1
|
Dhanya SK, Kalia K, Mohanty S, Azam T, Channakkar AS, D'Souza L, Swathi KS, Reddy PC, Muralidharan B. Histone-binding protein RBBP4 is necessary to promote neurogenesis in the developing mouse neocortical progenitors. eNeuro 2024; 11:ENEURO.0391-23.2024. [PMID: 39592227 PMCID: PMC7617683 DOI: 10.1523/eneuro.0391-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Chromatin regulation plays a crucial role in neocortical neurogenesis, and mutations in chromatin modifiers are linked to neurodevelopmental disorders. RBBP4 is a core subunit of several chromatin-modifying complexes; however, its functional role and genome-wide occupancy profile in the neocortical primordium are unknown. To address this, we performed RBBP4 knockdown using CRISPR/Cas9 on neocortical progenitors derived from mice of both sexes at embryonic age 12.5 during deep-layer neurogenesis. Our study demonstrates that downregulation of RBBP4 in the E12.5 neocortical progenitors reduced neuronal output, specifically affecting CTIP2-expressing neurons. We demonstrate that RBBP4 plays an essential role in regulating neocortical progenitor proliferation. However, overexpression of RBBP4 alone was not sufficient to regulate neuronal fate.Genome-wide occupancy analysis revealed that RBBP4 primarily binds to distal regulatory elements, and neuron differentiation is a significant GO biological pathway of RBBP4-bound genes. Interestingly, we found that RBBP4 binds to Cdon, a receptor protein in the Shh signaling pathway, and knockdown of Cdon phenocopies RBBP4 knockdown resulting in a significant reduction in neurogenesis, particularly CTIP2-expressing neurons. CDON overexpression could rescue the phenotype caused upon loss of RBBP4 in the neocortex, thereby suggesting the functional link between RBBP4 and its target gene CDON. Our results shed light on the cellular role of RBBP4 and identify CDON as a novel regulator of deep-layer neurogenesis in the neocortical progenitors. Our findings are significant in the context of understanding how dysregulated chromatin regulation impacts cellular mechanisms in neurodevelopmental disorders.Significance Statement Chromatin modifier RBBP4 regulates chromatin structure and, thereby, gene expression. It is expressed in the dorsal telencephalon progenitors during deep-layer neurogenesis. In this study, we unveil a novel role for RBBP4 in regulating deep-layer neurogenesis in the neocortical progenitors. Our research underscores RBBP4's critical role in governing progenitor proliferation and neuronal subtype specification in the neocortex while identifying its genome-wide binding occupancy profile. Moreover, we identify Cdon as a novel binding target of RBBP4, also involved in regulating deep-layer neurogenesis. These findings illuminate the mechanisms by which chromatin modifiers influence neocortical development, offering insights into how mutations in chromatin modifiers could impact cortical development and contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Sattwik Mohanty
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Tulaib Azam
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Asha S Channakkar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
- Regional Centre for Biotechnology, Faridabad - 121001
| | - Leora D'Souza
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - K S Swathi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi- 201314, India
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| |
Collapse
|
2
|
Abad C, Robayo MC, Muñiz-Moreno MDM, Bernardi MT, Otero MG, Kosanovic C, Griswold AJ, Pierson TM, Walz K, Young JI. Gatad2b, associated with the neurodevelopmental syndrome GAND, plays a critical role in neurodevelopment and cortical patterning. Transl Psychiatry 2024; 14:33. [PMID: 38238293 PMCID: PMC10796954 DOI: 10.1038/s41398-023-02678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
GATAD2B (GATA zinc finger domain containing 2B) variants are associated with the neurodevelopmental syndrome GAND, characterized by intellectual disability (ID), infantile hypotonia, apraxia of speech, epilepsy, macrocephaly and distinct facial features. GATAD2B encodes for a subunit of the Nucleosome Remodeling and Histone Deacetylase (NuRD) complex. NuRD controls transcriptional programs critical for proper neurodevelopment by coupling histone deacetylase with ATP-dependent chromatin remodeling activity. To study mechanisms of pathogenesis for GAND, we characterized a mouse model harboring an inactivating mutation in Gatad2b. Homozygous Gatad2b mutants die perinatally, while haploinsufficient Gatad2b mice exhibit behavioral abnormalities resembling the clinical features of GAND patients. We also observed abnormal cortical patterning, and cellular proportions and cell-specific alterations in the developmental transcriptome in these mice. scRNAseq of embryonic cortex indicated misexpression of genes key for corticogenesis and associated with neurodevelopmental syndromes such as Bcl11b, Nfia and H3f3b and Sox5. These data suggest a crucial role for Gatad2b in brain development.
Collapse
Affiliation(s)
- Clemer Abad
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria C Robayo
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria Del Mar Muñiz-Moreno
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Maria T Bernardi
- IQUIBICEN - CONICET, School of Exact and Natural Sciences - University of Buenos Aires, Buenos Aires, Argentina
| | - Maria G Otero
- The Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christina Kosanovic
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Tyler Mark Pierson
- The Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Guerin Children's, Departments of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- The Center for the Undiagnosed Patient, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- IQUIBICEN - CONICET, School of Exact and Natural Sciences - University of Buenos Aires, Buenos Aires, Argentina
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
3
|
Montibus B, Ragheb R, Diamanti E, Dunn SJ, Reynolds N, Hendrich B. The Nucleosome Remodelling and Deacetylation complex coordinates the transcriptional response to lineage commitment in pluripotent cells. Biol Open 2024; 13:bio060101. [PMID: 38149716 PMCID: PMC10836651 DOI: 10.1242/bio.060101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
As cells exit the pluripotent state and begin to commit to a specific lineage they must activate genes appropriate for that lineage while silencing genes associated with pluripotency and preventing activation of lineage-inappropriate genes. The Nucleosome Remodelling and Deacetylation (NuRD) complex is essential for pluripotent cells to successfully undergo lineage commitment. NuRD controls nucleosome density at regulatory sequences to facilitate transcriptional responses, and also has been shown to prevent unscheduled transcription (transcriptional noise) in undifferentiated pluripotent cells. How these activities combine to ensure cells engage a gene expression program suitable for successful lineage commitment has not been determined. Here, we show that NuRD is not required to silence all genes. Rather, it restricts expression of genes primed for activation upon exit from the pluripotent state, but maintains them in a transcriptionally permissive state in self-renewing conditions, which facilitates their subsequent activation upon exit from naïve pluripotency. We further show that NuRD coordinates gene expression changes, which acts to maintain a barrier between different stable states. Thus NuRD-mediated chromatin remodelling serves multiple functions, including reducing transcriptional noise, priming genes for activation and coordinating the transcriptional response to facilitate lineage commitment.
