1
|
Perlin MH, Poulin R, de Bekker C. Invasion of the four kingdoms: the parasite journey across plant and non-plant hosts. Biol Rev Camb Philos Soc 2025; 100:936-968. [PMID: 39616537 DOI: 10.1111/brv.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 03/08/2025]
Abstract
Parasites have a rich and long natural history among biological entities, and it has been suggested that parasites are one of the most significant factors in the evolution of their hosts. However, it has been emphasized less frequently how co-evolution has undoubtedly also shaped the paths of parasites. It may seem safe to assume that specific differences among the array of potential hosts for particular parasites have restricted and diversified their evolutionary pathways and strategies for survival. Nevertheless, if one looks closely enough at host and parasite, one finds commonalities, both in terms of host defences and parasite strategies to out-manoeuvre them. While such analyses have been the source of numerous reviews, they are generally limited to interactions between, at most, one kingdom of parasite with two kingdoms of host (e.g. similarities in animal and plant host responses against fungi). With the aim of extending this view, we herein critically evaluate the similarities and differences across all four eukaryotic host kingdoms (plants, animals, fungi, and protists) and their parasites. In doing so, we show that hosts tend to share common strategies for defence, including both physical and behavioural barriers, and highly evolved immune responses, in particular innate immunity. Parasites have, similarly, evolved convergent strategies to counter these defences, including mechanisms of active penetration, and evading the host's innate and/or adaptive immune responses. Moreover, just as hosts have evolved behaviours to avoid parasites, many parasites have adaptations to manipulate host phenotype, physiologically, reproductively, and in terms of behaviour. Many of these strategies overlap in the host and parasite, even across wide phylogenetic expanses. That said, specific differences in host physiology and immune responses often necessitate different adaptations for parasites exploiting fundamentally different hosts. Taken together, this review facilitates hypothesis-driven investigations of parasite-host interactions that transcend the traditional kingdom-based research fields.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, Kentucky, 40208, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Charissa de Bekker
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584CH, Utrecht, the Netherlands
| |
Collapse
|
2
|
Mironova E, Spiridonov S, Sotnikov D, Shpagina A, Savina K, Gopko M. How do trematode clones differ by fitness-related traits and interact within a host? Int J Parasitol 2025; 55:151-162. [PMID: 39638108 DOI: 10.1016/j.ijpara.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Polyclonal infections are widespread and provide evidence of facilitation, competition, and neutral interactions between parasite clones, even within the same host-parasite system. The outcome of coinfections is usually assessed by means of parasite infection intensities, while other important fitness-related traits, e.g., larval growth rates, are often ignored. We experimentally infected fish (Salvelinus malma) with different clones of the common trematode Diplostomum pseudospathaceum and pairs of clones. Clones were identified by microsatellite analysis. Their infectivity and growth rates within the fish were investigated in double-clone infections compared with single-clone ones. In total, 3838 parasite larvae (metacercariae) from 325 fish were measured. The growth rates of the D. pseudospathaceum clones were more variable than their infectivity. Relationships of these parasite traits with host mass were clone-specific. Some clones demonstrated higher infection intensities and growth rates in larger fish. Therefore, specialization toward different size groups of fish hosts may occur in this parasite species. Furthermore, we noticed a positive correlation between population density and parasite growth (Allee effect; rarely reported for parasites) but only in mixed infections. In double-clone infections, evidence of both interclonal facilitation and interclonal competition was found. When clones interacted, they either "cooperated" during infection of the host or competed while growing. There were no clone pairs in which interactions changed in type with time or were present constantly during development of the parasite.
Collapse
Affiliation(s)
- Ekaterina Mironova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia.
| | - Sergei Spiridonov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia
| | - Danila Sotnikov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia; Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya St. 49, Moscow 127550, Russia
| | - Anastasia Shpagina
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya St. 49, Moscow 127550, Russia
| | - Kseniia Savina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia
| | - Mikhail Gopko
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia
| |
Collapse
|
3
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Rodgers ML, Roth-Monzón AJ. The Dominance of Coinfecting Parasites' Indirect Genetic Effects on Host Traits. Am Nat 2024; 204:482-500. [PMID: 39486034 DOI: 10.1086/732256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractIndirect genetic effects (IGEs) exist when there is heritable variation in one organism's ability to alter a second organism's traits. For example, parasites have antigens that can induce a host immune response, as well as disparate strategies to evade or suppress host immunity; among-parasite genetic variation in these antigens generates among-host variation in immune traits. Here, we experimentally show that the cestode parasite Schistocephalus solidus exerts an IGE on an immune trait (peritoneal fibrosis) in its threespine stickleback host: stickleback developed strong fibrosis after exposure to some parasite genotypes but not others. A complication arises during coinfection, when two or more parasite genotypes may impose conflicting IGEs on the same host trait. What parasite-controlled trait will the host express? Will the host trait reflect the more immune-stimulatory parasite genotype or the more immune-evasive genotype? These alternatives can be quantified by estimating the dominance coefficient, as if a coinfected host were a heterozygote. We experimentally estimated the dominance of S. solidus IGEs by coinjecting antigens from different parasite genotypes. Contrary to our a priori hypotheses, coinjected antigens induced an overdominant effect, stronger than either parasite's antigens alone. We present a mathematical model showing that the value of this IGE dominance is biologically important, affecting the evolutionary dynamics of parasites in a density- and frequency-dependent manner. The model indicates that overdominance would be detrimental to immigrants when resident prevalence is high. This combination of experimental data and modeling provides an example of a parasite IGE on host traits and the evolutionary significance of IGE dominance.
