1
|
Ha MK, Postovskaya A, Kuznetsova M, Meysman P, Van Deuren V, Van Ierssel S, De Reu H, Schippers J, Peeters K, Besbassi H, Heyndrickx L, Willems B, Mariën J, Bartholomeus E, Vercauteren K, Beutels P, Van Damme P, Lion E, Vlieghe E, Laukens K, Coenen S, Naesens R, Ariën KK, Ogunjimi B. Celluloepidemiology-A paradigm for quantifying infectious disease dynamics on a population level. SCIENCE ADVANCES 2025; 11:eadt2926. [PMID: 40378227 DOI: 10.1126/sciadv.adt2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/18/2025]
Abstract
To complement serology as a tool in public health interventions, we introduced the "celluloepidemiology" paradigm where we leveraged pathogen-specific T cell responses at a population level to advance our epidemiological understanding of infectious diseases, using SARS-CoV-2 as a model. Applying flow cytometry and machine learning on data from more than 500 individuals, we showed that the number of T cells with positive expression of functional markers not only could distinguish patients who recovered from COVID-19 from controls and pre-COVID donors but also identify previously unrecognized asymptomatic patients from mild, moderate, and severe recovered patients. The celluloepidemiology approach was uniquely capable to differentiate health care worker groups with different SARS-CoV-2 exposures from each other. T cell receptor (TCR) profiling strengthened our analysis by revealing that SARS-CoV-2-specific TCRs were more abundant in patients than in controls. We believe that adding data on T cell reactivity will complement serology and augment the value of infection morbidity modeling for populations.
Collapse
Affiliation(s)
- My K Ha
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Anna Postovskaya
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- ADReM Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maria Kuznetsova
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- ADReM Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Deuren
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- ADReM Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Sabrina Van Ierssel
- Department of General Internal Medicine, Infectious Disease and Tropical Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Wilrijk, Belgium
| | - Jolien Schippers
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Karin Peeters
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Hajar Besbassi
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Betty Willems
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joachim Mariën
- Department of Ecology and Evolutionary Biology, University of Antwerp, Antwerp, Belgium
- The Virus Ecology Group, Institute of Tropical Medicine, Antwerp, Belgium
| | - Esther Bartholomeus
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Koen Vercauteren
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Philippe Beutels
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Pierre Van Damme
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Centre for the Evaluation of Vaccination (CEV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Eva Lion
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Wilrijk, Belgium
| | - Erika Vlieghe
- Department of General Internal Medicine, Infectious Disease and Tropical Medicine, Antwerp University Hospital, Edegem, Belgium
- Global Health Institute, University of Antwerp, Wilrijk, Belgium
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- ADReM Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Samuel Coenen
- Laboratory of Medical Microbiology (LMM), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for General Practice, Department of Family Medicine and Population Health (FAMPOP), University of Antwerp, Wilrijk, Belgium
| | - Reinout Naesens
- Department of Clinical Biology, Antwerp Hospital Network, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
2
|
Macchia I, La Sorsa V, Ciervo A, Ruspantini I, Negri D, Borghi M, De Angelis ML, Luciani F, Martina A, Taglieri S, Durastanti V, Altavista MC, Urbani F, Mancini F. T Cell Peptide Prediction, Immune Response, and Host-Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules 2024; 14:1217. [PMID: 39456150 PMCID: PMC11505848 DOI: 10.3390/biom14101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina La Sorsa
- Research Promotion and Coordination Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Irene Ruspantini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Francesca Luciani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Antonio Martina
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Silvia Taglieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina Durastanti
- Neurology Unit, San Filippo Neri Hospital, ASL RM1, 00135 Rome, Italy; (V.D.); (M.C.A.)
| | | | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| |
Collapse
|
3
|
Koolaparambil Mukesh R, Yinda CK, Munster VJ, van Doremalen N. Beyond COVID-19: the promise of next-generation coronavirus vaccines. NPJ VIRUSES 2024; 2:39. [PMID: 40295763 PMCID: PMC11721646 DOI: 10.1038/s44298-024-00043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 04/30/2025]
Abstract
Coronaviruses (CoVs) have caused three global outbreaks: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) in 2003, Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, and SARS-CoV-2 in 2019, with significant mortality and morbidity. The impact of coronavirus disease 2019 (COVID-19) raised serious concerns about the global preparedness for a pandemic. Furthermore, the changing antigenic landscape of SARS-CoV-2 led to new variants with increased transmissibility and immune evasion. Thus, the development of broad-spectrum vaccines against current and future emerging variants of CoVs will be an essential tool in pandemic preparedness. Distinct phylogenetic features within CoVs complicate and limit the process of generating a pan-CoV vaccine capable of targeting the entire Coronaviridae family. In this review, we aim to provide a detailed overview of the features of CoVs, their phylogeny, current vaccines against various CoVs, the efforts in developing broad-spectrum coronavirus vaccines, and the future.
Collapse
Affiliation(s)
| | - Claude K Yinda
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
4
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
5
|
Durge AR, Shrimankar DD. DHFS-ECM: Design of a Dual Heuristic Feature Selection-based Ensemble Classification Model for the Identification of Bamboo Species from Genomic Sequences. Curr Genomics 2024; 25:185-201. [PMID: 39087000 PMCID: PMC11288165 DOI: 10.2174/0113892029268176240125055419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 08/02/2024] Open
Abstract
Background Analyzing genomic sequences plays a crucial role in understanding biological diversity and classifying Bamboo species. Existing methods for genomic sequence analysis suffer from limitations such as complexity, low accuracy, and the need for constant reconfiguration in response to evolving genomic datasets. Aim This study addresses these limitations by introducing a novel Dual Heuristic Feature Selection-based Ensemble Classification Model (DHFS-ECM) for the precise identification of Bamboo species from genomic sequences. Methods The proposed DHFS-ECM method employs a Genetic Algorithm to perform dual heuristic feature selection. This process maximizes inter-class variance, leading to the selection of informative N-gram feature sets. Subsequently, intra-class variance levels are used to create optimal training and validation sets, ensuring comprehensive coverage of class-specific features. The selected features are then processed through an ensemble classification layer, combining multiple stratification models for species-specific categorization. Results Comparative analysis with state-of-the-art methods demonstrate that DHFS-ECM achieves remarkable improvements in accuracy (9.5%), precision (5.9%), recall (8.5%), and AUC performance (4.5%). Importantly, the model maintains its performance even with an increased number of species classes due to the continuous learning facilitated by the Dual Heuristic Genetic Algorithm Model. Conclusion DHFS-ECM offers several key advantages, including efficient feature extraction, reduced model complexity, enhanced interpretability, and increased robustness and accuracy through the ensemble classification layer. These attributes make DHFS-ECM a promising tool for real-time clinical applications and a valuable contribution to the field of genomic sequence analysis.
Collapse
Affiliation(s)
- Aditi R Durge
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
| | - Deepti D Shrimankar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
| |
Collapse
|
6
|
Magazine N, Zhang T, Bungwon AD, McGee MC, Wu Y, Veggiani G, Huang W. Immune Epitopes of SARS-CoV-2 Spike Protein and Considerations for Universal Vaccine Development. Immunohorizons 2024; 8:214-226. [PMID: 38427047 PMCID: PMC10985062 DOI: 10.4049/immunohorizons.2400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Despite the success of global vaccination programs in slowing the spread of COVID-19, these efforts have been hindered by the emergence of new SARS-CoV-2 strains capable of evading prior immunity. The mutation and evolution of SARS-CoV-2 have created a demand for persistent efforts in vaccine development. SARS-CoV-2 Spike protein has been the primary target for COVID-19 vaccine development, but it is also the hotspot of mutations directly involved in host susceptibility and virus immune evasion. Our ability to predict emerging mutants and select conserved epitopes is critical for the development of a broadly neutralizing therapy or a universal vaccine. In this article, we review the general paradigm of immune responses to COVID-19 vaccines, highlighting the immunological epitopes of Spike protein that are likely associated with eliciting protective immunity resulting from vaccination in humans. Specifically, we analyze the structural and evolutionary characteristics of the SARS-CoV-2 Spike protein related to immune activation and function via the TLRs, B cells, and T cells. We aim to provide a comprehensive analysis of immune epitopes of Spike protein, thereby contributing to the development of new strategies for broad neutralization or universal vaccination.
Collapse
Affiliation(s)
- Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Anang D. Bungwon
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Yingying Wu
- Department of Mathematics, University of Houston, Houston, TX
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
7
|
Yamada CAO, de Paula Oliveira Santos B, Lemos RP, Batista ACS, da Conceição IMCA, de Paula Sabino A, E Lima LMTDR, de Magalhães MTQ. Applications of Mass Spectrometry in the Characterization, Screening, Diagnosis, and Prognosis of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:33-61. [PMID: 38409415 DOI: 10.1007/978-3-031-50624-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mass spectrometry (MS) is a powerful analytical technique that plays a central role in modern protein analysis and the study of proteostasis. In the field of advanced molecular technologies, MS-based proteomics has become a cornerstone that is making a significant impact in the post-genomic era and as precision medicine moves from the research laboratory to clinical practice. The global dissemination of COVID-19 has spurred collective efforts to develop effective diagnostics, vaccines, and therapeutic interventions. This chapter highlights how MS seamlessly integrates with established methods such as RT-PCR and ELISA to improve viral identification and disease progression assessment. In particular, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) takes the center stage, unraveling intricate details of SARS-CoV-2 proteins, revealing modifications such as glycosylation, and providing insights critical to formulating therapies and assessing prognosis. However, high-throughput analysis of MALDI data presents challenges in manual interpretation, which has driven the development of programmatic pipelines and specialized packages such as MALDIquant. As we move forward, it becomes clear that integrating proteomic data with various omic findings is an effective strategy to gain a comprehensive understanding of the intricate biology of COVID-19 and ultimately develop targeted therapeutic paradigms.