Collapse
Affiliation(s)
- Bertille Montibus
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Ramy Ragheb
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Evangelia Diamanti
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sara-Jane Dunn
- Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK
| | - Nicola Reynolds
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Brian Hendrich
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
4
|
Larrigan S, Joshi SV, Mattar P. Divergent phenotypes in constitutive versus conditional mutant mouse models of Sifrim-Hitz-Weiss syndrome. Hum Mol Genet 2023; 32:3361-3373. [PMID: 37738575 PMCID: PMC10695680 DOI: 10.1093/hmg/ddad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
Chromatin remodellers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), however, their functions during brain development are not fully understood. Here, we focused on Sifrim-Hitz-Weiss Syndrome (SIHIWES)-an intellectual disability disorder caused by mutations in the CHD4 chromodomain helicase gene. We utilized mouse genetics to excise the Chd4 ATPase/helicase domain-either constitutively, or conditionally in the developing telencephalon. Conditional heterozygotes exhibited no change in cortical size and cellular composition, and had only subtle behavioral phenotypes. Telencephalon-specific conditional knockouts had marked reductions in cortical growth, reduced numbers of upper-layer neurons, and exhibited alterations in anxiety and repetitive behaviors. Despite the fact that whole-body heterozygotes exhibited comparable growth defects, they were unaffected in these behaviors, but instead exhibited female-specific alterations in learning and memory. These data reveal unexpected phenotypic divergence arising from differences in the spatiotemporal deployment of loss-of-function manipulations, underscoring the importance of context in chromatin remodeller function during neurodevelopment.
Collapse
Affiliation(s)
- Sarah Larrigan
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shrilaxmi V Joshi
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pierre Mattar
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Reid XJ, Low JKK, Mackay JP. A NuRD for all seasons. Trends Biochem Sci 2023; 48:11-25. [PMID: 35798615 DOI: 10.1016/j.tibs.2022.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022]
Abstract
The nucleosome-remodeling and deacetylase (NuRD) complex is an essential transcriptional regulator in all complex animals. All seven core subunits of the complex exist as multiple paralogs, raising the question of whether the complex might utilize paralog switching to achieve cell type-specific functions. We examine the evidence for this idea, making use of published quantitative proteomic data to dissect NuRD composition in 20 different tissues, as well as a large-scale CRISPR knockout screen carried out in >1000 human cancer cell lines. These data, together with recent reports, provide strong support for the idea that distinct permutations of the NuRD complex with tailored functions might regulate tissue-specific gene expression programs.
Collapse
Affiliation(s)
- Xavier J Reid
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
López-Cerdán A, Andreu Z, Hidalgo MR, Grillo-Risco R, Català-Senent JF, Soler-Sáez I, Neva-Alejo A, Gordillo F, de la Iglesia-Vayá M, García-García F. Unveiling sex-based differences in Parkinson's disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2022; 13:68. [PMID: 36414996 PMCID: PMC9682715 DOI: 10.1186/s13293-022-00477-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson's disease incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical variable in Parkinson's disease as epidemiological and clinical features differ between males and females. METHODS To study sex bias in Parkinson's disease, we conducted a systematic review to select sex-labeled transcriptomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed differential expression analysis on each study chosen. Then we summarized the individual differential expression results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-analysis were functionally characterized using different functional profiling approaches. RESULTS The tissue-specific meta-analyses linked Parkinson's disease to the enhanced expression of MED31 in the female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 15 genes with sex-differential patterns in Parkinson's disease, which participate in mitochondrial function, oxidative stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein-protein interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All results generated during this study are readily available by accessing an open web resource ( http://bioinfo.cipf.es/metafun-pd/ ) for consultation and reuse in further studies. CONCLUSIONS Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as biomarkers to diagnosis.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Fundación Para El Fomento de La Investigación Sanitaria Y Biomédica de La Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Rubén Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | | | - Irene Soler-Sáez
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Almudena Neva-Alejo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Fernando Gordillo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación Para El Fomento de La Investigación Sanitaria Y Biomédica de La Comunidad Valenciana, 46012, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
7
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
8
|
SETD5 Regulates Glycolysis in Breast Cancer Stem-Like Cells and Fuels Tumor Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:712-721. [PMID: 35063407 DOI: 10.1016/j.ajpath.2021.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Although glycolysis plays a pivotal role in breast cancer stem-like cell (BCSC) reprogramming, the molecular mechanisms that couple glycolysis to cancer stem-like cells remain unclear. SETD5 is a previously uncharacterized member of the histone lysine methyltransferase family. The goal of this study was to explore the mechanisms underlying the promotion of stem-like and glycolysis activation traits by SETD5. Previous studies have shown that overexpression of SETD5 in breast cancer tissues is associated positively with progression. The present study showed that SETD5 expression was enriched in BCSCs. Down-regulation of SETD5 significantly decreased BCSC properties and glycolysis in vitro and in vivo. Interestingly, SETD5 and glycolytic enzymes were accumulated in the central hypoxic regions of subcutaneous tumor tissues. Bioinformatic analysis predicted SETD5 binding to E1A binding protein p300 (EP300), and subsequently to hypoxia-inducible factor 1α (HIF-1α). The mechanistic study found that SETD5 is an upstream effector of EP300/HIF-1α. SETD5 knockdown reduced the expression of HIF-1α, hexokinase-2, and 6-phosphofructo-2-kinase in the nucleus after treatment with cobalt chloride, a chemical hypoxia mimetic agent that activates HIF-1α to accumulate in the nucleus. Therefore, SETD5 is required for glycolysis in BCSCs through binding to EP300/HIF-1α and could be a potential therapeutic target for breast cancer patients.