Collapse
|
4
|
Wang A, Bolnick D. Among-Population Differentiation in the Tapeworm Proteome through Prediction of Excretory/Secretory and Transmembrane Proteins in Schistocephalus solidus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.618520. [PMID: 39554047 PMCID: PMC11565730 DOI: 10.1101/2024.10.25.618520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Parasites secrete and excrete a variety of molecules evolve to help establish and sustain infections within hosts. Parasite adaptation to their host may lead to between-population divergence in these excretory and secretory products (ESPs), but few studies have tested for intraspecific variation in helminth proteomes. Methods Schistocephalus solidus is a cestode that parasitizes three spined stickleback, Gasterosteus aculeatus . We used an ultra-performance liquid chromatography-mass spectrometry protocol to characterize the ESP and whole-body proteome of S. solidus. Specifically, we characterized the proteome of S. solidus at the plerocercoid stage from wild caught stickleback from three lakes on Vancouver Island (British Columbia, Canada) and one lake in Alaska (United States). We tested for differences in proteome composition among the four populations and specifically between ESPs and body tissue. Results Overall, we identified 1362 proteins in the total proteome of S. solidus, with 542 of the 1362 proteins detected exclusively in the ESPs. Of the ESP proteins, we found signaling peptides and transmembrane proteins that were previously not detected or characterized in S. solidus. We also found protein spectrum counts greatly varied between all lake populations. Conclusions These population-level differences were observed in both ESP and tissue types. Our study suggests that S. solidus can excrete and secrete a wide range of proteins which are distinct among populations. These differences might reflect plastic responses to host genotype differences, or evolved adaptations by Schistocephalus to different local host populations.
Collapse
|
5
|
Wohlleben AM, Tabima JF, Meyer NP, Steinel NC. Population-level immunologic variation in wild threespine stickleback (Gasterosteusaculeatus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109580. [PMID: 38663464 DOI: 10.1016/j.fsi.2024.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 04/19/2024] [Indexed: 05/09/2024]
Abstract
Wild organisms are regularly exposed to a wide range of parasites, requiring the management of an effective immune response while avoiding immunopathology. Currently, our knowledge of immunoparasitology primarily derives from controlled laboratory studies, neglecting the genetic and environmental diversity that contribute to immune phenotypes observed in wild populations. To gain insight into the immunologic variability in natural settings, we examined differences in immune gene expression of two Alaskan stickleback (Gasterosteus aculeatus) populations with varying susceptibility to infection by the cestode Schistocephalus solidus. Between these two populations, we found distinct immune gene expression patterns at the population level in response to infection with fish from the high-infection population displaying signs of parasite-driven immune manipulation. Further, we found significant differences in baseline immune gene profiles between the populations, with uninfected low-infection population fish showing signatures of inflammation compared to uninfected high-infection population fish. These results shed light on divergent responses of wild populations to the same parasite, providing valuable insights into host-parasite interactions in natural ecosystems.
Collapse
Affiliation(s)
- Anika M Wohlleben
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany; Biology Department, Clark University, Worcester, MA, USA.
| | | | - Néva P Meyer
- Biology Department, Clark University, Worcester, MA, USA
| | - Natalie C Steinel
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA; Center for Pathogen Research and Training, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
6
|
Shim KC, Peterson CR, Bolnick DI. Local adaptation and host specificity to copepod intermediate hosts by the tapeworm Schistocephalus solidus. Ecol Evol 2023; 13:e10155. [PMID: 37287852 PMCID: PMC10242650 DOI: 10.1002/ece3.10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Host-parasite coevolution may lead to patterns of local adaptation in either the host or parasite. For parasites with complex multi-host life cycles, this coevolution may be more challenging as they must adapt to multiple geographically varying hosts. The tapeworm Schistocephalus solidus exhibits some local adaptation to its second intermediate host, threespine stickleback, to which the parasite is strictly specialized. However, the tapeworm's adaptation to its first intermediate host (any of a number of copepod species) is not documented. We investigated if there was local adaptation and host specify in the tapeworm Schistocephalus solidus to its copepod first intermediate hosts. We exposed copepods from five lakes in Vancouver Island (BC, Canada) to local (i.e. same lake) and foreign tapeworms in a reciprocal exposure experiment. Results indicate that the tapeworm is not locally adapted to the copepods. Instead, we observed moderate-effect host specificity, infection rates being higher in certain copepod species than in others. Infection rates also varied among cestode populations. These results show that although S. solidus infects multiple copepod genera, they are not equally competent hosts. Differences in S. solidus epidemiology among lakes is likely to be driven more by this partial specialization, than by local adaptation to first intermediate hosts.
Collapse
Affiliation(s)
- Kum C. Shim
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
7
|
Le Clec’h W, Chevalier FD, Jutzeler K, Anderson TJC. No evidence for schistosome parasite fitness trade-offs in the intermediate and definitive host. Parasit Vectors 2023; 16:132. [PMID: 37069704 PMCID: PMC10111729 DOI: 10.1186/s13071-023-05730-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The trematode parasite Schistosoma mansoni uses an aquatic snail intermediate and a vertebrate definitive host to complete its life cycle. We previously showed that a key transmission trait-the number of cercariae larvae shed from infected Biomphalaria spp. snails-varies significantly within and between different parasite populations and is genetically controlled by five loci. We investigated the hypothesis that the success of parasite genotypes showing high propagative fitness in the intermediate snail host may be offset by lower reproductive fitness in the definitive vertebrate host. METHODS We investigated this trade-off hypothesis by selecting parasite progeny producing high or low number of larvae in the snail and then comparing fitness parameters and virulence in the rodent host. We infected inbred BALB/c mice using two Schistosoma mansoni parasite lines [high shedder (HS) and low shedder (LS) lines] isolated from F2 progeny generated by genetic crosses between SmLE (HS parent) and SmBRE (LS parent) parasites. We used the F3 progeny to infect two populations of inbred Biomphalaria glabrata snails. We then compared life history traits and virulence of these two selected parasite lines in the rodent host to understand pleiotropic effects of genes determining cercarial shedding in parasites infecting the definitive host. RESULTS HS parasites shed high numbers of cercariae, which had a detrimental impact on snail physiology (measured by laccase-like activity and hemoglobin rate), regardless of the snail genetic background. In contrast, selected LS parasites shed fewer cercariae and had a lower impact on snail physiology. Similarly, HS worms have a higher reproductive fitness and produced more viable F3 miracidia larvae than LS parasites. This increase in transmission is correlated with an increase in virulence toward the rodent host, characterized by stronger hepato-splenomegaly and hepatic fibrosis. CONCLUSIONS These experiments revealed that schistosome parasite propagative and reproductive fitness was positively correlated in intermediate and definitive host (positive pleiotropy). Therefore, we rejected our trade-off hypothesis. We also showed that our selected schistosome lines exhibited low and high shedding phenotype regardless of the intermediate snail host genetic background. .