Collapse
Affiliation(s)
- Camila Akemi Oliveira Yamada
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno de Paula Oliveira Santos
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Pereira Lemos
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Carolina Silva Batista
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Adriano de Paula Sabino
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Clinical and Molecular Hematology - Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana T Q de Magalhães
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Biochemistry and Immunology Postgraduate Program, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Chen R, Fulton KM, Tran A, Duque D, Kovalchik K, Caron E, Twine SM, Li J. Integrated Immunopeptidomics and Proteomics Study of SARS-CoV-2-Infected Calu-3 Cells Reveals Dynamic Changes in Allele-specific HLA Abundance and Antigen Presentation. Mol Cell Proteomics 2023; 22:100645. [PMID: 37709257 PMCID: PMC10580047 DOI: 10.1016/j.mcpro.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
We present an integrated immunopeptidomics and proteomics study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to comprehensively decipher the changes in host cells in response to viral infection. Immunopeptidomics analysis identified viral antigens presented by host cells through both class I and class II MHC system for recognition by the adaptive immune system. The host proteome changes were characterized by quantitative proteomics and glycoproteomics and from these data, the activation of toll-like receptor 3-interferon pathway was identified. Glycosylation analysis of human leukocyte antigen (HLA) proteins from the elution and flow-through of immunoprecipitation revealed that SARS-CoV-2 infection changed the glycosylation pattern of certain HLA alleles with different HLA alleles, showing distinct dynamic changes in relative abundance. The difference in the glycosylation and abundance of HLA alleles changed the number of strong binding antigens each allele presented, suggesting the impact of SARS-CoV-2 infection on antigen presentation is allele-specific. These results could be further exploited to explain the imbalanced response from innate and adaptive immune system in coronavirus disease 2019 cases, which would be helpful for the development of therapeutics and vaccine for coronavirus disease 2019 and preparation for future pandemic.
Collapse
Affiliation(s)
- Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| | - Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kevin Kovalchik
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Quebec, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
Tai C, Li H, Zhang J. BCEDB: a linear B-cell epitopes database for SARS-CoV-2. Database (Oxford) 2023; 2023:baad065. [PMID: 37776561 PMCID: PMC10541793 DOI: 10.1093/database/baad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
The 2019 Novel Coronavirus (SARS-CoV-2) has infected millions of people worldwide and caused millions of deaths. The virus has gone numerous mutations to replicate faster, which can overwhelm the immune system of the host. Linear B-cell epitopes are becoming promising in prevention of various deadly infectious diseases, breaking the general idea of their low immunogenicity and partial protection. However, there is still no public repository to host the linear B-cell epitopes for facilitating the development vaccines against SARS-CoV-2. Therefore, we developed BCEDB, a linear B-cell epitopes database specifically designed for hosting, exploring and visualizing linear B-cell epitopes and their features. The database provides a comprehensive repository of computationally predicted linear B-cell epitopes from Spike protein; a systematic annotation of epitopes including sequence, antigenicity score, genomic locations of epitopes, mutations in different virus lineages, mutation sites on the 3D structure of Spike protein and a genome browser to visualize them in an interactive manner. It represents a valuable resource for peptide-based vaccine development. Database URL: http://www.oncoimmunobank.cn/bcedbindex.
Collapse
Affiliation(s)
- Chengzheng Tai
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongjun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, No. 8 Youan Gate Outer Xitou Alley, Beijing 100069, China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
10
|
Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1241539. [PMID: 37746132 PMCID: PMC10512234 DOI: 10.3389/ffunb.2023.1241539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Pathology, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
11
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
13
|
Meyer S, Blaas I, Bollineni RC, Delic-Sarac M, Tran TT, Knetter C, Dai KZ, Madssen TS, Vaage JT, Gustavsen A, Yang W, Nissen-Meyer LSH, Douvlataniotis K, Laos M, Nielsen MM, Thiede B, Søraas A, Lund-Johansen F, Rustad EH, Olweus J. Prevalent and immunodominant CD8 T cell epitopes are conserved in SARS-CoV-2 variants. Cell Rep 2023; 42:111995. [PMID: 36656713 PMCID: PMC9826989 DOI: 10.1016/j.celrep.2023.111995] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOC) is driven by mutations that mediate escape from neutralizing antibodies. There is also evidence that mutations can cause loss of T cell epitopes. However, studies on viral escape from T cell immunity have been hampered by uncertain estimates of epitope prevalence. Here, we map and quantify CD8 T cell responses to SARS-CoV-2-specific minimal epitopes in blood drawn from April to June 2020 from 83 COVID-19 convalescents. Among 37 HLA ligands eluted from five prevalent alleles and an additional 86 predicted binders, we identify 29 epitopes with an immunoprevalence ranging from 3% to 100% among individuals expressing the relevant HLA allele. Mutations in VOC are reported in 10.3% of the epitopes, while 20.6% of the non-immunogenic peptides are mutated in VOC. The nine most prevalent epitopes are conserved in VOC. Thus, comprehensive mapping of epitope prevalence does not provide evidence that mutations in VOC are driven by escape of T cell immunity.
Collapse
Affiliation(s)
- Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Isaac Blaas
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Marina Delic-Sarac
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Trung T. Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Knetter
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - John T. Vaage
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | | | - Karolos Douvlataniotis
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Morten Milek Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Arne Søraas
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway,ImmunoLingo Convergence Center, University of Oslo, 0372 Oslo, Norway
| | - Even H. Rustad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| |
Collapse
|
14
|
Vyasamneni R, Kohler V, Karki B, Mahimkar G, Esaulova E, McGee J, Kallin D, Sheen JH, Harjanto D, Kirsch M, Poran A, Dong J, Srinivasan L, Gaynor RB, Bushway ME, Srouji JR. A universal MHCII technology platform to characterize antigen-specific CD4 + T cells. CELL REPORTS METHODS 2023; 3:100388. [PMID: 36814840 PMCID: PMC9939426 DOI: 10.1016/j.crmeth.2022.100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
CD4+ T cells are critical to the immune system and perform multiple functions; therefore, their identification and characterization are crucial to better understanding the immune system in both health and disease states. However, current methods rarely preserve their ex vivo phenotype, thus limiting our understanding of their in vivo functions. Here we introduce a flexible, rapid, and robust platform for ex vivo CD4+ T cell identification. By combining MHCII allele purification, allele-independent peptide loading, and multiplexed flow cytometry technologies, we can enable high-throughput personalized CD4+ T cell identification, immunophenotyping, and sorting. Using this platform in combination with single-cell sorting and multimodal analyses, we identified and characterized antigen-specific CD4+ T cells relevant to COVID-19 and cancer neoantigen immunotherapy. Overall, our platform can be used to detect and characterize CD4+ T cells across multiple diseases, with potential to guide CD4+ T cell epitope design for any disease-specific immunization strategy.
Collapse
Affiliation(s)
| | | | - Binisha Karki
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Gauri Mahimkar
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Jonathan McGee
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Daniel Kallin
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Dewi Harjanto
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Miles Kirsch
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Asaf Poran
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Jesse Dong
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | - John R. Srouji
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Zhang J, Xia Y, Liu X, Liu G. Advanced Vaccine Design Strategies against SARS-CoV-2 and Emerging Variants. Bioengineering (Basel) 2023; 10:148. [PMID: 36829642 PMCID: PMC9951973 DOI: 10.3390/bioengineering10020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yutian Xia
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Innovation Center for Cell Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
16
|
Jin X, Liu X, Shen C. A systemic review of T-cell epitopes defined from the proteome of SARS-CoV-2. Virus Res 2023; 324:199024. [PMID: 36526016 PMCID: PMC9757803 DOI: 10.1016/j.virusres.2022.199024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection remains in a global pandemic, and no eradicative therapy is currently available. Host T cells have been shown to play a crucial role in the antiviral immune protection and pathology in Coronavirus disease 2019 (COVID-19) patients; thus, identifying sufficient T-cell epitopes from the SARS-CoV-2 proteome can contribute greatly to the development of T-cell epitope vaccines and the precise evaluation of host SARS-CoV-2-specific cellular immunity. This review presents a comprehensive map of T-cell epitopes functionally validated from SARS-CoV-2 antigens, the human leukocyte antigen (HLA) supertypes to present these epitopes, and the strategies to screen and identify T-cell epitopes. To the best of our knowledge, a total of 1349 CD8+ T-cell epitopes and 790 CD4+ T-cell epitopes have been defined by functional experiments thus far, but most are presented by approximately twenty common HLA supertypes, such as HLA-A0201, A2402, B0702, DR15, DR7 and DR11 molecules, and 74-80% of the T-cell epitopes are derived from S protein and nonstructural protein. These data provide useful insight into the development of vaccines and specific T-cell detection systems. However, the currently defined T-cell epitope repertoire cannot cover the HLA polymorphism of major populations in an indicated geographic region. More research is needed to depict an overall landscape of T-cell epitopes, which covers the overall SARS-CoV-2 proteome and global patients.
