1
|
Yan Y, Wang Y, Cui Y, Wang J, Fan S, Ning C. Molecular Detection and Phylogenetic Analysis of Anaplasma phagocytophilum and Related Strains in Cattle from Henan, China. Vet Sci 2025; 12:252. [PMID: 40266961 PMCID: PMC11946663 DOI: 10.3390/vetsci12030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
Anaplasma phagocytophilum is a zoonotic pathogen transmitted by arthropod vectors. The pathogen infects various vertebrate hosts, causing mild to severe illness. Molecular studies have demonstrated that A. phagocytophilum exhibits a high level of genetic diversity, with two A. phagocytophilum-related variants identified in several countries. This study represents the first application of PCR amplification and restriction fragment length polymorphism (PCR-RFLP) in conjunction with DNA sequencing to investigate the frequency and phylogenetic relationships of A. phagocytophilum and its related strains in cattle from China. A total of 662 bovine blood samples were collected from diverse regions within Henan Province, China, and pathogen DNA was detected in 75 samples, comprising 11.33% of the total. PCR-RFLP analysis identified three strains with frequency rates of 2.87% (19/662) for A. phagocytophilum, 11.33% (75/662) for A. phagocytophilum-like 1, and 3.22% (22/662) for A. phagocytophilum-like 2. Additionally, co-infections involving A. phagocytophilum and A. phagocytophilum-like 1 were observed as well as between A. phagocytophilum-like 1 and A. phagocytophilum-like 2. Anaplasma phagocytophilum-like strains 1 and 2 should be considered when diagnosing bovine anaplasmosis. Despite recent molecular studies of A. phagocytophilum-related strains, there remains a shortage of data concerning vector capability, the epidemiology of the disease, clinical signs, and genetic diversity of the pathogens. Thus, large-scale investigations involving animals and tick vectors are necessary to obtain more detailed information concerning the etiology of anaplasmosis.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (Y.Y.); (Y.W.); (J.W.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng 477150, China
| | - Yongli Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (Y.Y.); (Y.W.); (J.W.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng 477150, China
| | - Yanyan Cui
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Jin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (Y.Y.); (Y.W.); (J.W.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng 477150, China
| | - Shuhua Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (Y.Y.); (Y.W.); (J.W.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng 477150, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Abdoli A, Olfatifar M, Zaki L, Nikkhahi F, Fardsanei F, Sobhani S, Sadeghi H, Eslahi AV, Badri M. Global Prevalence of Anaplasma phagocytophilum in Cattle: A One Health Perspective, Meta-Analysis and Future Predictions (up to 2035). Vet Med Sci 2025; 11:e70251. [PMID: 39969156 PMCID: PMC11837283 DOI: 10.1002/vms3.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Anaplasma phagocytophilum is an emerging tick-borne zoonotic bacterium, which is considered a significant risk to the health and industry of cattle in tropical and sub-tropical regions worldwide. This research focuses on examining the worldwide occurrence of A. phagocytophilum in cattle. Several databases, including Scopus, PubMed, ProQuest, Web of Science, ScienceDirect, and Google Scholar, were searched for publications spanning October 2004 to November 2024. The pooled prevalence was calculated with a 95% confidence interval (CI) using a random-effects model based on the Freeman-Tukey double arcsine transformation. A total of 72 studies satisfied the inclusion criteria, revealing a global prevalence of A. phagocytophilum in cattle estimated at 8.5% (5.9%-11.5%). Mongolia (51.9%, 45.9%-56.2%) and Guatemala (51%, 41.2%-60.7%) were countries that accounted for the highest prevalence. Moreover, the infection was most prevalent in African region with prevalence of 11.3% (3.9%-21.5%). The highest prevalence rate was observed in hot-summer Mediterranean climate (13.7%, 4.7%-26.2%). The analysis indicated that immunological techniques were associated with the highest prevalence rate (14.2%, 6.5%-24.3%). The findings of the present research highlighted important geographical and environmental factors that affect the prevalence of disease. In the fields of veterinary medicine and public health, these findings enhance disease management plans and preventative initiatives.
Collapse
Affiliation(s)
- Amir Abdoli
- Zoonoses Research CenterJahrom University of Medical SciencesJahromIran
- Department of Parasitology and MycologyJahrom University of Medical SciencesJahromIran
| | - Meysam Olfatifar
- Gastroenterology and Hepatology Diseases Research CenterQom University of Medical SciencesQomIran
| | - Leila Zaki
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Farhad Nikkhahi
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Fatemeh Fardsanei
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Sona Sobhani
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Hamid Sadeghi
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| | - Aida Vafae Eslahi
- Zoonoses Research CenterJahrom University of Medical SciencesJahromIran
| | - Milad Badri
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
3
|
Ostrovskii A, Kadyrova M, Yerzhanova N, Kamalova D, Kassen A, Tursunbay N, Shevtsov A, Bauer C, Mukanov K. First study on molecular identification of Anaplasma ovis in sheep in southern Kazakhstan. Vet World 2025; 18:67-75. [PMID: 40041524 PMCID: PMC11873397 DOI: 10.14202/vetworld.2025.67-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/10/2024] [Indexed: 03/06/2025] Open
Abstract
Background and Aim Anaplasmosis in small ruminants is a tick-borne infection caused mainly by the obligate intraerythrocytic bacterium Anaplasma ovis. It is usually subclinical, with persistent infection in affected animals, but acute disease can occur, particularly in young animals. The pathogen is widespread in Central Asia and neighboring regions. In Kazakhstan, the infection was first detected in 1929. However, until now, diagnosis in the country has been based on traditional microscopic examination of blood smears. There were no reliable data on the prevalence and genetic diversity of Anaplasma spp. in sheep in Kazakhstan. This study aimed to determine the occurrence of Anaplasma spp. infection in sheep in southern Kazakhstan, a high-risk region for tick-borne diseases, using PCR and to identify the species by sequencing. Materials and Methods A cross-sectional study was conducted on apparently healthy adult ewes from 77 settlements in 34 districts of Kyzylorda, Turkistan, Zhambyl, Almaty, and Jetisu, southern Kazakhstan. A total of 2553 whole blood samples collected in midsummer 2022 and 2023 were analyzed for Anaplasma spp. using polymerase chain reaction targeting the 404 bp groEL gene fragment. The amplification products from the 441 positive samples were sequenced using the Sanger sequencing method. Phylogenetic analysis of the obtained sequences was performed using the maximum likelihood model. Results Overall, 1017/2553 (39.8%; 95% confidence interval: 37.9%-41.7%) ewes tested were positive for Anaplasma spp. Positive animals were found in 68/77 (88%) of the settlements from which samples were taken. The percentage of Anaplasma spp.-positive ewes varied significantly from 21.3% to 50.1% in the provinces. Altitude <500 m above sea level was identified as a risk factor for Anaplasma infection. All amplification products were identified as A. ovis through sequencing. Phylogenetic analysis of the groEL gene fragment sequences revealed the presence of two A. ovis genotypes; one was 100% identical to sequences from isolates from China and the other was >99.5% identical to isolates from Africa, Cyprus, and China. Conclusion This first molecular study revealed a widespread of A. ovis infection in adult ewes in southern Kazakhstan. Altitude <500 m was identified as a risk factor. Therefore, clinical cases associated with A. ovis are expected in this region, especially in young animals. Future studies are needed to determine the clinical and economic impact of anaplasmosis on sheep production in the country, to investigate seasonal patterns of infection, and to identify tick species or other arthropods that act as local vectors. This information is useful for developing possible control measures and evaluating their effectiveness.
Collapse
Affiliation(s)
| | - Madina Kadyrova
- National Center for Biotechnology, 01000, Astana, Kazakhstan
| | | | - Dinara Kamalova
- National Center for Biotechnology, 01000, Astana, Kazakhstan
| | - Amirkhan Kassen
- National Center for Biotechnology, 01000, Astana, Kazakhstan
| | | | | | - Christian Bauer
- Institute of Parasitology, Justus Liebig University Giessen, 35392, Giessen, Germany
- Department of Veterinary Medicine, S. Seifullin Kazakh Agro Technical Research University, 010011, Astana, Kazakhstan
| | - Kassym Mukanov
- National Center for Biotechnology, 01000, Astana, Kazakhstan
| |
Collapse
|
4
|
Kadyrova M, Ostrovskii A, Mukanov K, Kassen A, Shevtsova E, Berdikulov M, Vergnaud G, Shevtsov A. Molecular Characterization of Anaplasma spp. in Cattle from Kazakhstan. Pathogens 2024; 13:894. [PMID: 39452765 PMCID: PMC11510537 DOI: 10.3390/pathogens13100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Bovine anaplasmosis is an infectious vector-borne disease caused by bacteria of the genus Anaplasma, which have a wide global distribution and represent a high economic burden for agriculture. The use of molecular genetic techniques has increased our knowledge of the species diversity of Anaplasma spp. and naturally susceptible animals. Monitoring studies allow us to assess the level of infection in herds, as well as the involvement of natural vectors in the processes of maintaining and spreading infection. Despite the high prevalence of Theileria and Babesia in cattle in Kazakhstan, there is no information on the distribution and species diversity of Anaplasma spp in this country. As part of this work, 7027 DNA samples isolated from the whole blood of cattle from 175 settlements in all 17 Kazakhstan regions were PCR-tested for the presence of Anaplasma spp. Anaplasma carriers were found in 1.3% (90 out of 7027) of the tested animals in 9 of the 17 regions of Kazakhstan. The highest percentage of infected animals was recorded in Turkistan (South Kazakhstan) and North Kazakhstan with 4.46% and 2.48% positive samples, respectively. The partial sequencing of 16S rRNA and the groEL gene allowed us to identify five species of Anaplasma: A. centrale, A. marginale, Candidatus Anaplasma Mongolica, A. ovis, and Unknown Anaplasma with infection rates of 0.63%, 0.44%, 0.13%, 0.01%, and 0.01%, respectively.
Collapse
Affiliation(s)
- Madina Kadyrova
- Laboratory of Applied Genetics, National Center for Biotechnology, Astana 010000, Kazakhstan; (M.K.); (A.O.); (K.M.); (A.K.); (E.S.)
| | - Alexandr Ostrovskii
- Laboratory of Applied Genetics, National Center for Biotechnology, Astana 010000, Kazakhstan; (M.K.); (A.O.); (K.M.); (A.K.); (E.S.)
| | - Kassym Mukanov
- Laboratory of Applied Genetics, National Center for Biotechnology, Astana 010000, Kazakhstan; (M.K.); (A.O.); (K.M.); (A.K.); (E.S.)
| | - Amirkhan Kassen
- Laboratory of Applied Genetics, National Center for Biotechnology, Astana 010000, Kazakhstan; (M.K.); (A.O.); (K.M.); (A.K.); (E.S.)
| | - Elena Shevtsova
- Laboratory of Applied Genetics, National Center for Biotechnology, Astana 010000, Kazakhstan; (M.K.); (A.O.); (K.M.); (A.K.); (E.S.)
| | - Maxat Berdikulov
- National Veterinary Reference Center, 150 let Abaya Street 22/3, Astana 010000, Kazakhstan;
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France;
| | - Alexandr Shevtsov
- Laboratory of Applied Genetics, National Center for Biotechnology, Astana 010000, Kazakhstan; (M.K.); (A.O.); (K.M.); (A.K.); (E.S.)
| |
Collapse
|
5
|
Razzaq MA, Imran M, Atif FA, Abbas RZ, Alvi MA, Swelum AA, Sindhu ZUD, Khan MK, Sabir Mughal MA, Khan A, Wu WF. Molecular surveillance based on anaplasmosis in domestic small ruminants: First report on zoonotic Anaplasma capra and phylogenetic insights from Faisalabad, Pakistan. PLoS One 2024; 19:e0305412. [PMID: 39241048 PMCID: PMC11379319 DOI: 10.1371/journal.pone.0305412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/29/2024] [Indexed: 09/08/2024] Open
Abstract
Anaplasma is an intracellular alphaproteobacteria that infects diverse blood cell types in animal hosts including small ruminants. Epidemiological and risk factors information on zoonotic anaplasmosis with respect to anaplasmosis in sheep and goats are scarce. Therefore, the objective of the current study was to estimate the prevalence, risk factors of anaplasmosis and phylogenetic investigation of A. capra in sheep and goats from Faisalabad district, Pakistan. Briefly, 384 blood samples were randomly collected from sheep and goats of Faisalabad district, Pakistan, during January to May 2022. The samples were processed for the detection of Anaplasma targeting 16S rRNA gene using PCR. The data regarding disease determinants were collected using a predesigned questionnaire. Out of 384 samples, 131 samples were found positive for Anaplasma spp. with a prevalence rate of 34.11%. The results indicated a significantly higher prevalence of anaplasmosis in goats (41.88%) compared to sheep (22.00%). In addition, the chi square indicated that housing type, tick infestation, gender, tick control practices, age, mix farming, and hygiene were significantly associated with the occurrence of disease. The analysis of multivariate logistic regression expressed gender as the significant risk factor (p = 0.0001, OR = 1.757, CI = 1.305-2.366). The acquired sequences revealed four novel isolates of A. capra (Genbank accession numbers ON834323, ON838209, ON838210, and ON838211). The phylogenetic analysis of the 16S rRNA gene of A. capra revealed three distinct clusters with 99-100% homology with other isolates from different countries. Our isolates showed higher similarity with isolates from China (KM206273, KP314237, MT799937), Pakistan (ON238129, ON238130, ON238131), Angola (MT898988), India (MZ558066), Iran (MW692362), and Turkey (MT632469) isolated from human, sheep, ticks, goats, cattle, Gaddi goat, Persian Onager (Equus hemionus onager), and Turkish goats, respectively. In conclusion, A. capra is endemic in Punjab, Pakistan, there is a need to conduct large scale surveillance studies to assess the status of this pathogen at human-animal interface as well as to develop effective preventive and control strategies to reduce the economic losses associated with anaplasmosis in small ruminants.
