervention was administered to the rats in the Exe + VD and Exe groups. Then, to establish the vascular dementia model, the rats both in the VD and Exe + VD groups were subjected to bilateral common carotids arteries surgery. One week later, open-field task and novel recognition memory task were adopted to evaluate anxiety-like behavior and recognition memory in each group. Then, immunofluorescence and Golgi staining were used to evaluate neuronal number and spine density in the rat medial prefrontal cortex. Transmission electron microscopy was used to observe the synaptic ultrastructure. Finally, microdialysis coupled with high-performance liquid chromatography was used to assess the levels of 5-HT and dopamine in the medial prefrontal cortex. The behavior results showed that 4 weeks of treadmill exercise pretreatment significantly alleviated recognition memory impairment and anxiety-like behavior in VD rats (P < 0.01), while the rats in VD group exhibited impaired recognition memory and anxiety-like behavior when compared with the Con group (P < 0.001). Additionally, NeuN immunostaining results revealed a significant decrease of NeuN-marked neuron in the VD group compared to Con group (P < 0.01), but a significantly increase in this molecular marker was found in the Exe + VD group compared to the Con group (P < 0.01). Golgi staining results showed that the medial prefrontal cortex neurons in the VD group displayed fewer dendritic spines than those in the Con group (P < 0.01), and there were more spines on the dendrites of medial prefrontal cortex cells in Exe + VD rats than in VD rats (P < 0.01). Transmission electron microscopy further revealed that there was a significant reduction of synapses intensity in the medial prefrontal cortex of rats in the VD group when compared with the Con group(P < 0.01), but physical exercise was found to significantly increased synapses intensity in the VD model (P < 0.01). Lastly, the levels of dopamine and 5-HT in the medial prefrontal cortex of rats in the VD group was significantly lower compared to the Con group (P < 0.01), and treadmill exercise was shown to significantly increased the levels of dopamine and 5-HT in the VD rats (P < 0.05). Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in VD rat and improved recognition memory.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Yuanyuan Chen
- Department of Psychology and Education, Shantou Polytechnic, Shantou, 515071, China
| | - Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Lin Shi
- Department of Physical Education and Sport, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
9
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
10
|
Moors TE, Li S, McCaffery TD, Ho GP, Bechade PA, Pham LN, Ericsson M, Nuber S. Increased palmitoylation improves estrogen receptor alpha-dependent hippocampal synaptic deficits in a mouse model of synucleinopathy. SCIENCE ADVANCES 2023; 9:eadj1454. [PMID: 37976363 PMCID: PMC10957154 DOI: 10.1126/sciadv.adj1454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Parkinson's disease (PD) is characterized by conversion of soluble α-synuclein (αS) into intraneuronal aggregates and degeneration of neurons and neuronal processes. Indications that women with early-stage PD display milder neurodegenerative features suggest that female sex partially protects against αS pathology. We previously reported that female sex and estradiol improved αS homeostasis and PD-like phenotypes in E46K-amplified (3K) αS mice. Here, we aimed to further dissect mechanisms that drive this sex dimorphism early in disease. We observed that synaptic abnormalities were delayed in females and improved by estradiol, mediated by local estrogen receptor alpha (ERα). Aberrant ERα distribution in 3K compared to wild-type mice was paired with its decreased palmitoylation. Treatment with ML348, a de-palmitoylation inhibitor, increased ERα availability and soluble αS homeostasis, ameliorating synaptic plasticity and cognitive and motor phenotypes. Our finding that sex differences in early-disease αS-induced synaptic impairment in 3KL mice are in part mediated by palmitoylated ERα may have functional and pathogenic implications for clinical PD.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thomas D. McCaffery
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gary P. H. Ho