Collapse
Affiliation(s)
- Xiaoxiao Jin
- Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China 225002; Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009.
| |
Collapse
|
17
|
Vivekanandam R, Rajagopalan K, Jeevanandam M, Ganesan H, Jagannathan V, Selvan Christyraj JD, Kalimuthu K, Selvan Christyraj JRS, Mohan M. Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: a reverse vaccinology approach. J Biomol Struct Dyn 2022; 40:13711-13726. [PMID: 34696708 DOI: 10.1080/07391102.2021.1993338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SARS-CoV2 is a single-stranded RNA virus, gaining much attention after it out broke in China in December 2019. The virus rapidly spread to several countries around the world and caused severe respiratory illness to humans. Since the outbreak, researchers around the world have devoted maximum resources and effort to develop a potent vaccine that would offer protection to uninfected individuals against SARS-CoV2. Reverse vaccinology is a relatively new approach that thrives faster in vaccine research. In this study, we constructed Cytotoxic T Lymphocytes (CTL)-based multi-epitope vaccine using hybrid epitope prediction methods. A total of 121 immunogenic CTL epitopes were screened by various sequence-based prediction methods and docked with their respective HLA alleles using the AutoDock Vina v1.1.2. In all, 17 epitopes were selected based on their binding affinity, followed by the construction of multi-epitope vaccine by placing the appropriate linkers between the epitopes and tuberculosis heparin-binding hemagglutinin (HBHA) adjuvant. The final vaccine construct was modeled by the I-TASSER server and the best model was further validated by ERRAT, ProSA, and PROCHECK servers. Furthermore, the molecular interaction of the constructed vaccine with TLR4 was assessed by ClusPro 2.0 and PROtein binDIng enerGY prediction (PRODIGY) server. The immune simulation analysis confirms that the constructed vaccine was capable of inducing long-lasting memory T helper (Th) and CTL responses. Finally, the nucleotide sequence was codon-optimized by the JCAT tool and cloned into the pET21a (+) vector. The current results reveal that the candidate vaccine is capable of provoking robust CTL response against the SARS-CoV2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reethu Vivekanandam
- Department of Biotechnology, Bharathiyar University, Coimbatore, Tamilnadu, India
| | - Kamarajan Rajagopalan
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Madesh Jeevanandam
- Department of Biochemistry, PSG college of Arts and Science, Coimbatore, Tamilnadu, India
| | - Harsha Ganesan
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, Tamilnadu, India
| | - Vaishnavi Jagannathan
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Kalishwaralal Kalimuthu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Manikandan Mohan
- Vaxigen International Research Center Private Limited, Coimbatore, Tamilnadu, India.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
18
|
Retrospective in silico mutation profiling of SARS-CoV-2 structural proteins circulating in Uganda by July 2021: Towards refinement of COVID-19 disease vaccines, diagnostics, and therapeutics. PLoS One 2022; 17:e0279428. [PMID: 36548384 PMCID: PMC9778641 DOI: 10.1371/journal.pone.0279428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The SARS-CoV-2 virus, the agent of COVID-19, caused unprecedented loss of lives and economic decline worldwide. Although the introduction of public health measures, vaccines, diagnostics, and therapeutics disrupted the spread of the SARS-CoV-2, the emergence of variants poses substantial threat. This study traced SARS-CoV-2 variants circulating in Uganda by July 2021 to inform the necessity for refinement of the intervention medical products. A comprehensive in silico analysis of the SARS-CoV-2 genomes detected in clinical samples collected from COVID-19 patients in Uganda revealed occurrence of structural protein variants with potential of escaping detection, resisting antibody therapy, or increased infectivity. The genome sequence dataset was retrieved from the GISAID database and the open reading frame encoding the spike, envelope, membrane, or nucleocapsid proteins was translated. The obtained protein sequences were aligned and inspected for existence of variants. The variant positions on each of the four alignment sets were mapped on predicted epitopes as well as the 3D structures. Additionally, sequences within each of the sets were clustered by family. A phylogenetic tree was constructed to assess relationship between the encountered spike protein sequences and Wuhan-Hu-1 wild-type, or the Alpha, Beta, Delta and Gamma variants of concern. Strikingly, the frequency of each of the spike protein point mutations F157L/Del, D614G and P681H/R was over 50%. The furin and the transmembrane serine protease 2 cleavage sites were unaffected by mutation. Whereas the Delta dominated the spike sequences (16.5%, 91/550), Gamma was not detected. The envelope protein was the most conserved with 96.3% (525/545) sequences being wild-type followed by membrane at 68.4% (397/580). Although the nucleocapsid protein sequences varied, the variant residue positions were less concentrated at the RNA binding domains. The dominant nucleocapsid sequence variant was S202N (34.5%, 205/595). These findings offer baseline information required for refining the existing COVID-19 vaccines, diagnostics, and therapeutics.
Collapse
|
19
|
Durge AR, Shrimankar DD, Sawarkar AD. Heuristic Analysis of Genomic Sequence Processing Models for High Efficiency Prediction: A Statistical Perspective. Curr Genomics 2022; 23:299-317. [PMID: 36778194 PMCID: PMC9878859 DOI: 10.2174/1389202923666220927105311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Genome sequences indicate a wide variety of characteristics, which include species and sub-species type, genotype, diseases, growth indicators, yield quality, etc. To analyze and study the characteristics of the genome sequences across different species, various deep learning models have been proposed by researchers, such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), Multilayer Perceptrons (MLPs), etc., which vary in terms of evaluation performance, area of application and species that are processed. Due to a wide differentiation between the algorithmic implementations, it becomes difficult for research programmers to select the best possible genome processing model for their application. In order to facilitate this selection, the paper reviews a wide variety of such models and compares their performance in terms of accuracy, area of application, computational complexity, processing delay, precision and recall. Thus, in the present review, various deep learning and machine learning models have been presented that possess different accuracies for different applications. For multiple genomic data, Repeated Incremental Pruning to Produce Error Reduction with Support Vector Machine (Ripper SVM) outputs 99.7% of accuracy, and for cancer genomic data, it exhibits 99.27% of accuracy using the CNN Bayesian method. Whereas for Covid genome analysis, Bidirectional Long Short-Term Memory with CNN (BiLSTM CNN) exhibits the highest accuracy of 99.95%. A similar analysis of precision and recall of different models has been reviewed. Finally, this paper concludes with some interesting observations related to the genomic processing models and recommends applications for their efficient use.
Collapse
Affiliation(s)
- Aditi R. Durge
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
| | - Deepti D. Shrimankar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India,Address correspondence to this author at the Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India; Tel: 9860606477; E-mail:
| | - Ankush D. Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
| |
Collapse
|
20
|
Ahmed SF, Sohail MS, Quadeer AA, McKay MR. Vaccinia-Virus-Based Vaccines Are Expected to Elicit Highly Cross-Reactive Immunity to the 2022 Monkeypox Virus. Viruses 2022; 14:1960. [PMID: 36146766 PMCID: PMC9506226 DOI: 10.3390/v14091960] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Beginning in May 2022, a novel cluster of monkeypox virus infections was detected in humans. This virus has spread rapidly to non-endemic countries, sparking global concern. Specific vaccines based on the vaccinia virus (VACV) have demonstrated high efficacy against monkeypox viruses in the past and are considered an important outbreak control measure. Viruses observed in the current outbreak carry distinct genetic variations that have the potential to affect vaccine-induced immune recognition. Here, by investigating genetic variation with respect to orthologous immunogenic vaccinia-virus proteins, we report data that anticipates immune responses induced by VACV-based vaccines, including the currently available MVA-BN and ACAM2000 vaccines, to remain highly cross-reactive against the newly observed monkeypox viruses.
Collapse
Affiliation(s)
- Syed Faraz Ahmed
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Muhammad Saqib Sohail
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Matthew R. McKay
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
21
|
Augusto DG, Hollenbach JA. HLA variation and antigen presentation in COVID-19 and SARS-CoV-2 infection. Curr Opin Immunol 2022; 76:102178. [PMID: 35462277 PMCID: PMC8947957 DOI: 10.1016/j.coi.2022.102178] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023]
Abstract
The extraordinary variation of the human leukocyte antigen (HLA) molecules is critical for diversifying antigen presentation to T cells. Coupled with the rise of novel strains and rapidly evolving immune evasion by SARS-CoV-2 proteins, HLA-mediated immunity in COVID-19 is critically important but far from being fully understood. A growing number of studies have found the association of HLA variants with different COVID-19 outcomes and that HLA genotypes associate with differential immune responses against SARS-CoV-2. Prediction studies have shown that mutations in multiple viral strains, most concentrated in the Spike protein, affect the affinity between these mutant peptides and HLA molecules. Understanding the impact of this variation on T-cell responses is critical for comprehending the immunogenic mechanisms in both natural immunity and vaccine development.