Collapse
Affiliation(s)
- Muhammad A Razzaq
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rao Z Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Mughees A Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zia-Ud-Din Sindhu
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad K Khan
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Adil Khan
- Department of Botany and Zoology, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| |
Collapse
|
6
|
Stevanović O, Ilić T, Jovanović N, Vejnović B, Radalj A. High genetic diversity of Anaplasma ovis in sheep from Bosnia and Herzegovina. Mol Biol Rep 2024; 51:936. [PMID: 39182201 DOI: 10.1007/s11033-024-09869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ovine anaplasmosis (sensu stricto) is a rickettsial blood disease caused by the tick-borne species Anaplasma ovis. The disease is characterized by mild anemia, fever, and icterus. A more severe clinical presentation is possible in non-endemic areas. There is no existing data on the presence of Anaplasma ovis in Bosnia and Herzegovina. However, given the country's location within the Mediterranean Basin and the recent molecular detection of Babesia ovis, it is plausible that sheep in the region could naturally be infected with this tick-borne pathogen. METHODS AND RESULTS Blood samples from 81 sheep in the Podrinje and Herzegovina areas were examined by PCR. PCR positivity was found in 38 (46.9%) cases indicating a high number of infected sheep. Mixed infections with Babesia ovis and A.ovis were observed in 63.3% of cases. A higher number of positive sheep was recorded in the area of Herzegovina. Phylogenetic analysis of the gltA, groEL, and msp4 genes of A. ovis revealed numerous genotypes and significant genetic variability. This diversity was not related to geographic origin, tick-borne infection status, or sheep breeding practices in Podrinje and Herzegovina. CONCLUSIONS The data obtained in this study suggest that the emergence of new genotypes and the high genetic variability of A. ovis are driven by specific local and micro-environmental factors.
Collapse
Affiliation(s)
- Oliver Stevanović
- PI Veterinary Institute "Dr Vaso Butozan" Banja Luka, Branka Radičevića 18, 78000, Banja Luka, Bosnia and Herzegovina.
| | - Tamara Ilić
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Nemanja Jovanović
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Branislav Vejnović
- Department of Economics and Statistcs, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Andrea Radalj
- Deparment of Microbiology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| |
Collapse
|
7
|
Akwongo CJ, Byaruhanga C. Epidemiology of Anaplasma species amongst cattle in Africa from 1970 to 2022: A systematic review and meta-analysis. Prev Vet Med 2024; 228:106214. [PMID: 38733736 DOI: 10.1016/j.prevetmed.2024.106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Tick-borne pathogens of the genus Anaplasma cause anaplasmosis in livestock and humans, impacting health and livelihoods, particularly in Africa. A comprehensive review on the epidemiology of Anaplasma species is important to guide further research and for implementation of control approaches. We reviewed observational studies concerning Anaplasma species amongst cattle in Africa. Peer-reviewed studies published in PubMed, Google Scholar, and Web of Science - from database inception to 2022 - were searched. The quality of individual studies was assessed using the Joanna Briggs Institute Critical Appraisal Tool and the pooled prevalences by diagnostic method were estimated using random-effects models. Heterogeneity across the studies was tested and quantified using the Cochran's Q statistic and the I2 statistic. Potential sources of heterogeneity were investigated by subgroup analysis. A total of 1117 records were retrieved and at the end of the screening, 149 records (155 studies) were eligible for this meta-analysis. The occurrence of Anaplasma species was reported in 31/54 countries in all regions. Seven recognised species (A. marginale, A. centrale, A. phagocytophilum, A. platys, A. capra, A. bovis, A. ovis) and nine uncharacterised genotypes (Anaplasma sp. Hadesa; Anaplasma sp. Saso; Anaplasma sp. Dedessa; Anaplasma sp. Mymensingh; Anaplasma sp. Lambwe-1; Candidatus Anaplasma africae; Anaplasma sp.; Candidatus Anaplasma boleense) were reported in African cattle. Anaplasma marginale was the most frequently reported (n=144/155 studies) and the most prevalent species (serology methods 56.1%, 45.9-66.1; direct detection methods 19.9%, 15.4-24.7), followed by A. centrale (n=26 studies) with a prevalence of 8.0% (95% CI: 4.8-11.9) and A. platys (n=19 studies) with prevalence of 9.7% (95% CI: 5.4-15.2). Anaplasma marginale, A. centrale and A. platys were reported in all Africa's regions, while A. ovis and A. capra were reported only in the northern and central regions. The uncharacterised Anaplasma taxa were mostly detected in the eastern and southern regions. Subgroup analysis showed that significant determinants for A. marginale exposure (serology) were geographical region (p=0.0219), and longitude (p=0.0336), while the technique employed influenced (p<0.0001) prevalence in direct detection approaches. Temperature was the only significant variable (p=0.0269) for A. centrale. These findings show that various Anaplasma species, including those that are zoonotic, circulate in African cattle. There is need for more genetic and genome data, especially for unrecognised species, to facilitate effective identification, improve livestock and minimise the health risk in human populations. Additional epidemiological data including pathogen occurrence, tick vectors and host range, as well as pathogenicity are essential.
Collapse
Affiliation(s)
- Claire Julie Akwongo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, Napoli 80137, Italy
| | - Charles Byaruhanga
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; National Agricultural Research Organisation, P.O. Box 259, Entebbe, Uganda
| |
Collapse
|
8
|
Rouxel C, Etienne A, Arné P, Le Barzic C, Girault G, Boulouis HJ, Haddad N, Lagrée AC, Deshuillers PL. Anaplasma phagocytophilum in urban and peri-urban passerine birds in Ile-de-France. Ticks Tick Borne Dis 2024; 15:102350. [PMID: 38723399 DOI: 10.1016/j.ttbdis.2024.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/09/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Wild animals in general, birds in particular, play a key role in transporting ticks and propagating tick-borne pathogens. Several studies have confirmed the infection of birds with Anaplasma phagocytophilum, with overall prevalence varying widely from country to country and/or study to study. This zoonotic bacterium, transmitted mainly by ticks of the genus Ixodes, is responsible for granulocytic anaplasmosis in humans (HGA) and domestic animals (cats, dogs, horses). The disease is also called tick-borne fever (TBF) in ruminants. Extremely rare in the USA, TBF is very common in Europe, where it causes economic losses in livestock. Conversely, HGA is well established in the USA whereas only a few less severe cases have been observed in Europe. Current typing techniques support the existence of multiple variants with differences in virulence/pathogenicity and tropism for certain tick and host species. However, epidemiological cycles remain difficult to characterize in Europe. Several studies describe a cycle apparently involving only birds in Europe, but no such study has been conducted in mainland France. Our objectives were to search for A. phagocytophilum in passerine birds in the Ile-de-France region and to explore their diversity using groEL and ankA gene typing and multilocus sequence typing (MLST). Various tissues (spleen, liver, and skin) were collected from cadavers of 680 passerines between March and December 2021. The presence of A. phagocytophilum was detected by qPCR Taqman targeting the msp2 gene. Three blackbirds (Turdus merula) were found positive, representing detection rates of 0.4 % in all birds tested and 3.3 % in blackbirds. The higher frequency of detection in blackbirds could be at least partially explained by their lifestyle, as they feed on the ground. Analysis of the results of groEL and ankA typing and MLST from positive blackbirds support the hypothesis that the avian A. phagocytophilum strains in Ile-de-France are distinct from those found in mammals, and that they form their own cluster in Europe.
Collapse
Affiliation(s)
- Clotilde Rouxel
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Adrien Etienne
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Pascal Arné
- EnvA, Centre hospitalier universitaire vétérinaire - Faune sauvage (Chuv-FS), 94700, Maisons-Alfort, France; EnvA, UPEC, ANSES, Dynamyc research group EA 7380, 94700, Maisons-Alfort, France
| | - Cécile Le Barzic
- EnvA, Centre hospitalier universitaire vétérinaire - Faune sauvage (Chuv-FS), 94700, Maisons-Alfort, France
| | - Guillaume Girault
- ANSES, INRAE, EnvA, Université Paris-Est, UMR Virologie, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Henri-Jean Boulouis
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Nadia Haddad
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France.
| |
Collapse
|
9
|
Erol U, Sahin OF, Urhan OF, Atas AD, Altay K. Molecular investigation of Anaplasma phagocytophilum and related strains among sheep flocks from different parts of Türkiye; with a note of phylogenetic analyses of Anaplasma phagocytophilum- like 1. Comp Immunol Microbiol Infect Dis 2024; 107:102154. [PMID: 38442543 DOI: 10.1016/j.cimid.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Anaplasma phagocytophilum is a vector-borne zoonotic pathogen and can infect various vertebrate hosts, especially cattle, sheep, goats, horses, and dogs. Molecular-based studies have revealed that the agent has a high genetic diversity and closely related strains circulate in hosts. In this study, 618 sheep blood samples obtained from different geographic regions of Türkiye were researched for A.phagocytophilum and related strains with PCR, RFLP, and DNA sequence analyses. The DNA of these pathogens was detected in 110 (17.79%) samples. RFLP assay showed that all positive samples were infected with A.phagocytophilum-like 1, whereas A.phagocytophilum-like 2 and A.phagocytophilum were not detected. Partial parts of 16 S rRNA gene of seven randomly selected positive samples were sequenced. The phylogenetic analyses of these isolates revealed that at least two A.phagocytophilum-like 1 isolates circulate among hosts in Türkiye and around the world. A.phagocytophilum-related strains have been reported in molecular-based studies over the last few years, but there is a lack of data on the vector competence, epidemiology, clinical symptoms, and genetic diversity of these pathogens. Therefore, large-scale molecular studies are still needed to obtain detailed data on the above-mentioned topics.
Collapse
Affiliation(s)
- Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Türkiye.
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Türkiye
| | - Osman Furkan Urhan
- Republic of Türkiye Ministry of Agriculture and Forestry, General Directory Meat and Milk Board, Sivas Meat Processing Plant, Sivas 58380, Türkiye
| | - Ahmet Duran Atas
- Department of Parasitology, Faculty of Medicine, University of Sivas Cumhuriyet, Sivas 58140, Türkiye
| | - Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Türkiye
| |
Collapse
|
10
|
Ma Y, Jian Y, Wang G, Zafar I, Li X, Wang G, Hu Y, Yokoyama N, Ma L, Xuan X. Epidemiological Investigation of Tick-Borne Bacterial Pathogens in Domestic Animals from the Qinghai-Tibetan Plateau Area, China. Pathogens 2024; 13:86. [PMID: 38276159 PMCID: PMC10818765 DOI: 10.3390/pathogens13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The Qinghai-Tibetan Plateau area (QTPA) features a unique environment that has witnessed the selective breeding of diverse breeds of domestic livestock exhibiting remarkable adaptability. Nevertheless, Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. represent tick-borne bacterial pathogens that pose a global threat and have substantial impacts on both human and animal health, as well as on the economy of animal husbandry within the Qinghai-Tibetan plateau area. In this study, a total of 428 samples were systematically collected from 20 distinct areas within the Qinghai Plateau. The samples included 62 ticks and 366 blood samples obtained from diverse animal species to detect the presence of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. The prevalence of infection in this study was determined as follows: Anaplasma bovis accounted for 16.4% (70/428), A. capra for 4.7% (20/428), A. ovis for 5.8% (25/428), Borrelia burgdorferi sensu lato for 6.3% (27/428), Coxiella burnetii for 0.7% (3/428), and Rickettsia spp. for 0.5% (2/428). Notably, no cases of A. marginale and A. phagocytophilum infections were observed in this study. The findings revealed an elevated presence of these pathogens in Tibetan sheep and goats, with no infections detected in yaks, Bactrian camels, donkeys, and horses. To the best of our knowledge, this study represents the first investigation of tick-borne bacterial pathogens infecting goats, cattle, horses, and donkeys within the Qinghai Plateau of the Qinghai-Tibetan Plateau area. Consequently, our findings contribute valuable insights into the distribution and genetic diversity of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. within China.
Collapse
Affiliation(s)
- Yihong Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Yingna Jian
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Geping Wang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
- Veterinary Research Institute, Livestock and Dairy Development Department, Lahore 54810, Pakistan
| | - Xiuping Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Guanghua Wang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Yong Hu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Liqing Ma
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| |
Collapse
|
11
|
Remesar S, Castro-Scholten S, Morrondo P, Díaz P, Jiménez-Martín D, Muñoz-Fernández L, Fajardo T, Cano-Terriza D, García-Bocanegra I. Occurrence of Anaplasma spp. in wild lagomorphs from Southern Spain: Molecular detection of new Anaplasma bovis lineages. Res Vet Sci 2024; 166:105093. [PMID: 37980815 DOI: 10.1016/j.rvsc.2023.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Wild lagomorphs can act as reservoirs of several pathogens of public and animal health concern. However, the number of studies assessing the presence of Anaplasma spp. in these species is scarce. The aim of the present study was to molecularly identify Anaplasma spp. in wild rabbits (Oryctolagus cuniculus) and Iberian hares (Lepus granatensis) from Southern Spain and assess their epidemiological role in the maintenance of the bacterium. During 2017-2021, spleen samples of 394 wild rabbits and 145 Iberian hares were collected. Anaplasma DNA was detected using different PCR assays (16S rRNA and groEL) and phylogenetic analyses were carried out by Bayesian approach. The possible influence of lagomorph species, age and sex on the prevalence of Anaplasma spp. was evaluated by a multiple logistic regression model. The 9.4% of the rabbits were positive to Anaplasma bovis, but all the hares were negative. No significant differences were found in Anaplasma spp. prevalence regarding to age or sex. This is the first report of A. bovis in lagomorphs from Europe. The phylogenetic analysis of A. bovis confirms the existence of different clusters suggesting the existence of several lineages. In addition, a high divergence of nucleotide identity was observed within the lineage 4, which could result in the under-detection of some strains when using A. bovis-specific PCR, hindering its detection and characterization. Since this analysis is based on a limited number of nucleotide bases and sequences, more studies are needed for further characterize A. bovis, as well as its relationship with other Anaplasma spp.
