1
|
Miller WG, Chapman MH, Williams TG, Wood DF, Bono JL, Kelly DJ. Campylobacter californiensis sp. nov., isolated from cattle and feral swine. Int J Syst Evol Microbiol 2024; 74:006524. [PMID: 39374062 PMCID: PMC11457942 DOI: 10.1099/ijsem.0.006524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Nine Campylobacter strains were isolated from cattle and feral swine faeces: three were recovered during a 2007 Campylobacter-associated outbreak linked to a dairy, and the other six were isolated during a 2009-2010 survey of farms and ranches in Central California. The species identification of these strains could not be determined by 16S rRNA gene sequencing but were most similar to Campylobacter concisus and Campylobacter mucosalis. Additional atpA typing indicated that the nine strains composed a discrete novel clade related to C. concisus and C. mucosalis. A polyphasic study was undertaken here to clarify their taxonomic position. Phylogenetic analyses were performed based on 16S rRNA gene sequences and the concatenated sequences of 330 core genes. The core gene analysis placed the nine strains into a clade well separated from the other Campylobacter taxa, indicating that these strains represent a novel Campylobacter species. Pairwise digital DNA-DNA hybridization and average nucleotide identity values between these strains and other campylobacters are lower than 16 and 73%, respectively, further supporting their placement into a novel taxon. Standard phenotypic testing was performed. All strains are microaerobic or anaerobic, motile, Gram-negative, slightly-curved rods that are oxidase positive but catalase negative. Strains can be distinguished from the other catalase-negative Campylobacter species using phenotypic markers such as motility, oxidase activity, cephalothin resistance, hippuricase activity, growth at 30 °C, and α-haemolysis. The data presented here show that these strains represent a novel species within Campylobacter, for which the name Campylobacter californiensis sp. nov. (type strain RM6914T=LMG 32304T=CCUG 75329T) is proposed.
Collapse
Affiliation(s)
- William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Mary H. Chapman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Tina G. Williams
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Delilah F. Wood
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - James L. Bono
- Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE, USA
| | - David J. Kelly
- School of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Ge J, Li M, Yao J, Guo J, Li X, Li G, Han X, Li Z, Liu M, Zhao J. The potential of EGCG in modulating the oral-gut axis microbiota for treating inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155643. [PMID: 38820660 DOI: 10.1016/j.phymed.2024.155643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 06/02/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic intestinal disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis involves intricate interactions between pathogenic microorganisms, native intestinal microorganisms, and the intestinal immune system via the oral-gut axis. The strong correlation observed between oral diseases and IBD indicates the potential involvement of oral pathogenic microorganisms in IBD development. Consequently, therapeutic strategies targeting the proliferation, translocation, intestinal colonization and exacerbated intestinal inflammation of oral microorganisms within the oral-gut axis may partially alleviate IBD. Tea consumption has been identified as a contributing factor in reducing IBD, with epigallocatechin gallate (EGCG) being the primary bioactive compound used for IBD treatment. However, the precise mechanism by which EGCG mediates microbial crosstalk within the oral-gut axis remains unclear. In this review, we provide a comprehensive overview of the diverse oral microorganisms implicated in the pathogenesis of IBD and elucidate their colonization pathways and mechanisms. Subsequently, we investigated the antibacterial properties of EGCG and its potential to attenuate microbial translocation and colonization in the gut, emphasizing its role in attenuating exacerbations of IBD. We also elucidated the toxic and side effects of EGCG. Finally, we discuss current strategies for enhancing EGCG bioavailability and propose novel multi-targeted nano-delivery systems for the more efficacious management of IBD. This review elucidates the role and feasibility of EGCG-mediated modulation of the oral-gut axis microbiota in the management of IBD, contributing to a better understanding of the mechanism of action of EGCG in the treatment of IBD and the development of prospective treatment strategies.
Collapse
Affiliation(s)
- Jiaming Ge
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingwen Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinling Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangli Han
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin 300450, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Miller WG, Lopes BS, Ramjee M, Jay-Russell MT, Chapman MH, Williams TG, Wood DF, Gruntar I, Papić B, Forbes KJ. Campylobacter devanensis sp. nov., Campylobacter porcelli sp. nov., and Campylobacter vicugnae sp. nov., three novel Campylobacter lanienae-like species recovered from swine, small ruminants, and camelids. Int J Syst Evol Microbiol 2024; 74:006405. [PMID: 38842428 PMCID: PMC11261738 DOI: 10.1099/ijsem.0.006405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
In a previous study characterizing Campylobacter strains deficient in selenium metabolism, 50 strains were found to be similar to, but distinct from, the selenonegative species Campylobacter lanienae. Initial characterization based on multilocus sequence typing and the phylogeny of a set of 20 core genes determined that these strains form three putative taxa within the selenonegative cluster. A polyphasic study was undertaken here to further clarify their taxonomic position within the genus. The 50 selenonegative strains underwent phylogenetic analyses based on the sequences of the 16S rRNA gene and an expanded set of 330 core genes. Standard phenotypic testing was also performed. All strains were microaerobic and anaerobic, Gram-negative, spiral or curved cells with some displaying coccoid morphologies. Strains were motile, oxidase, catalase, and alkaline phosphatase positive, urease negative, and reduced nitrate. Strains within each clade had unique phenotypic profiles that distinguished them from other members of the genus. Core genome phylogeny clearly placed the 50 strains into three clades. Pairwise average nucleotide identity and digital DNA-DNA hybridization values were all below the recommended cut-offs for species delineation with respect to C. lanienae and other related Campylobacter species. The data presented here clearly show that these strains represent three novel species within the genus, for which the names Campylobacter devanensis sp. nov. (type strain RM3662T=LMG 33097T=NCTC 15074T), Campylobacter porcelli sp. nov. (type strain RM6137T=LMG 33098T=CCUG 77054T=NCTC 15075T) and Campylobacter vicugnae sp. nov. (type strain RM12175T=LMG 33099T=CCUG 77055T=NCTC 15076T) are proposed.