Collapse
Affiliation(s)
- Danillo G Augusto
- Department of Neurology, University of California, San Francisco,
CA, USA,Programa de Pós-Graduação em Genética, Universidade Federal do
Paraná, Curitiba, Brazil
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco,
CA, USA,Department of Epidemiology and Biostatistics, University of
California, San Francisco, CA, USA
| |
Collapse
|
22
|
Zhao H, Nguyen A, Wu D, Li Y, Hassan SA, Chen J, Shroff H, Piszczek G, Schuck P. Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. PNAS NEXUS 2022; 1:pgac049. [PMID: 35783502 PMCID: PMC9235412 DOI: 10.1093/pnasnexus/pgac049] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Worldwide SARS-CoV-2 sequencing efforts track emerging mutations in its spike protein, as well as characteristic mutations in other viral proteins. Besides their epidemiological importance, the observed SARS-CoV-2 sequences present an ensemble of viable protein variants, and thereby a source of information on viral protein structure and function. Charting the mutational landscape of the nucleocapsid (N) protein that facilitates viral assembly, we observe variability exceeding that of the spike protein, with more than 86% of residues that can be substituted, on average by three to four different amino acids. However, mutations exhibit an uneven distribution that tracks known structural features but also reveals highly protected stretches of unknown function. One of these conserved regions is in the central disordered linker proximal to the N-G215C mutation that has become dominant in the Delta variant, outcompeting G215 variants without further spike or N-protein substitutions. Structural models suggest that the G215C mutation stabilizes conserved transient helices in the disordered linker serving as protein-protein interaction interfaces. Comparing Delta variant N-protein to its ancestral version in biophysical experiments, we find a significantly more compact and less disordered structure. N-G215C exhibits substantially stronger self-association, shifting the unliganded protein from a dimeric to a tetrameric oligomeric state, which leads to enhanced coassembly with nucleic acids. This suggests that the sequence variability of N-protein is mirrored by high plasticity of N-protein biophysical properties, which we hypothesize can be exploited by SARS-CoV-2 to achieve greater efficiency of viral assembly, and thereby enhanced infectivity.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Awad N, Mohamed RH, Ghoneim NI, Elmehrath AO, El-Badri N. Immunoinformatics approach of epitope prediction for SARS-CoV-2. J Genet Eng Biotechnol 2022; 20:60. [PMID: 35441904 PMCID: PMC9019534 DOI: 10.1186/s43141-022-00344-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The novel coronavirus (SARS-CoV-2) caused lethal infections worldwide during an unprecedented pandemic. Identification of the candidate viral epitopes is the first step in the design of vaccines against the viral infection. Several immunoinformatic approaches were employed to identify the SARS-CoV-2 epitopes that bind specifically with the major histocompatibility molecules class I (MHC-I). We utilized immunoinformatic tools to analyze the whole viral protein sequences, to identify the SARS-CoV-2 epitopes responsible for binding to the most frequent human leukocyte antigen (HLA) alleles in the Egyptian population. These alleles were also found with high frequency in other populations worldwide. RESULTS Molecular docking approach showed that using the co-crystallized MHC-I and T cell receptor (TCR) instead of using MHC-I structure only, significantly enhanced docking scores and stabilized the conformation, as well as the binding affinity of the identified SARS-CoV-2 epitopes. Our approach directly predicts 7 potential vaccine subunits from the available SARS-CoV-2 spike and ORF1ab protein sequence. This prediction has been confirmed by published experimentally validated and in silico predicted spike epitope. On the other hand, we predicted novel epitopes (RDLPQGFSA and FCLEASFNY) showing high docking scores and antigenicity response with both MHC-I and TCR. Moreover, antigenicity, allergenicity, toxicity, and physicochemical properties of the predicted SARS-CoV-2 epitopes were evaluated via state-of-the-art bioinformatic approaches, showing high efficacy of the proposed epitopes as a vaccine candidate. CONCLUSION Our predicted SARS-CoV-2 epitopes can facilitate vaccine development to enhance the immunogenicity against SARS-CoV-2 and provide supportive data for further experimental validation. Our proposed molecular docking approach of exploiting both MHC and TCR structures can be used to identify potential epitopes for most microbial pathogens, provided the crystal structure of MHC co-crystallized with TCR.
Collapse
Affiliation(s)
- Nourelislam Awad
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt.,Center of Informatics Sciences, Nile University, Giza, Egypt
| | - Rania Hassan Mohamed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt.,Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed O Elmehrath
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt.,Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
24
|
Das SK, Paul M, Behera BC, Thatoi H. Current status of COVID-19 vaccination: safety and liability concern for children, pregnant and lactating women. Expert Rev Vaccines 2022; 21:825-842. [PMID: 35313785 DOI: 10.1080/14760584.2022.2056025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION : Since its inception, Coronavirus disease-19 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has claimed a significant number of lives around the world. AREA COVERED : COVID-19 vaccine development involves several vaccine platforms, including traditional live-attenuated or killed viral particles, viral vectors or DNA, and mRNA-based vaccines. The efficacy and effectiveness (EV) of these vaccines must be assessed in order to determine the extent to which they can protect us against infection. Despite the fact that some affluent countries attempted to vaccinate the majority of their inhabitants, children and pregnant women were first excluded. EXPERT OPINION : While the severity of COVID-19 is less severe in children, the COVID-19-related complications are more severe.SARS-CoV-2 infection is also dangerous for pregnant women. The key to limiting disease spread is early discovery, isolation, and the development of safe and efficient vaccinations. As a result, the purpose of this study is to highlight the current development of various COVID-19 vaccine platforms for different groups of people at higher risk of COVID-19, with a special focus on children, pregnant and lactating women, as well as structural and pathogenicity elements of SARS CoV-2.
Collapse
Affiliation(s)
- Swagat Kumar Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar, Odisha, India-751001
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Sri Ram Chandra Vihar, Baripada, Odisha, India-757003
| | - Bikash Chandra Behera
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar-752050
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Sri Ram Chandra Vihar, Baripada, Odisha, India-757003
| |
Collapse
|
25
|
Koşaloğlu-Yalçın Z, Lee J, Greenbaum J, Schoenberger SP, Miller A, Kim YJ, Sette A, Nielsen M, Peters B. Combined assessment of MHC binding and antigen abundance improves T cell epitope predictions. iScience 2022; 25:103850. [PMID: 35128348 PMCID: PMC8806398 DOI: 10.1016/j.isci.2022.103850] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/19/2021] [Accepted: 01/26/2022] [Indexed: 01/16/2023] Open
Abstract
Many steps of the MHC class I antigen processing pathway can be predicted using computational methods. Here we show that epitope predictions can be further improved by considering abundance levels of peptides' source proteins. We utilized biophysical principles and existing MHC binding prediction tools in concert with abundance estimates of source proteins to derive a function that estimates the likelihood of a peptide to be an MHC class I ligand. We found that this combination improved predictions for both naturally eluted ligands and cancer neoantigen epitopes. We compared the use of different measures of antigen abundance, including mRNA expression by RNA-Seq, gene translation by Ribo-Seq, and protein abundance by proteomics on a dataset of SARS-CoV-2 epitopes. Epitope predictions were improved above binding predictions alone in all cases and gave the highest performance when using proteomic data. Our results highlight the value of incorporating antigen abundance levels to improve epitope predictions.
Collapse
Affiliation(s)
- Zeynep Koşaloğlu-Yalçın
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jenny Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jason Greenbaum
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephen P. Schoenberger
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moore's Cancer Center, University of California, San Diego, San Diego, CA, USA
- Laboratory of Cellular Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aaron Miller
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moore's Cancer Center, University of California, San Diego, San Diego, CA, USA
- Laboratory of Cellular Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Young J. Kim
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK Lyngby, 2800, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP San Martín, B1650, Argentina
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
26
|
Ma Y, Qiu F, Deng C, Li J, Huang Y, Wu Z, Zhou Y, Zhang Y, Xiong Y, Yao Y, Zhong Y, Qu J, Su J. Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19. Genome Med 2022; 14:16. [PMID: 35172892 PMCID: PMC8851814 DOI: 10.1186/s13073-022-01021-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/06/2022] [Indexed: 02/08/2023] Open
Abstract
Background Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. Methods We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. Results We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. Conclusions We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01021-1.
Collapse
Affiliation(s)
- Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fei Qiu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunyu Deng
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zeyi Wu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yijun Zhou
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yaru Zhang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yichun Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Qu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China. .,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
27
|
Zhao H, Nguyen A, Wu D, Li Y, Hassan SA, Chen J, Shroff H, Piszczek G, Schuck P. Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.08.479556. [PMID: 35169797 PMCID: PMC8845419 DOI: 10.1101/2022.02.08.479556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Worldwide SARS-CoV-2 sequencing efforts track emerging mutations in its spike protein, as well as characteristic mutations in other viral proteins. Besides their epidemiological importance, the observed SARS-CoV-2 sequences present an ensemble of viable protein variants, and thereby a source of information on viral protein structure and function. Charting the mutational landscape of the nucleocapsid (N) protein that facilitates viral assembly, we observe variability exceeding that of the spike protein, with more than 86% of residues that can be substituted, on average by 3-4 different amino acids. However, mutations exhibit an uneven distribution that tracks known structural features but also reveals highly protected stretches of unknown function. One of these conserved regions is in the central disordered linker proximal to the N-G215C mutation that has become dominant in the Delta variant, outcompeting G215 variants without further spike or N-protein substitutions. Structural models suggest that the G215C mutation stabilizes conserved transient helices in the disordered linker serving as protein-protein interaction interfaces. Comparing Delta variant N-protein to its ancestral version in biophysical experiments, we find a significantly more compact and less disordered structure. N-G215C exhibits substantially stronger self-association, shifting the unliganded protein from a dimeric to a tetrameric oligomeric state, which leads to enhanced co-assembly with nucleic acids. This suggests that the sequence variability of N-protein is mirrored by high plasticity of N-protein biophysical properties, which we hypothesize can be exploited by SARS-CoV-2 to achieve greater efficiency of viral assembly, and thereby enhanced infectivity.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A. Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Wu CR, Yin WC, Jiang Y, Xu HE. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacol Sin 2022; 43:3021-3033. [PMID: 35058587 PMCID: PMC8771608 DOI: 10.1038/s41401-021-00851-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and persistently threatens to humanity. With tireless efforts from scientists around the world, understanding of the biology of coronavirus has been greatly enhanced over the past 2 years. Structural biology has demonstrated its powerful impact on uncovering structures and functions for the vast majority of SARS-CoV-2 proteins and guided the development of drugs and vaccines against COVID-19. In this review, we summarize current progress in the structural biology of SARS-CoV-2 and discuss important biological issues that remain to be addressed. We present the examples of structure-based design of Pfizer’s novel anti-SARS-CoV-2 drug PF-07321332 (Paxlovid), Merck’s nucleotide inhibitor molnupiravir (Lagevrio), and VV116, an oral drug candidate for COVID-19. These examples highlight the importance of structure in drug discovery to combat COVID-19. We also discussed the recent variants of Omicron and its implication in immunity escape from existing vaccines and antibody therapies.
Collapse
|
29
|
de Silva TI, Liu G, Lindsey BB, Dong D, Moore SC, Hsu NS, Shah D, Wellington D, Mentzer AJ, Angyal A, Brown R, Parker MD, Ying Z, Yao X, Turtle L, Dunachie S, Maini MK, Ogg G, Knight JC, Peng Y, Rowland-Jones SL, Dong T. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience 2021; 24:103353. [PMID: 34729465 PMCID: PMC8552693 DOI: 10.1016/j.isci.2021.103353] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 10/28/2022] Open
Abstract
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.