Collapse
Affiliation(s)
- Susana Remesar
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sabrina Castro-Scholten
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Patrocinio Morrondo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díaz
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Débora Jiménez-Martín
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Leonor Muñoz-Fernández
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Tomás Fajardo
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Silva EMC, Marques ICL, de Mello VVC, Amaral RBD, Gonçalves LR, Braga MDSCO, Ribeiro LSDS, Machado RZ, André MR, Neta AVDC. Molecular and serological detection of Anaplasma spp. in small ruminants in an area of Cerrado Biome in northeastern Brazil. Ticks Tick Borne Dis 2024; 15:102254. [PMID: 37989016 DOI: 10.1016/j.ttbdis.2023.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 11/23/2023]
Abstract
Anaplasmosis, caused by bacteria of the genus Anaplasma, is an important tick-borne disease that causes economic losses to livestock farms in many countries. Even though Anaplasma spp. have been detected in goats and sheep worldwide, few studies investigate the occurrence and genetic identity of these agents in small ruminants from Brazil. Thus, this work aimed to detect and determine the genetic identity of Anaplasma spp. in small ruminants from the Baixo Parnaíba region, state of Maranhão, northeastern Brazil. For this purpose, blood samples were collected from 161 animals (91 goats; 70 sheep) from 4 municipalities in the Baixo Parnaíba region. Sheep and goat serum samples were subjected to recombinant membrane surface protein (MSP5)-based iELISA. Whole blood samples were subject to DNA extraction and molecular diagnosis using PCR assays for Anaplasma spp. targeting msp1β, msp1α, 16S rRNA and msp4 genes. Positive samples were sequenced and then subjected to Anaplasma marginale msp1α genetic diversity analysis and phylogenetic inferences based on the 16S rRNA and msp4 genes. The serological survey detected the presence of anti-A. marginale IgG antibodies in 18 animals (11.1%): 2.9% (2/70) sheep and 17.4% (16/91) goats. Anaplasma marginale DNA was detected in 2 goats (1.2%) using qPCR based on the msp1β gene. Two distinct A. marginale msp1α strains, namely α β and α β ΓγΓγΓγΓγ were found in the infected goats, each one found in a different animal, both belonging to the H genotype. Phylogenetic analysis based on the 16S rRNA gene showed the sequences positioned in three different clades and grouped with sequences from 'Candidatus Anaplasma boleense', A. platys and A. marginale. Phylogenetic inferences based on the msp4 gene positioned the sequence variants in the A. marginale clade. The present work represents the first molecular detection of sequence variants phylogenetic associated to 'Candidatus Anaplasma boleense' and A. platys and α β and α β ΓγΓγΓγΓγ in goats from Brazil.
Collapse
Affiliation(s)
- Ellainy Maria Conceição Silva
- Graduate Program in Animal Science, Universidade Estadual do Maranhã (UEMA), Av. Oeste Externa, 2220, São Cristovão, São Luís, MA, Brazil
| | - Ingrid Carolinne Lopes Marques
- Graduate Program in Animal Science, Universidade Estadual do Maranhã (UEMA), Av. Oeste Externa, 2220, São Cristovão, São Luís, MA, Brazil
| | - Victória Valente Califre de Mello
- Graduate Program in Agricultural Microbiology, Universidade Estadual Paulista (Unesp), Faculty of Agrarian and Veterinary Sciences, Jaboticabal, SP, Brazil
| | - Renan Bressianini do Amaral
- Graduate Program in Agricultural Microbiology, Universidade Estadual Paulista (Unesp), Faculty of Agrarian and Veterinary Sciences, Jaboticabal, SP, Brazil
| | | | | | | | - Rosangela Zacarias Machado
- Laboratory of Immunoparasitology, Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, Universidade Estadual Paulista (FCAV/Unesp), Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- Laboratory of Immunoparasitology, Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, Universidade Estadual Paulista (FCAV/Unesp), Jaboticabal, SP, Brazil
| | - Alcina Vieira de Carvalho Neta
- Graduate Program in Animal Science, Universidade Estadual do Maranhã (UEMA), Av. Oeste Externa, 2220, São Cristovão, São Luís, MA, Brazil.
| |
Collapse
|
13
|
Chakraborty S, Gao S, Allan BF, Smith RL. Effects of cattle on vector-borne disease risk to humans: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011152. [PMID: 38113279 PMCID: PMC10763968 DOI: 10.1371/journal.pntd.0011152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/03/2024] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Vector-borne pathogens (VBPs) causing vector-borne diseases (VBDs) can circulate among humans, domestic animals, and wildlife, with cattle in particular serving as an important source of exposure risk to humans. The close associations between humans and cattle can facilitate the transmission of numerous VBPs, impacting public health and economic security. Published studies demonstrate that cattle can influence human exposure risk positively, negatively, or have no effect. There is a critical need to synthesize the information in the scientific literature on this subject, in order to illuminate the various ecological mechanisms that can affect VBP exposure risk in humans. Therefore, the aim of this systematic review was to review the scientific literature, provide a synthesis of the possible effects of cattle on VBP risk to humans, and propose future directions for research. This study was performed according to the PRISMA 2020 extension guidelines for systematic review. After screening 470 peer-reviewed articles published between 1999-2019 using the databases Web of Science Core Collection, PubMed Central, CABI Global Health, and Google Scholar, and utilizing forward and backward search techniques, we identified 127 papers that met inclusion criteria. Results of the systematic review indicate that cattle can be beneficial or harmful to human health with respect to VBDs depending on vector and pathogen ecology and livestock management practices. Cattle can increase risk of exposure to infections spread by tsetse flies and ticks, followed by sandflies and mosquitoes, through a variety of mechanisms. However, cattle can have a protective effect when the vector prefers to feed on cattle instead of humans and when chemical control measures (e.g., acaricides/insecticides), semio-chemicals, and other integrated vector control measures are utilized in the community. We highlight that further research is needed to determine ways in which these mechanisms may be exploited to reduce VBD risk in humans.
Collapse
Affiliation(s)
- Sulagna Chakraborty
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
| | - Siyu Gao
- School of Social Work, The University of Minnesota, Twin Cities, Minnesota, United Sates of America
| | - Brian. F. Allan
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, Illinois, United Sates of America
| | - Rebecca Lee Smith
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, Illinois, United Sates of America
| |
Collapse
|
14
|
Zhou S, Huang L, Lin Y, Bhowmick B, Zhao J, Liao C, Guan Q, Wang J, Han Q. Molecular surveillance and genetic diversity of Anaplasma spp. in cattle (Bos taurus) and goat (Capra aegagrus hircus) from Hainan island/province, China. BMC Vet Res 2023; 19:213. [PMID: 37853405 PMCID: PMC10583423 DOI: 10.1186/s12917-023-03766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.
Collapse
Affiliation(s)
- Sa Zhou
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Liangyuan Huang
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Yang Lin
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Biswajit Bhowmick
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jianguo Zhao
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Chenghong Liao
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Qingfeng Guan
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jinhua Wang
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China.
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
15
|
Atif FA, Ullah S, Cossío-Bayúgar R, Kashif M, Khan AU, Wu WF. Molecular Epidemiology, Seasonality and Phylogenetic Investigations of Anaplasma ovis in Small Ruminants from Diverse Agro-Climatic Regions of Punjab, Pakistan. Microorganisms 2023; 11:2430. [PMID: 37894088 PMCID: PMC10608874 DOI: 10.3390/microorganisms11102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Anaplasma (A.) ovis is the most important cause of anaplasmosis in small ruminants. The current study was planned to estimate the molecular prevalence, risk factors, and phylogenetic analysis of A. ovis infection in sheep and goats from different agro-climatic regions of Central and Southern Punjab, Pakistan. A total of 400 jugular blood samples were collected from asymptomatic goats (n = 200) and sheep (n = 200) from the Jhang and Dera Ghazi Khan districts from January 2021 to February, 2023. Two hundred blood samples were collected from each district. Ten union councils (UC) were randomly chosen from each district, and 20 samples were collected from each UC based on the multistage cluster sampling technique. The samples were analyzed with PCR targeting the major surface protein (msp4) gene of A. ovis. The overall molecular prevalence of anaplasmosis was 57.5%. The disease occurrence was higher in Dera Ghazi Khan (61.5%) than in the Jhang district (53.5%). Infection positivity was greater in goats (65.5%) than in sheep (49.5%). Multivariate logistic regression analysis indicated that host species [sheep; Odds Ratio (OR) = 3.212; p = 0.000, Confidence Interval (CI) = 1.968-5.242], age (adult; OR = 2.606; p = 0.003, CI = 1.398-4.858), and acaricide use (never; OR = 13.671; p = 0.000, CI = 6.414-26.283) were significantly higher risk for A. ovis in small ruminants (p< 0.05; OR > 1). The sequencing and phylogenetic analysis of four representative isolates in the current study (Genbank numbers; Goats: OQ302202, OQ302203; Sheep: OQ319592, OQ319593) revealed novel strains of A. ovis with 97-100% similarity from different countries. The msp4-based goat isolates showed greater genetic diversity, while sheep genotypes showed homology with isolates from Italy, Spain, Hungary, Cyprus, Spain, Iran, and China. The current surveillance study will help in devising prevention and control strategies regarding anaplasmosis in small ruminants. However, there is a need for further study on the clinicopathological and vector competence aspects of these genotypes.
Collapse
Affiliation(s)
- Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.U.); (M.K.)
| | - Sami Ullah
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.U.); (M.K.)
| | - Raquel Cossío-Bayúgar
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534, Jiutepec 62550, Morelos, Mexico;
| | - Muhammad Kashif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.U.); (M.K.)
| | - Aman Ullah Khan
- Microbiology Section, Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan;
| | - Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| |
Collapse
|
16
|
Xu J, Gu XL, Jiang ZZ, Cao XQ, Wang R, Peng QM, Li ZM, Zhang L, Zhou CM, Qin XR, Yu XJ. Pathogenic Rickettsia, Anaplasma, and Ehrlichia in Rhipicephalus microplus ticks collected from cattle and laboratory hatched tick larvae. PLoS Negl Trop Dis 2023; 17:e0011546. [PMID: 37647577 PMCID: PMC10468208 DOI: 10.1371/journal.pntd.0011546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The order Rickettsiales contains a group of vector-borne gram-negative obligate intracellular bacteria, which often cause human emerging infectious diseases and economic losses for dairy and meat industries. The purpose of this study is to investigate the distribution of the pathogens including Rickettsia spp., Anaplasma spp., and Ehrlichia spp. in the order Rickettsiales in ticks from Yueyang, a prefecture-level city of Hunan Province in Sothern China, and assess the potentiality of transovarial transmission of these rickettsial organisms. METHODS Ticks were collected from cattle in a farm in Yueyang City and the tick DNA was used as template to amplify the htrA, rrs, gltA, ompA and ompB genes of Rickettsia as well as rrs and groEL genes of Anaplasma and Ehrlichia. RESULTS All ticks (465) collected were the cattle tick, Rhipicephalus microplus. PCR showed the minimum infection rate (MIR) was 1.5% (7/465) for Candidatus Rickettsia xinyangensis, 1.9% (9/465) for C. Anaplasma boleense, 1.3% (6/465) for Anaplasma platys, 0.6% (3/465) for A. marginale, and 1.17% (2/465) for each of A. bovis, Ehrlichia minasensis, and a non-classified Ehrlichia sp. A human pathogen, C. Rickettsia xinyangensis and A. platys were detected in 100% (3/3) and 33.3% (2/6) laboratory-hatched larval pools from infected females respectively. CONCLUSION Our study revealed a diversity of pathogenic rickettsial species in R. microplus ticks from Hunan Province suggesting a threat to people and animals in China. This study also provided the first molecular evidence for the potential transovarial transmission of C. Rickettsia xinyangensis and A. platys in R. microplus, indicating that R. microplus may act as the host of these two pathogens.
Collapse
Affiliation(s)
- Jiao Xu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Xiao-Lan Gu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Xiao-Qian Cao
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Rui Wang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Qiu-Ming Peng
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Li Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Chuan-Min Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| | - Xiang-Rong Qin
- The Second Hospital of Shandong University, Jinan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan City, China
| |
Collapse
|
17
|
Sahin OF, Erol U, Duzlu O, Altay K. Molecular survey of Anaplasma phagocytophilum and related variants in water buffaloes: The first detection of Anaplasma phagocytophilum-like 1. Comp Immunol Microbiol Infect Dis 2023; 98:102004. [PMID: 37356166 DOI: 10.1016/j.cimid.2023.102004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Anaplasma phagocytophilum infects various hosts and lead to mild to severe infection. Currently, two A.phagocytophilum-related variants have been documented in different countries. Although limited, there are studies revealing the presence of A.phagocytophilum in water buffaloes, but no study investigating A.phagocytophilum-like 1 and -like 2. A.phagocytophilum and related variants were investigated using PCR, PCR-RFLP, and DNA sequence analysis in water buffaloes in Türkiye. 364 buffalo blood samples were examined for A.phagocytophilum and related strains. Seven buffaloes were determined to be positive with PCR and PCR-RFLP revealed that all samples were A.phagocytophilum-like 1. According to the partial sequence of 16 S rRNA gene, A.phagocytophilum like-1 may split into two different variants. This work supplies the first molecular report of A.phagocytophilum-like 1 in water buffaloes. However, a lack of information is present on the pathogen's clinical manifestations and vector species. There is still a need to investigate vectors and clinical signs of the pathogen.