Collapse
Affiliation(s)
- William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Bruno S. Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
- National Horizons Centre, Teesside University, Darlington, UK
| | - Meenakshi Ramjee
- Wolfson Wohl Cancer Research Centre, Glasgow. The University of Glasgow, Glasgow, UK
| | | | - Mary H. Chapman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Tina G. Williams
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Delilah F. Wood
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Igor Gruntar
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia
| | - Bojan Papić
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia
| | - Ken J. Forbes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
5
|
Lu J, Zeng Y, Zhong H, Guo W, Zhang Y, Mai W, Qin Y, Su X, Zhang B, Wu W, Zhu Y, Huang Q, Ye Y. Dual-Stimuli-Responsive Gut Microbiota-Targeting Nitidine Chloride-CS/PT-NPs Improved Metabolic Status in NAFLD. Int J Nanomedicine 2024; 19:2409-2428. [PMID: 38476281 PMCID: PMC10929648 DOI: 10.2147/ijn.s452194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Background and Purpose Nitidine chloride (NC) is a botanical drug renowned for its potent anti-inflammatory, antimalarial, and hepatocellular carcinoma-inhibiting properties; however, its limited solubility poses challenges to its development and application. To address this issue, we have devised a colon-targeted delivery system (NC-CS/PT-NPs) aimed at modulating the dysbiosis of the gut microbiota by augmenting the interaction between NC and the intestinal microbiota, thereby exerting an effect against nonalcoholic fatty liver disease. Methods The NC-CS/PT-NPs were synthesized using the ion gel method. Subsequently, the particle size distribution, morphology, drug loading efficiency, and release behavior of the NC-CS/PT-NPs were characterized. Furthermore, the impact of NC-CS/PT-NPs on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice was investigated through serum biochemical analysis, ELISA, and histochemical staining. Additionally, the influence of NC-CS/PT-NPs on intestinal microbiota was analyzed using 16S rDNA gene sequencing. Results The nanoparticles prepared in this study have an average particle size of (255.9±5.10) nm, with an encapsulation rate of (72.83±2.13) % and a drug loading of (4.65±0.44) %. In vitro release experiments demonstrated that the cumulative release rate in the stomach and small intestine was lower than 22.0%, while it reached 66.75% in the colon. In vivo experiments conducted on HFD-induced NAFLD mice showed that treatment with NC-CS/PT-NPs inhibited weight gain, decreased serum aspartate aminotransferase (AST), Alanine aminotransferase (ALT) and lipid levels, improved liver and intestinal inflammation, and altered the diversity of gut microbiota in mice. Conclusion This study provides new evidence for the treatment of NAFLD through the regulation of gut microbiota using active ingredients from traditional Chinese medicine.
Collapse
Affiliation(s)
- Jianmei Lu
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
- The Second Nanning People’s Hospital, Nanning, People’s Republic of China
| | - Yongzhu Zeng
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Huashuai Zhong
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Wei Guo
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuyan Zhang
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Wanting Mai
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yucui Qin
- Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Xiaodan Su
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, People’s Republic of China
| | - Weisen Wu
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yu Zhu
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Qiujie Huang
- Department of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Yong Ye
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Nanning, People’s Republic of China
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Nanning, People’s Republic of China
| |
Collapse
|
6
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
7
|
Bajaj A, Markandey M, Kedia S, Ahuja V. Gut bacteriome in inflammatory bowel disease: An update on recent advances. Indian J Gastroenterol 2024; 43:103-111. [PMID: 38374283 DOI: 10.1007/s12664-024-01541-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory gut disorders, majorly classified as ulcerative colitis and Crohn's disease. The complex, multifactorial etiopathogenesis of IBD involves genetic predisposition, environmental cues, aberrant mucosal immune response and a disturbed gut microbiota. Epidemiological trends, studies in gnotobiotic mice models and genome-wide association studies, identifying genes involved in microbial handling, together mount evidence in support of the gut microbiota playing a pivotal role in IBD pathogenesis. Both Crohn's disease and ulcerative colitis are characterized by severe dysbiosis of the gut microbiome, marked by an expansion of detrimental taxa and concomitant depletion of beneficial members. IBD is characterized by reduction in abundances of bacterial genera involved in production of short-chain fatty acids, bio-transformations of bile acids and synthesis of indole-based tryptophan compounds such as Faecalibacterium, Ruminococcus, Coprococcus, Dorea, Parabacteroides, Eubacterium, Oscillibacter and Prevotella and elevation in members of phyla Proteobacteria and Actinobacteria. This imbalance not only results in exaggerated immune signaling towards the microbial antigens, but also results in an altered metabolomic milieu that triggers additional inflammatory cascades. The present review provides insights into the bacterial dysbiosis observed across different intestinal sites and their metabolomic imprints participating in IBD.