Collapse
Affiliation(s)
- Thushan I. de Silva
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Guihai Liu
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Benjamin B. Lindsey
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Danning Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- CAMS Key Laboratory of Tumor Immunology and Radiation Therapy, Xinjiang Tumor Hospital, Xinjiang Medical University, China
| | - Shona C. Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool CH64 7TE, UK
| | - Nienyun Sharon Hsu
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
| | - Dhruv Shah
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Dannielle Wellington
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alexander J. Mentzer
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adrienn Angyal
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Rebecca Brown
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Matthew D. Parker
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
- Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield S10 2JF, UK
| | - Zixi Ying
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool CH64 7TE, UK
- Tropical & Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (Member of Liverpool Health Partners), Liverpool L7 8XP, UK
| | - Susanna Dunachie
- Centre For Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mala K. Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Graham Ogg
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Julian C. Knight
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah L. Rowland-Jones
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
| |
Collapse
|
30
|
Charonis SA, Georgopoulos AP. Epitope-based Multi-variant SARS-Cov-2 Vaccine Design: Shared Epitopes Among the Natural SARS-Cov-2 Spike Glycoprotein and 5 of its Variants (D614G, α, β, γ, δ) with High in Silico Binding Affinity to Human Leukocyte Antigen (HLA) Class II Molecules. JOURNAL OF IMMUNOLOGICAL SCIENCES 2021; 5:9-14. [PMID: 40370415 PMCID: PMC12077054 DOI: 10.29245/2578-3009/2021/4.1223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Affiliation(s)
- Spyros A. Charonis
- The HLA SARS-CoV-2 Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Apostolos P. Georgopoulos
- The HLA SARS-CoV-2 Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Abstract
The areas of application of modern bioanalytical chromatography–mass spectrometry are so extensive that any attempt to systematize them becomes subjective. It would be more correct to say that there is no such area of biology and medicine where chromatography–mass spectrometry would not find application. This article focuses on the areas of application of this technique that are either relatively new or insufficiently covered in recent reviews. State-of-the-art bioanalytical techniques have become multitargeted in terms of analytes and standardized in terms of matrices. The ability to detect trace concentrations of analytes in the presence of a huge number of biomatrix macrocomponents using chromatography–mass spectrometry is especially important for bioanalytical chemistry. In the target-oriented determination of persistent organic pollutants by chromatography–mass spectrometry, the main problem is the expansion of the list of analytes, including isomers. In the detection of exposures to unstable toxicants, the fragmented adducts of xenobiotics with biomolecules become target biomarkers along with hydrolytic metabolites. The exposome reflects the general exposure of a human being to total xenobiotics and the metabolic status reflects the physiological state of the body. Chromatography–mass spectrometry is a key technique in metabolomics. Metabolomics is currently used to solve the problems of clinical diagnostics and anti-doping control. Biological sample preparation procedures for instrumental analysis are being simplified and developed toward increasing versatility. Proteomic technologies with the use of various versions of mass spectrometry have found application in the development of new methods for diagnosing coronavirus infections.
Collapse
Affiliation(s)
- E. I. Savelieva
- Research Institute of Hygiene, Occupational Pathology, and Human Ecology, Federal Medical Biological Agency, 188663 pos. Kuz’molovskii, Vsevolozhskii region, Leningrad oblast Russia
| |
Collapse
|
32
|
Schrörs B, Riesgo-Ferreiro P, Sorn P, Gudimella R, Bukur T, Rösler T, Löwer M, Sahin U. Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates. PLoS One 2021; 16:e0249254. [PMID: 34570776 PMCID: PMC8475993 DOI: 10.1371/journal.pone.0249254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/01/2021] [Indexed: 12/03/2022] Open
Abstract
Due to the widespread of the COVID-19 pandemic, the SARS-CoV-2 genome is evolving in diverse human populations. Several studies already reported different strains and an increase in the mutation rate. Particularly, mutations in SARS-CoV-2 spike-glycoprotein are of great interest as it mediates infection in human and recently approved mRNA vaccines are designed to induce immune responses against it. We analyzed 1,036,030 SARS-CoV-2 genome assemblies and 30,806 NGS datasets from GISAID and European Nucleotide Archive (ENA) focusing on non-synonymous mutations in the spike protein. Only around 2.5% of the samples contained the wild-type spike protein with no variation from the reference. Among the spike protein mutants, we confirmed a low mutation rate exhibiting less than 10 non-synonymous mutations in 99.6% of the analyzed sequences, but the mean and median number of spike protein mutations per sample increased over time. 5,472 distinct variants were found in total. The majority of the observed variants were recurrent, but only 21 and 14 recurrent variants were found in at least 1% of the mutant genome assemblies and NGS samples, respectively. Further, we found high-confidence subclonal variants in about 2.6% of the NGS data sets with mutant spike protein, which might indicate co-infection with various SARS-CoV-2 strains and/or intra-host evolution. Lastly, some variants might have an effect on antibody binding or T-cell recognition. These findings demonstrate the continuous importance of monitoring SARS-CoV-2 sequences for an early detection of variants that require adaptations in preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Schrörs
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Pablo Riesgo-Ferreiro
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Patrick Sorn
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Ranganath Gudimella
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Thomas Bukur
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Thomas Rösler
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Martin Löwer
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Ugur Sahin
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
- CEO, BioNTech SE, Mainz, Rhineland-Palantinate, Germany
| |
Collapse
|
33
|
Boni C, Cavazzini D, Bolchi A, Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Ferrari C, Ottonello S. Degenerate CD8 Epitopes Mapping to Structurally Constrained Regions of the Spike Protein: A T Cell-Based Way-Out From the SARS-CoV-2 Variants Storm. Front Immunol 2021; 12:730051. [PMID: 34566990 PMCID: PMC8455995 DOI: 10.3389/fimmu.2021.730051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
There is an urgent need for new generation anti-SARS-Cov-2 vaccines in order to increase the efficacy of immunization and its broadness of protection against viral variants that are continuously arising and spreading. The effect of variants on protective immunity afforded by vaccination has been mostly analyzed with regard to B cell responses. This analysis revealed variable levels of cross-neutralization capacity for presently available SARS-Cov-2 vaccines. Despite the dampened immune responses documented for some SARS-Cov-2 mutations, available vaccines appear to maintain an overall satisfactory protective activity against most variants of concern (VoC). This may be attributed, at least in part, to cell-mediated immunity. Indeed, the widely multi-specific nature of CD8 T cell responses should allow to avoid VoC-mediated viral escape, because mutational inactivation of a given CD8 T cell epitope is expected to be compensated by the persistent responses directed against unchanged co-existing CD8 epitopes. This is particularly relevant because some immunodominant CD8 T cell epitopes are located within highly conserved SARS-Cov-2 regions that cannot mutate without impairing SARS-Cov-2 functionality. Importantly, some of these conserved epitopes are degenerate, meaning that they are able to associate with different HLA class I molecules and to be simultaneously presented to CD8 T cell populations of different HLA restriction. Based on these concepts, vaccination strategies aimed at potentiating the stimulatory effect on SARS-Cov-2-specific CD8 T cells should greatly enhance the efficacy of immunization against SARS-Cov-2 variants. Our review recollects, discusses and puts into a translational perspective all available experimental data supporting these "hot" concepts, with special emphasis on the structural constraints that limit SARS-CoV-2 S-protein evolution and on potentially invariant and degenerate CD8 epitopes that lend themselves as excellent candidates for the rational development of next-generation, CD8 T-cell response-reinforced, COVID-19 vaccines.
Collapse
Affiliation(s)
- Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| |
Collapse
|
34
|
Global variation in SARS-CoV-2 proteome and its implication in pre-lockdown emergence and dissemination of 5 dominant SARS-CoV-2 clades. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104973. [PMID: 34147651 PMCID: PMC8233849 DOI: 10.1016/j.meegid.2021.104973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is currently causing major havoc worldwide with its efficient transmission and propagation. To track the emergence as well as the persistence of mutations during the early stage of the pandemic, a comparative analysis of SARS-CoV-2 whole proteome sequences has been performed by considering manually curated 31,389 whole genome sequences from 84 countries. Among the 7 highly recurring (percentage frequency≥10%) mutations (Nsp2:T85I, Nsp6:L37F, Nsp12:P323L, Spike:D614G, ORF3a:Q57H, N protein:R203K and N protein:G204R), N protein:R203K and N protein: G204R are co-occurring (dependent) mutations. Nsp12:P323L and Spike:D614G often appear simultaneously. The highly recurring Spike:D614G, Nsp12:P323L and Nsp6:L37F as well as moderately recurring (percentage frequency between ≥1 and <10%) ORF3a:G251V and ORF8:L84S mutations have led to4 major clades in addition to a clade that lacks high recurring mutations. Further, the occurrence of ORF3a:Q57H&Nsp2:T85I, ORF3a:Q57H and N protein:R203K&G204R along with Nsp12:P323L&Spike:D614G has led to 3 additional sub-clades. Similarly, occurrence of Nsp6:L37F and ORF3a:G251V together has led to the emergence of a sub-clade. Nonetheless, ORF8:L84S does not occur along with ORF3a:G251V or Nsp6:L37F. Intriguingly, ORF3a:G251V and ORF8:L84S are found to occur independent of Nsp12:P323L and Spike:D614G mutations. These clades have evolved during the early stage of the pandemic and have disseminated across several countries. Further, Nsp10 is found to be highly resistant to mutations, thus, it can be exploited for drug/vaccine development and the corresponding gene sequence can be used for the diagnosis. Concisely, the study reports the SARS-CoV-2 antigens diversity across the globe during the early stage of the pandemic and facilitates the understanding of viral evolution.