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pascal A. Bechade
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Luu N. Pham
- Laboratory for Drug Discovery in Neurodegeneration, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Harada K, Sho R, Takakura H, Yokoyama E, Koyama R, Yamamoto Y, Adachi N, Tanaka S, Hide I, Sakai N. S-Palmitoylation of the serotonin transporter promotes its cell surface expression and serotonin uptake. Biochem Biophys Res Commun 2023; 662:58-65. [PMID: 37099811 DOI: 10.1016/j.bbrc.2023.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
The neurotransmitter serotonin (5-HT) is transported back into serotonergic neurons by the serotonin transporter (SERT). SERT is a main target of antidepressants, and much effort has therefore focused on finding relationships between SERT and depression. However, it is not fully understood how SERT is regulated at the cellular level. Here, we report post-translational regulation of SERT by S-palmitoylation, in which palmitate is covalently attached to cysteine residues of proteins. Using AD293 cells (a human embryonic kidney 293-derived cell line with improved cell adherence) transiently transfected with FLAG-tagged human SERT, we observed S-palmitoylation of immature SERT containing high-mannose type N-glycans or no N-glycan, which is presumed to be localized in the early secretory pathway, such as the endoplasmic reticulum. Mutational analysis by alanine substitutions shows that S-palmitoylation of immature SERT occurs at least at Cys-147 and Cys-155, juxtamembrane cysteine residues within the first intracellular loop. Furthermore, mutation of Cys-147 reduced cellular uptake of a fluorescent SERT substrate that mimics 5-HT without decreasing SERT on the cell surface. On the other hand, combined mutation of Cys-147 and Cys-155 inhibited SERT surface expression and reduced the uptake of the 5-HT mimic. Thus, S-palmitoylation of Cys-147 and Cys-155 is important for both the cell surface expression and 5-HT uptake capacity of SERT. Given the importance of S-palmitoylation in brain homeostasis, further investigation of SERT S-palmitoylation could provide new insights into the treatment of depression.
Collapse
Affiliation(s)
- Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ryoma Sho
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiromiki Takakura
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Eri Yokoyama
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Reika Koyama
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuka Yamamoto
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
12
|
Abazari D, Wild AR, Qiu T, Dickinson BC, Bamji SX. Activity-dependent post-translational regulation of palmitoylating and depalmitoylating enzymes in the hippocampus. J Cell Sci 2023; 136:jcs260629. [PMID: 37039765 PMCID: PMC10113885 DOI: 10.1242/jcs.260629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 04/12/2023] Open
Abstract
Activity-induced changes in protein palmitoylation can regulate the plasticity of synaptic connections, critically impacting learning and memory. Palmitoylation is a reversible post-translational modification regulated by both palmitoyl-acyl transferases that mediate palmitoylation and palmitoyl thioesterases that depalmitoylate proteins. However, it is not clear how fluctuations in synaptic activity can mediate the dynamic palmitoylation of neuronal proteins. Using primary hippocampal cultures, we demonstrate that synaptic activity does not impact the transcription of palmitoylating and depalmitoylating enzymes, changes in thioesterase activity, or post-translational modification of the depalmitoylating enzymes of the ABHD17 family and APT2 (also known as LYPLA2). In contrast, synaptic activity does mediate post-translational modification of the palmitoylating enzymes ZDHHC2, ZDHHC5 and ZDHHC9 (but not ZDHHC8) to influence protein-protein interactions, enzyme stability and enzyme function. Post-translational modifications of the ZDHHC enzymes were also observed in the hippocampus following fear conditioning. Taken together, our findings demonstrate that signaling events activated by synaptic activity largely impact activity of the ZDHHC family of palmitoyl-acyl transferases with less influence on the activity of palmitoyl thioesterases.