Collapse
Affiliation(s)
- Aditya Bajaj
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Manasvini Markandey
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 029, India.
| |
Collapse
|
8
|
Galgano S, Conway L, Fellows A, Houdijk J. Impact of precursor-derived peracetic acid on post-weaning diarrhea, intestinal microbiota, and predicted microbial functional genes in weaned pigs. Front Microbiol 2024; 15:1356538. [PMID: 38333588 PMCID: PMC10850238 DOI: 10.3389/fmicb.2024.1356538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Post-weaning diarrhea affects piglets in the nursery phase of production, leading to a substantial impact both at the farm and financial levels. The multifactorial etiology of this disease includes housing conditions, pig genetics, microbial composition, and metagenomic assets. Among the common therapeutic approaches, the widely used zinc oxide underwent a European Union ban in 2022 due to its negative environmental impact and correlation to increased antimicrobial resistance. During this study, we have tested two levels of inclusion of the potential antimicrobial alternative peracetic acid, delivered in water via the hydrolysis of the precursors sodium percarbonate and tetraacetylethylenediamine, in comparison to zinc oxide and an untreated control during a 2-week animal study. We assessed the microbial composition and predicted the metagenome, together with performance and physiological parameters, in order to describe the microbial functional role in etiopathology. Both zinc oxide and peracetic acid resulted in amelioration of the diarrheal status by the end of the trial period, with noticeable zinc oxide effects visible from the first week. This was accompanied by improved performance when compared to the first-week figures and a decreased stomach pH in both peracetic acid levels. A significant reduction in both stomach and caecal Proteobacteria was recorded in the zinc oxide group, and a significant reduction of Campylobacter in the stomach was reported for both zinc oxide and one of the peracetic acid concentrations. Among other functional differences, we found that the predicted ortholog for the zonula occludens toxin, a virulence factor present in pathogens like Escherichia coli and Campylobacter jejuni, was less abundant in the stomach of treated pigs compared to the control group. In water, peracetic acid delivered via precursor hydrolysis has the potential to be a valid intervention, an alternative to antimicrobial, to assist the weaning of piglets. Our findings support the view that post-weaning diarrhea is a complex multifactorial disease with an important metagenomic component characterized by the differential abundance of specific predicted orthologs and microbial genera in the stomach and caecum of pigs.
Collapse
Affiliation(s)
- Salvatore Galgano
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | | | | | - Jos Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
9
|
Kato I, Minkevitch J, Sun J. Oncogenic potential of Campylobacter infection in the gastrointestinal tract: narrative review. Scand J Gastroenterol 2023; 58:1453-1465. [PMID: 37366241 DOI: 10.1080/00365521.2023.2228954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of zoonotic gastroenteritis. The other emerging group of Campylobacters spp. are part of human oral commensal, represented by C. concisus (CC), which has been recently linked to non-oral conditions. Although long-term gastrointestinal (GI) complications from these two groups of Campylobacters have been previously reviewed individually, overall impact of Campylobacter infection on GI carcinogenesis and their inflammatory precursor lesions has not been assessed collectively. AIMS To evaluate the available evidence concerning the association between Campylobacter infection/colonization and inflammatory bowel disease (IBD), reflux esophagitis/metaplasia colorectal cancer (CRC) and esophageal cancer (EC). METHODS We performed a comprehensive literature search of PubMed for relevant original publications and systematic reviews/meta-analyses of epidemiological and clinical studies. In addition, we gathered additional information concerning microbiological data, animal models and mechanistic data from in vitro studies. RESULTS Both retrospective and prospective studies on IBD showed relatively consistent increased risk associated with Campylobacter infection. Despite lack of supporting prospective studies, retrospective studies based on tissue/fecal microbiome revealed consistent enrichment of Campylobacter in CRC samples. Studies on EC precursor lesions (esophagitis and metaplasia) were generally supportive for the association with Campylobacter, while inconsistent observations on EC. Studies on both IBD and EC precursors suggested the predominant role of CC, but studies on CRC were not informative of species. CONCLUSIONS There is sufficient evidence calling for concerted effort in unveiling direct and indirect connection of this organism to colorectal and esophageal cancer in humans.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julia Minkevitch
- Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jun Sun
- Department of Microbiology/Immunology, University of Illinois at Chicago (UIC), Chicago, IL, USA
- UIC Cancer Center, Chicago, IL, USA
| |
Collapse
|
10
|
Veres-Székely A, Szász C, Pap D, Szebeni B, Bokrossy P, Vannay Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int J Mol Sci 2023; 24:ijms24087548. [PMID: 37108711 PMCID: PMC10139156 DOI: 10.3390/ijms24087548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between dysbiosis and central nervous diseases has been proved in the last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central role in the microbiota-gut-brain axis. In this review, we discuss recent findings on zonulin, an important tight junction regulator of intestinal epithelial cells, which is assumed to play a key role in maintaining of the blood-brain barrier function. In addition to focusing on the effect of microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or antagonists. The present review also addresses the emerging issues, including the use of misleading nomenclature or the unsolved questions about the exact protein sequence of zonulin.