Collapse
Affiliation(s)
- Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey
| | - Onder Duzlu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38090 Kayseri, Turkey
| | - Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey.
| |
Collapse
|
18
|
Cao XQ, Gu XL, Zhang L, Xu J, Han HJ, Yu XJ. Molecular detection of Rickettsia, Anaplasma, and Bartonella in ticks from free-ranging sheep in Gansu Province, China. Ticks Tick Borne Dis 2023; 14:102137. [PMID: 36738629 DOI: 10.1016/j.ttbdis.2023.102137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Ticks pose a serious threat to public health as carriers and often vectors of zoonotic pathogens. There are few systematic studies on the prevalence and genetic diversity of tick-borne bacterial pathogens in Western China. In this study, 465 ticks were collected from free-ranging sheep in Gansu Province in China. Ticks were divided into 113 pools and tick DNA was extracted from these ticks. PCR assays were performed using specific primers to screen for tick-borne pathogens as well as sequence analysis based on the 16S rRNA (rrs), ompB, gltA, ompA genes for Rickettsia, rrs, groEL genes for Anaplasma, and ssrA and rpoB genes for Bartonella. The PCR results showed that the minimum infection rates with Rickettsia, Anaplasma, and Bartonella were 16.8% (78/465), 18.9% (88/465), and 0.9% (4/465), respectively. Sequence analysis based on the concatenated sequences of rrs-ompB-gltA-ompA indicated that the Rickettsia species identified in the ticks belonged to Rickettsia raoultii, Rickettsia slovaca, and Rickettsia sibirica, respectively; phylogenetic analysis based on the groEL gene showed that all Anaplasma strains identified were Anaplasma ovis; and phylogenetic analysis based on the ssrA and rpoB genes indicated that all Bartonella strains in the ticks belonged to Bartonella melophagi. The results of this study showed that ticks in Gansu Province harbored multiple pathogens that may cause rickettsial diseases and bartonellosis. These diseases were neglected in the area and physicians and public health workers need to pay attention to their diagnoses to prevent human infection.
Collapse
Affiliation(s)
- Xiao-Qian Cao
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Lan Gu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Li Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Jiao Xu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Hui-Ju Han
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Seroplrevalence of <i>Anaplasma phagocytophilum</i> and <i>Ehrlichia</i> sp. among people affected by tick bites. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. In spring and summer, the population of the Baikal region regularly comes into contact with the pathogens transmitted through the bites of ixodid ticks. In the Center for Diagnosis and Prevention of Tick-Borne Infections (Irkutsk, Russian Federation), we annually detect anaplasmas of the Anaplasma phagocytophilum species, as well as Ehrlichia chaffeensis/E. muris in both ixodid ticks and blood samples from people who have been bitten by ticks. At the same time, there are no data in open sources on the incidence of human granulocytic anaplasmosis and human monocytic ehrlichiosis in the Baikal region. Currently, there is very little information on the studies of intensity of the immune response to anaplasmas and ehrlichia in people living in the surveyed area, although this information is critical for assessing the frequency of contacts and the risk of infection of people in a territory endemic for tick-borne infections. The aim. To update information on the presence and prevalence of specific immunoglobulins M and G to A. phagocytophilum and Ehrlichia sp. among the population of the Irkutsk Region affected by tick bites. Materials and methods. In total, 204 samples of blood serum from the residents of the Irkutsk Region who were registered to be bitten by ticks were analyzed for the presence of IgM and IgG to human monocytic ehrlichiosis and human granulocytic anaplasmosis agents. Results. IgG to A. phagocytophilum were found in 9 samples, IgG to E. chaffeensis/E. muris – in 1 sample; no IgM to both pathogens were found in any sample. Conclusions. The results obtained indicate regular infection of the population with anaplasmas and ehrlichia which is a testifies to the existence of active natural foci of human monocytic ehrlichiosis and human granulocytic anaplasmosis in the Baikal region. To clarify the real epidemic role of these infections, a detailed study of the immune status is required both among healthy individuals and among patients with symptoms of an infectious disease.
Collapse
|
20
|
Altay K, Erol U, Sahin OF, Aytmirzakizi A, Temizel EM, Aydin MF, Dumanli N, Aktas M. The detection and phylogenetic analysis of Anaplasma phagocytophilum-like 1, A. ovis and A. capra in sheep: A. capra divides into two genogroups. Vet Res Commun 2022; 46:1271-1279. [PMID: 36167934 DOI: 10.1007/s11259-022-09998-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
In this study, the presence, prevalence, and genotypes of Anaplasma phagocytophilum, A. ovis, and A. capra in sheep were investigated based on 16 S SSU rRNA, groEL, and gtlA gene-specific polymerase chain reaction (PCR), respectively. The sequences of the genes were used for detection of the phylogenetic position of the species. Additionally, a restriction fragment length polymorphism (RFLP) were carried out for discrimination of A. phagocytophilum and related variants (A. phagocytophilum-like 1 and 2). The prevalence of Anaplasma spp. was found as 25.8% (101/391), while it was found that A. ovis, A. phagocytophilum-like 1, and A. capra are circulating in the sheep herds in Kyrgyzstan, according to the PCRs, RFLP and the partial DNA sequencing results. The positivity rates of A. phagocytophilum-like 1, A. ovis, and A. capra genotype-1 were 6.9, 22.5, and 5.3%, respectively. A total of 32 (8.2%) sheep were found to be mix infected. Moreover, phylogenetic analyses and sequence comparison with those available in the GenBank showed that A. capra formed two distinct genetic groups (A. capra genotype-1 and A. capra genotype-2). Considering the zoonotic potential of these species, it may be necessary to make changes in the interpretation of anaplasmosis cases in animals and there is a need for further studies to determine the pathogenicity of the species/genotypes circulating in animals.
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey.
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey
| | - Ayperi Aytmirzakizi
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720044, Bishkek, Kyrgyzstan
| | - Ethem Mutlu Temizel
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, TÜRKİYE, Turkey
| | - Mehmet Fatih Aydin
- Department of Public Health, Faculty of Health Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Nazir Dumanli
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
21
|
Guo J, Song S, Cao S, Sun Z, Zhou Q, Deng X, Zhao T, Chai Y, Zhu D, Chen C, Baryshnikov PI, Blair HT, Wang Z, Wang Y, Zhang H. Molecular Detection of Zoonotic and Veterinary Pathogenic Bacteria in Pet Dogs and Their Parasitizing Ticks in Junggar Basin, North-Western China. Front Vet Sci 2022; 9:895140. [PMID: 35898544 PMCID: PMC9311330 DOI: 10.3389/fvets.2022.895140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the recognized epidemiological importance of ticks as vectors for pathogens that cause numerous zoonotic and veterinary diseases, data regarding the pathogens of pet dogs and their parasitic ticks in the Junggar Basin are scarce. In this study, a total of 178 blood samples and 436 parasitic ticks were collected from pet dogs in Junggar Basin, Xinjiang Uygur Autonomous Region (XUAR), north-western China. All ticks were identified as Rhipicephalus turanicus sensu stricto (s.s.) according to morphological and molecular characteristics. Rh. turanicus s.s. ticks were collected from pet dogs in China for the first time. Seven tick-borne pathogens, such as Ehrlichia chaffeensis, Anaplasma phagocytophilum, Rickettsia massiliae, Candidatus R. barbariae, Brucella spp., Rickettsia sibirica, and Anaplasma ovis, were detected from ticks, whereas the first five bacteria were detected from blood samples of dogs. Brucella spp. was the most predominant pathogen in both blood samples and ticks of pet dogs, with the detection rates of 16.29 and 16.74%, respectively. Moreover, 17 ticks and 1 blood sample were co-infected with two pathogens, and 1 tick was co-infected with three pathogens. This study provided molecular evidence for the occurrence of Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Brucella spp. circulating in pet dogs and their parasitic ticks in Junggar Basin, north-western China. These findings extend our knowledge of the tick-borne pathogens in pet dogs and their parasitic ticks in Central Asia; therefore, further research on these pathogens and their role in human and animal diseases is required.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qiyue Zhou
- College of Pharmacy, Shihezi University, Shihezi, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - P. I. Baryshnikov
- College of Veterinary, Altai National Agricultural University, Barnaul, Russia
| | - Hugh T. Blair
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Zhen Wang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Zhen Wang
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi, China
- Yuanzhi Wang
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Hui Zhang
| |
Collapse
|
22
|
Qi Y, Ai L, Zhu C, Lu Y, Lv R, Mao Y, Lu N, Tan W. Co-existence of Multiple Anaplasma Species and Variants in Ticks Feeding on Hedgehogs or Cattle Poses Potential Threats of Anaplasmosis to Humans and Livestock in Eastern China. Front Microbiol 2022; 13:913650. [PMID: 35756069 PMCID: PMC9226643 DOI: 10.3389/fmicb.2022.913650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Anaplasma spp., causative agents of anaplasmosis, pose significant a threat to public health and economic losses in livestock farming. Co-infections/co-existence of various Anaplasma spp. may facilitate pathogen interactions and the emergence of novel variants, represent potential dangers to public health and economic losses from livestock farming, and raise challenges of detection and diagnosis. The information regarding co-infection/co-existence of Anaplasma in their vector ticks and wild animals is limited and needs urgent investigation. Methods Wild hedgehogs and ticks from hedgehogs and cattle were collected from Jiangsu province, Eastern China, and DNA was extracted from hedgehog organs and tick homogenates. Various genera of species-specific polymerase chain reaction (PCR) or nested PCR amplifications targeting 16S ribosomal RNA (rrs), msp4, or groEL gene coupled with sequencing were conducted to identify Anaplasma spp. Results Anaplasma phagocytophilum (1, 0.6%), A. marginale (2, 1.2%), A. platys variants xyn10pt-1 (13, 7.7%), xyn21pt-2 (3, 1.8%), and xyn3pt-3 (3, 1.8%), A. bovis variant cwp72bo-1 (12, 7.1%), and a novel Candidatus Cryptoplasma sp. (1, 0.6%) were identified in 168 Haemaphysalis longicornis ticks from cattle. A. platys variant xyn10pt-1 (20, 11.4%) and A. bovis variants cwp72bo-1 (12, 6.9%) and cwp55-36bo-2 (1, 0.6%) were detected in 173 H. flava ticks from hedgehogs. However, only A. bovis variant cwp72bo-1 (15, 46.7%) was identified in 32 Erinaceus amurensis hedgehogs. Various co-existence combinations were found only in ticks. Conclusion The co-existence of various Anaplasma spp. and variants in H. flava and H. longicornis was detected for the first time in the world. The high infection rate of A. bovis in hedgehogs and its moderate infection rate in their parasitic ticks suggest that Er. amurensis hedgehog could be an important reservoir of A. bovis, rather than A. platys. Horizontal transmission of Anaplasma spp. may exist among different tick species via their shared hosts in the investigated area. This study provided epidemiological data that could be crucial for strategy development for early warning, prevention, and control of potential Anaplasma infections.
Collapse
Affiliation(s)
- Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Lele Ai
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Changqiang Zhu
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China.,Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yongfeng Lu
- Administration for Drug and Instrument Supervision and Inspection of PLAJLSF, Beijing, China
| | - Ruichen Lv
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Yingqing Mao
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Nianhong Lu
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Weilong Tan
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| |
Collapse
|
23
|
Yan Y, Lu C, Gong P, Pei Z, Peng Y, Jian F, Wang R, Zhang L, Qi M, Ning C. Molecular detection and phylogeny of Anaplasma spp. closely related to Anaplasma phagocytophilum in small ruminants from China. Ticks Tick Borne Dis 2022; 13:101992. [PMID: 35777304 DOI: 10.1016/j.ttbdis.2022.101992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
The genus Anaplasma comprises eight bacterial species that are obligate intracellular pathogens that affect human and animal health. The zoonotic species A. phagocytophilum is the causative agent of tick-borne fever in ruminants, and of granulocytic anaplasmosis in horses, dogs, and humans. Recently, novel strains related to A. phagocytophilum (A. phagocytophilum-like 1/Japanese variant and A. phagocytophilum-like 2/Chinese variant) have been identified. The aim of this study was to reveal the prevalence and phylogeny of A. phagocytophilum and related stains in small ruminants and ticks in China based on sequences of the 16S rRNA combined restriction fragment length polymorphism (RFLP) and groEL genes. PCR-RFLP and phylogenetic analyses based on the 16S rRNA gene showed the presence of A. phagocytophilum-like 1 and 2 variants in sampled animals from China, with prevalence rates of 22.6% (303/1338) and 0.7% (10/1338), respectively. Only A. phagocytophilum-like 1 DNA was found in Haemaphysalis longicornis. The phylogeny based on the groEL gene showed inclusion of A. phagocytophilum-like 1 and some A. phagocytophilum-like 2 strains in two unique clades distinct from, but related to, Japanese and Chinese strains of related A. phagocytophilum, respectively. One noteworthy result was that the SSAP2f/SSAP2r primers detected Ehrlichia spp. strains. Moreover, the A. phagocytophilum-like 1 and 2 strains should be considered in the differential diagnosis of caprine and ovine anaplasmosis. Further investigations should be conducted to provide additional epidemiological information about A. phagocytophilum and A. phagocytophilum-like variants in animals and ticks.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Pihong Gong
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China; College of Animal Science, Tarim University, Tarim Road 1487, Alar, Xinjiang 843300, PR China
| | - Zhiyang Pei
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China; College of Animal Science, Tarim University, Tarim Road 1487, Alar, Xinjiang 843300, PR China
| | - Yongshuai Peng
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China
| | - Meng Qi
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, Xinjiang 843300, PR China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, Zhengzhou, Henan 450046, PR China.
| |
Collapse
|
24
|
Yang X, Fu M, Yu Z, Wang J, Song J, Zhao G. Molecular Characterization of Anaplasma spp. among Dairy, Cashmere, and Meat Goats in Shaanxi Province, Northwestern China. Animals (Basel) 2022; 12:ani12121566. [PMID: 35739902 PMCID: PMC9219440 DOI: 10.3390/ani12121566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Anaplasma spp. are important tick-borne pathogens endangering the health of humans and various animals. Although several studies have reported Anaplasma infection in livestock in China, little is known about the impact of production categories on the occurrence of Anaplasma species. In the present study, PCR tools targeting the 16S rRNA and msp4 genes were applied to investigate the prevalence of Anaplasma spp. in 509 blood samples of dairy (n = 249), cashmere (n = 139), and meat (n = 121) goats from Shaanxi province. The prevalence of Anaplasma spp. was 58.5% (298/509) in goats, and significant differences (p < 0.001) were identified in the prevalence among production categories, with the highest in meat goats (84.3%, 102/121), followed by cashmere goats (58.3%, 81/139) and dairy goats (46.2%, 115/249). Significant differences (p < 0.001) in prevalence were also found among sampling sites and age groups. Meanwhile, the prevalence was 36.9% (188/509) for A. phagocytophilum, 36.1% (184/509) for A. bovis, and 11.0% (56/509) for A. ovis, and significant differences (p < 0.001) in prevalence of A. phagocytophilum, A. bovis and A. ovis were recognized among production categories and sampling sites. A. phagocytophilum, A. bovis and A. ovis were dominant species in meat, dairy, and cashmere goats, respectively, and A. ovis was absent in meat goats. Co-infections were found in 124 (24.4%) investigated samples. Goats aged < 2, 3−6, and 7−12 months, and goats from Qingjian and Zhenba were risk factors associated with the occurrence of Anaplasma. Phylogenetic analysis indicated separate clades for the distribution of A. phagocytophilum from different ruminant, reflecting potential host adaption within this species. This study reported the colonization occurrence of Anaplasma spp. among production categories in goats in Shaanxi province and enriched our knowledge on the transmission of Anaplasma spp. in goats in China. Considering the existence of zoonotic A. phagocytophilum in goats in this study and previous reports, interventions based on One Health are needed to be developed to control the transmission of Anaplasma spp. between humans and animals.