Collapse
Affiliation(s)
- Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Angela R. Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tian Qiu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Shernaz X. Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
13
|
Amiri M, Jafari AH, Makkiabadi B, Nazari S, Van Hulle MM. A novel un-supervised burst time dependent plasticity learning approach for biologically pattern recognition networks. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2022.11.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Roy B, Dwivedi Y. An insight into the sprawling microverse of microRNAs in depression pathophysiology and treatment response. Neurosci Biobehav Rev 2023; 146:105040. [PMID: 36639069 PMCID: PMC9974865 DOI: 10.1016/j.neubiorev.2023.105040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Stress-related neuropathologies are pivotal in developing major depressive disorder (MDD) and are often governed by gene-regulatory changes. Being a stress-responsive gene-regulatory factor, microRNAs (miRNAs) have tremendous biomolecular potential to define an altered gene-regulatory landscape in the MDD brain. MiRNAs' regulatory roles in the MDD brain are closely aligned with changes in plasticity, neurogenesis, and stress-axis functions. MiRNAs act at the epigenetic interface between stress-induced environmental stimuli and cellular pathologies by triggering large-scale gene expression changes in a highly coordinated fashion. The parallel changes in peripheral circulation may provide an excellent opportunity for miRNA to devise more effective treatment strategies and help explore their potential as biomarkers in treatment response. This review discusses the role of miRNAs as epigenetic modifiers in the etiopathogenesis of MDD. Concurrently, key research is highlighted to show the progress in using miRNAs as predictive biomarkers for treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Inhibition of hippocampal palmitoyl acyltransferase activity impairs spatial learning and memory consolidation. Neurobiol Learn Mem 2023; 200:107733. [PMID: 36804592 DOI: 10.1016/j.nlm.2023.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Protein palmitoylation regulates trafficking, mobilization, localization, interaction, and distribution of proteins through the palmitoyl acyltransferases (PATs) enzymes. Protein palmitoylation controls rapid and dynamic changes of the synaptic architecture that modifies the efficiency and strength of synaptic connections, a fundamental mechanism to generate stable and long-lasting memory traces. Although protein palmitoylation in functional synaptic plasticity has been widely described, its role in learning and memory processes is poorly understood. In this work, we found that PATs inhibition into the hippocampus before and after the training of Morris water maze (MWM) and object location memory (OLM) impaired spatial learning. However, we demonstrated that PATs inhibition during the retrieval does not affect the expression of spatial memory in both MWM and OLM. Accordingly, long-term potentiation induction is impaired by inhibiting PATs into the hippocampus before high-frequency electrical stimulation but not after. These findings suggest that PATs activity is necessary to modify neural plasticity, a mechanism required for memory acquisition and consolidation. Like phosphorylation, active palmitoylation is required to regulate the function of already existing proteins that change synaptic strength in the hippocampus to acquire and later consolidate spatial memories.
Collapse
|
16
|
Wild AR, Hogg PW, Flibotte S, Kochhar S, Hollman RB, Haas K, Bamji SX. CellPalmSeq: A curated RNAseq database of palmitoylating and de-palmitoylating enzyme expression in human cell types and laboratory cell lines. Front Physiol 2023; 14:1110550. [PMID: 36760531 PMCID: PMC9904442 DOI: 10.3389/fphys.2023.1110550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
The reversible lipid modification protein S-palmitoylation can dynamically modify the localization, diffusion, function, conformation and physical interactions of substrate proteins. Dysregulated S-palmitoylation is associated with a multitude of human diseases including brain and metabolic disorders, viral infection and cancer. However, the diverse expression patterns of the genes that regulate palmitoylation in the broad range of human cell types are currently unexplored, and their expression in commonly used cell lines that are the workhorse of basic and preclinical research are often overlooked when studying palmitoylation dependent processes. We therefore created CellPalmSeq (https://cellpalmseq.med.ubc.ca), a curated RNAseq database and interactive webtool for visualization of the expression patterns of the genes that regulate palmitoylation across human single cell types, bulk tissue, cancer cell lines and commonly used laboratory non-human cell lines. This resource will allow exploration of these expression patterns, revealing important insights into cellular physiology and disease, and will aid with cell line selection and the interpretation of results when studying important cellular processes that depend on protein S-palmitoylation.