Collapse
Affiliation(s)
- Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
11
|
Soto-Beltrá N M, Lee BG, Amézquita-López BA, Quiñones B. Overview of methodologies for the culturing, recovery and detection of Campylobacter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:307-323. [PMID: 35168460 DOI: 10.1080/09603123.2022.2029366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Campylobacter species are responsible for human gastroenteritis with diverse clinical spectra, ranging from acute watery or bloody diarrhea to life-threatening autoimmune disorders. Given the importance of Campylobacter in causing human illness, this article has reviewed the transmission and attribution sources as well as methodologies for the detection and virulence characterization of campylobacteria. The recovery and detection of Campylobacter from clinical, food and environmental samples has been achieved by the combinatorial use of selective enrichment and culturing methods. Biochemical, immunological, and nucleic acid-based methodologies have enabled the detection and differentiation of closely related Campylobacter isolates in foodborne outbreak investigations and have assessed the diversity and phylogenetic relationships of these bacterial pathogens. Analyses of motility, adherence, and invasiveness in host cells have assessed the pathogenic potential of campylobacteria. Further examination of determinants conferring antimicrobial resistance in Campylobacter have supported the growing need to closely monitor antimicrobials use in clinical and agricultural sectors.
Collapse
Affiliation(s)
- Marcela Soto-Beltrá N
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Bertram G Lee
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture/Agricultural Research Service,Western Regional Research Center, Albany, CA, USA
| | | | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture/Agricultural Research Service,Western Regional Research Center, Albany, CA, USA
| |
Collapse
|
12
|
Gummalla VS, Zhang Y, Liao YT, Wu VCH. The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms 2023; 11:541. [PMID: 36985115 PMCID: PMC10052878 DOI: 10.3390/microorganisms11030541] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments.
Collapse
Affiliation(s)
| | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
13
|
Insight into the Relationship between Oral Microbiota and the Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10091868. [PMID: 36144470 PMCID: PMC9505529 DOI: 10.3390/microorganisms10091868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease has been a growing concern of lots of people globally, including both adults and children. As a chronic inflammatory disease of the intestine, even though the etiology of inflammatory bowel disease is still unclear, the available evidence from clinic observations has suggested a close association with microorganisms. The oral microbiota possesses the characteristics of a large number and abundant species, second only to the intestinal microbiota in the human body; as a result, it successfully attracts the attention of researchers. The highly diverse commensal oral microbiota is not only a normal part of the oral cavity but also has a pronounced impact on the pathophysiology of general health. Numerous studies have shown the potential associations between the oral microbiota and inflammatory bowel disease. Inflammatory bowel disease can affect the composition of the oral microbiota and lead to a range of oral pathologies. In turn, there are a variety of oral microorganisms involved in the development and progression of inflammatory bowel disease, including Streptococcus spp., Fusobacterium nucleatum, Porphyromonas gingivalis, Campylobacter concisus, Klebsiella pneumoniae, Saccharibacteria (TM7), and Candida albicans. Based on the above analysis, the purpose of this review is to summarize this relationship of mutual influence and give further insight into the detection of flora as a target for the diagnosis and treatment of inflammatory bowel disease to open up a novel approach in future clinical practice.
Collapse
|
14
|
Zhang L, Liu F, Xue J, Lee SA, Liu L, Riordan SM. Bacterial Species Associated With Human Inflammatory Bowel Disease and Their Pathogenic Mechanisms. Front Microbiol 2022; 13:801892. [PMID: 35283816 PMCID: PMC8908260 DOI: 10.3389/fmicb.2022.801892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with unknown etiology. The pathogenesis of IBD results from immune responses to microbes in the gastrointestinal tract. Various bacterial species that are associated with human IBD have been identified. However, the microbes that trigger the development of human IBD are still not clear. Here we review bacterial species that are associated with human IBD and their pathogenic mechanisms to provide an updated broad understanding of this research field. IBD is an inflammatory syndrome rather than a single disease. We propose a three-stage pathogenesis model to illustrate the roles of different IBD-associated bacterial species and gut commensal bacteria in the development of human IBD. Finally, we recommend microbe-targeted therapeutic strategies based on the three-stage pathogenesis model.