Collapse
Affiliation(s)
- Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
| | - Zhengqing Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Junwei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
| | - Junke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
- Correspondence: (J.S.); (G.Z.)
| | - Guanghui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
- Correspondence: (J.S.); (G.Z.)
| |
Collapse
|
25
|
Molecular Detection and Genetic Diversity of Tick-Borne Pathogens in Goats from the Southern Part of Thailand. Pathogens 2022; 11:pathogens11040477. [PMID: 35456152 PMCID: PMC9032176 DOI: 10.3390/pathogens11040477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Tick-borne hemoprotozoan and rickettsial diseases affect the health and productivity of small ruminants in tropical and subtropical regions. Despite the large population of goats in the southern part of Thailand, there is limited information on the prevalence of tick-borne pathogens. In this study, polymerase chain reaction was used to detect the presence of Theileria spp., T. ovis, T. orientalis, Babesia ovis, Anaplasma ovis, and A. marginale in 262 goats from three provinces in the southern part of Thailand. In this investigation, Theileria spp. and A. ovis were detected while T. ovis, B. ovis, and A. marginale were not detected. Overall infection rates of Theileria spp. and A. ovis were 10.3% and 1.5%, respectively. The co-infections of two parasites was observed in 1.5% of goats. Sequence analysis showed the presence of T. luwenshuni and T. orientalis in the goat samples. This study is the first to use the molecular detection of T. orientalis in Thai goats, and presents genetic characterization using the major piroplasm surface protein (MPSP) gene. In the phylogenetic analysis, the T. orientalis MPSP sequence was classified as type 7. The A. ovis major surface protein 4 (MSP4) gene sequences shared high identities and similarity with each other and clustered with isolates from other regions. This study provides information about the prevalence and genetic diversity of tick-borne pathogens in goats in the study area, and is expected to be valuable for the development of effective control measures to prevent disease in animals in Thailand.
Collapse
|
26
|
First Molecular Evidence for the Presence of Anaplasma phagocytophilum in Naturally Infected Small Ruminants in Tunisia, and Confirmation of Anaplasma ovis Endemicity. Pathogens 2022; 11:pathogens11030315. [PMID: 35335639 PMCID: PMC8950766 DOI: 10.3390/pathogens11030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Anaplasma species are obligate intracellular rickettsial vector-borne pathogens that impose economic constraints on animal breeders and threaten human health. Anaplasma ovis and Anaplasma phagocytophilum infect sheep and goats worldwide. A duplex PCR targeting the msp2 and msp4 genes of A. phagocytophilum and A. ovis, respectively, was developed to analyze the field blood samples collected from sheep and goats. A total of 263 apparently healthy small ruminants from 16 randomly selected flocks situated in 3 bioclimatic zones in Tunisia were analyzed for Anaplasma infections. Anaplasma spp. was detected in 78.3% (95% confidence interval (CI): 72.8–83.1) of the analyzed animals. The prevalence of A. ovis in sheep (80.4%) and goats (70.3%) was higher than that of A. phagocytophilum (7.0% in sheep and 1.6% in goats). Using an inexpensive, specific, and rapid duplex PCR assay, we provide, to the best of our knowledge, the first molecular evidence for the presence of A. phagocytophilum in small ruminants in Tunisia. A. phagocytophilum generally presented as a co-infection with A. ovis. This study provides important data to understand the epidemiology of anaplasmosis in small ruminants, and highlights the risk of contracting the infection upon tick exposure.
Collapse
|
27
|
He Y, Chen W, Ma P, Wei Y, Li R, Chen Z, Tian S, Qi T, Yang J, Sun Y, Li J, Kang M, Li Y. Molecular detection of Anaplasma spp., Babesia spp. and Theileria spp. in yaks (Bos grunniens) and Tibetan sheep (Ovis aries) on the Qinghai-Tibetan Plateau, China. Parasit Vectors 2021; 14:613. [PMID: 34949216 PMCID: PMC8697493 DOI: 10.1186/s13071-021-05109-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Anaplasma, Babesia and Theileria are tick-borne pathogens (TBPs) that affect livestock worldwide. However, information on these pathogens in yaks (Bos grunniens) and Tibetan sheep (Ovis aries) on the Qinghai-Tibet Plateau (QTP), China, is limited. In this study, Anaplasma spp., Babesia spp. and Theileria spp. infections were assessed in yaks and Tibetan sheep from Qinghai Province. METHODS A total of 734 blood samples were collected from 425 yaks and 309 Tibetan sheep at nine sampling sites. Standard or nested polymerase chain reaction was employed to screen all the blood samples using species- or genus-specific primers. RESULTS The results showed that 14.1% (60/425) of yaks and 79.9% (247/309) of Tibetan sheep were infected with at least one pathogen. Anaplasma ovis, Anaplasma bovis, Anaplasma capra, Anaplasma phagocytophilum, Babesia bovis and Theileria spp. were detected in this study, with total infection rates for all the assessed animals of 22.1% (162/734), 16.3% (120/734), 23.6% (173/734), 8.2% (60/734), 2.7% (20/734) and 19.3% (142/734), respectively. For yaks, the infection rate of A. bovis was 6.4% (27/425), that of B. bovis was 4.7% (20/425) and that of Theileria spp. was 3.3% (14/425). Moreover, 52.4% (162/309) of the Tibetan sheep samples were infected with A. ovis, 30.1% (93/309) with A. bovis, 56.0% (173/309) with A. capra, 19.4% (60/309) with A. phagocytophilum and 41.4% (128/309) with Theileria spp. CONCLUSIONS This study revealed the prevalence of Anaplasma spp., Babesia spp. and Theileria spp. in yaks and Tibetan sheep in Qinghai Province, China, and provides new data for a better understanding of the epidemiology of TBPs in these animals in this area of the QTP, China.
Collapse
Affiliation(s)
- Yongcai He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Wangkai Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Ping Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Yaoping Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Ruishan Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Zhihong Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Shuyu Tian
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Tongsheng Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Jinfang Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Yali Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Jixu Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Ming Kang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Ying Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| |
Collapse
|
28
|
Altay K, Erol U, Sahin OF, Aytmirzakizi A. First molecular detection of Anaplasma species in cattle from Kyrgyzstan; molecular identification of human pathogenic novel genotype Anaplasma capra and Anaplasma phagocytophilum related strain. Ticks Tick Borne Dis 2021; 13:101861. [PMID: 34773849 DOI: 10.1016/j.ttbdis.2021.101861] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Anaplasmosis is a rickettsial infection with significant effects on human and animal health, and the discovery of new species or genotypes with zoonotic potential in recent years has increased this importance. The aim of this study was to provide the first assessment of the molecular etiology and prevalence of bovine anaplasmosis in Kyrgyzstan (specifically in the Chuy, Talas, Djalal-Abad, Naryn, and Issyk-Kul regions). The prevalence of bovine anaplasmosis was determined as 1.7% (6/358). PCR and partial DNA sequencing results of the 16S ribosomal RNA (rRNA) gene revealed that Anaplasma centrale, A. phagocytophilum like-1, and the human pathogenic novel genotype A. capra are circulating in cattle herds in Kyrgyzstan. Six DNA nucleotide sequences obtained in this study were deposited in GenBank under the following accession numbers: A. centrale (MW672117, MW672118, MW672119, MW672120), A. phagocytophilum (MW672121), and A. capra (MW672115).
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey.
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey
| | - Ayperi Aytmirzakizi
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek 720044, Kyrgyzstan
| |
Collapse
|
29
|
Wang Y, Zhang Q, Han S, Li Y, Wang B, Yuan G, Zhang P, Yang Z, Zhang H, Sun Y, Chen J, Han X, He H. Ehrlichia chaffeensis and Four Anaplasma Species With Veterinary and Public Health Significance Identified in Tibetan Sheep ( Ovis aries) and Yaks ( Bos grunniens) in Qinghai, China. Front Vet Sci 2021; 8:727166. [PMID: 34660764 PMCID: PMC8514825 DOI: 10.3389/fvets.2021.727166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Tick-borne diseases (TBDs) can cause serious economic losses and are very important to animal and public health. To date, research on TBDs has been limited in Qinghai-Tibet Plateau, China. This epidemiological investigation was conducted to evaluate the distribution and risk factors of Anaplasma spp. and Ehrlichia chaffeensis in livestock in Qinghai. A total of 566 blood samples, including 330 yaks (Bos grunniens) and 236 Tibetan sheep (Ovis aries) were screened. Results showed that A. bovis (33.3%, 110/330) and A. phagocytophilum (29.4%, 97/330) were most prevalent in yaks, followed by A. ovis (1.2%, 4/330), A. capra (0.6%, 2/330), and E. chaffeensis (0.6%, 2/330). While A. ovis (80.9%, 191/236) and A. bovis (5.1%, 12/236) infection was identified in Tibetan sheep. To our knowledge, it is the first time that A. capra and E. chaffeensis have been detected in yaks in China. Apart from that, we also found that co-infection of A. bovis and A. phagocytophilum is common in yaks (28.2%, 93/330). For triple co-infection, two yaks were infected with A. bovis, A. phagocytophilum, and A. capra, and two yaks were infected with A. bovis, A. phagocytophilum, and E. chaffeensis. Risk analysis shows that infection with A. bovis, A. phagocytophilum, and A. ovis was related to region and altitude. This study provides new data on the prevalence of Anaplasma spp. and E. chaffeensis in Qinghai, China, which may help to develop new strategies for active responding to these pathogens.
Collapse
Affiliation(s)
- Ye Wang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Qingxun Zhang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Bo Wang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peiyang Zhang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Yang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Yali Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jiyong Chen
- Animal Disease Prevention and Control Center of Yushu, Yushu, China
| | - Xueqing Han
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Yan Y, Wang K, Cui Y, Zhou Y, Zhao S, Zhang Y, Jian F, Wang R, Zhang L, Ning C. Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China. Sci Rep 2021; 11:14155. [PMID: 34238975 PMCID: PMC8266805 DOI: 10.1038/s41598-021-93629-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Anaplasma species, which are distributed worldwide, are gram-negative obligate intracellular tick-borne bacteria that pose a threat to human and animal health. Haemaphysalis longicornis ticks play a vital role as vectors in the transmission of Anaplasma pathogens. However, the Anaplasma species carried by H. longicornis in China are yet to be characterized. In this study, 1074 H. longicornis specimens were collected from goats in four provinces of China from 2018 to 2019 and divided into 371 sample pools. All tick sample pools were examined for the presence of Anaplasma species via nested PCR amplification of 16S ribosomal RNA, major surface protein 4 (msp4), or citric acid synthase (gltA) genes, which were sequenced to determine the molecular and phylogenetic characteristics of the isolates. The overall Anaplasma spp-positive rate of H. longicornis was determined to be 26.68% (99/371). The percentage prevalence of A. phagocytophilum-like1, A. bovis, A. ovis, A. marginale, and A. capra were 1.08% (4/371), 13.21% (49/371), 13.21% (49/371), 1.35% (5/371), and 10.24% (38/371), respectively, and the co-infection rate of two or more types of Anaplasma was 6.47% (24/371). Phylogenetic analyses led to the classification of A. phagocytophilum into an A. phagocytophilum-like1 (Anaplasma sp. Japan) group. Anaplasma bovis sequences obtained in this study were 99.8–100% identical to those of an earlier strain isolated from a Chinese tick (GenBank accession no. KP314251). Anaplasma ovis sequences showed 99.3–99.6% identity to an A. ovis human strain identified from a Cypriot patient (GenBank accession no. FJ460443). Only one msp4 sequence of A. marginale was detected and was grouped with those of other A. marginale isolates, and these A. capra isolates obtained in this present study may be zoonotic. The detection and characterization of four Anaplasma species in H. longicornis in this study have added to the current knowledge of the parasite and provided data on multiple Anaplasma species with veterinary and medical significance from four provinces of China.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Kunlun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yanyan Cui
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
| | - Yongchun Zhou
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Shanshan Zhao
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yajun Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Fuchun Jian
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Rongjun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Changshen Ning
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
31
|
Mohammadian B, Noaman V, Emami SJ. Molecular survey on prevalence and risk factors of Anaplasma spp. infection in cattle and sheep in West of Iran. Trop Anim Health Prod 2021; 53:266. [PMID: 33866448 DOI: 10.1007/s11250-021-02707-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Tick-borne pathogens (TBPs) in general and Anaplasma spp. in particular are known as economically important agents of diseases of domestic ruminants worldwide. Little information exists regarding the prevalence and the role of various factors affecting the occurrence of anaplasmosis in the west of Iran. The present study was carried out to determine the prevalence and risk factors associated with Anaplasma pathogens in Kurdistan province, west of Iran. During spring and summer 2016, blood samples were collected from a total of 401 livestock animals from different farms distributed in the Kurdistan province. Furthermore, data on general husbandry traits and management practices were recorded. PCR examination showed an overall prevalence of 37.3 and 10% in cattle and sheep, respectively. Cattle were infected with A. phagocytophilum (23.8%), A. bovis (15.4%), and A. marginale (13.9%) while sheep were infected with A. ovis (10%) and A. phagocytophilum (3.5%). The occurrence of anaplasmosis was considerably higher in cattle compared to sheep (P < 0.0001). Based on results of logistic regression models, risk of Anaplasma infection was significantly higher in crossbreeds (odds ratio (OR) = 1.93, 95% confidence interval (CI) = 1.025-3.65, P = 0.042) compared with local cattle breeds. Furthermore, being older than 1 year was associated with increased risk of Anaplasma infection in cattle (OR = 2.18, 95%, CI = 1.022-4.68, P = 0.044) and sheep (OR = 2.86, 95%, CI = 1.006-8.22, P = 0.049) compared to younger individuals. No difference was observed between the counties. Identifying potential risk factors and potential vectors and reservoirs contribute to the successful control and prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Baharak Mohammadian
- Department of Honey Bee, Silk worm and Wildlife Research, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Vahid Noaman
- Department of Parasitic Disease Research, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyyed Jamal Emami
- Division of Epidemiology and Zoonoses, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, 141556453, Iran.