Collapse
|
9
|
Transcriptional and epigenetic regulation of temporal patterning in neural progenitors. Dev Biol 2021; 481:116-128. [PMID: 34666024 DOI: 10.1016/j.ydbio.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
During development, neural progenitors undergo temporal patterning as they age to sequentially generate differently fated progeny. Temporal patterning of neural progenitors is relatively well-studied in Drosophila. Temporal cascades of transcription factors or opposing temporal gradients of RNA-binding proteins are expressed in neural progenitors as they age to control the fates of the progeny. The temporal progression is mostly driven by intrinsic mechanisms including cross-regulations between temporal genes, but environmental cues also play important roles in certain transitions. Vertebrate neural progenitors demonstrate greater plasticity in response to extrinsic cues. Recent studies suggest that vertebrate neural progenitors are also temporally patterned by a combination of transcriptional and post-transcriptional mechanisms in response to extracellular signaling to regulate neural fate specification. In this review, we summarize recent advances in the study of temporal patterning of neural progenitors in Drosophila and vertebrates. We also discuss the involvement of epigenetic mechanisms, specifically the Polycomb group complexes and ATP-dependent chromatin remodeling complexes, in the temporal patterning of neural progenitors.
Collapse
|
10
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
11
|
Larrigan S, Shah S, Fernandes A, Mattar P. Chromatin Remodeling in the Brain-a NuRDevelopmental Odyssey. Int J Mol Sci 2021; 22:ijms22094768. [PMID: 33946340 PMCID: PMC8125410 DOI: 10.3390/ijms22094768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
During brain development, the genome must be repeatedly reconfigured in order to facilitate neuronal and glial differentiation. A host of chromatin remodeling complexes facilitates this process. At the genetic level, the non-redundancy of these complexes suggests that neurodevelopment may require a lexicon of remodelers with different specificities and activities. Here, we focus on the nucleosome remodeling and deacetylase (NuRD) complex. We review NuRD biochemistry, genetics, and functions in neural progenitors and neurons.
Collapse
Affiliation(s)
- Sarah Larrigan
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Alex Fernandes
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Pierre Mattar
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Correspondence:
| |
Collapse
|
12
|
Mattar P, Jolicoeur C, Dang T, Shah S, Clark BS, Cayouette M. A Casz1-NuRD complex regulates temporal identity transitions in neural progenitors. Sci Rep 2021; 11:3858. [PMID: 33594190 PMCID: PMC7886867 DOI: 10.1038/s41598-021-83395-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Neural progenitor cells undergo identity transitions during development to ensure the generation different types of neurons and glia in the correct sequence and proportions. A number of temporal identity factors that control these transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal development. We show that Casz1 is required to control the transition between neurogenesis and gliogenesis. Using BioID proteomics, we reveal that Casz1 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in retinal cells. Finally, we show that both the NuRD and the polycomb repressor complexes are required for Casz1 to promote the rod fate and suppress gliogenesis. As additional temporal identity factors have been found to interact with the NuRD complex in other contexts, we propose that these factors might act through this common biochemical process to regulate neurogenesis.
Collapse
Affiliation(s)
- Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Thanh Dang
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Anatomy and Cell Biology, and Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
13
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
14
|
Jungas T, Joseph M, Fawal MA, Davy A. Population Dynamics and Neuronal Polyploidy in the Developing Neocortex. Cereb Cortex Commun 2020; 1:tgaa063. [PMID: 34296126 PMCID: PMC8152829 DOI: 10.1093/texcom/tgaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022] Open
Abstract
The mammalian neocortex is composed of different subtypes of projection neurons that are generated sequentially during embryogenesis by differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different progenitor and neuronal populations are still poorly characterized. Here, we describe a medium throughput approach based on flow cytometry and well-known identity markers of cortical subpopulations to collect quantitative data over the course of mouse neocortex development. We collected a complete dataset in a physiological developmental context on two progenitor and two neuron populations, including relative proportions and absolute numbers. Our study reveals unexpected total numbers of Tbr2+ progenitors. In addition, we show that polyploid neurons are present throughout neocortex development.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Mathieu Joseph
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
15
|
Adam MA, Harwell CC. Epigenetic regulation of cortical neurogenesis; orchestrating fate switches at the right time and place. Curr Opin Neurobiol 2020; 63:146-153. [PMID: 32428815 PMCID: PMC7483903 DOI: 10.1016/j.conb.2020.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Over the last several decades the field has made tremendous progress in understanding the proliferative behavior of cortical progenitors and the lineage relationships of their clonal progeny. The genetic and epigenetic mechanisms that control the dynamic patterns of gene expression during cortical development are only beginning to be characterized. In this review we highlight the most well characterized epigenetic modifications and their influence on progenitor proliferation and cortical neuron cell fate.