Collapse
Affiliation(s)
- Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Xue
- Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Qi Y, Wu HM, Yang Z, Zhou YF, Jin L, Yang MF, Wang FY. New Insights into the Role of Oral Microbiota Dysbiosis in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:42-55. [PMID: 33527328 DOI: 10.1007/s10620-021-06837-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory disorders with a prolonged duration characterized by recurrent relapse and remission. The exact etiology of IBD remains poorly understood despite the identification of relevant risk factors, including individual genetic susceptibility, environmental triggers, and disruption of immune homeostasis. Dysbiosis of the gut microbiota is believed to exacerbate the progression of IBD. Recently, increasing evidence has also linked oral microbiota dysbiosis with the development of IBD. On the one hand, IBD patients show significantly unbalanced composition and function of the oral microbiota known as dysbiosis. On the other, overabundances of oral commensal bacteria with opportunistic pathogenicity have been found in the gut microbiota of IBD patients. Herein, we review the current information on the causative factors of IBD, especially recent evidence of IBD-associated oral microbiota dysbiosis, which has seldom been covered in the previous literature review, highlighting the pathogenic mechanisms of specific oral bacteria in the development of IBD. Ectopic colonization of several oral bacteria, including a subset of Porphyromonas gingivalis, Streptococcus mutans, Fusobacterium nucleatum, Campylobacter concisus, and Klebsiella pneumoniae, may lead to destruction of the intestinal epithelial barrier, excessive secretion of inflammatory cytokines, disruption of the host immune system, and dysbiosis of gut microbiota, consequently aggravating chronic intestinal inflammation. Studying oral microbiota dysbiosis may open future horizons for understanding IBD pathogenesis and provide novel biomarkers for IBD. This review also presents the current treatment and new perspectives for IBD treatment.
Collapse
Affiliation(s)
- Ying Qi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Hui-Min Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Yi-Fei Zhou
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao-Fang Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Fang-Yu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China.
| |
Collapse
|
16
|
Sicard A, Saponari M, Vanhove M, Castillo AI, Giampetruzzi A, Loconsole G, Saldarelli P, Boscia D, Neema C, Almeida RPP. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb Genom 2021; 7. [PMID: 34904938 PMCID: PMC8767334 DOI: 10.1099/mgen.0.000735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930–2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.
Collapse
Affiliation(s)
- Anne Sicard
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A.,PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Maria Saponari
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Mathieu Vanhove
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Andreina I Castillo
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Annalisa Giampetruzzi
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Piazza Umberto I, 70121 Bari, Italy
| | - Giuliana Loconsole
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Pasquale Saldarelli
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Donato Boscia
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Claire Neema
- PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Rodrigo P P Almeida
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| |
Collapse
|
17
|
Pérez-Reytor D, Puebla C, Karahanian E, García K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol 2021; 12:650313. [PMID: 34108884 PMCID: PMC8181404 DOI: 10.3389/fphys.2021.650313] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are carboxylic acids produced as a result of gut microbial anaerobic fermentation. They activate signaling cascades, acting as ligands of G-protein-coupled receptors, such as GPR41, GPR43, and GPR109A, that can modulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction proteins functions. These junctions, located in the most apical zone of epithelial cells, control the diffusion of ions, macromolecules, and the entry of microorganisms from the intestinal lumen into the tissues. In this sense, several enteric pathogens secrete diverse toxins that interrupt tight junction impermeability, allowing them to invade the intestinal tissue and to favor gastrointestinal colonization. It has been recently demonstrated that SCFAs inhibit the virulence of different enteric pathogens and have protective effects against bacterial colonization. Here, we present an overview of SCFAs production by gut microbiota and their effects on the recovery of intestinal barrier integrity during infections by microorganisms that affect tight junctions. These properties make them excellent candidates in the treatment of infectious diseases that cause damage to the intestinal epithelium.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos Puebla
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Eduardo Karahanian
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
18
|
Cook R, Hooton S, Trivedi U, King L, Dodd CER, Hobman JL, Stekel DJ, Jones MA, Millard AD. Hybrid assembly of an agricultural slurry virome reveals a diverse and stable community with the potential to alter the metabolism and virulence of veterinary pathogens. MICROBIOME 2021; 9:65. [PMID: 33743832 PMCID: PMC7981956 DOI: 10.1186/s40168-021-01010-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Viruses are the most abundant biological entities on Earth, known to be crucial components of microbial ecosystems. However, there is little information on the viral community within agricultural waste. There are currently ~ 2.7 million dairy cattle in the UK producing 7-8% of their own bodyweight in manure daily, and 28 million tonnes annually. To avoid pollution of UK freshwaters, manure must be stored and spread in accordance with guidelines set by DEFRA. Manures are used as fertiliser, and widely spread over crop fields, yet little is known about their microbial composition. We analysed the virome of agricultural slurry over a 5-month period using short and long-read sequencing. RESULTS Hybrid sequencing uncovered more high-quality viral genomes than long or short-reads alone; yielding 7682 vOTUs, 174 of which were complete viral genomes. The slurry virome was highly diverse and dominated by lytic bacteriophage, the majority of which represent novel genera (~ 98%). Despite constant influx and efflux of slurry, the composition and diversity of the slurry virome was extremely stable over time, with 55% of vOTUs detected in all samples over a 5-month period. Functional annotation revealed a diverse and abundant range of auxiliary metabolic genes and novel features present in the community, including the agriculturally relevant virulence factor VapE, which was widely distributed across different phage genera that were predicted to infect several hosts. Furthermore, we identified an abundance of phage-encoded diversity-generating retroelements, which were previously thought to be rare on lytic viral genomes. Additionally, we identified a group of crAssphages, including lineages that were previously thought only to be found in the human gut. CONCLUSIONS The cattle slurry virome is complex, diverse and dominated by novel genera, many of which are not recovered using long or short-reads alone. Phages were found to encode a wide range of AMGs that are not constrained to particular groups or predicted hosts, including virulence determinants and putative ARGs. The application of agricultural slurry to land may therefore be a driver of bacterial virulence and antimicrobial resistance in the environment. Video abstract.