Collapse
|
35
|
Ghosh N, Sharma N, Saha I. Immunogenicity and antigenicity based T-cell and B-cell epitopes identification from conserved regions of 10664 SARS-CoV-2 genomes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104823. [PMID: 33819681 PMCID: PMC8017916 DOI: 10.1016/j.meegid.2021.104823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022]
Abstract
The surge of SARS-CoV-2 has created a wave of pandemic around the globe due to its high transmission rate. To contain this virus, researchers are working around the clock for a solution in the form of vaccine. Due to the impact of this pandemic, the economy and healthcare have immensely suffered around the globe. Thus, an efficient vaccine design is the need of the hour. Moreover, to have a generalised vaccine for heterogeneous human population, the virus genomes from different countries should be considered. Thus, in this work, we have performed genome-wide analysis of 10,664 SARS-CoV-2 genomes of 73 countries around the globe in order to identify the potential conserved regions for the development of peptide based synthetic vaccine viz. epitopes with high immunogenic and antigenic scores. In this regard, multiple sequence alignment technique viz. Clustal Omega is used to align the 10,664 SARS-CoV-2 virus genomes. Thereafter, entropy is computed for each genomic coordinate of the aligned genomes. The entropy values are then used to find the conserved regions. These conserved regions are refined based on the criteria that their lengths should be greater than or equal to 60 nt and their corresponding protein sequences are without any stop codons. Furthermore, Nucleotide BLAST is used to verify the specificity of the conserved regions. As a result, we have obtained 17 conserved regions that belong to NSP3, NSP4, NSP6, NSP8, RdRp, Helicase, endoRNAse, 2'-O-RMT, Spike glycoprotein, ORF3a protein, Membrane glycoprotein and Nucleocapsid protein. Finally, these conserved regions are used to identify the T-cell and B-cell epitopes with their corresponding immunogenic and antigenic scores. Based on these scores, the most immunogenic and antigenic epitopes are then selected for each of these 17 conserved regions. Hence, we have obtained 30 MHC-I and 24 MHC-II restricted T-cell epitopes with 14 and 13 unique HLA alleles and 21 B-cell epitopes for the 17 conserved regions. Moreover, for validating the relevance of these epitopes, the binding conformation of the MHC-I and MHC-II restricted T-cell epitopes are shown with respect to HLA alleles. Also, the physico-chemical properties of the epitopes are reported along with Ramchandran plots and Z-Scores and the population coverage is shown as well. Overall, the analysis shows that the identified epitopes can be considered as potential candidates for vaccine design.
Collapse
Affiliation(s)
- Nimisha Ghosh
- Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Nikhil Sharma
- Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers' Training and Research, Kolkata, West Bengal, India.
| |
Collapse
|
36
|
Weingarten-Gabbay S, Klaeger S, Sarkizova S, Pearlman LR, Chen DY, Gallagher KME, Bauer MR, Taylor HB, Dunn WA, Tarr C, Sidney J, Rachimi S, Conway HL, Katsis K, Wang Y, Leistritz-Edwards D, Durkin MR, Tomkins-Tinch CH, Finkel Y, Nachshon A, Gentili M, Rivera KD, Carulli IP, Chea VA, Chandrashekar A, Bozkus CC, Carrington M, Bhardwaj N, Barouch DH, Sette A, Maus MV, Rice CM, Clauser KR, Keskin DB, Pregibon DC, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs. Cell 2021; 184:3962-3980.e17. [PMID: 34171305 PMCID: PMC8173604 DOI: 10.1016/j.cell.2021.05.046] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 01/23/2023]
Abstract
T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | | | - Leah R Pearlman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Da-Yuan Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Kathleen M E Gallagher
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R Bauer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Suzanna Rachimi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hasahn L Conway
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Katelin Katsis
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yuntong Wang
- Repertoire Immune Medicines, Cambridge, MA 02139, USA
| | | | | | - Christopher H Tomkins-Tinch
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matteo Gentili
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith D Rivera
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Isabel P Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vipheaviny A Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Cansu Cimen Bozkus
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
| | - Nina Bhardwaj
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Dan H Barouch
- Harvard Medical School, Boston, MA 02115, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derin B Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA; Health Informatics Lab, Metropolitan College, Boston University, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
37
|
Montes-Grajales D, Olivero-Verbel J. Bioinformatics Prediction of SARS-CoV-2 Epitopes as Vaccine Candidates for the Colombian Population. Vaccines (Basel) 2021; 9:vaccines9070797. [PMID: 34358213 PMCID: PMC8310250 DOI: 10.3390/vaccines9070797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease (COVID-19) pandemic caused by the coronavirus SARS-CoV-2 represents an enormous challenge to global public health, with thousands of infections and deaths in over 200 countries worldwide. The purpose of this study was to identify SARS-CoV-2 epitopes with potential to interact in silico with the alleles of the human leukocyte antigen class I (HLA I) and class II (HLA II) commonly found in the Colombian population to promote both CD4 and CD8 immune responses against this virus. The generation and evaluation of the peptides in terms of HLA I and HLA II binding, immune response, toxicity and allergenicity were performed by using computer-aided tools, such as NetMHCpan 4.1, NetMHCIIpan 4.0, VaxiJem, ToxinPred and AllerTop. Furthermore, the interaction between the predicted epitopes with HLA I and HLA II proteins frequently found in the Colombian population was studied through molecular docking simulations in AutoDock Vina and interaction analysis in LigPlot+. One of the promising peptides proposed in this study is the HLA I epitope YQPYRVVVL, which displayed an estimated coverage of over 82% and 96% for the Colombian and worldwide population, respectively. These findings could be useful for the design of new epitope-vaccines that include Colombia among their population target.
Collapse
|
38
|
Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, Sette A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021; 29:1076-1092. [PMID: 34237248 PMCID: PMC8139264 DOI: 10.1016/j.chom.2021.05.010] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Over the past year, numerous studies in the peer reviewed and preprint literature have reported on the virological, epidemiological and clinical characteristics of the coronavirus, SARS-CoV-2. To date, 25 studies have investigated and identified SARS-CoV-2-derived T cell epitopes in humans. Here, we review these recent studies, how they were performed, and their findings. We review how epitopes identified throughout the SARS-CoV2 proteome reveal significant correlation between number of epitopes defined and size of the antigen provenance. We also report additional analysis of SARS-CoV-2 human CD4 and CD8 T cell epitope data compiled from these studies, identifying 1,400 different reported SARS-CoV-2 epitopes and revealing discrete immunodominant regions of the virus and epitopes that are more prevalently recognized. This remarkable breadth of epitope repertoire has implications for vaccine design, cross-reactivity, and immune escape by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, Quandt J, Bidmon N, Ulges A, Baum A, Pascal KE, Maurus D, Brachtendorf S, Lörks V, Sikorski J, Koch P, Hilker R, Becker D, Eller AK, Grützner J, Tonigold M, Boesler C, Rosenbaum C, Heesen L, Kühnle MC, Poran A, Dong JZ, Luxemburger U, Kemmer-Brück A, Langer D, Bexon M, Bolte S, Palanche T, Schultz A, Baumann S, Mahiny AJ, Boros G, Reinholz J, Szabó GT, Karikó K, Shi PY, Fontes-Garfias C, Perez JL, Cutler M, Cooper D, Kyratsous CA, Dormitzer PR, Jansen KU, Türeci Ö. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021; 595:572-577. [PMID: 34044428 DOI: 10.1101/2020.12.09.20245175] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2021] [Indexed: 05/21/2023]
Abstract
BNT162b2, a nucleoside-modified mRNA formulated in lipid nanoparticles that encodes the SARS-CoV-2 spike glycoprotein (S) stabilized in its prefusion conformation, has demonstrated 95% efficacy in preventing COVID-191. Here we extend a previous phase-I/II trial report2 by presenting data on the immune response induced by BNT162b2 prime-boost vaccination from an additional phase-I/II trial in healthy adults (18-55 years old). BNT162b2 elicited strong antibody responses: at one week after the boost, SARS-CoV-2 serum geometric mean 50% neutralizing titres were up to 3.3-fold above those observed in samples from individuals who had recovered from COVID-19. Sera elicited by BNT162b2 neutralized 22 pseudoviruses bearing the S of different SARS-CoV-2 variants. Most participants had a strong response of IFNγ+ or IL-2+ CD8+ and CD4+ T helper type 1 cells, which was detectable throughout the full observation period of nine weeks following the boost. Using peptide-MHC multimer technology, we identified several BNT162b2-induced epitopes that were presented by frequent MHC alleles and conserved in mutant strains. One week after the boost, epitope-specific CD8+ T cells of the early-differentiated effector-memory phenotype comprised 0.02-2.92% of total circulating CD8+ T cells and were detectable (0.01-0.28%) eight weeks later. In summary, BNT162b2 elicits an adaptive humoral and poly-specific cellular immune response against epitopes that are conserved in a broad range of variants, at well-tolerated doses.
Collapse
Affiliation(s)
- Ugur Sahin
- BioNTech, Mainz, Germany.
- TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | - Alina Baum
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Martin Bexon
- Bexon Clinical Consulting LLC, Upper Montclair, NJ, USA
| | | | | | - Armin Schultz
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | | | | | | | | | | | | | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, Quandt J, Bidmon N, Ulges A, Baum A, Pascal KE, Maurus D, Brachtendorf S, Lörks V, Sikorski J, Koch P, Hilker R, Becker D, Eller AK, Grützner J, Tonigold M, Boesler C, Rosenbaum C, Heesen L, Kühnle MC, Poran A, Dong JZ, Luxemburger U, Kemmer-Brück A, Langer D, Bexon M, Bolte S, Palanche T, Schultz A, Baumann S, Mahiny AJ, Boros G, Reinholz J, Szabó GT, Karikó K, Shi PY, Fontes-Garfias C, Perez JL, Cutler M, Cooper D, Kyratsous CA, Dormitzer PR, Jansen KU, Türeci Ö. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021; 595:572-577. [PMID: 34044428 DOI: 10.1038/s41586-021-03653-6] [Citation(s) in RCA: 535] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2021] [Indexed: 01/02/2023]
Abstract
BNT162b2, a nucleoside-modified mRNA formulated in lipid nanoparticles that encodes the SARS-CoV-2 spike glycoprotein (S) stabilized in its prefusion conformation, has demonstrated 95% efficacy in preventing COVID-191. Here we extend a previous phase-I/II trial report2 by presenting data on the immune response induced by BNT162b2 prime-boost vaccination from an additional phase-I/II trial in healthy adults (18-55 years old). BNT162b2 elicited strong antibody responses: at one week after the boost, SARS-CoV-2 serum geometric mean 50% neutralizing titres were up to 3.3-fold above those observed in samples from individuals who had recovered from COVID-19. Sera elicited by BNT162b2 neutralized 22 pseudoviruses bearing the S of different SARS-CoV-2 variants. Most participants had a strong response of IFNγ+ or IL-2+ CD8+ and CD4+ T helper type 1 cells, which was detectable throughout the full observation period of nine weeks following the boost. Using peptide-MHC multimer technology, we identified several BNT162b2-induced epitopes that were presented by frequent MHC alleles and conserved in mutant strains. One week after the boost, epitope-specific CD8+ T cells of the early-differentiated effector-memory phenotype comprised 0.02-2.92% of total circulating CD8+ T cells and were detectable (0.01-0.28%) eight weeks later. In summary, BNT162b2 elicits an adaptive humoral and poly-specific cellular immune response against epitopes that are conserved in a broad range of variants, at well-tolerated doses.
Collapse
Affiliation(s)
- Ugur Sahin
- BioNTech, Mainz, Germany.
- TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | - Alina Baum
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Martin Bexon
- Bexon Clinical Consulting LLC, Upper Montclair, NJ, USA
| | | | | | - Armin Schultz
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | | | | | | | | | | | | | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nagler A, Kalaora S, Barbolin C, Gangaev A, Ketelaars SLC, Alon M, Pai J, Benedek G, Yahalom-Ronen Y, Erez N, Greenberg P, Yagel G, Peri A, Levin Y, Satpathy AT, Bar-Haim E, Paran N, Kvistborg P, Samuels Y. Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Rep 2021; 35:109305. [PMID: 34166618 PMCID: PMC8185308 DOI: 10.1016/j.celrep.2021.109305] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
The human leukocyte antigen (HLA)-bound viral antigens serve as an immunological signature that can be selectively recognized by T cells. As viruses evolve by acquiring mutations, it is essential to identify a range of presented viral antigens. Using HLA peptidomics, we are able to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides presented by highly prevalent HLA class I (HLA-I) molecules by using infected cells as well as overexpression of SARS-CoV-2 genes. We find 26 HLA-I peptides and 36 HLA class II (HLA-II) peptides. Among the identified peptides, some are shared between different cells and some are derived from out-of-frame open reading frames (ORFs). Seven of these peptides were previously shown to be immunogenic, and we identify two additional immunoreactive peptides by using HLA multimer staining. These results may aid the development of the next generation of SARS-CoV-2 vaccines based on presented viral-specific antigens that span several of the viral genes.
Collapse
Affiliation(s)
- Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chaya Barbolin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, the Netherlands
| | - Steven L C Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, the Netherlands
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joy Pai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Polina Greenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Yagel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Pia Kvistborg
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Hu C, Shen M, Han X, Chen Q, Li L, Chen S, Zhang J, Gao F, Wang W, Wang Y, Li T, Li S, Huang J, Wang J, Zhu J, Chen D, Wu Q, Tao K, Pang D, Jin A. Identification of Cross-Reactive CD8 + T Cell Receptors with High Functional Avidity to a SARS-CoV-2 Immunodominant Epitope and Its Natural Mutant Variants. Genes Dis 2021; 9:216-229. [PMID: 34222571 PMCID: PMC8240504 DOI: 10.1016/j.gendis.2021.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the growing knowledge of T cell responses in COVID-19 patients, there is a lack of detailed characterizations for T cell-antigen interactions and T cell functions. Here, with a predicted peptide library from SARS-CoV-2 S and N proteins, we found that specific CD8+ T cell responses were identified in over 75% of COVID-19 convalescent patients (15/20) and an epitope from the N protein, N361-369 (KTFPPTEPK), was the most dominant epitope from our selected peptide library. Importantly, we discovered 2 N361-369-specific T cell receptors (TCRs) with high functional avidity that were independent of the CD8 co-receptor. These TCRs exhibited complementary cross-reactivity to several presently reported N361-369 mutant variants, as to the wild-type epitope. Further, the natural functions of these TCRs in the cytotoxic immunity against SARS-CoV-2 were determined with dendritic cells (DCs) and the lung organoid model. We found that the N361-369 epitope could be normally processed and endogenously presented by these different types of antigen presenting cells, to elicit successful activation and effective cytotoxicity of CD8+ T cells ex vivo. Our study evidenced potential mechanisms of cellular immunity to SARS-CoV-2, and illuminated potential ways of viral clearance in COVID-19 patients. These results indicate that utilizing CD8-independent TCRs against SARS-CoV-2-associated antigens may provide functional superiority that is beneficial for the adoptive cell immunotherapies based on natural or genetically engineered T cells. Additionally, this information is highly relevant for the development of the next-generation vaccines with protections against continuously emerged SARS-CoV-2 mutant strains.
Collapse
Affiliation(s)
- Chao Hu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Xiaojian Han
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Qian Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Luo Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Siyin Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Jing Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Fengxia Gao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Wang Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Yingming Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Tingting Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Shenglong Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Jingjing Huang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Jianwei Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ju Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Kun Tao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| |
Collapse
|
43
|
Taylor HB, Klaeger S, Clauser KR, Sarkizova S, Weingarten-Gabbay S, Graham DB, Carr SA, Abelin JG. MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies. Mol Cell Proteomics 2021; 20:100116. [PMID: 34146720 PMCID: PMC8327157 DOI: 10.1016/j.mcpro.2021.100116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Immunotherapies have emerged to treat diseases by selectively modulating a patient's immune response. Although the roles of T and B cells in adaptive immunity have been well studied, it remains difficult to select targets for immunotherapeutic strategies. Because human leukocyte antigen class II (HLA-II) peptides activate CD4+ T cells and regulate B cell activation, proliferation, and differentiation, these peptide antigens represent a class of potential immunotherapy targets and biomarkers. To better understand the molecular basis of how HLA-II antigen presentation is involved in disease progression and treatment, systematic HLA-II peptidomics combined with multiomic analyses of diverse cell types in healthy and diseased states is required. For this reason, MS-based innovations that facilitate investigations into the interplay between disease pathologies and the presentation of HLA-II peptides to CD4+ T cells will aid in the development of patient-focused immunotherapies.
Collapse
Affiliation(s)
- Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | |
Collapse
|
44
|
Quadeer AA, Ahmed SF, McKay MR. Landscape of epitopes targeted by T cells in 852 individuals recovered from COVID-19: Meta-analysis, immunoprevalence, and web platform. Cell Rep Med 2021; 2:100312. [PMID: 34056627 PMCID: PMC8139281 DOI: 10.1016/j.xcrm.2021.100312] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Knowledge of the epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targeted by T cells in recovered (convalescent) individuals is important for understanding T cell immunity against coronavirus disease 2019 (COVID-19). This information can aid development and assessment of COVID-19 vaccines and inform novel diagnostic technologies. Here, we provide a unified description and meta-analysis of SARS-CoV-2 T cell epitopes compiled from 18 studies of cohorts of individuals recovered from COVID-19 (852 individuals in total). Our analysis demonstrates the broad diversity of T cell epitopes that have been recorded for SARS-CoV-2. A large majority are seemingly unaffected by current variants of concern. We identify a set of 20 immunoprevalent epitopes that induced T cell responses in multiple cohorts and in a large fraction of tested individuals. The landscape of SARS-CoV-2 T cell epitopes we describe can help guide immunological studies, including those related to vaccines and diagnostics. A web-based platform has been developed to help complement these efforts.
Collapse
Affiliation(s)
- Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
45
|
Smith CC, Olsen KS, Gentry KM, Sambade M, Beck W, Garness J, Entwistle S, Willis C, Vensko S, Woods A, Fini M, Carpenter B, Routh E, Kodysh J, O'Donnell T, Haber C, Heiss K, Stadler V, Garrison E, Sandor AM, Ting JPY, Weiss J, Krajewski K, Grant OC, Woods RJ, Heise M, Vincent BG, Rubinsteyn A. Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Med 2021; 13:101. [PMID: 34127050 PMCID: PMC8201469 DOI: 10.1186/s13073-021-00910-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). METHODS We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. RESULTS From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. CONCLUSIONS Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Kelly S Olsen
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Kaylee M Gentry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Maria Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Wolfgang Beck
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Jason Garness
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Sarah Entwistle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Caryn Willis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Steven Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Allison Woods
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Misha Fini
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Brandon Carpenter
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Eric Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy O'Donnell
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Erik Garrison
- Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
- Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared Weiss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Division of Medical Oncology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mark Heise
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA.
| | - Alex Rubinsteyn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA.