| |
Collapse
|
32
|
Drážovská M, Vojtek B, Mojžišová J, Koleničová S, Koľvek F, Prokeš M, Korytár Ľ, Csanady A, Ondrejková A, Vataščinová T, Bhide MR. The first serological evidence of Anaplasma phagocytophilum in horses in Slovakia. Acta Vet Hung 2021; 69:31-37. [PMID: 33835943 DOI: 10.1556/004.2021.00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
Anaplasma phagocytophilum is the causative agent of granulocytic anaplasmosis. It affects humans and several wild and domesticated mammals, including horses. The aim of our study was a preliminary survey of the occurrence of these re-emerging pathogens in horses in Slovakia. The sera from 200 animals of different ages and both sexes were tested for the presence of A. phagocytophilum antibodies by indirect immunofluorescence assay. Subsequently, detection of the 16S rRNA gene fragment of A. phagocytophilum was attempted by polymerase chain reaction (PCR) in each blood sample. Our results confirmed the presence of specific antibodies in 85 out of 200 individuals (42.5%), but no significant changes were found between the animals of different ages and sexes. However, the PCR analysis did not detect any positive animals. Our data represent one of the highest values of seropositivity to A. phagocytophilum in horses in Central Europe. These results may contribute to a better understanding of the circulation of A. phagocytophilum in this region, thus indicating a potential risk to other susceptible species.
Collapse
Affiliation(s)
- Monika Drážovská
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Boris Vojtek
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Jana Mojžišová
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Simona Koleničová
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Filip Koľvek
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Marián Prokeš
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Ľuboš Korytár
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | | | - Anna Ondrejková
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Tatiana Vataščinová
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Mangesh Ramesh Bhide
- 1University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| |
Collapse
|
33
|
Aktaş M, Özübek S, Uluçeşme MC. Molecular Detection and Phylogeny of Anaplasma phagocytophilum and Related Variants in Small Ruminants from Turkey. Animals (Basel) 2021; 11:ani11030814. [PMID: 33799376 PMCID: PMC8001643 DOI: 10.3390/ani11030814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary We explored the existence of Anaplasma phagocytophilum and related variant in samples of goats and sheep obtained from Antalya and Mersin provinces, representative of Mediterranean region of Turkey. Based on 16S rRNA and groEL genes of A. phagocytophilum and related variants, we examined blood samples by polymerase chain reaction (PCR) followed by sequencing. The results showed that the prevalence of A. phagocytophilum and A. phagocytophilum-like 1 infection was 1.4% and 26.5%, respectively. Sequencing confirmed molecular data and showed the presence of A. phagocytophilum and A. phagocytophilum-like-1 variant in the sampled animals. Abstract Anaplasma phagocytophilum causes tick-borne fever in small ruminants. Recently, novel Anaplasma variants related to A. phagocytophilum have been reported in ruminants from Tunisia, Italy, South Korea, Japan, and China. Based on 16S rRNA and groEL genes and sequencing, we screened the frequency of A. phagocytophilum and related variants in 433 apparently healthy small ruminants in Turkey. Anaplasma spp. overall infection rates were 27.9% (121/433 analyzed samples). The frequency of A. phagocytophilum and A. phagocytophilum-like 1 infections was 1.4% and 26.5%, respectively. No A. phagocytophilum-like 2 was detected in the tested animals. The prevalence of Anaplasma spp. was comparable in species, and no significant difference was detected between sheep and goats, whereas the prevalence significantly increased with tick infestation. Sequencing confirmed PCR-RFLP data and showed the presence of A. phagocytophilum and A. phagocytophilum-like-1 variant in the sampled animals. Phylogeny-based on 16S rRNA gene revealed the A. phagocytophilum-like 1 in a separate clade together with the previous isolates detected in small ruminants and ticks. In this work, A. phagocytophilum-like 1 has been detected for the first time in sheep and goats from Turkey. This finding revealed that the variant should be considered in the diagnosis of caprine and ovine anaplasmosis.
Collapse
|
34
|
Wang K, Yan Y, Zhou Y, Zhao S, Jian F, Wang R, Zhang L, Ning C. Seasonal dynamics of Anaplasma spp. in goats in warm-temperate zone of China. Ticks Tick Borne Dis 2021; 12:101673. [PMID: 33549978 DOI: 10.1016/j.ttbdis.2021.101673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Anaplasma are tick-borne obligate intracellular bacteria that can endanger human and animal health, and until now, there have been few reports on the seasonal dynamics of Anaplasma species in China. In this study, a total of 491 goat blood samples were collected in spring (n = 124), summer (n = 135), autumn (n = 110), and winter (n = 122) from Shaanxi provinces. Single and mixed infections of Anaplasma spp. from warm-temperate regions of China were analyzed according to seasons using a nested PCR method. Positive samples were sequenced to observe the molecular and phylogenetic characteristics of the Anaplasma species, and we determined the co-infection rates of Anaplasma spp. for each season. A molecular survey of Anaplasma phagocytophilum, A. bovis, A. ovis, and A. capra in goats showed average prevalences of 71.6 % (maximum 86.7 % in summer and minimum 48.4 % in winter), 62.2 % (minimum 38.7 % in spring and maximum 94.1 % in summer), 25.5 % (minimum 0% in summer and maximum 51.6 % in spring), and 26.6 % (minimum 8.2 % in winter and maximum 55.6 % in summer), respectively. In the phylogenetic analysis, A. phagocytophilum and A. capra occupied two separate groups, Chinese A. bovis and foreign isolates appeared to be geographically isolated, and all A. ovis isolates were in the same branch as the previously described sequences. The survey indicated that goats in warm-temperate regions of China are frequently exposed to Anaplasma spp. all year round, and thus prevention and treatment efforts for anaplasmosis in the region should be strengthened.
Collapse
Affiliation(s)
- Kunlun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Yaqun Yan
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Yongchun Zhou
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Shanshan Zhao
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Fuchun Jian
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Rongjun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Changshen Ning
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China.
| |
Collapse
|
35
|
Miranda EA, Han SW, Cho YK, Choi KS, Chae JS. Co-Infection with Anaplasma Species and Novel Genetic Variants Detected in Cattle and Goats in the Republic of Korea. Pathogens 2021; 10:pathogens10010028. [PMID: 33401478 PMCID: PMC7830860 DOI: 10.3390/pathogens10010028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 01/03/2023] Open
Abstract
Anaplasmosis, a tick-borne disease with multiple reservoirs, has been evolving in its pathogenesis, increasing domestic ruminants susceptibility to simultaneous infections with multiple pathogens. However, there is limited information regarding anaplasmosis in domestic ruminants in the Republic of Korea (ROK). We aimed to evaluate the role of Korean cattle and goats in Anaplasma infection maintenance. Polymerase chain reaction was performed to investigate the prevalence and genetic diversity of Anaplasma spp. from 686 whole blood samples collected from different ROK provinces. Anaplasma infection was mostly caused by A. phagocytophilum (21.1%) in cattle, and A. bovis (7.3%) in goats. Co-infection cases were found in cattle: A. bovis and A. phagocytophilum (16.7%), and in goats: A. bovis and A. capra (1.0%). Notably, a triple co-infection with A. bovis, A. phagocytophilum, and A. capra was found in one cow. Phylogenetic analysis revealed novel variants of the A. phagocytophilum 16S rRNA and A. capra
gltA genes. This research contributes to the ratification of cattle as a potential reservoir of A. capra and demonstrates Anaplasma co-infection types in Korean domestic ruminants. As anaplasmosis is a zoonotic disease, our study could be crucial in making important decisions for public health.
Collapse
Affiliation(s)
- Evelyn Alejandra Miranda
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (E.A.M.); (S.-W.H.); (Y.-K.C.)
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (E.A.M.); (S.-W.H.); (Y.-K.C.)
| | - Yoon-Kyong Cho
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (E.A.M.); (S.-W.H.); (Y.-K.C.)
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Korea;
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (E.A.M.); (S.-W.H.); (Y.-K.C.)
- Correspondence: ; Tel.: +82-2-880-1279
| |
Collapse
|
36
|
Kasozi KI, Welburn SC, Batiha GES, Marraiki N, Nalumenya DP, Namayanja M, Matama K, Zalwango KK, Matovu W, Zirintunda G, Ekou J, Kembabazi S, Mugasa CM, Kitibwa A, Tayebwa DS, Musinguzi SP, Mahero M, Ssengendo I, Nanteza A, Matovu E, MacLeod ET. Molecular epidemiology of anaplasmosis in small ruminants along a human-livestock-wildlife interface in Uganda. Heliyon 2020; 7:e05688. [PMID: 33437885 PMCID: PMC7788096 DOI: 10.1016/j.heliyon.2020.e05688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Background Information as regards the epidemiology of the Anaplasmataceae in small ruminants in several low- and middle-income countries is scarce. Methods In this study a total of 712 DNA samples collected from small ruminants were analyzed for Anaplasmataceae and Anaplasma ovis using the 16S rRNA and MSP4 genes respectively. Infection risk was assessed by location, sex and age of the animals and qGIS® was used to construct spatial maps. Results The prevalence of Anaplasmataceae spp was 89.1% (95% CI: 77.5–95.9) and 79.1% (95% CI: 75.9–82.1) in ovines and caprines respectively (RR = 1.1, 95% CI: 1.0–1.3); higher than those previously reported in other eastern African countries. The prevalence of A. ovis was 26.1% and 25.4% for both ovines and caprines respectively with ovines showing significantly higher levels of infection than caprines (P < 0.05). The risk of Anaplasma ovis infections was not affected by age (OR = 1.2, 95% CI: 0.9–1.7) or sex (OR = 1.1, 95% CI: 0.6–2.0). Small ruminants located at the forest edge (<0.3 km) showed higher A. ovis prevalence than those found inland with infections present in the midland regions associated with increased agricultural activity. Conclusion Anaplasma ovis remains a major challenge for small ruminant husbandry in Uganda and infections are under-reported. Policy efforts to prioritize management of Anaplasmataceae for small ruminant health would promote livestock productivity in vulnerable communities, improving livelihoods and ecosystem health.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
- Department of Animal Production and Management, Faculty of Agriculture and Agricultural Sciences, Busitema University Arapai Campus, Box 203 Soroti, Uganda
- School of Medicine, Kabale University, Box 317 Kabale, Uganda
- Corresponding author.
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, International Campus, 718 East Haizhou Road, Haining 314400, China
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - David Paul Nalumenya
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Monica Namayanja
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Kevin Matama
- Kampala International University Western Campus, Box 71 Bushenyi, Uganda
| | - Kelly Katenta Zalwango
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Wycliff Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Agricultural Sciences, Busitema University Arapai Campus, Box 203 Soroti, Uganda
| | - Justine Ekou
- Department of Animal Production and Management, Faculty of Agriculture and Agricultural Sciences, Busitema University Arapai Campus, Box 203 Soroti, Uganda
| | | | - Claire Mack Mugasa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Annah Kitibwa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Dickson Stuart Tayebwa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Simon Peter Musinguzi
- Faculty of Agriculture and Environmental Sciences, Kabale University, Box 315 Kabale, Uganda
| | - Michael Mahero
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, USA
| | - Ibrahim Ssengendo
- Kampala International University Western Campus, Box 71 Bushenyi, Uganda
| | - Anne Nanteza
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Box 7062 Kampala, Uganda
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
37
|
Aktas M, Çolak S. Molecular detection and phylogeny of Anaplasma spp. in cattle reveals the presence of novel strains closely related to A. phagocytophilum in Turkey. Ticks Tick Borne Dis 2020; 12:101604. [PMID: 33160190 DOI: 10.1016/j.ttbdis.2020.101604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 11/19/2022]
Abstract
Anaplasma species are obligate intracellular rickettsial pathogens that affect the health of humans and animals. In this study, we investigated the presence and frequency of Anaplasma species by 16S rRNA PCR-RLB, RFLP, and DNA sequencing in 200 apparently healthy cattle. Anaplasma spp. overall infection rate was 38.5 % (77/200) by RLB. The frequency of single and mixed infections was 31.5 % (63/200) and 7% (14/200), respectively. The most common species was A. marginale (32.5 %), followed by A. centrale (5.5 %), Anaplasma/Ehrlichia catc-all (5.5 %) and Anaplasma sp. Omatjenne (2.5 %). No A. phagocytophilum and A. bovis were detected in the tested animals. Eleven of 77 PCR-positive amplicons gave positive reactions to the catch-all probes but did not show any signals to the species-specific probes, but PCR-RFLP results showed that these amplicons were A. phagocytophilum-like 1 and A. phagocytophilum-like 2 strains. Sequencing and phylogenetic analyses based on 16S rRNA gene validated RFLP findings and provided evidence for the circulation of A. phagocytophilum-like-1 and 2 strains in Turkish cattle. This is the first report of the presence of A. phagocytophilum-like strains in the country. These findings indicate that A. phagocytophilum-like 1 and 2 strains should be taken into account in the differential diagnosis with bovine anaplasmosis.