Collapse
Affiliation(s)
- Winka Le Clec’h
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245 USA
| | - Frédéric D. Chevalier
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245 USA
| | - Kathrin Jutzeler
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245 USA
- UT Health, Microbiology, Immunology and Molecular Genetics, San Antonio, TX 78229 USA
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245 USA
| |
Collapse
|
8
|
Nazarizadeh M, Nováková M, Loot G, Gabagambi NP, Fatemizadeh F, Osano O, Presswell B, Poulin R, Vitál Z, Scholz T, Halajian A, Trucchi E, Kočová P, Štefka J. Historical dispersal and host-switching formed the evolutionary history of a globally distributed multi-host parasite - The Ligula intestinalis species complex. Mol Phylogenet Evol 2023; 180:107677. [PMID: 36572162 DOI: 10.1016/j.ympev.2022.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Studies on parasite biogeography and host spectrum provide insights into the processes driving parasite diversification. Global geographical distribution and a multi-host spectrum make the tapeworm Ligula intestinalis a promising model for studying both the vicariant and ecological modes of speciation in parasites. To understand the relative importance of host association and biogeography in the evolutionary history of this tapeworm, we analysed mtDNA and reduced-represented genomic SNP data for a total of 139 specimens collected from 18 fish-host genera across a distribution range representing 21 countries. Our results strongly supported the existence of at least 10 evolutionary lineages and estimated the deepest divergence at approximately 4.99-5.05 Mya, which is much younger than the diversification of the fish host genera and orders. Historical biogeography analyses revealed that the ancestor of the parasite diversified following multiple vicariance events and was widespread throughout the Palearctic, Afrotropical, and Nearctic between the late Miocene and early Pliocene. Cyprinoids were inferred as the ancestral hosts for the parasite. Later, from the late Pliocene to Pleistocene, new lineages emerged following a series of biogeographic dispersal and host-switching events. Although only a few of the current Ligula lineages show narrow host-specificity (to a single host genus), almost no host genera, even those that live in sympatry, overlapped between different Ligula lineages. Our analyses uncovered the impact of historical distribution shifts on host switching and the evolution of host specificity without parallel host-parasite co-speciation. Historical biogeography reconstructions also found that the parasite colonized several areas (Afrotropical and Australasian) much earlier than was suggested by only recent faunistic data.
Collapse
Affiliation(s)
- Masoud Nazarizadeh
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Milena Nováková
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Géraldine Loot
- UMR-5174, EDB (Laboratoire Evolution and Diversité Biologique), CNRS, IRD, Université Toulouse III Paul Sabatier, France
| | | | - Faezeh Fatemizadeh
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Odipo Osano
- School of Environmental Studies, University of Eldoret, Kenya
| | | | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Zoltán Vitál
- Research Center for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Szarvas, Hungary
| | - Tomáš Scholz
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Ali Halajian
- Research Administration and Development, and 2-DSI-NRF SARChI Chair (Ecosystem health), Department of Biodiversity, University of Limpopo, South Africa
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Jan Štefka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic.
| |
Collapse
|
9
|
Mazanec H, Buskova N, Gardian Z, Kuchta R. Secretion of extracellular vesicles during ontogeny of the tapeworm Schistocephalus solidus. Folia Parasitol (Praha) 2023; 70. [PMID: 36722286 DOI: 10.14411/fp.2023.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2022] [Indexed: 01/18/2023]
Abstract
We provide the first ultrastructural evidence of the secretion of extracellular vesicles (EVs) across all parasitic stages of the tapeworm Schistocephalus solidus (Müller, 1776) (Cestoda: Diphyllobothriidea) using a laboratory life cycle model. We confirmed the presence of EV-like bodies in all stages examined, including the hexacanth, procercoids in the copepod, Macrocyclops albidus (Jurine, 1820), plerocercoids from the body cavity of the three-spined stickleback, Gasterosteus aculeatus Linnaeus, and adults cultivated in artificial medium. In addition, we provide description of novel tegumental structures potentially involved in EV biogenesis and the presence of unique elongated EVs similar to those previously described only in Fasciola hepatica Linnaeus, 1758 (Trematoda), Hymenolepis diminuta (Rudolphi, 1819) (Cestoda), and Trypanosoma brucei Plimmer et Bradford, 1899 (Kinetoplastida).
Collapse
Affiliation(s)
- Hynek Mazanec
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Nikol Buskova
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Zdenko Gardian
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
10
|
Hund AK, Fuess LE, Kenney ML, Maciejewski MF, Marini JM, Shim KC, Bolnick DI. Population-level variation in parasite resistance due to differences in immune initiation and rate of response. Evol Lett 2022; 6:162-177. [PMID: 35386836 PMCID: PMC8966477 DOI: 10.1002/evl3.274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Closely related populations often differ in resistance to a given parasite, as measured by infection success or failure. Yet, the immunological mechanisms of these evolved differences are rarely specified. Does resistance evolve via changes to the host's ability to recognize that an infection exists, actuate an effective immune response, or attenuate that response? We tested whether each of these phases of the host response contributed to threespine sticklebacks' recently evolved resistance to their tapeworm Schistocephalus solidus. Although marine stickleback and some susceptible lake fish permit fast-growing tapeworms, other lake populations are resistant and suppress tapeworm growth via a fibrosis response. We subjected lab-raised fish from three populations (susceptible marine "ancestors," a susceptible lake population, and a resistant lake population) to a novel immune challenge using an injection of (1) a saline control, (2) alum, a generalized pro-inflammatory adjuvant that causes fibrosis, (3) a tapeworm protein extract, or (4) a combination of alum and tapeworm protein. With enough time, all three populations generated a robust fibrosis response to the alum treatments. Yet, only the resistant population exhibited a fibrosis response to the tapeworm protein alone. Thus, these populations differed in their ability to respond to the tapeworm protein but shared an intact fibrosis pathway. The resistant population also initiated fibrosis faster in response to alum, and was able to attenuate fibrosis, unlike the susceptible populations' slow but longer lasting response to alum. As fibrosis has pathological side effects that reduce fecundity, the faster recovery by the resistant population may reflect an adaptation to mitigate the costs of immunity. Broadly, our results confirm that parasite detection and immune initiation, activation speed, and immune attenuation simultaneously contribute to the evolution of parasite resistance and adaptations to infection in natural populations.