Collapse
Affiliation(s)
- Manal A Adam
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Identification and functional characterization of methyl-CpG binding domain protein from Tribolium castaneum. Genomics 2020; 112:2223-2232. [DOI: 10.1016/j.ygeno.2019.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/03/2019] [Accepted: 12/25/2019] [Indexed: 01/01/2023]
|
17
|
Mondal B, Jin H, Kallappagoudar S, Sedkov Y, Martinez T, Sentmanat MF, Poet GJ, Li C, Fan Y, Pruett-Miller SM, Herz HM. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. eLife 2020; 9:57519. [PMID: 32297854 PMCID: PMC7192582 DOI: 10.7554/elife.57519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The mitotic deacetylase complex (MiDAC) is a recently identified histone deacetylase (HDAC) complex. While other HDAC complexes have been implicated in neurogenesis, the physiological role of MiDAC remains unknown. Here, we show that MiDAC constitutes an important regulator of neural differentiation. We demonstrate that MiDAC functions as a modulator of a neurodevelopmental gene expression program and binds to important regulators of neurite outgrowth. MiDAC upregulates gene expression of pro-neural genes such as those encoding the secreted ligands SLIT3 and NETRIN1 (NTN1) by a mechanism suggestive of H4K20ac removal on promoters and enhancers. Conversely, MiDAC inhibits gene expression by reducing H3K27ac on promoter-proximal and -distal elements of negative regulators of neurogenesis. Furthermore, loss of MiDAC results in neurite outgrowth defects that can be rescued by supplementation with SLIT3 and/or NTN1. These findings indicate a crucial role for MiDAC in regulating the ligands of the SLIT3 and NTN1 signaling axes to ensure the proper integrity of neurite development.
Collapse
Affiliation(s)
- Baisakhi Mondal
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Hongjian Jin
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Satish Kallappagoudar
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yurii Sedkov
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tanner Martinez
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Monica F Sentmanat
- Genome Engineering & iPS Center, Department of Genetics, Washington University, St. Louis, United States
| | - Greg J Poet
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Hans-Martin Herz
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
18
|
Yang Q, Wu J, Zhao J, Xu T, Han P, Song X. The Expression Profiles of lncRNAs and Their Regulatory Network During Smek1/2 Knockout Mouse Neural Stem Cells Differentiation. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190308160507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Previous studies indicated that the cell fate of neural stem cells (NSCs)
after differentiation is determined by Smek1, one isoform of suppressor of Mek null (Smek). Smek
deficiency prevents NSCs from differentiation, thus affects the development of nervous system. In
recent years, lncRNAs have been found to participate in numerous developmental and biological
pathways. However, the effects of knocking out Smek on the expression profiles of lncRNAs
during the differentiation remain unknown.
Objective:
This study is to explore the expression profiles of lncRNAs and their possible function
during the differentiation from Smek1/2 knockout NSCs.
Methods:
We obtained NSCs from the C57BL/6J mouse fetal cerebral cortex. One group of NSCs
was from wildtype mouse (WT group), while another group was from knocked out Smek1/2 (KO
group).
Results:
By analyzing the RNA-Seq data, we found that after knocking out Smek1/2, the
expression profiles of mRNAs and lncRNAs revealed significant changes. Analyses indicated that
these affected mRNAs have connections with the pathway network for the differentiation and
proliferation of NSCs. Furthermore, we performed a co-expression network analysis on the
differentially expressed mRNAs and lncRNAs, which helped reveal the possible regulatory rules
of lncRNAs during the differentiation after knocking out Smek1/2.
Conclusion:
By comparing group WT with KO, we found 366 differentially expressed mRNAs
and 12 lncRNAs. GO and KEGG enrichment analysis on these mRNAs suggested their
relationships with differentiation and proliferation of NSCs. Some of these mRNAs and lncRNAs
have been verified to play regulatory roles in nervous system. Analyses on the co-expression
network also indicated the possible functions of affected mRNAs and lncRNAs during NSCs
differentiation after knocking out Smek1/2.
Collapse
Affiliation(s)
- Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Jing Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Ping Han
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210019, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| |
Collapse
|
19
|
Fu L, Li C, Na W, Shi YB. Thyroid hormone activates Xenopus MBD3 gene via an intronic TRE in vivo. Front Biosci (Landmark Ed) 2020; 25:437-451. [PMID: 31585895 DOI: 10.2741/4812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thyroid hormone (T3) is important for adult organ function and vertebrate development. Amphibian metamorphosis is totally dependent on T3 and can be easily manipulated, thus offering a unique opportunity for studying how T3 controls vertebrate development. T3 controls frog metamorphosis through T3 receptor (TR)-mediated regulation of T3 response genes. To identify direct T3 response genes, we previously carried out a ChIP (chromatin immunoprecipitation)-on-chip analysis with a polyclonal anti-TR antibody on the tadpole intestine and identified many putative TR target genes. Among them is the methyl-CpG binding domain protein 3 (MBD3) gene, which has been implicated to play a role in epigenetic regulation of cellular processes as a subunit of the Mi-2/NuRD (Nucleosome Remodeling Deacetylase) complex. We show here that MBD3 is upregulated in the intestine and tail by T3 and its expression peaks at stage 62, the climax of metamorphosis. We further show that a putative TRE within the first intron of the MBD3 gene binds to TR/RXR in vitro and in vivo, and mediates T3 regulation of the MBD3 promoter in vivo.