Collapse
Affiliation(s)
- Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey.
| | - Serdar Çolak
- Ministry of Agriculture, Malatya Agriculture Provincial Directorate, Malatya, Turkey
| |
Collapse
|
38
|
Ghaffar A, Ijaz M, Ali A, Farooqi SH, Rehman A, Ali MM, Zafar MZ, Naeem MA. First Report on Molecular Characterization of Anaplasmosis in Small Ruminants in Pakistan. J Parasitol 2020; 106:360-368. [PMID: 32227225 DOI: 10.1645/19-90] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Anaplasmosis is caused by a Gram-negative obligate intracellular bacterium of the genus Anaplasma with the pathogen having a zoonotic impact. The study aimed to estimate the prevalence of anaplasmosis in Pakistan, to unravel the association of potential risk factors, and to investigate the effect on hematological parameters in affected small ruminants. A total of 150 (n = 75 sheep; n = 75 goats) blood samples were initially screened microscopically and then subjected to PCR targeting the amplification of the 16S rRNA gene fragment of Anaplasma. The PCR-based positive samples were then processed for sequencing. Statistical analysis regarding risk factors was performed using R software. The study revealed an overall 29.33% (44/150) prevalence of anaplasmosis in small ruminants. Sheep had higher (P > 0.05) prevalence (32%) as compared to goats (25.30%). The final statistical model resulting from backward elimination showed only tick infestation as a significant predictor of infection status. The phylogenetic analysis of 16S rRNA gene of Anaplasma spp. revealed 9 study isolates clustered together and showed a close resemblance (99%) with Anaplasma ovis isolate (DQ837600) from Hungary. One of the isolates showed (99%) similarity with the isolate of Anaplasma marginale (MH155594) from Iraq. Furthermore, the hematological parameters pack cell volume, red blood cells, hemoglobin, white blood cells, granulocytes, monocytes, lymphocytes, and platelet count were decreased in Anaplasma-positive animals. This is the first study at the molecular level to characterize Anaplasma spp. in small ruminants of Pakistan, and it will be useful in developing control strategies for anaplasmosis.
Collapse
Affiliation(s)
- Awais Ghaffar
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Ijaz
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Ahmad Ali
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Shahid Hussain Farooqi
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Abdul Rehman
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Zeeshan Zafar
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Anas Naeem
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| |
Collapse
|
39
|
Peter SG, Aboge GO, Kariuki HW, Kanduma EG, Gakuya DW, Maingi N, Mulei CM, Mainga AO. Molecular prevalence of emerging Anaplasma and Ehrlichia pathogens in apparently healthy dairy cattle in peri-urban Nairobi, Kenya. BMC Vet Res 2020; 16:364. [PMID: 32993638 PMCID: PMC7526178 DOI: 10.1186/s12917-020-02584-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/20/2020] [Indexed: 01/18/2023] Open
Abstract
Background Anaplasma and Ehrlichia species are tick-borne pathogens of both veterinary and public health importance. The current status of these pathogens, including emerging species such as Ehrlichia minasensis and Anaplasma platys, infecting cattle in Kenya, remain unclear, mainly because of limitation in the diagnostic techniques. Therefore, we investigated the Anaplasma and Ehrlichia species infecting dairy cattle in Nairobi, Kenya using molecular methods. Results A total of 306 whole blood samples were collected from apparently healthy dairy cattle. Whole blood DNA was extracted and tested for presence of Anaplasma and Ehrlichia DNA through amplification and sequencing of the 16S rDNA gene. Sequence identity was confirmed using BLASTn analysis while phylogenetic reconstruction was performed to determine the genetic relationship between the Kenyan isolates and other annotated genotypes available in GenBank. Anaplasma and Ehrlichia species were detected in 19.9 and 3.3% of all the samples analyzed, respectively. BLASTn analysis of the sequences against non-redundant GenBank nucleotide database revealed infections with A. platys (44.8%), A. marginale (31%) and A. bovis (13.8%). All four sequenced Ehrlichia spp. were similar to Ehrlichia minasensis. Nucleotide polymorphism was observed for A. platys, A. bovis and E. minasensis. The Anaplasma species clustered in four distinct phylogenetic clades including A. marginale, A. platys, A. bovis and some unidentified Anaplasma spp. The Kenyan Ehrlichia minasensis clustered in the same clade with isolates from America and Australia but distant from E. ruminantium. Conclusion This study provides the first report of infection of dairy cattle in Kenya with A. platys and E. minasensis, which are emerging pathogens. We conclude that cattle in peri-urban Nairobi are infected with various species of Anaplasma and E. minasensis. To understand the extent of these infections in other parts of the country, large-scale screening studies as well as vector identification is necessary to inform strategic control.
Collapse
Affiliation(s)
- Shepelo Getrude Peter
- Department of Clinical Studies, Faculty of Veterinary Medicine University of Nairobi, Nairobi, Kenya.
| | - Gabriel Oluga Aboge
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine University of Nairobi, Nairobi, Kenya
| | - Hellen Wambui Kariuki
- Department of Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | | | - Daniel Waweru Gakuya
- Department of Clinical Studies, Faculty of Veterinary Medicine University of Nairobi, Nairobi, Kenya
| | - Ndichu Maingi
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi, Kenya
| | - Charles Matiku Mulei
- Department of Clinical Studies, Faculty of Veterinary Medicine University of Nairobi, Nairobi, Kenya
| | - Alfred Omwando Mainga
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine University of Nairobi, Nairobi, Kenya
| |
Collapse
|
40
|
Li Y, Galon EM, Guo Q, Rizk MA, Moumouni PFA, Liu M, Li J, Ji S, Chahan B, Xuan X. Molecular Detection and Identification of Babesia spp., Theileria spp., and Anaplasma spp. in Sheep From Border Regions, Northwestern China. Front Vet Sci 2020; 7:630. [PMID: 33195501 PMCID: PMC7526627 DOI: 10.3389/fvets.2020.00630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/03/2020] [Indexed: 01/18/2023] Open
Abstract
Babesia, Theileria, and Anaplasma are important causative agents of tick-borne diseases that severely affect sheep. However, there is paucity in the occurrence genetic diversity of the infections of tick-borne diseases in sheep in border regions, northwestern China. In this study, nested polymerase chain reaction (nPCR) assays and gene sequencing were used to identify tick-borne Babesia spp., Theileria spp., and Anaplasma spp. infections in border regions, northwestern China. Out of 323 samples tested in this study, 225 (69.7%) sheep were infected with Babesia spp., Theileria spp., and Anaplasma spp. Two hundred six (63.8%), 60 (18.6%), 54 (16.7%), 51 (15.8%), 32 (9.9%), 19 (5.9%), and 16 (5.0%) were positive for A. ovis, B. motasi-like, A. bovis, T. uilenbergi, A. phagocytophilum, T. luwenshuni, and B. motasi-like Xinjiang, respectively. The most common dual infection was with A. ovis and B. motasi-like while the most frequent triple coinfection was A. ovis, B. motasi-like, and T. uilenbergi with coinfection rates of 17.0% (55/323) and 5.0% (16/323), respectively. Sequencing analysis indicated that A. ovis MSP4, A. phagocytophilum epank1, A. bovis 16S rRNA, B. motasi-like rap1-b, B. motasi-like Xinjiang rap1-a, T. luwenshuni 18S rRNA, and T. uilenbergi 18S rRNA from border regions, northwestern China, showed 99–100% identity with documented isolates from other countries. To the best of the authors' knowledge, this is the first report of T. uilenbergi and T. luwenshuni infections of sheep in border regions, northwestern China. Furthermore, these findings provide important data for understanding the distribution of Babesia, Theileria, and Anaplasma in sheep between border countries and China.
Collapse
Affiliation(s)
- Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Qingyong Guo
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, China
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
41
|
Mongruel ACB, Spanhol VC, Valente JDM, Porto PP, Ogawa L, Otomura FH, Marquez EDS, André MR, Vieira TSWJ, Vieira RFDC. Survey of vector-borne and nematode parasites involved in the etiology of anemic syndrome in sheep from Southern Brazil. ACTA ACUST UNITED AC 2020; 29:e007320. [PMID: 32935770 DOI: 10.1590/s1984-29612020062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Although anemia has been historically linked to Haemonchus contortus infection, other infectious agents, such as hemotropic mycoplasmas and tick-borne disease pathogens, may also lead to anemic crisis in sheep. This study has aimed to investigate infections related to anemia in a sheep herd from Bandeirantes City, Paraná State, southern Brazil. Seven out of forty-two (16.6%; 95% CI: 8.32-30.6%) sheep were positive for hemoplasmas by a PCR targeting the 16S rRNA gene and all tested negative for A. marginale/A. ovis and Babesia/Theileria spp. by PCR based on msp4 and 18S rRNA genes, respectively. Two (4.7%; 95% CI: 1.32-15.79%) animals were infested with Rhipicephalus microplus ticks. Fecal egg counting was performed in 38 sheep and 24 (63.15%; 95% CI: 47.2-76.6%) presented > 500 eggs per gram. Phylogenetic analysis of partial sequences of the detected hemotropic Mycoplasma sp. 16S and 23S rRNA genes confirmed that the animals were infected with Mycoplasma ovis. Polymorphism analysis of partial 16S rRNA sequences showed three different genotypes of M. ovis infecting sheep assessed in the present study. Mycoplasma ovis and gastrointestinal nematodes occurs in sheep from the northern region of Paraná State.
Collapse
Affiliation(s)
- Anna Claudia Baumel Mongruel
- Vector-Borne Diseases Laboratory, Departamento de Medicina Veterinária, Universidade Federal do Paraná - UFPR, Curitiba, PR, Brasil
| | - Viviane Campos Spanhol
- Vector-Borne Diseases Laboratory, Departamento de Medicina Veterinária, Universidade Federal do Paraná - UFPR, Curitiba, PR, Brasil
| | - Jessica Damiana Marinho Valente
- Vector-Borne Diseases Laboratory, Departamento de Medicina Veterinária, Universidade Federal do Paraná - UFPR, Curitiba, PR, Brasil
| | - Petrônio Pinheiro Porto
- Departamento de Ciências Biológicas, Universidade Estadual do Norte do Paraná - UENP, Bandeirantes, PR, Brasil
| | - Liza Ogawa
- Departamento de Ciências Biológicas, Universidade Estadual do Norte do Paraná - UENP, Bandeirantes, PR, Brasil
| | - Flávio Haragushiku Otomura
- Departamento de Ciências Biológicas, Universidade Estadual do Norte do Paraná - UENP, Bandeirantes, PR, Brasil
| | - Ellen de Souza Marquez
- Departamento de Ciências Biológicas, Universidade Estadual do Norte do Paraná - UENP, Bandeirantes, PR, Brasil
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia, Teriogenologia e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - Unesp, Jaboticabal, SP, Brasil
| | | | - Rafael Felipe da Costa Vieira
- Vector-Borne Diseases Laboratory, Departamento de Medicina Veterinária, Universidade Federal do Paraná - UFPR, Curitiba, PR, Brasil.,Global One Health initiative - GOHi, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Li Y, Wen X, Li M, Moumouni PFA, Galon EM, Guo Q, Rizk MA, Liu M, Li J, Ji S, Tumwebaze MA, Byamukama B, Chahan B, Xuan X. Molecular detection of tick-borne pathogens harbored by ticks collected from livestock in the Xinjiang Uygur Autonomous Region, China. Ticks Tick Borne Dis 2020; 11:101478. [PMID: 32723638 DOI: 10.1016/j.ttbdis.2020.101478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Ticks carry and transmit a wide range of pathogens (bacteria, viruses, and protozoa) that are of importance to humans and animals globally. However, information about the tick-borne pathogens harbored by ticks in the Xinjiang Uygur Autonomous Region (XUAR), northwestern China, is scarce. This study investigated the occurrence of tick species of domestic animals and tick-borne pathogens by using morphological molecular identification and sequence analysis in Turpan, Qitai, Altay, Hejing, Nileke, and Zhaosu counties (XUAR). A total of 5822 adult ticks (females and males) from 12 tick species were identified from 5 animal species (cattle, goats, sheep, camels, and horses) in 6 counties in the XUAR. Collected tick species included Dermacentor marginatus (24.7 %), Dermacentor nuttalli (20.8 %), Hyalomma anatolicum (13.7 %), Dermacentor niveus (13.1 %), Haemaphysalis punctata (10.7 %), Dermacentor silvarum (7.1 %), Dermacentor pavlovskyi (3.9 %), Hyalomma asiaticum (2.2 %), Rhipicephalus pumilio (1.9 %), Rhipicephalus sanguineus sensu lato (0.7 %), Rhipicephalus turanicus (0.6 %), and Hyalomma asiaticum kozlovi (0.6 %). Furthermore, 750 partially engorged adult ticks (females and males), including H. anatolicum (250), D. nuttalli (250), and D. marginatus (250), were individually separated according to species and sampling site, used for DNA extraction, and then screened for tick-borne pathogens. The most common pathogen was Rickettsia raoultii (36.80 %), followed by Brucella sp. (26.2 %), Anaplasma ovis (22.4 %), Babesia caballi (14.8 %), Theileria equi (8.7 %), and Theileria ovis (8.5 %). The sequencing of 6 genes showed a 96-100 % nucleotide identity between the sequences in this study and those deposited in GenBank. This study provides a scientific reference for the prevention and control of tick-borne diseases in the XUAR.