Collapse
Affiliation(s)
- Amanda K. Hund
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesota55123
| | - Lauren E. Fuess
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
- Current Address: Department of BiologyTexas State UniversitySan MarcosTexas78666
| | - Mariah L. Kenney
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Meghan F. Maciejewski
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Joseph M. Marini
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Kum Chuan Shim
- Department of Ecology, Evolution, and BehaviorUniversity of Texas at AustinAustinTexas78712
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| |
Collapse
|
11
|
How cunning is the puppet-master? Cestode-infected fish appear generally fearless. Parasitol Res 2022; 121:1305-1315. [PMID: 35307765 PMCID: PMC8993785 DOI: 10.1007/s00436-022-07470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Trophically transmitted parasites have life cycles that require the infected host to be eaten by the correct type of predator. Such parasites should benefit from an ability to suppress the host’s fear of predators, but if the manipulation is imprecise the consequence may be increased predation by non-hosts, to the detriment of the parasite. Three-spined sticklebacks (Gasterosteus aculeatus) infected by the cestode Schistocephalus solidus express reduced antipredator behaviours, but it is unknown whether this is an example of a highly precise manipulation, a more general manipulation, or if it can even be attributed to mere side effects of disease. In a series of experiments, we investigated several behaviours of infected and uninfected sticklebacks. As expected, they had weak responses to simulated predatory attacks compared to uninfected fish. However, our results suggest that the parasite induced a general fearlessness, rather than a precise manipulation aimed at the correct predators (birds). Infected fish had reduced responses also when attacked from the side and when exposed to odour from a fish predator, which is a “dead-end” for this parasite. We also tested whether the reduced anti-predator behaviours were mere symptoms of a decreased overall vigour, or due to parasite-induced hunger, but we found no support for these ideas. We propose that even imprecise manipulations of anti-predator behaviours may benefit parasites, for example, if other behaviours are altered in a way that increases the exposure to the correct predator.
Collapse
|
12
|
Demandt N, Bierbach D, Kurvers RHJM, Krause J, Kurtz J, Scharsack JP. Parasite infection impairs the shoaling behaviour of uninfected shoal members under predator attack. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
A key benefit of sociality is a reduction in predation risk. Cohesive group behaviour and rapid collective decision making are essential for reducing predation risk in groups. Parasite infection might reduce an individuals’ grouping behaviours and thereby change the behaviour of the group as a whole. To investigate the relationship between parasite infection and grouping behaviours, we studied groups of three-spined sticklebacks, Gasterosteus aculeatus, varying the number of individuals experimentally infected with the cestode Schistocephalus solidus. We studied groups of six sticklebacks containing 0, 2, 3, 4 or 6 infected individuals before and after a simulated bird attack. We predicted that infected individuals would have reduced shoaling and swimming speed and that the presence of infected individuals within a group would reduce group cohesion and speed. Uninfected fish increased shoaling and reduced swimming speed more than infected fish after the bird attack. In groups containing both infected and uninfected fish, the group behaviours were dominated by the more frequent character (uninfected versus infected). Interestingly, groups with equal numbers of uninfected and infected fish showed the least shoaling and had the lowest swimming speeds, suggesting that these groups failed to generate a majority and therefore displayed signs of indecisiveness by reducing their swimming speed the most. Our results provide evidence for a negative effect of infection on a group’s shoaling behaviour, thereby potentially deteriorating collective decision making. The presence of infected individuals might thus have far-reaching consequences in natural populations under predation risk.
Significance statement
Parasite-infected individuals often show deviating group behaviours. This might reduce the anti-predator benefits of group living. However, it is unknown whether such deviations in group behaviour might influence the shoaling behaviour of uninfected group members and thereby the behaviour of the group as a whole. By experimentally infecting sticklebacks and investigating groups varying in infection rates, we show that infected sticklebacks differ in their shoaling behaviours from uninfected sticklebacks. Additionally, the presence of infected sticklebacks within the group affected the behaviour of uninfected shoal members. We show that shoals of infected fish are less cohesive and move slower compared to shoals of uninfected fish. Furthermore, we show that the infection rate of the shoal is crucial for how the group behaves.
Collapse
|
13
|
Berger CS, Aubin-Horth N. The secretome of a parasite alters its host's behaviour but does not recapitulate the behavioural response to infection. Proc Biol Sci 2020; 287:20200412. [PMID: 32290804 DOI: 10.1098/rspb.2020.0412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Parasites with complex life cycles have been proposed to manipulate the behaviour of their intermediate hosts to increase the probability of reaching their final host. The cause of these drastic behavioural changes could be manipulation factors released by the parasite in its environment (the secretome), but this has rarely been assessed. We studied a non-cerebral parasite, the cestode Schistocephalus solidus, and its intermediate host, the threespine stickleback (Gasterosteus aculeatus), whose response to danger becomes significantly diminished when infected. These altered behaviours appear only during late infection, when the worm is ready to reproduce in its final avian host. Sympatric host-parasite pairs show higher infection success for parasites, suggesting that the secretome effects could differ for allopatric host-parasite pairs with independent evolutionary histories. We tested the effects of secretome exposure on behaviour by using secretions from the early and late infection of S. solidus and by injecting them in healthy sticklebacks from a sympatric and allopatric population. Contrary to our prediction, secretome from late infection worms did not result in more risky behaviours, but secretome from early infection resulted in more cautious hosts, only in fish from the allopatric population. Our results suggest that the secretome of S. solidus contains molecules that can affect host behaviour, that the causes underlying the behavioural changes in infected sticklebacks are multifactorial and that local adaptation between host-parasite pairs may extend to the response to the parasite's secretome content.