Collapse
Affiliation(s)
- Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Steve Hooton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Liz King
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Christine E R Dodd
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Andrew D Millard
- Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire, LE1 7RH, UK.
| |
Collapse
|
19
|
Pérez-Reytor D, Pavón A, Lopez-Joven C, Ramírez-Araya S, Peña-Varas C, Plaza N, Alegría-Arcos M, Corsini G, Jaña V, Pavez L, Del Pozo T, Bastías R, Blondel CJ, Ramírez D, García K. Analysis of the Zonula occludens Toxin Found in the Genome of the Chilean Non-toxigenic Vibrio parahaemolyticus Strain PMC53.7. Front Cell Infect Microbiol 2020; 10:482. [PMID: 33072618 PMCID: PMC7541967 DOI: 10.3389/fcimb.2020.00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Vibrio parahaemolyticus non-toxigenic strains are responsible for about 10% of acute gastroenteritis associated with this species, suggesting they harbor unique virulence factors. Zonula occludens toxin (Zot), firstly described in Vibrio cholerae, is a secreted toxin that increases intestinal permeability. Recently, we identified Zot-encoding genes in the genomes of highly cytotoxic Chilean V. parahaemolyticus strains, including the non-toxigenic clinical strain PMC53.7. To gain insights into a possible role of Zot in V. parahaemolyticus, we analyzed whether it could be responsible for cytotoxicity. However, we observed a barely positive correlation between Caco-2 cell membrane damage and Zot mRNA expression during PMC53.7 infection and non-cytotoxicity induction in response to purified PMC53.7-Zot. Unusually, we observed a particular actin disturbance on cells infected with PMC53.7. Based on this observation, we decided to compare the sequence of PMC53.7-Zot with Zot of human pathogenic species such as V. cholerae, Campylobacter concisus, Neisseria meningitidis, and other V. parahaemolyticus strains, using computational tools. The PMC53.7-Zot was compared with other toxins and identified as an endotoxin with conserved motifs in the N-terminus and a variable C-terminal region and without FCIGRL peptide. Notably, the C-terminal diversity among Zots meant that not all of them could be identified as toxins. Structurally, PMC53.7-Zot was modeled as a transmembrane protein. Our results suggested that it has partial 3D structure similarity with V. cholerae-Zot. Probably, the PMC53.7-Zot would affect the actin cytoskeletal, but, in the absence of FCIGRL, the mechanisms of actions must be elucidated.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Alequis Pavón
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Facultad de Ciencias Veterinarias, Instituto de Medicina Preventiva Veterinaria, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Ramírez-Araya
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos Peña-Varas
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nicolás Plaza
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Melissa Alegría-Arcos
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Gino Corsini
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Leonardo Pavez
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile.,Instituto de Ciencias Naturales, Universidad de Las Américas, Santiago, Chile
| | - Talia Del Pozo
- Centro Tecnológico de Recursos Vegetales, Escuela de Agronomía, Universidad Mayor, Huechuraba, Chile
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carlos J Blondel
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.,Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago, Chile
| | - David Ramírez
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
20
|
Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020; 12:v12070730. [PMID: 32640584 PMCID: PMC7412436 DOI: 10.3390/v12070730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Zonula occludens toxin (Zot) is a conserved protein in filamentous vibriophages and has been reported as a putative toxin in Vibrio cholerae. Recently, widespread distribution of zot-encoding prophages was found among marine Vibrio species, including environmental isolates. However, little is known about the dynamics of these prophages beyond V. cholerae. In this study, we characterized and quantified the zot-encoding filamentous phage VAIϕ, spontaneously induced from the fish pathogen V. anguillarum. VAIϕ contained 6117 bp encoding 11 ORFs, including ORF8pVAI, exhibiting 27%–73% amino acid identity to Inovirus Zot-like proteins. A qPCR method revealed an average of four VAIϕ genomes per host genome during host exponential growth phase, and PCR demonstrated dissemination of induced VAIϕ to other V. anguillarum strains through re-integration in non-lysogens. VAIϕ integrated into both chromosomes of V. anguillarum by recombination, causing changes in a putative ORF in the phage genome. Phylogenetic analysis of the V. anguillarumInoviridae elements revealed mosaic genome structures related to mainly V. cholerae. Altogether, this study contributes to the understanding of Inovirus infection dynamics and mobilization of zot-like genes beyond human pathogenic vibrios, and discusses their potential role in the evolution of the fish pathogen V. anguillarum.