Collapse
Affiliation(s)
- Liezhen Fu
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Christin Li
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Wonho Na
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Yun-Bo Shi
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA,
| |
Collapse
|
20
|
Hoffmann A, Spengler D. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Front Genet 2019; 10:682. [PMID: 31396263 PMCID: PMC6667665 DOI: 10.3389/fgene.2019.00682] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex presents one of the major chromatin remodeling complexes in mammalian cells. Here, we discuss current evidence for NuRD's role as an important epigenetic regulator of gene expression in neural stem cell (NSC) and neural progenitor cell (NPC) fate decisions in brain development. With the formation of the cerebellar and cerebral cortex, NuRD facilitates experience-dependent cerebellar plasticity and regulates additionally cerebral subtype specification and connectivity in postmitotic neurons. Consistent with these properties, genetic variation in NuRD's subunits emerges as important risk factor in common polygenic forms of neurodevelopmental disorders (NDDs) and neurodevelopment-related psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BD). Overall, these findings highlight the critical role of NuRD in chromatin regulation in brain development and in mental health and disease.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
21
|
Tsuboi M, Kishi Y, Yokozeki W, Koseki H, Hirabayashi Y, Gotoh Y. Ubiquitination-Independent Repression of PRC1 Targets during Neuronal Fate Restriction in the Developing Mouse Neocortex. Dev Cell 2019; 47:758-772.e5. [PMID: 30562514 DOI: 10.1016/j.devcel.2018.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Polycomb repressive complex (PRC) 1 maintains developmental genes in a poised state through monoubiquitination (Ub) of histone H2A. Although Ub-independent functions of PRC1 have also been suggested, it has remained unclear whether Ub-dependent and -independent functions of PRC1 operate differentially in a developmental context. Here, we show that the E3 ubiquitin ligase activity of Ring1B, a core component of PRC1, is necessary for the temporary repression of key neuronal genes in neurogenic (early-stage) neural stem or progenitor cells (NPCs) but is dispensable for the persistent repression of these genes associated with the loss of neurogenic potential in astrogliogenic (late-stage) NPCs. Our results also suggest that histone deacetylase (HDAC) activity of the NuRD/MBD3 complex and Phc2-dependent PRC1 clustering are necessary for the transition from the Ub-dependent to -independent function of PRC1. Together, these results indicate that Ub-independent mode of repression by PRC1 plays a key role in mammalian development during cell fate restriction.
Collapse
Affiliation(s)
- Masafumi Tsuboi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Wakana Yokozeki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Yusuke Hirabayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; PRESTO, JST, TokyoJapan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
22
|
Burgold T, Barber M, Kloet S, Cramard J, Gharbi S, Floyd R, Kinoshita M, Ralser M, Vermeulen M, Reynolds N, Dietmann S, Hendrich B. The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment. EMBO J 2019; 38:embj.2018100788. [PMID: 31036553 PMCID: PMC6576150 DOI: 10.15252/embj.2018100788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Multiprotein chromatin remodelling complexes show remarkable conservation of function amongst metazoans, even though components present in invertebrates are often found as multiple paralogous proteins in vertebrate complexes. In some cases, these paralogues specify distinct biochemical and/or functional activities in vertebrate cells. Here, we set out to define the biochemical and functional diversity encoded by one such group of proteins within the mammalian Nucleosome Remodelling and Deacetylation (NuRD) complex: Mta1, Mta2 and Mta3. We find that, in contrast to what has been described in somatic cells, MTA proteins are not mutually exclusive within embryonic stem (ES) cell NuRD and, despite subtle differences in chromatin binding and biochemical interactions, serve largely redundant functions. ES cells lacking all three MTA proteins exhibit complete NuRD loss of function and are viable, allowing us to identify a previously unreported function for NuRD in reducing transcriptional noise, which is essential for maintaining a proper differentiation trajectory during early stages of lineage commitment.
Collapse
Affiliation(s)
- Thomas Burgold
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michael Barber
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Susan Kloet
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Julie Cramard
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah Gharbi
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Robin Floyd
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Masaki Kinoshita
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Meryem Ralser
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Nicola Reynolds
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sabine Dietmann
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Brian Hendrich
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK .,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Ji S, Zhou W, Li X, Liu S, Wang F, Li X, Zhao T, Ji G, Du J, Hao A. Maternal hyperglycemia disturbs neocortical neurogenesis via epigenetic regulation in C57BL/6J mice. Cell Death Dis 2019; 10:211. [PMID: 30824686 PMCID: PMC6397163 DOI: 10.1038/s41419-019-1438-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
Offspring of mothers with hyperglycemia during pregnancy have a higher incidence of long-term neuropsychiatric disorders than offspring from a normal pregnancy, indicating that neocortical neurogenesis might be affected by maternal hyperglycemia. A paucity of study evaluating the effects of hyperglycemia on neocortical neurogenetic differentiation of neural stem cells, and the mechanism remains unclear. We sought to investigate the the roles and possible molecular mechanism of maternal hyperglycemia on neocortical neurogenetic differentiation of neural stem cells. We established a mouse model of a hyperglycemic pregnancy to study effects of intrauterine exposure to maternal hyperglycemia on neocortical neurogenesis. We observed morphological changes in the neocortex and detected the neurogenetic differentiation of neural stem cells in offspring affected by high glucose levels. We investigated the regulatory network between epigenetic modification and transcription factors in differentiated neural stem cells under hyperglycemic conditions. Maternal hyperglycemia disturbs neocortical lamination in some non-malformed offspring. Our results suggested that hyperglycemia altered the early-born neuron fate and the distribution of newborn neurons in deep layers by promoting the earlier differentiation of neural stem cells. Altered histone acetylation and its regulation on the transcription of proneural genes might be correlated to the disrupted differentiation of neural stem cells and altered distribution of newborn projection neurons in the neocortex. Our data raised the possibility that maternal hyperglycemia in pregnancy disturbs the laminar distribution of neocortical projection neurons in some non-malformed offspring via epigenetic regulation on neural stem cell differentiation and the birthdate of neocortical neurons.