Collapse
Affiliation(s)
- Chloé Suzanne Berger
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada G1V 0A6
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada G1V 0A6
| |
Collapse
|
14
|
Piecyk A, Ritter M, Kalbe M. The right response at the right time: Exploring helminth immune modulation in sticklebacks by experimental coinfection. Mol Ecol 2019; 28:2668-2680. [PMID: 30993799 PMCID: PMC6852435 DOI: 10.1111/mec.15106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
Parasites are one of the strongest selective agents in nature. They select for hosts that evolve counter‐adaptive strategies to cope with infection. Helminth parasites are special because they can modulate their hosts’ immune responses. This phenomenon is important in epidemiological contexts, where coinfections may be affected. How different types of hosts and helminths interact with each other is insufficiently investigated. We used the three‐spined stickleback (Gasterosteus aculeatus) – Schistocephalus solidus model to study mechanisms and temporal components of helminth immune modulation. Sticklebacks from two contrasting populations with either high resistance (HR) or low resistance (LR) against S. solidus, were individually exposed to S. solidus strains with characteristically high growth (HG) or low growth (LG) in G. aculeatus. We determined the susceptibility to another parasite, the eye fluke Diplostomum pseudospathaceum, and the expression of 23 key immune genes at three time points after S. solidus infection. D. pseudospathaceum infection rates and the gene expression responses depended on host and S. solidus type and changed over time. Whereas the effect of S. solidus type was not significant after three weeks, T regulatory responses and complement components were upregulated at later time points if hosts were infected with HG S. solidus. HR hosts showed a well orchestrated immune response, which was absent in LR hosts. Our results emphasize the role of regulatory T cells and the timing of specific immune responses during helminth infections. This study elucidates the importance to consider different coevolutionary trajectories and ecologies when studying host‐parasite interactions.
Collapse
Affiliation(s)
- Agnes Piecyk
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Marc Ritter
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Martin Kalbe
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
15
|
Demandt N, Saus B, Kurvers RHJM, Krause J, Kurtz J, Scharsack JP. Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members. Proc Biol Sci 2019; 285:rspb.2018.0956. [PMID: 29925621 PMCID: PMC6030526 DOI: 10.1098/rspb.2018.0956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
Trophically transmitted parasites frequently increase their hosts' risk-taking behaviour, to facilitate transmission to the next host. Whether such elevated risk-taking can spill over to uninfected group members is, however, unknown. To investigate this, we confronted groups of 6 three-spined sticklebacks, Gasterosteus aculeatus, containing 0, 2, 4 or 6 experimentally infected individuals with a simulated bird attack and studied their risk-taking behaviour. As a parasite, we used the tapeworm Schistocephalus solidus, which increases the risk-taking of infected sticklebacks, to facilitate transmission to its final host, most often piscivorous birds. Before the attack, infected and uninfected individuals did not differ in their risk-taking. However, after the attack, individuals in groups with only infected members showed lower escape responses and higher risk-taking than individuals from groups with only uninfected members. Importantly, uninfected individuals adjusted their risk-taking behaviour to the number of infected group members, taking more risk with an increasing number of infected group members. Infected individuals, however, did not adjust their risk-taking to the number of uninfected group members. Our results show that behavioural manipulation by parasites does not only affect the infected host, but also uninfected group members, shedding new light on the social dynamics involved in host–parasite interactions.
Collapse
Affiliation(s)
- Nicolle Demandt
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Benedikt Saus
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Ralf H J M Kurvers
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Jens Krause
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, Germany.,Faculty of Life Sciences Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Jörn Peter Scharsack
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| |
Collapse
|
16
|
Portet A, Pinaud S, Chaparro C, Galinier R, Dheilly NM, Portela J, Charriere GM, Allienne JF, Duval D, Gourbal B. Sympatric versus allopatric evolutionary contexts shape differential immune response in Biomphalaria / Schistosoma interaction. PLoS Pathog 2019; 15:e1007647. [PMID: 30893368 PMCID: PMC6443186 DOI: 10.1371/journal.ppat.1007647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Selective pressures between hosts and their parasites can result in reciprocal evolution or adaptation of specific life history traits. Local adaptation of resident hosts and parasites should lead to increase parasite infectivity/virulence (higher compatibility) when infecting hosts from the same location (in sympatry) than from a foreign location (in allopatry). Analysis of geographic variations in compatibility phenotypes is the most common proxy used to infer local adaptation. However, in some cases, allopatric host-parasite systems demonstrate similar or greater compatibility than in sympatry. In such cases, the potential for local adaptation remains unclear. Here, we study the interaction between Schistosoma and its vector snail Biomphalaria in which such discrepancy in local versus foreign compatibility phenotype has been reported. Herein, we aim at bridging this gap of knowledge by comparing life history traits (immune cellular response, host mortality, and parasite growth) and molecular responses in highly compatible sympatric and allopatric Schistosoma/Biomphalaria interactions originating from different geographic localities (Brazil, Venezuela and Burundi). We found that despite displaying similar prevalence phenotypes, sympatric schistosomes triggered a rapid immune suppression (dual-RNAseq analyses) in the snails within 24h post infection, whereas infection by allopatric schistosomes (regardless of the species) was associated with immune cell proliferation and triggered a non-specific generalized immune response after 96h. We observed that, sympatric schistosomes grow more rapidly. Finally, we identify miRNAs differentially expressed by Schistosoma mansoni that target host immune genes and could be responsible for hijacking the host immune response during the sympatric interaction. We show that despite having similar prevalence phenotypes, sympatric and allopatric snail-Schistosoma interactions displayed strong differences in their immunobiological molecular dialogue. Understanding the mechanisms allowing parasites to adapt rapidly and efficiently to new hosts is critical to control disease emergence and risks of Schistosomiasis outbreaks. Schistosomiasis, the second most widespread human parasitic disease after malaria, is caused by helminth parasites of the genus Schistosoma. More than 200 million people in 74 countries suffer from the pathological, and societal consequences of this disease. To complete its life cycle, the parasite requires an intermediate host, a freshwater snail of the genus Biomphalaria for its transmission. Given the limited options for treating Schistosoma mansoni infections in humans, much research has focused on developing methods to control transmission by its intermediate snail host. Biomphalaria glabrata. Comparative studies have shown that infection of the snail triggers complex cellular and humoral immune responses resulting in significant variations in parasite infectivity and snail susceptibility, known as the so-called polymorphism of compatibility. However, studies have mostly focused on characterizing the immunobiological mechanisms in sympatric interactions. Herein we used a combination of molecular and phenotypic approaches to compare the effect of infection in various sympatric and allopatric evolutionary contexts, allowing us to better understand the mechanisms of host-parasite local adaptation. Learning more about the immunobiological interactions between B. glabrata and S. mansoni could have important socioeconomic and public health impacts by changing the way we attempt to eradicate parasitic diseases and prevent or control schistosomiasis in the field.