Collapse
Affiliation(s)
- Jesper Juel Mauritzen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
| | - Demeng Tan
- Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (D.T.); (S.L.S.)
| | - Sine Lo Svenningsen
- Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (D.T.); (S.L.S.)
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
- Correspondence: ; Tel.: +45-35-32-19-91
| |
Collapse
|
21
|
Hornung BVH, Kuijper EJ, Smits WK. An in silico survey of Clostridioides difficile extrachromosomal elements . Microb Genom 2020; 5. [PMID: 31526450 PMCID: PMC6807378 DOI: 10.1099/mgen.0.000296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Gram-positive enteropathogen Clostridioides difficile (Clostridium difficile) is the major cause of healthcare-associated diarrhoea and is also an important cause of community-acquired infectious diarrhoea. Considering the burden of the disease, many studies have employed whole-genome sequencing of bacterial isolates to identify factors that contribute to virulence and pathogenesis. Though extrachromosomal elements (ECEs) such as plasmids are important for these processes in other bacteria, the few characterized plasmids of C. difficile have no relevant functions assigned and no systematic identification of plasmids has been carried out to date. Here, we perform an in silico analysis of publicly available sequence data to show that ~13 % of all C. difficile strains contain ECEs, with 1–6 elements per strain. Our approach identifies known plasmids (e.g. pCD6, pCD630 and cloning plasmids) and six novel putative plasmid families. Our study shows that plasmids are abundant and may encode functions that are relevant for C. difficile physiology. The newly identified plasmids may also form the basis for the construction of novel cloning plasmids for C. difficile that are compatible with existing tools.
Collapse
Affiliation(s)
- Bastian V H Hornung
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Ed J Kuijper
- Netherlands Centre for One Health, The Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Netherlands Centre for One Health, The Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden, The Netherlands
| |
Collapse
|
22
|
Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome. mBio 2020; 11:e02430-19. [PMID: 32098813 PMCID: PMC7042692 DOI: 10.1128/mbio.02430-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Symbiotic mutualisms of bacteria and animals are ubiquitous in nature, running a continuum from facultative to obligate from the perspectives of both partners. The loss of functions required for living independently but not within a host gives rise to reduced genomes in many symbionts. Although the phenomenon of genome reduction can be explained by existing evolutionary models, the initiation of the process is not well understood. Here, we describe the microbiome associated with the eggs of the beetle Lagria villosa, consisting of multiple bacterial symbionts related to Burkholderia gladioli, including a reduced-genome symbiont thought to be the exclusive producer of the defensive compound lagriamide. We show that the putative lagriamide-producing symbiont is the only member of the microbiome undergoing genome reduction and that it has already lost the majority of its primary metabolism and DNA repair pathways. The key step preceding genome reduction in the symbiont was likely the horizontal acquisition of the putative lagriamide lga biosynthetic gene cluster. Unexpectedly, we uncovered evidence of additional horizontal transfers to the symbiont's genome while genome reduction was occurring and despite a current lack of genes needed for homologous recombination. These gene gains may have given the genome-reduced symbiont a selective advantage in the microbiome, especially given the maintenance of the large lga gene cluster despite ongoing genome reduction.IMPORTANCE Associations between microorganisms and an animal, plant, or fungal host can result in increased dependence over time. This process is due partly to the bacterium not needing to produce nutrients that the host provides, leading to loss of genes that it would need to live independently and to a consequent reduction in genome size. It is often thought that genome reduction is aided by genetic isolation-bacteria that live in monocultures in special host organs, or inside host cells, have less access to other bacterial species from which they can obtain genes. Here, we describe exposure of a genome-reduced beetle symbiont to a community of related bacteria with nonreduced genomes. We show that the symbiont has acquired genes from other bacteria despite going through genome reduction, suggesting that isolation has not yet played a major role in this case of genome reduction, with horizontal gene gains still offering a potential route for adaptation.
Collapse
Affiliation(s)
- Samantha C Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, Jena, Germany
- Department of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Liu F, Lee SA, Riordan SM, Zhang L, Zhu L. Effects of Anti-Cytokine Antibodies on Gut Barrier Function. Mediators Inflamm 2019; 2019:7028253. [PMID: 31780866 PMCID: PMC6875247 DOI: 10.1155/2019/7028253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Anti-cytokine antibodies are used in treating chronic inflammatory diseases and autoimmune diseases such as inflammatory bowel disease and rheumatic diseases. Patients with these diseases often have a compromised gut barrier function, suggesting that anti-cytokine antibodies may contribute to the re-establishment of gut barrier integrity, in addition to their immunomodulatory effects. This paper reviews the effects of anti-cytokine antibodies on gut barrier function and their mechanisms.