Collapse
Affiliation(s)
- Shufang Ji
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xian Li
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Foot and Ankle Surgery Center of Shandong University and Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xinyue Li
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Tiantian Zhao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Guangyu Ji
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jingyi Du
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
24
|
Turner KJ, Hoyle J, Valdivia LE, Cerveny KL, Hart W, Mangoli M, Geisler R, Rees M, Houart C, Poole RJ, Wilson SW, Gestri G. Abrogation of Stem Loop Binding Protein (Slbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits. PLoS One 2019; 14:e0211073. [PMID: 30695021 PMCID: PMC6350959 DOI: 10.1371/journal.pone.0211073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
Through forward genetic screening for mutations affecting visual system development, we identified prominent coloboma and cell-autonomous retinal neuron differentiation, lamination and retinal axon projection defects in eisspalte (ele) mutant zebrafish. Additional axonal deficits were present, most notably at midline axon commissures. Genetic mapping and cloning of the ele mutation showed that the affected gene is slbp, which encodes a conserved RNA stem-loop binding protein involved in replication dependent histone mRNA metabolism. Cells throughout the central nervous system remained in the cell cycle in ele mutant embryos at stages when, and locations where, post-mitotic cells have differentiated in wild-type siblings. Indeed, RNAseq analysis showed down-regulation of many genes associated with neuronal differentiation. This was coincident with changes in the levels and spatial localisation of expression of various genes implicated, for instance, in axon guidance, that likely underlie specific ele phenotypes. These results suggest that many of the cell and tissue specific phenotypes in ele mutant embryos are secondary to altered expression of modules of developmental regulatory genes that characterise, or promote transitions in, cell state and require the correct function of Slbp-dependent histone and chromatin regulatory genes.
Collapse
Affiliation(s)
- Katherine J. Turner
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Jacqueline Hoyle
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- Department of Paediatrics and Child Health, University College London, London, United Kingdom
| | - Leonardo E. Valdivia
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Kara L. Cerveny
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Wendy Hart
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Maryam Mangoli
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Robert Geisler
- Karlsruhe Institute of Technology (KIT) Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Michele Rees
- Department of Paediatrics and Child Health, University College London, London, United Kingdom
| | - Corinne Houart
- Department of Developmental Neurobiology and MRC Centre for Developmental Disorders, Kings College London, London, United Kingdom
| | - Richard J. Poole
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- * E-mail: (GG); (SWW)
| | - Gaia Gestri
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- * E-mail: (GG); (SWW)
| |
Collapse
|
25
|
Hirota A, Nakajima-Koyama M, Ashida Y, Nishida E. The nucleosome remodeling and deacetylase complex protein CHD4 regulates neural differentiation of mouse embryonic stem cells by down-regulating p53. J Biol Chem 2019; 294:195-209. [PMID: 30409903 DOI: 10.1074/jbc.ra118.004086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/07/2018] [Indexed: 11/06/2022] Open
Abstract
Lineage specification of the three germ layers occurs during early embryogenesis and is critical for normal development. The nucleosome remodeling and deacetylase (NuRD) complex is a repressive chromatin modifier that plays a role in lineage commitment. However, the role of chromodomain helicase DNA-binding protein 4 (CHD4), one of the core subunits of the NuRD complex, in neural lineage commitment is poorly understood. Here, we report that the CHD4/NuRD complex plays a critical role in neural differentiation of mouse embryonic stem cells (ESCs). We found that RNAi-mediated Chd4 knockdown suppresses neural differentiation, as did knockdown of methyl-CpG-binding domain protein Mbd3, another NuRD subunit. Chd4 and Mbd3 knockdowns similarly affected changes in global gene expression during neural differentiation and up-regulated several mesendodermal genes. However, inhibition of mesendodermal genes by knocking out the master regulators of mesendodermal lineages, Brachyury and Eomes, through a CRISPR/Cas9 approach could not restore the impaired neural differentiation caused by the Chd4 knockdown, suggesting that CHD4 controls neural differentiation by not repressing other lineage differentiation processes. Notably, Chd4 knockdown increased the acetylation levels of p53, resulting in increased protein levels of p53. Double knockdown of Chd4 and p53 restored the neural differentiation rate. Furthermore, overexpression of BCL2, a downstream factor of p53, partially rescued the impaired neural differentiation caused by the Chd4 knockdown. Our findings reveal that the CHD4/NuRD complex regulates neural differentiation of ESCs by down-regulating p53.
Collapse
Affiliation(s)
- Akira Hirota
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | - May Nakajima-Koyama
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502; AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Yuhei Ashida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502; AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
26
|
Adult Neural Stem Cell Multipotency and Differentiation Are Directed by the Methyl-CpG-Binding Protein MBD1. J Neurosci 2018; 37:4228-4230. [PMID: 28424299 DOI: 10.1523/jneurosci.0411-17.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 11/21/2022] Open
|
27
|
Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, Rubenstein JLR, Hevner RF. The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1. Front Neurosci 2018; 12:571. [PMID: 30186101 PMCID: PMC6113890 DOI: 10.3389/fnins.2018.00571] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.