Collapse
Affiliation(s)
- Angela R. Wild
- Bamji Lab, Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Peter W. Hogg
- Bamji Lab, Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Facility, University of British Columbia, Vancouver, BC, Canada
| | - Shruti Kochhar
- Bamji Lab, Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Rocio B. Hollman
- Bamji Lab, Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Kurt Haas
- Bamji Lab, Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Shernaz X. Bamji
- Bamji Lab, Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada,*Correspondence: Shernaz X. Bamji,
| |
Collapse
|
17
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
18
|
Lemarié FL, Sanders SS, Nguyen Y, Martin DDO, Hayden MR. Full-length huntingtin is palmitoylated at multiple sites and post-translationally myristoylated following caspase-cleavage. Front Physiol 2023; 14:1086112. [PMID: 36711022 PMCID: PMC9880554 DOI: 10.3389/fphys.2023.1086112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Huntington disease is an autosomal dominant neurodegenerative disorder which is caused by a CAG repeat expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. Huntingtin is subjected to multiple post-translational modifications which regulate its cellular functions and degradation. We have previously identified a palmitoylation site at cysteine 214 (C214), catalyzed by the enzymes ZDHHC17 and ZDHHC13. Reduced palmitoylation level of mutant huntingtin is linked to toxicity and loss of function. Moreover, we have described N-terminal myristoylation by the N-myristoyltransferases of a short fragment of huntingtin (HTT553-586) at glycine 553 (G553) following proteolysis at aspartate 552 (D552). Results: Here, we show that huntingtin is palmitoylated at numerous cysteines: C105, C433, C3134 and C3144. In addition, we confirm that full-length huntingtin is cleaved at D552 and post-translationally myristoylated at G553. Importantly, blocking caspase cleavage at the critical and pathogenic aspartate 586 (D586) significantly increases posttranslational myristoylation of huntingtin. In turn, myristoylation of huntingtin promotes the co-interaction between C-terminal and N-terminal huntingtin fragments, which is also protective. Discussion: This suggests that the protective effect of inhibiting caspase-cleavage at D586 may be mediated through post-translational myristoylation of huntingtin at G553.
Collapse
|
19
|
Akefe IO, Osborne SL, Matthews B, Wallis TP, Meunier FA. Lipids and Secretory Vesicle Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:357-397. [PMID: 37615874 DOI: 10.1007/978-3-031-34229-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In recent years, the number of studies implicating lipids in the regulation of synaptic vesicle exocytosis has risen considerably. It has become increasingly clear that lipids such as phosphoinositides, lysophospholipids, cholesterol, arachidonic acid and myristic acid play critical regulatory roles in the processes leading up to exocytosis. Lipids may affect membrane fusion reactions by altering the physical properties of the membrane, recruiting key regulatory proteins, concentrating proteins into exocytic "hotspots" or by modulating protein functions allosterically. Discrete changes in phosphoinositides concentration are involved in multiple trafficking events including exocytosis and endocytosis. Lipid-modifying enzymes such as the DDHD2 isoform of phospholipase A1 were recently shown to contribute to memory acquisition via dynamic modifications of the brain lipid landscape. Considering the increasing reports on neurodegenerative disorders associated with aberrant intracellular trafficking, an improved understanding of the control of lipid pathways is physiologically and clinically significant and will afford unique insights into mechanisms and therapeutic methods for neurodegenerative diseases. Consequently, this chapter will discuss the different classes of lipids, phospholipase enzymes, the evidence linking them to synaptic neurotransmitter release and how they act to regulate key steps in the multi-step process leading to neuronal communication and memory acquisition.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Shona L Osborne
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
20
|
Cervilla-Martínez JF, Rodríguez-Gotor JJ, Wypijewski KJ, Fontán-Lozano Á, Wang T, Santamaría E, Fuller W, Mejías R. Altered Cortical Palmitoylation Induces Widespread Molecular Disturbances in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232214018. [PMID: 36430497 PMCID: PMC9696982 DOI: 10.3390/ijms232214018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The relationship between Parkinson's disease (PD), the second-most common neurodegenerative disease after Alzheimer's disease, and palmitoylation, a post-translational lipid modification, is not well understood. In this study, to better understand the role of protein palmitoylation in PD and the pathways altered in this disease, we analyzed the differential palmitoyl proteome (palmitome) in the cerebral cortex of PD patients compared to controls (n = 4 per group). Data-mining of the cortical palmitome from PD patients and controls allowed us to: (i) detect a set of 150 proteins with altered palmitoylation in PD subjects in comparison with controls; (ii) describe the biological pathways and targets predicted to be altered by these palmitoylation changes; and (iii) depict the overlap between the differential palmitome identified in our study with protein interactomes of the PD-linked proteins α-synuclein, LRRK2, DJ-1, PINK1, GBA and UCHL1. In summary, we partially characterized the altered palmitome in the cortex of PD patients, which is predicted to impact cytoskeleton, mitochondrial and fibrinogen functions, as well as cell survival. Our study suggests that protein palmitoylation could have a role in the pathophysiology of PD, and that comprehensive palmitoyl-proteomics offers a powerful approach for elucidating novel cellular pathways modulated in this neurodegenerative disease.