Collapse
Affiliation(s)
- Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Xiuxiu Wen
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830011, Xinjiang, China
| | - Min Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830011, Xinjiang, China
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Qingyong Guo
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830011, Xinjiang, China
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, 35516, Egypt
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Maria Agnes Tumwebaze
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Benedicto Byamukama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830011, Xinjiang, China.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan.
| |
Collapse
|
43
|
Guo WP, Tie WF, Meng S, Li D, Wang JL, Du LY, Xie GC. Extensive genetic diversity of Anaplasma bovis in ruminants in Xi'an, China. Ticks Tick Borne Dis 2020; 11:101477. [PMID: 32723632 DOI: 10.1016/j.ttbdis.2020.101477] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Anaplasma bovis is an organism significant to cattle and buffalo since it is one of the causative agents of bovine anaplasmosis. Previous studies have shown the worldwide distribution of A. bovis. However, most of these studies about its genetic diversity only focused on the rrs gene. In this study, DNA of A. bovis was detected in blood samples of cattle and goats in Xi'an city, China by nested-PCR. Near full-length rrs, groEL, and gltA genes were amplified successfully from the positive samples. Genetic analysis showed that specific genetic marker (an insertion and a deletion) was found in the rrs sequences in some strains, as well as clone 88 from monkeys in previous study. Phylogenetic analysis based on the rrs, groEL, and gltA genes revealed that A. bovis circulating in Xi'an exhibited great genetic diversity. Our results also indicated that variants outside China presented geographic clustering, and all A. bovis isolates based on the groEL or gltA gene also showed a host origin clustering. Also of note was that the phylogenetic analyses of the groEL and gltA genes suggested that both frequent dispersals over long distances in recent years and local adaptation over long evolutionary timescales played important roles in the distribution and evolution of A. bovis in China. Finally, a potential recombination event in the genome of Zhouzhi-cattle-10 based on inconsistent positions in the groEL and gltA trees was also observed. These results also reinforce the need for assessing the pathogenicity to humans of A. bovis variants with specific marker in the rrs gene.
Collapse
Affiliation(s)
- Wen-Ping Guo
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China.
| | - Wei-Fang Tie
- College of Hetao, Bayannur, Inner Mongolia, China
| | - Su Meng
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Dan Li
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Jiang-Li Wang
- Laboratory of Microbiology Detection, Chengde Center for Diseases Prevention and Control, Chengde, China
| | - Luan-Ying Du
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Guang-Cheng Xie
- Department of Pathogenic Biology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China.
| |
Collapse
|
44
|
Li J, Jian Y, Jia L, Galon EM, Benedicto B, Wang G, Cai Q, Liu M, Li Y, Ji S, Tumwebaze MA, Ma L, Xuan X. Molecular characterization of tick-borne bacteria and protozoans in yaks (Bos grunniens), Tibetan sheep (Ovis aries) and Bactrian camels (Camelus bactrianus) in the Qinghai-Tibetan Plateau Area, China. Ticks Tick Borne Dis 2020; 11:101466. [PMID: 32723655 DOI: 10.1016/j.ttbdis.2020.101466] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
Due to the specific plateau climate, a variety of unique animals live in the Qinghai-Tibetan Plateau Area (QTPA) including yaks (Bos grunniens), Tibetan sheep (Ovis aries) and Bactrian camels (Camelus bactrianus). However, information on tick-borne diseases (TBDs) in the QTPA and on the molecular characteristics of tick-borne pathogens (TBPs) in the area is limited. Therefore, the aim of this study was to investigate Anaplasma spp., Babesia spp., Theileria spp., Borrelia burgdorferi sensu lato and Rickettsia spp. infecting yaks, Tibetan sheep and camels in this area. A total of 276 animals were screened. Overall, 84.5% (164/194) of yaks, 58% (23/40) of Tibetan sheep, and 38% (16/42) of camels tested positive for at least one pathogen. Theileria spp., Anaplasma ovis and spotted fever group (SFG) Rickettsia spp. were detected as TBPs in the current study with overall infection rates of 10.9% (30/276), 8.3% (23/276) and 62.9% (171/276), respectively. Further study revealed that 1.5% (3/194) of the yaks were infected with Theileria sp. OT3, 1.5% (3/194) with T. luwenshuni, 6.2% (12/194) with T. uilenbergi, 1.1% (2/194) with T. ovis and 82% (159/194) with SFG Rickettsia spp. It was also shown that 58% (23/40) of the Tibetan sheep were infected with A. ovis and 15% (6/40) with T. ovis. Among the camels, 10% (4/42) were infected with T. equi, while 29% (12/42) were positive for Rickettsia spp. Sequence analysis revealed that the Rickettsia spp. infecting yaks and camels were Rickettsia raoultii and Rickettsia slovaca. To the best of our knowledge, this study reports the first detection and characterization of these pathogens in yaks, Tibetan sheep and camels in the country, except for T. luwenshuni infections in yaks.
Collapse
Affiliation(s)
- Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yingna Jian
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Disease, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University,Xining 810016, China
| | - Lijun Jia
- Departmentof Veterinary Medicine, Agricultural College, Yanbian University, Yanji, Jilin 133000, China
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Byamukama Benedicto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Geping Wang
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Disease, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University,Xining 810016, China
| | - Qigang Cai
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Disease, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University,Xining 810016, China
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Maria Agnes Tumwebaze
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Liqing Ma
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Disease, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University,Xining 810016, China.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
45
|
Yan Y, Jiang Y, Tao D, Zhao A, Qi M, Ning C. Molecular detection of Anaplasma spp. in dairy cattle in southern Xinjiang, China. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 20:100406. [PMID: 32448523 DOI: 10.1016/j.vprsr.2020.100406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 01/19/2023]
Abstract
Bovine anaplasmosis is caused by a group of obligate intracellular bacteria belonging to the genus Anaplasma, which are transmitted by ticks. This study was conducted to determine the prevalences and molecular characterization of Anaplasma spp. in dairy cattle in the upper reaches of the Tarim River in Xinjiang, China. Using polymerase chain reaction (PCR) and sequencing approaches, DNA of Anaplasma spp. was detected in 16 of 493 (3.2%) blood samples from dairy cattle. Positive rates were 0.2% (1/493), 0.4% (2/493), 0.2% (1/493), 2.4% (12/493) and 2.4% (12/493) for A. bovis, A. ovis, A. phagocytophilum like strain, A. phagocytophilum and A. platys like strain, respectively. Anaplasma phagocytophilum and A. platys like strain co-infection was detected in 12 samples. To our knowledge, this is the first report of A. ovis infection in dairy cattle in Xinjiang. This study provides new data on the prevalences of Anaplasma spp. in cattle in Xinjiang, which will help to formulate appropriate control strategies for these pathogens in this area.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Yuxi Jiang
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Dayong Tao
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Aiyun Zhao
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, PR China.
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, PR China.
| |
Collapse
|
46
|
Hosseini-Chegeni A, Tavakoli M, Goudarzi G, Telmadarraiy Z, Sharifdini M, Faghihi F, Ghanbari MK. Molecular Detection of Anaplasma marginale and Anaplasma ovis (Rickettsiales: Anaplasmataceae) in Ixodid Tick Species in Iran. ARCHIVES OF RAZI INSTITUTE 2020; 75:39-46. [PMID: 32292001 PMCID: PMC8410167 DOI: 10.22092/ari.2019.122532.1259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/20/2019] [Indexed: 09/30/2022]
Abstract
The present study was conducted as the first molecular detection of Anaplasma species in tick samples based on the sequencing of major surface proteins 4 (msp4) gene fragments in different parts of Iran. A total of 130 tick specimens were collected from Hormozgan, Lorestan, and Guilan, Iran, within 2015 to 2017. Hyalomma asiaticum, Hyalomma dromedarii, Rhipicephalus sanguineus, and Rhipicephalus (Boophilus) species were identified in different geographical regions. An amplicon of 464-bp msp4 of Anaplasma was amplified using polymerase chain reaction in various tick species. Three sequences, including one Anaplasma marginale from R. (Boophilus) species and two Anaplasma ovis from Rhipicephalus sanguineus, were obtained after sequencing. It is concluded that bovine and ovine anaplasmosis agents are present in tick samples in Iran. The use of the gene families of six major surface proteins for the detection of various Anaplasma species is recommended.
Collapse
Affiliation(s)
- A Hosseini-Chegeni
- Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - M Tavakoli
- Agricultural Research, Education and Extension Organization (AREEO), Lorestan Agricultural and Natural Resources Research Center, Khorramabad, Iran
| | - Gh Goudarzi
- Department of Medical Microbiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Z Telmadarraiy
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran High Education Institute of Rahyan Novin Danesh (RND), Sari, Iran
- High Education Institute of Rahyan Novin Danesh (RND), Sari, Iran
| | - M Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - F Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - M K Ghanbari
- Department of National Program of Zoonotic Disease, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Zobba R, Ben Said M, Belkahia H, Pittau M, Cacciotto C, Pinna Parpaglia ML, Messadi L, Alberti A. Molecular epidemiology of Anaplasma spp. related to A. phagocytophilum in Mediterranean small ruminants. Acta Trop 2020; 202:105286. [PMID: 31790650 DOI: 10.1016/j.actatropica.2019.105286] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 01/21/2023]
Abstract
The genus Anaplasma currently comprises 6 bacterial species mostly pathogenic to animals and/or human, including the zoonotic species Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) of ruminants, and of granulocytic anaplasmosis of horses, dogs and human. Recently, novel potentially non-pathogenic strains related to A. phagocytophilum have been identified in Japan, China, and Tunisia. This paper reports the identification, molecular typing, and evolutionary history of novel Anaplasma strains (A. phagocytophilum-like 1 and 2), related to but distinct from A. phagocytophilum in Mediterranean area of Europe and Africa. PCR-RFLP and phylogenetic analyses based on 16S rRNA provided evidence for the circulation of A. phagocytophilum-like 1 strains in Europe. Phylogeny based on groEL gene showed the inclusion of Sardinian and Tunisian A. phagocytophilum-like 1 strains in a unique clade distinct from, but related to that of Japanese strains. Results suggest that genetic diversity within the genus Anaplasma is much greater than expected and provide information useful for the development of specific and effective diagnostic and prophylactic tools.
Collapse
Affiliation(s)
- Rosanna Zobba
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, Sidi Thabet, Tunisia
| | - Hanène Belkahia
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, Sidi Thabet, Tunisia
| | - Marco Pittau
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy
| | - Carla Cacciotto
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy
| | | | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, Sidi Thabet, Tunisia
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy; Mediterranean Center for Disease Control, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
48
|
Ben Said M, Belkahia H, Selmi R, Messadi L. Computational selection of minimum length groESL operon required for Anaplasma species attribution and strain diversity analysis. Mol Cell Probes 2019; 48:101467. [DOI: 10.1016/j.mcp.2019.101467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023]
|
49
|
von Fricken ME, Qurollo BA, Boldbaatar B, Wang YW, Jiang RR, Lkhagvatseren S, Koehler JW, Moore TC, Nymadawa P, Anderson BD, Matulis G, Jiang JF, Gray GC. Genetic diversity of Anaplasma and Ehrlichia bacteria found in Dermacentor and Ixodes ticks in Mongolia. Ticks Tick Borne Dis 2019; 11:101316. [PMID: 31677968 DOI: 10.1016/j.ttbdis.2019.101316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause human granulocytic anaplasmosis, human monocytic ehrlichiosis, and are severe threats to livestock economies like Mongolia. In this study, ticks were collected, identified, and pooled (n = 299) from three distinct environments across central Mongolia. Each pool was initially tested for Anaplasma/Ehrlichia using a 16S rRNA PCR assay that detects both genera, and specific PCR testing was done to identify those positive samples. Maximum likelihood estimation (MLE) of infection rates of ticks collected from the environment in Selenge aimag (province) found infection rates of Ixodes persulcatus ticks to be 2.0% (95% CI: 0.7, 4.3%) for A. phagocytophilum and 0.8% (95% CI: 0.1, 2.5%) for both nonspecific Ehrlichia and Anaplasma. Ehrlichia muris was only detected in I. persulcatus ticks collected from the Selenge aimag, where the MLE was 1.2% (95% CI: 0.1, 2.5%). The calculated MLE infection rate of Anaplasma spp. in questing Dermacentor nuttalli ticks ranged from 1.9% (95% CI: 1.1, 9.1%) in the Tov aimag to 2.3% (95% CI: 1.3, 10.8%) in the Selenge aimag. However, when examining MLE in ticks removed from livestock, estimates increase substantially, ranging from 7.8% (95% CI: 4.2, 13.3%) in Dornogovi to 22.5% (95% CI: 14.3, 34.3%) in Selenge, suggesting that livestock play a key role in disease maintenance. Considering the collective economic losses that can result from these pathogens and the potential for illness in nomadic herdsmen, these results highlight the need for enhanced TBD surveillance and prevention measures within Mongolia.
Collapse
Affiliation(s)
- Michael E von Fricken
- Division of Infectious Disease, Duke Global Health Institute, Duke University, Durham, NC, USA; Department of Global and Community Health, George Mason University, Fairfax, VA, USA.
| | - Barbara A Qurollo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Ya-Wei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Rui-Ruo Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | | | | | - Thomas C Moore
- Division of Infectious Disease, Duke Global Health Institute, Duke University, Durham, NC, USA
| | | | | | - Graham Matulis
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Gregory C Gray
- Division of Infectious Disease, Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
50
|
First Molecular Evidence of Anaplasma bovis and Anaplasma phagocytophilum in Bovine from Central Punjab, Pakistan. Pathogens 2019; 8:pathogens8030155. [PMID: 31533303 PMCID: PMC6789598 DOI: 10.3390/pathogens8030155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
Obligate intracellular bacteria belonging to the genus Anaplasma spp. are responsible for causing a hemolytic disease called anaplasmosis in animals, as well as in humans. This study was aimed at the molecular identification and genetic analysis of responsible causative agents of anaplasmosis beyond those already reported. A survey was performed during July and August 2018 in the Jhang District, Punjab, Pakistan. Four hundred and fifty blood samples from asymptomatic, tick-infested cattle were collected on FTA cards and tested for the Anaplasma spp. presence using nested-polymerase chain reaction (PCR) methods. The 16S ribosomal RNA gene sequences generated from the positive samples were used for genetic analysis of Anaplasma spp. The nested-PCR results showed the presence of two Anaplasma spp. with an overall prevalence rate of 10.44%, where the prevalence of A. bovis and A. phagocytophilum was 7.78% and 2.66%, respectively. The study portrayed new molecular data on the prevalence of Anaplasma spp. in the studied cattle population, indicating a potential threat to the human population as well.
Collapse
|