Collapse
Affiliation(s)
- Gina E. Elsen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Francesco Bedogni
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Rebecca D. Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
28
|
Sokpor G, Castro-Hernandez R, Rosenbusch J, Staiger JF, Tuoc T. ATP-Dependent Chromatin Remodeling During Cortical Neurogenesis. Front Neurosci 2018; 12:226. [PMID: 29686607 PMCID: PMC5900035 DOI: 10.3389/fnins.2018.00226] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The generation of individual neurons (neurogenesis) during cortical development occurs in discrete steps that are subtly regulated and orchestrated to ensure normal histogenesis and function of the cortex. Notably, various gene expression programs are known to critically drive many facets of neurogenesis with a high level of specificity during brain development. Typically, precise regulation of gene expression patterns ensures that key events like proliferation and differentiation of neural progenitors, specification of neuronal subtypes, as well as migration and maturation of neurons in the developing cortex occur properly. ATP-dependent chromatin remodeling complexes regulate gene expression through utilization of energy from ATP hydrolysis to reorganize chromatin structure. These chromatin remodeling complexes are characteristically multimeric, with some capable of adopting functionally distinct conformations via subunit reconstitution to perform specific roles in major aspects of cortical neurogenesis. In this review, we highlight the functions of such chromatin remodelers during cortical development. We also bring together various proposed mechanisms by which ATP-dependent chromatin remodelers function individually or in concert, to specifically modulate vital steps in cortical neurogenesis.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Ricardo Castro-Hernandez
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| |
Collapse
|
29
|
Nitarska J, Smith JG, Sherlock WT, Hillege MMG, Nott A, Barshop WD, Vashisht AA, Wohlschlegel JA, Mitter R, Riccio A. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development. Cell Rep 2017; 17:1683-1698. [PMID: 27806305 PMCID: PMC5149529 DOI: 10.1016/j.celrep.2016.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/03/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development. The ATPases CHD3, CHD4, and CHD5 are mutually exclusive subunits of the NuRD complex CHD3, CHD4, and CHD5 regulate distinct and non-redundant aspects of cortical development Loss of each CHD leads to specific defects of neuronal proliferation and migration CHD3, CHD4, and CHD5 regulate distinct set of genes essential for brain development
Collapse
Affiliation(s)
- Justyna Nitarska
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Jacob G Smith
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - William T Sherlock
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Michele M G Hillege
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Alexi Nott
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - Richard Mitter
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Hota SK, Bruneau BG. ATP-dependent chromatin remodeling during mammalian development. Development 2017; 143:2882-97. [PMID: 27531948 DOI: 10.1242/dev.128892] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precise gene expression ensures proper stem and progenitor cell differentiation, lineage commitment and organogenesis during mammalian development. ATP-dependent chromatin-remodeling complexes utilize the energy from ATP hydrolysis to reorganize chromatin and, hence, regulate gene expression. These complexes contain diverse subunits that together provide a multitude of functions, from early embryogenesis through cell differentiation and development into various adult tissues. Here, we review the functions of chromatin remodelers and their different subunits during mammalian development. We discuss the mechanisms by which chromatin remodelers function and highlight their specificities during mammalian cell differentiation and organogenesis.
Collapse
Affiliation(s)
- Swetansu K Hota
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA Department of Pediatrics, University of California, San Francisco, CA 94143, USA Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
31
|
Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment through Maintaining Adult Neural Stem Cell Identity. J Neurosci 2017; 37:523-536. [PMID: 28100736 DOI: 10.1523/jneurosci.1075-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023] Open
Abstract
Methyl-CpG-binding domain 1 (MBD1) belongs to a family of methyl-CpG-binding proteins that are epigenetic "readers" linking DNA methylation to transcriptional regulation. MBD1 is expressed in neural stem cells residing in the dentate gyrus of the adult hippocampus (aNSCs) and MBD1 deficiency leads to reduced neuronal differentiation, impaired neurogenesis, learning deficits, and autism-like behaviors in mice; however, the precise function of MBD1 in aNSCs remains unexplored. Here, we show that MBD1 is important for maintaining the integrity and stemness of NSCs, which is critical for their ability to generate neurons. MBD1 deficiency leads to the accumulation of undifferentiated NSCs and impaired transition into the neuronal lineage. Transcriptome analysis of neural stem and progenitor cells isolated directly from the dentate gyrus of MBD1 mutant (KO) and WT mice showed that gene sets related to cell differentiation, particularly astrocyte lineage genes, were upregulated in KO cells. We further demonstrated that, in NSCs, MBD1 binds and represses directly specific genes associated with differentiation. Our results suggest that MBD1 maintains the multipotency of NSCs by restraining the onset of differentiation genes and that untimely expression of these genes in MBD1-deficient stem cells may interfere with normal cell lineage commitment and cause the accumulation of undifferentiated cells. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation contributes to adult neurogenesis and the potential impact of its dysregulation. SIGNIFICANCE STATEMENT Adult neural stem cells (aNSCs) in the hippocampus self-renew and generate neurons throughout life. We show that methyl-CpG-binding domain 1 (MBD1), a DNA methylation "reader," is important for maintaining the integrity of NSCs, which is critical for their neurogenic potency. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation preserves the multipotency of stem cells for subsequent differentiation.
Collapse
|
32
|
Moon BS, Yun HM, Chang WH, Steele BH, Cai M, Choi SH, Lu W. Smek promotes corticogenesis through regulating Mbd3's stability and Mbd3/NuRD complex recruitment to genes associated with neurogenesis. PLoS Biol 2017; 15:e2001220. [PMID: 28467410 PMCID: PMC5414985 DOI: 10.1371/journal.pbio.2001220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/06/2017] [Indexed: 11/18/2022] Open
Abstract
The fate of neural progenitor cells (NPCs) during corticogenesis is determined by a complex interplay of genetic or epigenetic components, but the underlying mechanism is incompletely understood. Here, we demonstrate that Suppressor of Mek null (Smek) interact with methyl-CpG-binding domain 3 (Mbd3) and the complex plays a critical role in self-renewal and neuronal differentiation of NPCs. We found that Smek promotes Mbd3 polyubiquitylation and degradation, blocking recruitment of the repressive Mbd3/nucleosome remodeling and deacetylase (NuRD) complex at the neurogenesis-associated gene loci, and, as a consequence, increasing acetyl histone H3 activity and cortical neurogenesis. Furthermore, overexpression of Mbd3 significantly blocked neuronal differentiation of NPCs, and Mbd3 depletion rescued neurogenesis defects seen in Smek1/2 knockout mice. These results reveal a novel molecular mechanism underlying Smek/Mbd3/NuRD axis-mediated control of NPCs' self-renewal and neuronal differentiation during mammalian corticogenesis.