Collapse
Affiliation(s)
- Juan F. Cervilla-Martínez
- Department of Physiology, School of Biology, University of Seville, Avenida de la Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Juan J. Rodríguez-Gotor
- Department of Physiology, School of Biology, University of Seville, Avenida de la Reina Mercedes, 6, 41012 Sevilla, Spain
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
| | - Krzysztof J. Wypijewski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
| | - Ángela Fontán-Lozano
- Department of Physiology, School of Biology, University of Seville, Avenida de la Reina Mercedes, 6, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot, s/n, 41013 Sevilla, Spain
| | - Tao Wang
- McKusick—Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Irunlarrea Street, 3, 31008 Pamplona, Spain
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rebeca Mejías
- Department of Physiology, School of Biology, University of Seville, Avenida de la Reina Mercedes, 6, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot, s/n, 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954-559-549
| |
Collapse
|
21
|
Fadó R, Molins A, Rojas R, Casals N. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients 2022; 14:nu14194137. [PMID: 36235789 PMCID: PMC9572450 DOI: 10.3390/nu14194137] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
In recent decades, traditional eating habits have been replaced by a more globalized diet, rich in saturated fatty acids and simple sugars. Extensive evidence shows that these dietary factors contribute to cognitive health impairment as well as increase the incidence of metabolic diseases such as obesity and diabetes. However, how these nutrients modulate synaptic function and neuroplasticity is poorly understood. We review the Western, ketogenic, and paleolithic diets for their effects on cognition and correlations with synaptic changes, focusing mainly (but not exclusively) on animal model studies aimed at tracing molecular alterations that may contribute to impaired human cognition. We observe that memory and learning deficits mediated by high-fat/high-sugar diets, even over short exposure times, are associated with reduced arborization, widened synaptic cleft, narrowed post-synaptic zone, and decreased activity-dependent synaptic plasticity in the hippocampus, and also observe that these alterations correlate with deregulation of the AMPA-type glutamate ionotropic receptors (AMPARs) that are crucial to neuroplasticity. Furthermore, we explored which diet-mediated mechanisms modulate synaptic AMPARs and whether certain supplements or nutritional interventions could reverse deleterious effects, contributing to improved learning and memory in older people and patients with Alzheimer’s disease.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Cerdanyola del Vallès, Spain
- Correspondence: ; Tel.: +34-93-504-20-00
| | - Anna Molins
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rocío Rojas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
22
|
Li JK, Rao YQ, Koh SK, Zhao P, Zhou L, Li J. Proteomic analysis of s-acylated proteins in human retinal pigment epithelial cells and the role of palmitoylation of Niemann-Pick type C1 protein in cholesterol transport. Front Aging Neurosci 2022; 14:965943. [PMID: 36262888 PMCID: PMC9576141 DOI: 10.3389/fnagi.2022.965943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Palmitoylation is a dynamic process that regulates the activity of the modified proteins. Retinal pigment epithelial (RPE) cells play pivotal roles in the visual cycle and maintaining healthy photoreceptor cells. Dysfunctional RPE cells are often associated with degenerative retinal diseases. The aim of the study was to identify potentially palmitoylated proteins in human RPE cells. By using the detergent-resistant membrane, we found 312 potentially palmitoylated peptides which corresponded to 192 proteins in RPE cells, including 55 new candidate proteins which were not reported before. Gene enrichment analysis highlighted significant enrichment of palmitoylated proteins in cell-matrix adhesion, cell-cell recognition, protein cellular localization, and translation, among others. We further studied the effect of 3 potential palmitoylation sites (Cys 799, 900, and 816) of Niemann-Pick type C1 protein (NPC1) on cholesterol accumulation. We found that mutation of any single Cys alone had no significant effect on intracellular cholesterol accumulation while simultaneous mutation of Cys799 and 800 caused significant cholesterol accumulation in the late endosome. No further cholesterol accumulation was observed by adding another mutation at Cys 816. However, the mutation did not alter the cellular localization of the protein. Conclusion: PRE cells have an abundant number of palmitoylated proteins which are involved in cellular processes critical to visual function. The palmitoylation at Cys799 and 800 was needed for cholesterol export, but not the intracellular localization of NPC1.