Collapse
Affiliation(s)
- Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Julien Portela
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Guillaume M. Charriere
- Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
17
|
Piecyk A, Roth O, Kalbe M. Specificity of resistance and geographic patterns of virulence in a vertebrate host-parasite system. BMC Evol Biol 2019; 19:80. [PMID: 30890121 PMCID: PMC6425677 DOI: 10.1186/s12862-019-1406-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Host genotype - parasite genotype co-evolutionary dynamics are influenced by local biotic and abiotic environmental conditions. This results in spatially heterogeneous selection among host populations. How such heterogeneous selection influences host resistance, parasite infectivity and virulence remains largely unknown. We hypothesized that different co-evolutionary trajectories of a vertebrate host-parasite association result in specific virulence patterns when assessed on a large geographic scale. We used two reference host populations of three-spined sticklebacks and nine strains of their specific cestode parasite Schistocephalus solidus from across the Northern Hemisphere for controlled infection experiments. Host and parasite effects on infection phenotypes including host immune gene expression were determined. RESULTS S. solidus strains grew generally larger in hosts coming from a population with high parasite diversity and low S. solidus prevalence (DE hosts). Hosts from a population with low parasite diversity and high S. solidus prevalence (NO hosts) were better able to control the parasite's growth, regardless of the origin of the parasite. Host condition and immunological parameters converged upon infection and parasite growth showed the same geographic pattern in both host types. CONCLUSION Our results suggest that NO sticklebacks evolved resistance against a variety of S. solidus strains, whereas DE sticklebacks are less resistant against S. solidus. Our data provide evidence that differences in parasite prevalence can cause immunological heterogeneity and that parasite size, a proxy for virulence and resistance, is, on a geographic scale, determined by main effects of the host and the parasite and less by an interaction of both genotypes.
Collapse
Affiliation(s)
- Agnes Piecyk
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrookerweg 20, 24105 Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrookerweg 20, 24105 Kiel, Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| |
Collapse
|
18
|
Estimating effective population size for a cestode parasite infecting three-spined sticklebacks. Parasitology 2019; 146:883-896. [PMID: 30720409 DOI: 10.1017/s0031182018002226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Remarkably few attempts have been made to estimate contemporary effective population size (Ne) for parasitic species, despite the valuable perspectives it can offer on the tempo and pace of parasite evolution as well as coevolutionary dynamics of host-parasite interactions. In this study, we utilized multi-locus microsatellite data to derive single-sample and temporal estimates of contemporary Ne for a cestode parasite (Schistocephalus solidus) as well as three-spined stickleback hosts (Gasterosteus aculeatus) in lakes across Alaska. Consistent with prior studies, both approaches recovered small and highly variable estimates of parasite and host Ne. We also found that estimates of host Ne and parasite Ne were sensitive to assumptions about population genetic structure and connectivity. And, while prior work on the stickleback-cestode system indicates that physiographic factors external to stickleback hosts largely govern genetic variation in S. solidus, our findings indicate that stickleback host attributes and factors internal to the host - namely body length, genetic diversity and infection - shape contemporary Ne of cestode parasites.
Collapse
|
19
|
Franke F, Raifarth N, Kurtz J, Scharsack JP. Consequences of divergent temperature optima in a host–parasite system. OIKOS 2019. [DOI: 10.1111/oik.05864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frederik Franke
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Nadja Raifarth
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Joachim Kurtz
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Jörn P. Scharsack
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| |
Collapse
|
20
|
Wohlleben AM, Franke F, Hamley M, Kurtz J, Scharsack JP. Early stages of infection of three-spined stickleback (Gasterosteus aculeatus) with the cestode Schistocephalus solidus. JOURNAL OF FISH DISEASES 2018; 41:1701-1708. [PMID: 30066968 DOI: 10.1111/jfd.12876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Parasitic helminths have evolved strategies to evade their host's immune systems. Particularly, the early time of interactions between helminths and their hosts might be decisive for their infection success. We used the cestode Schistocephalus solidus, and its highly specific second intermediate host, the three-spined stickleback (Gasterosteus aculeatus) to investigate parasite infection and host cellular immune responses starting 1 day postexposure (dpe). We recovered live parasites from stickleback body cavities already 24 hr after exposure. Infection rates increased up to 50% and did not change from 4 dpe onwards. Thus, not all parasites had reached the body cavity at the early time points and clearance of the parasite at later time points did not occur. Stickleback head kidney leucocytes (HKLs) did not show distinct signs of activation and lymphocyte proliferation, granulocyte-to-lymphocyte ratios and respiratory burst activity of infected sticklebacks did not deviate from controls significantly. The immune system was activated only late, as indicated by an increase in the total count of HKL relative to stickleback weight (HKL per mg fish), which was significantly elevated in infected fish 32 dpe. S. solidus seems to evade leucocyte activity early during infection facilitating its establishment in the hosts' body cavity.
Collapse
Affiliation(s)
| | - Frederik Franke
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Madeleine Hamley
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jörn Peter Scharsack
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Hutson KS, Cable J, Grutter AS, Paziewska-Harris A, Barber I. Aquatic Parasite Cultures and Their Applications. Trends Parasitol 2018; 34:1082-1096. [PMID: 30473011 DOI: 10.1016/j.pt.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
In this era of unprecedented growth in aquaculture and trade, aquatic parasite cultures are essential to better understand emerging diseases and their implications for human and animal health. Yet culturing parasites presents multiple challenges, arising from their complex, often multihost life cycles, multiple developmental stages, variable generation times and reproductive modes. Furthermore, the essential environmental requirements of most parasites remain enigmatic. Despite these inherent difficulties, in vivo and in vitro cultures are being developed for a small but growing number of aquatic pathogens. Expanding this resource will facilitate diagnostic capabilities and treatment trials, thus supporting the growth of sustainable aquatic commodities and communities.
Collapse
Affiliation(s)
- Kate S Hutson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Iain Barber
- School of Animal, Rural and Environmental Sciences, College of Science and Technology, Nottingham Trent University, NG25 0QF, UK
| |
Collapse
|
22
|
Gossieaux P, Sirois P, Bernatchez L, Garant D. Introgressive hybridization between wild and domestic individuals and its relationship with parasitism in brook charr Salvelinus fontinalis. JOURNAL OF FISH BIOLOGY 2018; 93:664-673. [PMID: 29992561 DOI: 10.1111/jfb.13752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
The effects of introgression on parasitism in brook charr Salvelinus fontinalis were investigated in 28 lakes with various levels of stocking in Québec, Canada. No effect of genetic background on parasitism was found at the individual level. Body length seemed to explain most of the variation observed at this level, with largest fish being more infected. However, lakes with the greater average domestic genetic background were found to display significantly lower parasite prevalence and diversity. Since our results indicate no effect of domestic genes at the individual level, the negative association with introgression found at the population level may be mainly attributed to differences in intrinsic environmental quality of lakes (e.g. fishing pressure, availability of food resources, abiotic characteristics).