Collapse
Affiliation(s)
- Byoung-San Moon
- Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hyung-Mun Yun
- Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Wen-Hsuan Chang
- Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Bradford H. Steele
- Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mingyang Cai
- Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Si Ho Choi
- Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Wange Lu
- Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
33
|
Bednarczyk J, Dębski KJ, Bot AM, Lukasiuk K. MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy. Sci Rep 2016; 6:33736. [PMID: 27650712 PMCID: PMC5030630 DOI: 10.1038/srep33736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to examine involvement of MBD3 (methyl-CpG-binding domain protein 3), a protein involved in reading DNA methylation patterns, in epileptogenesis and epilepsy. We used a well-characterized rat model of temporal lobe epilepsy that is triggered by status epilepticus, evoked by electrical stimulation of the amygdala. Stimulated and sham-operated animals were sacrificed 14 days after stimulation. We found that MBD3 transcript was present in neurons, oligodendrocytes, and astrocytes in both control and epileptic animals. We detected the nuclear localization of MBD3 protein in neurons, mature oligodendrocytes, and a subpopulation of astrocytes but not in microglia. Amygdala stimulation significantly increased the level of MBD3 immunofluorescence. Immunoprecipitation followed by mass spectrometry and Western blot revealed that MBD3 in the adult brain assembles the NuRD complex, which also contains MTA2, HDAC2, and GATAD2B. Using chromatin immunoprecipitation combined with deep sequencing, we observed differences in the occupancy of DNA regions by MBD3 protein between control and stimulated animals. This was not followed by subsequent changes in the mRNA expression levels of selected MBD3 targets. Our data demonstrate for the first time alterations in the MBD3 expression and DNA occupancy in the experimental model of epilepsy.
Collapse
Affiliation(s)
- Joanna Bednarczyk
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Konrad J. Dębski
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna M. Bot
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
34
|
Wood KH, Zhou Z. Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation. Front Genet 2016; 7:93. [PMID: 27303433 PMCID: PMC4880565 DOI: 10.3389/fgene.2016.00093] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/10/2016] [Indexed: 01/25/2023] Open
Abstract
DNA methylation is an epigenetic mark that is essential for many biological processes and is linked to diseases such as cancer. Methylation is usually associated with transcriptional silencing, but new research has challenged this model. Both transcriptional activation and repression have recently been found to be associated with DNA methylation in a context-specific manner. How DNA methylation patterns are interpreted into different functional output remains poorly understood. One mechanism involves the protein ‘readers’ of methylation, which includes the methyl-CpG binding domain (MBD) family of proteins. This review examines the molecular and biological functions of MBD2, which binds to CpG methylation and is an integral part of the nucleosome remodeling and histone deacetylation (NuRD) complex. MBD2 has been linked to immune system function and tumorigenesis, yet little is known about its functions in vivo. Recent studies have found the MBD2 protein is ubiquitously expressed, with relatively high levels in the lung, liver, and colon. Mbd2 null mice surprisingly show relatively mild phenotypes compared to mice with loss of function of other MBD proteins. This evidence has previously been interpreted as functional redundancy between the MBD proteins. Here, we examine and contextualize research that suggests MBD2 has unique properties and functions among the MBD proteins. These functions translate to recently described roles in the development and differentiation of multiple cell lineages, including pluripotent stem cells and various cell types of the immune system, as well as in tumorigenesis. We also consider possible models for the dynamic interactions between MBD2 and NuRD in different tissues in vivo. The functions of MBD2 may have direct therapeutic implications for several areas of human disease, including autoimmune conditions and cancer, in addition to providing insights into the actions of NuRD and chromatin regulation.
Collapse
Affiliation(s)
- Kathleen H Wood
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Zhaolan Zhou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
35
|
Wood KH, Johnson BS, Welsh SA, Lee JY, Cui Y, Krizman E, Brodkin ES, Blendy JA, Robinson MB, Bartolomei MS, Zhou Z. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions. Epigenomics 2016; 8:455-73. [PMID: 27066839 DOI: 10.2217/epi-2015-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. EXPERIMENTAL PROCEDURES We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. RESULTS Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. CONCLUSION Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.
Collapse
Affiliation(s)
- Kathleen H Wood
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian S Johnson
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah A Welsh
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Y Lee
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yue Cui
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Krizman
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie A Blendy
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell & Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhaolan Zhou
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Handel AE, Chintawar S, Lalic T, Whiteley E, Vowles J, Giustacchini A, Argoud K, Sopp P, Nakanishi M, Bowden R, Cowley S, Newey S, Akerman C, Ponting CP, Cader MZ. Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics. Hum Mol Genet 2016; 25:989-1000. [PMID: 26740550 PMCID: PMC4754051 DOI: 10.1093/hmg/ddv637] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells.
Collapse
Affiliation(s)
- Adam E Handel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3QX, UK, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Satyan Chintawar
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Tatjana Lalic
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Emma Whiteley
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire OX1 3QT, UK
| | - Jane Vowles
- Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Alice Giustacchini
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Karene Argoud
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN and
| | - Paul Sopp
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN and
| | - Sally Cowley
- Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Sarah Newey
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire OX1 3QT, UK
| | - Colin Akerman
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire OX1 3QT, UK
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3QX, UK
| | - M Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK,
| |
Collapse
|