Collapse
Affiliation(s)
- Jia Kai Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siew Kwan Koh
- Singapore Eye Research Institute, Singapore, Singapore
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- *Correspondence: Lei Zhou,
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jing Li,
| |
Collapse
|
23
|
Gal J, Bondada V, Mashburn CB, Rodgers DW, Croall DE, Geddes JW. S-acylation regulates the membrane association and activity of Calpain-5. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119298. [PMID: 35643222 DOI: 10.1016/j.bbamcr.2022.119298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Calpain-5 (CAPN5) is a member of the calpain family of calcium-activated neutral thiol proteases. CAPN5 is partly membrane associated, despite its lack of a transmembrane domain. Unlike classical calpains, CAPN5 contains a C-terminal C2 domain. C2 domains often have affinity to lipids, mediating membrane association. We recently reported that the C2 domain of CAPN5 was essential for its membrane association and the activation of its autolytic activity. However, despite the removal of the C2 domain by autolysis, the N-terminal fragment of CAPN5 remained membrane associated. S-acylation, also referred to as S-palmitoylation, is a reversible post-translational lipid modification of cysteine residues that promotes membrane association of soluble proteins. In the present study several S-acylated cysteine residues were identified in CAPN5 with the acyl-PEG exchange method. Data reported here demonstrate that CAPN5 is S-acylated on up to three cysteine residues including Cys-4 and Cys-512, and likely Cys-507. The D589N mutation in a potential calcium binding loop within the C2 domain interfered with the S-acylation of CAPN5, likely preventing initial membrane association. Mutating specific cysteine residues of CAPN5 interfered with both its membrane association and the activation of CAPN5 autolysis. Taken together, our results suggest that the S-acylation of CAPN5 is critical for its membrane localization which appears to favor its enzymatic activity.
Collapse
Affiliation(s)
- Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - Charles B Mashburn
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Dorothy E Croall
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
24
|
Seo J, Hwang H, Choi Y, Jung S, Hong JH, Yoon BJ, Rhim H, Park M. Myristoylation-dependent palmitoylation of cyclin Y modulates long-term potentiation and spatial learning. Prog Neurobiol 2022; 218:102349. [PMID: 36030931 DOI: 10.1016/j.pneurobio.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Many psychiatric disorders accompany deficits in cognitive functions and synaptic plasticity, and abnormal lipid modifications of neuronal proteins are associated with their pathophysiology. Lipid modifications, including palmitoylation and myristoylation, play crucial roles in the subcellular localization and trafficking of proteins. Cyclin Y (CCNY), enriched in the postsynaptic compartment, acts as an inhibitory modulator of functional and structural long-term potentiation (LTP) in the hippocampal neurons. However, cellular and molecular mechanisms underlying CCNY-mediated inhibitory functions in the synapse remain largely unknown. Here, we report that myristoylation located CCNY to the trans-Golgi network (TGN), and subsequent palmitoylation directed the myristoylated CCNY from the TGN to the synaptic cell surface. This myristoylation-dependent palmitoylation of CCNY was required for the inhibitory role of CCNY in excitatory synaptic transmission, activity-induced dynamics of AMPA receptors and PSD-95, LTP, and spatial learning. Furthermore, spatial learning significantly reduced palmitoyl- and myristoyl-CCNY levels, indicating that spatial learning lowers the synaptic abundance of CCNY. Our findings provide mechanistic insight into how CCNY is clustered adjacent to postsynaptic sites where it could play its inhibitory roles in synaptic plasticity and spatial learning.