Collapse
Affiliation(s)
- Philippine Gossieaux
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pascal Sirois
- Chaire de recherche sur les espèces aquatiques exploitées, Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec, Québec, Canada
| | - Dany Garant
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
23
|
Are solo infections of the diphyllobothriidean cestode Schistocephalus solidus more virulent than multiple infections? Parasitology 2018; 146:97-104. [DOI: 10.1017/s003118201800094x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractWe performed a long-term natural experiment investigating the impact of the diphyllobotriidean cestode Schistocephalus solidus on the body condition and clutch size (CS) of threespine stickleback Gasterosteus aculeatus, its second intermediate host, and the growth of larval parasites in host fish. We tested the hypothesis that single S. solidus infections were more virulent than multiple infections. We also asked whether the metrics of mean and total parasite mass (proxies for individual and total volume, respectively) were consistent with predictions of the resource constraints or the life history strategy (LHS) hypothesis for the growth of, hence exploitation by, larval helminths in intermediate hosts. The samples were drawn from Walby Lake, Alaska in eight of 11 years. Host body condition and CS (egg number per spawning bout) decreased significantly with intensity after adjustments for host size and parasite index. Thus, infections have an increasingly negative impact on measures of host fitness with greater intensity, in contrast to the hypothesis that single infections are more harmful than multiple infections. We also found that mean parasite mass decreased with intensity while total parasite mass increased with intensity as predicted by the LHS hypothesis.
Collapse
|
24
|
Differences between populations in host manipulation by the tapeworm Schistocephalus solidus - is there local adaptation? Parasitology 2017; 145:762-769. [PMID: 29113596 DOI: 10.1017/s0031182017001792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Host manipulation whereby a parasite increases its transmission to a subsequent host by altering the behaviour of its current host is very far spread. It also occurs in host-parasite systems that are widely distributed. This offers the potential for local adaptation. The tapeworm Schistocephalus solidus modifies its first intermediate copepod host's predation susceptibility to suit its own needs by reducing its activity before it becomes infective and increasing it thereafter. To investigate potential differences in host manipulation between different populations and test for potential local adaptation with regard to host manipulation, I experimentally infected hosts from two distinct populations with parasites from either population in a fully crossed design. Host manipulation differed between populations mostly once the parasite had reached infectivity. These differences in infective parasites were mostly due to differences between different parasite populations. In not yet infective parasites, however, host population also had a significant effect on host manipulation. There was no evidence of local adaptation; parasites were able to manipulate foreign and local hosts equally well. Likewise, hosts were equally poor at resisting host manipulation by local and foreign parasites.
Collapse
|
25
|
Lohman BK, Steinel NC, Weber JN, Bolnick DI. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System. Front Immunol 2017; 8:1071. [PMID: 28955327 PMCID: PMC5600903 DOI: 10.3389/fimmu.2017.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus) from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.
Collapse
Affiliation(s)
- Brian K Lohman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Natalie C Steinel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Department of Medical Education, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Jesse N Weber
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Division of Biological Sciences, The University of Montana, Missoula, MT, United States
| | - Daniel I Bolnick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
26
|
Ritter M, Kalbe M, Henrich T. Virulence in the three-spined stickleback specific parasite Schistocephalus solidus is inherited additively. Exp Parasitol 2017; 180:133-140. [DOI: 10.1016/j.exppara.2017.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
27
|
Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback. ADVANCES IN PARASITOLOGY 2017; 98:39-109. [PMID: 28942772 DOI: 10.1016/bs.apar.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-spined stickleback (Gasterosteus aculeatus) is a model organism with an extremely well-characterized ecology, evolutionary history, behavioural repertoire and parasitology that is coupled with published genomic data. These small temperate zone fish therefore provide an ideal experimental system to study common diseases of coldwater fish, including those of aquacultural importance. However, detailed information on the culture of stickleback parasites, the establishment and maintenance of infections and the quantification of host responses is scattered between primary and grey literature resources, some of which is not readily accessible. Our aim is to lay out a framework of techniques based on our experience to inform new and established laboratories about culture techniques and recent advances in the field. Here, essential knowledge on the biology, capture and laboratory maintenance of sticklebacks, and their commonly studied parasites is drawn together, highlighting recent advances in our understanding of the associated immune responses. In compiling this guide on the maintenance of sticklebacks and a range of common, taxonomically diverse parasites in the laboratory, we aim to engage a broader interdisciplinary community to consider this highly tractable model when addressing pressing questions in evolution, infection and aquaculture.
Collapse
|
28
|
Recent evolution of extreme cestode growth suppression by a vertebrate host. Proc Natl Acad Sci U S A 2017; 114:6575-6580. [PMID: 28588142 DOI: 10.1073/pnas.1620095114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parasites can be a major cause of natural selection on hosts, which consequently evolve a variety of strategies to avoid, eliminate, or tolerate infection. When ecologically similar host populations present disparate infection loads, this natural variation can reveal immunological strategies underlying adaptation to infection and population divergence. For instance, the tapeworm Schistocephalus solidus persistently infects 0-80% of threespine stickleback (Gasterosteus aculeatus) in lakes on Vancouver Island. To test whether these heterogeneous infection rates result from evolved differences in immunity, we experimentally exposed laboratory-reared fish from ecologically similar high-infection and no-infection populations to controlled doses of Schistocephalus We observed heritable between-population differences in several immune traits: Fish from the naturally uninfected population initiated a stronger granulocyte response to Schistocephalus infection, and their granulocytes constitutively generate threefold more reactive oxygen species in cell culture. Despite these immunological differences, Schistocephalus was equally successful at establishing initial infections in both host populations. However, the no-infection fish dramatically suppressed tapeworm growth relative to high-infection fish, and parasite size was intermediate in F1 hybrid hosts. Our results show that stickleback recently evolved heritable variation in their capacity to suppress helminth growth by two orders of magnitude. Data from many natural populations indicate that growth suppression is widespread but not universal and, when present, is associated with reduced infection prevalence. Host suppression of helminth somatic growth may be an important immune strategy that aids in parasite clearance or in mitigating the fitness costs of persistent infection.