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
47
|
Gao X, Liu Y, Zou S, Liu P, Zhao J, Yang C, Liang M, Yang J. Genome-wide screening of SARS-CoV-2 infection-related genes based on the blood leukocytes sequencing data set of patients with COVID-19. J Med Virol 2021; 93:5544-5554. [PMID: 34009691 PMCID: PMC8242610 DOI: 10.1002/jmv.27093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 05/15/2021] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is a global epidemic disease caused by a novel virus, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), causing serious adverse effects on human health. In this study, we obtained a blood leukocytes sequencing data set of COVID‐19 patients from the GEO database and obtained differentially expressed genes (DEGs). We further analyzed these DEGs by protein–protein interaction analysis and Gene Ontology enrichment analysis and identified the DEGs closely related to SARS‐CoV‐2 infection. Then, we constructed a six‐gene model (comprising IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1) by logistic regression analysis and calculated the area under the ROC curve (AUC) for the diagnosis of COVID‐19. The AUC values of the training group, testing group, and entire group were 0.930, 0.914, and 0.921, respectively. The six genes were highly expressed in patients with COVID‐19 and positively correlated with the expression of SARS‐CoV‐2 invasion‐related genes (ACE2, TMPRSS2, CTSB, and CTSL). The risk score calculated by this model was also positively correlated with the expression of TMPRSS2, CTSB, and CTSL, indicating that the six genes were closely related to SARS‐CoV‐2 infection. In conclusion, we comprehensively analyzed the functions of DEGs in the blood leukocytes of patients with COVID‐19 and constructed a six‐gene model that may contribute to the development of new diagnostic and therapeutic ideas for COVID‐19. Moreover, these six genes may be therapeutic targets for COVID‐19. COVID‐19 is a global epidemic and poses a serious risk to human health. The differentially expressed genes related to SARS‐CoV‐2 infection in leukocytes of patients with COVD‐19 were screened. A 6‐gene model for COVID‐19 diagnosis and treatment was constructed by logistic regression analysis. The role and mechanism of these six genes (IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1) in COVID‐19 were preliminarily analyzed.
Collapse
Affiliation(s)
- Xin Gao
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Yuan Liu
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Shaohui Zou
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Pengqin Liu
- Department of Nuclear Medicine, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Department of Nuclear Medicine, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Jing Zhao
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Changshun Yang
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Mingxing Liang
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Jinlian Yang
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| |
Collapse
|
48
|
Harris PE, Brasel T, Massey C, Herst CV, Burkholz S, Lloyd P, Blankenberg T, Bey TM, Carback R, Hodge T, Ciotlos S, Wang L, Comer JE, Rubsamen RM. A Synthetic Peptide CTL Vaccine Targeting Nucleocapsid Confers Protection from SARS-CoV-2 Challenge in Rhesus Macaques. Vaccines (Basel) 2021; 9:520. [PMID: 34070152 PMCID: PMC8158516 DOI: 10.3390/vaccines9050520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Persistent transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has given rise to a COVID-19 pandemic. Several vaccines, conceived in 2020, that evoke protective spike antibody responses are being deployed in mass public health vaccination programs. Recent data suggests, however, that as sequence variation in the spike genome accumulates, some vaccines may lose efficacy. METHODS Using a macaque model of SARS-CoV-2 infection, we tested the efficacy of a peptide-based vaccine targeting MHC class I epitopes on the SARS-CoV-2 nucleocapsid protein. We administered biodegradable microspheres with synthetic peptides and adjuvants to rhesus macaques. Unvaccinated control and vaccinated macaques were challenged with 1 × 108 TCID50 units of SARS-CoV-2, followed by assessment of clinical symptoms and viral load, chest radiographs, and sampling of peripheral blood and bronchoalveolar lavage (BAL) fluid for downstream analysis. RESULTS Vaccinated animals were free of pneumonia-like infiltrates characteristic of SARS-CoV-2 infection and presented with lower viral loads relative to controls. Gene expression in cells collected from BAL samples of vaccinated macaques revealed a unique signature associated with enhanced development of adaptive immune responses relative to control macaques. CONCLUSIONS We demonstrate that a room temperature stable peptide vaccine based on known immunogenic HLA class I bound CTL epitopes from the nucleocapsid protein can provide protection against SARS-CoV-2 infection in nonhuman primates.
Collapse
Affiliation(s)
- Paul E. Harris
- Department of Medicine, Columbia University, P&S 10-502, 650 West 168th Street, New York, NY 10032, USA;
| | - Trevor Brasel
- Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; (T.B.); (C.M.)
| | - Christopher Massey
- Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; (T.B.); (C.M.)
| | - C. V. Herst
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Scott Burkholz
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Peter Lloyd
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Tikoes Blankenberg
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
- Dignity Health Mercy Medical Center, Redding, CA 96001, USA;
| | - Thomas M. Bey
- Dignity Health Mercy Medical Center, Redding, CA 96001, USA;
| | - Richard Carback
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Thomas Hodge
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Serban Ciotlos
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Lu Wang
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
| | - Jason E. Comer
- Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA; (T.B.); (C.M.)
| | - Reid M. Rubsamen
- Flow Pharma Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, USA; (C.V.H.); (S.B.); (P.L.); (T.B.); (R.C.); (T.H.); (S.C.); (L.W.)
- The Department of Anesthesiology and Perioperative Medicine, Case Western Reserve School of Medicine, Cleveland Medical Center, University Hospitals, Cleveland, OH 44106, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 96001, USA
| |
Collapse
|
49
|
Gangaev A, Ketelaars SLC, Isaeva OI, Patiwael S, Dopler A, Hoefakker K, De Biasi S, Gibellini L, Mussini C, Guaraldi G, Girardis M, Ormeno CMPT, Hekking PJM, Lardy NM, Toebes M, Balderas R, Schumacher TN, Ovaa H, Cossarizza A, Kvistborg P. Identification and characterization of a SARS-CoV-2 specific CD8 + T cell response with immunodominant features. Nat Commun 2021; 12:2593. [PMID: 33972535 PMCID: PMC8110804 DOI: 10.1038/s41467-021-22811-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is a continuous challenge worldwide, and there is an urgent need to map the landscape of immunogenic and immunodominant epitopes recognized by CD8+ T cells. Here, we analyze samples from 31 patients with COVID-19 for CD8+ T cell recognition of 500 peptide-HLA class I complexes, restricted by 10 common HLA alleles. We identify 18 CD8+ T cell recognized SARS-CoV-2 epitopes, including an epitope with immunodominant features derived from ORF1ab and restricted by HLA-A*01:01. In-depth characterization of SARS-CoV-2-specific CD8+ T cell responses of patients with acute critical and severe disease reveals high expression of NKG2A, lack of cytokine production and a gene expression profile inhibiting T cell re-activation and migration while sustaining survival. SARS-CoV-2-specific CD8+ T cell responses are detectable up to 5 months after recovery from critical and severe disease, and these responses convert from dysfunctional effector to functional memory CD8+ T cells during convalescence.
Collapse
Affiliation(s)
- Anastasia Gangaev
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| | - Steven L. C. Ketelaars
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| | - Olga I. Isaeva
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| | - Sanne Patiwael
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| | - Anna Dopler
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| | - Kelly Hoefakker
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| | - Sara De Biasi
- grid.7548.e0000000121697570University of Modena and Reggio Emilia School of Medicine, Modena, Emilia Romagna Italy
| | - Lara Gibellini
- grid.7548.e0000000121697570University of Modena and Reggio Emilia School of Medicine, Modena, Emilia Romagna Italy
| | - Cristina Mussini
- grid.7548.e0000000121697570University of Modena and Reggio Emilia School of Medicine, Modena, Emilia Romagna Italy
| | - Giovanni Guaraldi
- grid.7548.e0000000121697570University of Modena and Reggio Emilia School of Medicine, Modena, Emilia Romagna Italy
| | - Massimo Girardis
- grid.7548.e0000000121697570University of Modena and Reggio Emilia School of Medicine, Modena, Emilia Romagna Italy
| | - Cami M. P. Talavera Ormeno
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, South Holland The Netherlands
| | - Paul J. M. Hekking
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, South Holland The Netherlands
| | - Neubury M. Lardy
- grid.417732.40000 0001 2234 6887Department of Immunogenetics, Sanquin Diagnostics B.V., Amsterdam, North Holland The Netherlands
| | - Mireille Toebes
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| | - Robert Balderas
- grid.420052.10000 0004 0543 6807Department of Biological Sciences, BD Biosciences, San Jose, CA USA
| | - Ton N. Schumacher
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| | - Huib Ovaa
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, South Holland The Netherlands
| | - Andrea Cossarizza
- grid.7548.e0000000121697570University of Modena and Reggio Emilia School of Medicine, Modena, Emilia Romagna Italy
| | - Pia Kvistborg
- grid.430814.aDivision of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, North Holland The Netherlands
| |
Collapse
|
50
|
Huggett JF, Moran-Gilad J, Lee JE. COVID-19 new diagnostics development: novel detection methods for SARS-CoV-2 infection and considerations for their translation to routine use. Curr Opin Pulm Med 2021; 27:155-162. [PMID: 33654014 DOI: 10.1097/mcp.0000000000000768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW COVID-19 has put the in-vitro-diagnostic community under an unprecedented spotlight, with a global requirement for accurate SARS-CoV-2 tests. This review will outline technological responses to this need and the analytical considerations required for their translation to routine use. RECENT FINDINGS SARS-CoV-2 diagnostic solutions directly detect the virus or measure host-derived surrogate markers of infection. With pressure upon supply chains for the 'traditional' molecular approaches, a wide variety of analytical tools spanning the molecular, serology, imaging and chemistry space are being developed, including high throughput solutions and simplified near-patient formats. SUMMARY The unique genetic nature of SARS-CoV-2 means high analytical specificity is achievable by most diagnostic formats. However, clinical sensitivity assessment is complicated by wide discrepancies in analytical range and challenges associated with standardising these differences. When coupled with the acute nature of SARS-CoV-2 infection, reported precise metrics of test performance must be questioned. The response to SARS-CoV-2 has delivered considerable diagnostic innovation, but for a technology to be maximised, it must be demonstrably reproducible and fit for purpose. If novel diagnostic solutions for SARS-CoV-2 are to succeed, equally innovative mechanisms are needed to ensure widespread clinical and surveillance application, enabling agreed standards and metrics to ensure comparability.
Collapse
Affiliation(s)
- Jim F Huggett
- National Measurement Laboratory (NML) at LGC, Queens Rd, Teddington
- School of Biosciences & Medicine, Faculty of Health & Medical Science, University of Surrey, Guildford, UK
| | - Jacob Moran-Gilad
- Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - J Eugene Lee
- Division of Policy and Strategy, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| |
Collapse
|