Collapse
Affiliation(s)
- Jiyeon Seo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hongik Hwang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yuri Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Sunmin Jung
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jung-Hwa Hong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Bong-June Yoon
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Mikyoung Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
25
|
Wild AR, Hogg PW, Flibotte S, Nasseri GG, Hollman RB, Abazari D, Haas K, Bamji SX. Exploring the expression patterns of palmitoylating and de-palmitoylating enzymes in the mouse brain using the curated RNA-seq database BrainPalmSeq. eLife 2022; 11:e75804. [PMID: 35819139 PMCID: PMC9365392 DOI: 10.7554/elife.75804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that plays a critical role in neuronal development and plasticity, while dysregulated S-palmitoylation underlies a number of severe neurological disorders. Dynamic S-palmitoylation is regulated by a large family of ZDHHC palmitoylating enzymes, their accessory proteins, and a small number of known de-palmitoylating enzymes. Here, we curated and analyzed expression data for the proteins that regulate S-palmitoylation from publicly available RNAseq datasets, providing a comprehensive overview of their distribution in the mouse nervous system. We developed a web-tool that enables interactive visualization of the expression patterns for these proteins in the nervous system (http://brainpalmseq.med.ubc.ca/), and explored this resource to find region and cell-type specific expression patterns that give insight into the function of palmitoylating and de-palmitoylating enzymes in the brain and neurological disorders. We found coordinated expression of ZDHHC enzymes with their accessory proteins, de-palmitoylating enzymes and other brain-expressed genes that included an enrichment of S-palmitoylation substrates. Finally, we utilized ZDHHC expression patterns to predict and validate palmitoylating enzyme-substrate interactions.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Peter W Hogg
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Facility, University of British ColumbiaVancouverCanada
| | - Glory G Nasseri
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Rocio B Hollman
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| |
Collapse
|
26
|
Gao J, Li W, Zhang Z, Gao W, Kong E. Proteome-wide identification of palmitoylated proteins in mouse testis. Reprod Sci 2022; 29:2299-2309. [PMID: 35477839 DOI: 10.1007/s43032-022-00919-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
The reversible lipid modification, S-palmitoylation, plays regulatory roles in various physiological processes, e.g., neuronal plasticity and organs development; however, the roles of palmitoylation engaged in testis have yet remained unexplored. Here, we used combined approaches of palm-proteomics, informatics and quantitative PCR to systematically analyze the expression of key enzymes related to protein palmitoylation and identify proteome-wide palmitoylated proteins during the processes of spermatogenesis. Specifically, different timepoints were chosen to collect samples to cover the initiation of meiosis (postnatal, P12), the appearance of the first batch of sperm (P36) and fully fertile status (P60) in mouse. Interestingly, our results showed that only a few enzymes related to protein palmitoylation are highly expressed at later stages (from P36 to P60), rather than in the earlier phase of testis development (P12). To focus on the molecular event of spermatogenesis, we examined the palm-proteomics of testes in P36 and P60 mouse. In total, we identified 4,883 palmitoylated proteins, among which 3,310 proteins match the published palmitoyl-proteome datasets and 1,573 proteins were firstly identified as palmitoylated proteins in this study. Informatics analysis suggested that palmitoylation is involved in events of protein transport, metabolic process, protein folding and cell adhesion, etc. Importantly, further analysis revealed that several networks of palmitoylated proteins are closely associated with sperm morphology and motility. Together, our study laid a solid ground for understanding the roles of protein palmitoylation in spermatogenesis for future studies.