Collapse
|
29
|
Franke F, Armitage SAO, Kutzer MAM, Kurtz J, Scharsack JP. Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association. Parasit Vectors 2017; 10:252. [PMID: 28571568 PMCID: PMC5455083 DOI: 10.1186/s13071-017-2192-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022] Open
Abstract
Background Increasing temperatures are predicted to strongly impact host-parasite interactions, but empirical tests are rare. Host species that are naturally exposed to a broad temperature spectrum offer the possibility to investigate the effects of elevated temperatures on hosts and parasites. Using three-spined sticklebacks, Gasterosteus aculeatus L., and tapeworms, Schistocephalus solidus (Müller, 1776), originating from a cold and a warm water site of a volcanic lake, we subjected sympatric and allopatric host-parasite combinations to cold and warm conditions in a fully crossed design. We predicted that warm temperatures would promote the development of the parasites, while the hosts might benefit from cooler temperatures. We further expected adaptations to the local temperature and mutual adaptations of local host-parasite pairs. Results Overall, S. solidus parasites grew faster at warm temperatures and stickleback hosts at cold temperatures. On a finer scale, we observed that parasites were able to exploit their hosts more efficiently at the parasite’s temperature of origin. In contrast, host tolerance towards parasite infection was higher when sticklebacks were infected with parasites at the parasite’s ‘foreign’ temperature. Cold-origin sticklebacks tended to grow faster and parasite infection induced a stronger immune response. Conclusions Our results suggest that increasing environmental temperatures promote the parasite rather than the host and that host tolerance is dependent on the interaction between parasite infection and temperature. Sticklebacks might use tolerance mechanisms towards parasite infection in combination with their high plasticity towards temperature changes to cope with increasing parasite infection pressures and rising temperatures. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2192-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frederik Franke
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Sophie A O Armitage
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Megan A M Kutzer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Jörn P Scharsack
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| |
Collapse
|
30
|
Hamley M, Franke F, Kurtz J, Scharsack JP. An experimental approach to the immuno-modulatory basis of host-parasite local adaptation in tapeworm-infected sticklebacks. Exp Parasitol 2017; 180:119-132. [PMID: 28322743 DOI: 10.1016/j.exppara.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 01/08/2023]
Abstract
The evolutionary arms race of hosts and parasites often results in adaptations, which may differ between populations. Investigation of such local adaptation becomes increasingly important to understand dynamics of host-parasite interactions and co-evolution. To this end we performed an infection experiment involving pairs of three-spined sticklebacks and their tapeworm parasite Schistocephalus solidus from three geographically separated origins (Germany, Spain and Iceland) in a fully-crossed design for sympatric and allopatric host/parasite combinations. We hypothesized that local adaptation of the hosts results in differences in parasite resistance with variation in parasite infection rates and leukocyte activation, whereas parasites from different origins might differ in virulence reflected in host exploitation rates (parasite indices) and S. solidus excretory-secretory products (SsESP) involved in immune manipulation. In our experimental infections, sticklebacks from Iceland were more resistant to S. solidus infection compared to Spanish and German sticklebacks. Higher resistance of Icelandic sticklebacks seemed to depend on adaptive immunity, whereas sticklebacks of German origin, which were more heavily afflicted by S. solidus, showed elevated activity of innate immune traits. German S. solidus were less successful in infecting and exploiting allopatric hosts compared to their Icelandic and Spanish conspecifics. Nevertheless, exclusively SsESP from German S. solidus triggered significant in vitro responses of leukocytes from naïve sticklebacks. Interestingly, parasite indices were almost identical across the sympatric combinations. Differences in host resistance and parasite virulence between the origins were most evident in allopatric combinations and were consistent within origin; i.e. Icelandic sticklebacks were more resistant and their S. solidus were more virulent in all allopatric combinations, whereas German sticklebacks were less resistant and their parasites less virulent. Despite such differences between origins, the degree of host exploitation was almost identical in the sympatric host-parasite combinations, suggesting that the local evolutionary arms race of hosts and parasites resulted in an optimal virulence, maximising parasite fitness while avoiding host overexploitation.
Collapse
Affiliation(s)
- Madeleine Hamley
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Frederik Franke
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Joachim Kurtz
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Jörn Peter Scharsack
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| |
Collapse
|
31
|
Weber JN, Kalbe M, Shim KC, Erin NI, Steinel NC, Ma L, Bolnick DI. Resist Globally, Infect Locally: A Transcontinental Test of Adaptation by Stickleback and Their Tapeworm Parasite. Am Nat 2017; 189:43-57. [DOI: 10.1086/689597] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Scharsack JP, Franke F, Erin NI, Kuske A, Büscher J, Stolz H, Samonte IE, Kurtz J, Kalbe M. Effects of environmental variation on host–parasite interaction in three-spined sticklebacks (Gasterosteus aculeatus). ZOOLOGY 2016; 119:375-83. [DOI: 10.1016/j.zool.2016.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/22/2016] [Accepted: 05/24/2016] [Indexed: 12/01/2022]
|
33
|
Strobel HM, Alda F, Sprehn CG, Blum MJ, Heins DC. Geographic and host-mediated population genetic structure in a cestode parasite of the three-spined stickleback. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hannah M. Strobel
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA 70118 USA
| | - Fernando Alda
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA 70118 USA
- Tulane-Xavier Center for Bioenvironmental Research; Tulane University; New Orleans LA 70118 USA
| | - C. Grace Sprehn
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA 70118 USA
| | - Michael J. Blum
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA 70118 USA
- Tulane-Xavier Center for Bioenvironmental Research; Tulane University; New Orleans LA 70118 USA
| | - David C. Heins
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA 70118 USA
| |
Collapse
|
34
|
Benesh DP, Kalbe M. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly. J Anim Ecol 2016; 85:1004-13. [DOI: 10.1111/1365-2656.12527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 04/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Daniel P. Benesh
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
- Marine Science Institute; University of California; Santa Barbara CA 93106-6150 USA
| | - Martin Kalbe
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
| |
Collapse
|