Collapse
Affiliation(s)
- Jun Gao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453000, China.,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenchao Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenshan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Eryan Kong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453000, China. .,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
27
|
Gorenberg EL, Massaro Tieze S, Yücel B, Zhao HR, Chou V, Wirak GS, Tomita S, Lam TT, Chandra SS. Identification of substrates of palmitoyl protein thioesterase 1 highlights roles of depalmitoylation in disulfide bond formation and synaptic function. PLoS Biol 2022; 20:e3001590. [PMID: 35358180 PMCID: PMC9004782 DOI: 10.1371/journal.pbio.3001590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/12/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022] Open
Abstract
Loss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause neuronal ceroid lipofuscinosis (NCL), a devastating neurodegenerative disease. The substrates of PPT1 are largely undescribed, posing a limitation on molecular dissection of disease mechanisms and therapeutic development. Here, we provide a resource identifying >100 novel PPT1 substrates. We utilized Acyl Resin-Assisted Capture (Acyl RAC) and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout (KO) mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated diverse PPT1 substrates at the synapse, including channels and transporters, G-protein–associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the mature protein. We confirmed that depalmitoylation plays a role in disulfide bond formation in a tertiary screen analyzing posttranslational modifications (PTMs). Collectively, these data highlight the role of PPT1 in mediating synapse functions, implicate molecular pathways in the etiology of NCL and other neurodegenerative diseases, and advance our basic understanding of the purpose of depalmitoylation.
Collapse
Affiliation(s)
- Erica L. Gorenberg
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| | - Sofia Massaro Tieze
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| | - Betül Yücel
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Helen R. Zhao
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Vicky Chou
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Gregory S. Wirak
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Susumu Tomita
- Departments of Neuroscience and of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - TuKiet T. Lam
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Keck MS & Proteomics Resource, WM Keck Biotechnology Resource Laboratory, New Haven, Connecticut, United States of America
| | - Sreeganga S. Chandra
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
28
|
Westra M, Gutierrez Y, MacGillavry HD. Contribution of Membrane Lipids to Postsynaptic Protein Organization. Front Synaptic Neurosci 2021; 13:790773. [PMID: 34887741 PMCID: PMC8649999 DOI: 10.3389/fnsyn.2021.790773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
The precise subsynaptic organization of proteins at the postsynaptic membrane controls synaptic transmission. In particular, postsynaptic receptor complexes are concentrated in distinct membrane nanodomains to optimize synaptic signaling. However, despite the clear functional relevance of subsynaptic receptor organization to synaptic transmission and plasticity, the mechanisms that underlie the nanoscale organization of the postsynaptic membrane remain elusive. Over the last decades, the field has predominantly focused on the role of protein-protein interactions in receptor trafficking and positioning in the synaptic membrane. In contrast, the contribution of lipids, the principal constituents of the membrane, to receptor positioning at the synapse remains poorly understood. Nevertheless, there is compelling evidence that the synaptic membrane is enriched in specific lipid species and that deregulation of lipid homeostasis in neurons severely affects synaptic functioning. In this review we focus on how lipids are organized at the synaptic membrane, with special emphasis on how current models of membrane organization could contribute to protein distribution at the synapse and synaptic transmission. Finally, we will present an outlook on how novel technical developments could be applied to study the dynamic interplay between lipids and proteins at the postsynaptic membrane.
Collapse
Affiliation(s)
- Manon Westra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Yolanda Gutierrez
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
29
|
Palm Oil-Rich Diet Affects Murine Liver Proteome and S-Palmitoylome. Int J Mol Sci 2021; 22:ijms222313094. [PMID: 34884899 PMCID: PMC8657750 DOI: 10.3390/ijms222313094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/14/2023] Open
Abstract
Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and β-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation.
Collapse
|
30
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|