Collapse
Affiliation(s)
- Fang Liu
- Department of General Surgery and Central Lab, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lixin Zhu
- Department of General Surgery and Central Lab, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
24
|
Liu F, Ma R, Wang Y, Zhang L. The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species. Front Cell Infect Microbiol 2018; 8:243. [PMID: 30087857 PMCID: PMC6066527 DOI: 10.3389/fcimb.2018.00243] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Historically, Campylobacteriosis has been considered to be zoonotic; the Campylobacter species that cause human acute intestinal disease such as Campylobacter jejuni and Campylobacter coli originate from animals. Over the past decade, studies on human hosted Campylobacter species strongly suggest that Campylobacter concisus plays a role in the development of inflammatory bowel disease (IBD). C. concisus primarily colonizes the human oral cavity and some strains can be translocated to the intestinal tract. Genome analysis of C. concisus strains isolated from saliva samples has identified a bacterial marker that is associated with active Crohn's disease (one major form of IBD). In addition to C. concisus, humans are also colonized by a number of other Campylobacter species, most of which are in the oral cavity. Here we review the most recent advancements on C. concisus and other human hosted Campylobacter species including their clinical relevance, transmission, virulence factors, disease associated genes, interactions with the human immune system and pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Liu F, Ma R, Tay CYA, Octavia S, Lan R, Chung HKL, Riordan SM, Grimm MC, Leong RW, Tanaka MM, Connor S, Zhang L. Genomic analysis of oral Campylobacter concisus strains identified a potential bacterial molecular marker associated with active Crohn's disease. Emerg Microbes Infect 2018; 7:64. [PMID: 29636463 PMCID: PMC5893538 DOI: 10.1038/s41426-018-0065-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 02/08/2023]
Abstract
Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease (IBD) including Crohn's disease (CD) and ulcerative colitis (UC). C. concisus consists of two genomospecies (GS) and diverse strains. This study aimed to identify molecular markers to differentiate commensal and IBD-associated C. concisus strains. The genomes of 63 oral C. concisus strains isolated from patients with IBD and healthy controls were examined, of which 38 genomes were sequenced in this study. We identified a novel secreted enterotoxin B homologue, Csep1. The csep1 gene was found in 56% of GS2 C. concisus strains, presented in the plasmid pICON or the chromosome. A six-nucleotide insertion at the position 654-659 bp in csep1 (csep1-6bpi) was found. The presence of csep1-6bpi in oral C. concisus strains isolated from patients with active CD (47%, 7/15) was significantly higher than that in strains from healthy controls (0/29, P = 0.0002), and the prevalence of csep1-6bpi positive C. concisus strains was significantly higher in patients with active CD (67%, 4/6) as compared to healthy controls (0/23, P = 0.0006). Proteomics analysis detected the Csep1 protein. A csep1 gene hot spot in the chromosome of different C. concisus strains was found. The pICON plasmid was only found in GS2 strains isolated from the two relapsed CD patients with small bowel complications. This study reports a C. concisus molecular marker (csep1-6bpi) that is associated with active CD.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chin Yen Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Heung Kit Leslie Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Michael C Grimm
- St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Rupert W Leong
- Concord Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Susan Connor
- Liverpool Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Kayansamruaj P, Dong H, Hirono I, Kondo H, Senapin S, Rodkhum C. Genome characterization of piscine ‘Scale drop and Muscle Necrosis syndrome’-associated strain ofVibrio harveyifocusing on bacterial virulence determinants. J Appl Microbiol 2018; 124:652-666. [DOI: 10.1111/jam.13676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023]
Affiliation(s)
- P. Kayansamruaj
- Department of Veterinary Microbiology; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
- Department of Aquaculture; Faculty of Fisheries; Kasetsart University; Bangkok Thailand
| | - H.T. Dong
- Aquaculture Vaccine Platform; Department of Microbiology; Faculty of Science; King Mongkut's University of Technology Thonburi; Bangkok Thailand
| | - I. Hirono
- Laboratory of Genome Science; Tokyo University of Marine Science and Technology; Tokyo Japan
| | - H. Kondo
- Laboratory of Genome Science; Tokyo University of Marine Science and Technology; Tokyo Japan
| | - S. Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp); Faculty of Science; Mahidol University; Bangkok Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - C. Rodkhum
- Department of Veterinary Microbiology; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
- Fish Infectious Diseases (FIDs) - Special Task Force for Activating Research (STAR); Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
27
|
Wang Y, Liu F, Zhang X, Chung HKL, Riordan SM, Grimm MC, Zhang S, Ma R, Lee SA, Zhang L. Campylobacter concisus Genomospecies 2 Is Better Adapted to the Human Gastrointestinal Tract as Compared with Campylobacter concisus Genomospecies 1. Front Physiol 2017; 8:543. [PMID: 28824443 PMCID: PMC5541300 DOI: 10.3389/fphys.2017.00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023] Open
Abstract
Campylobacter concisus was previously shown to be associated with inflammatory bowel disease including Crohn's disease (CD) and ulcerative colitis (UC). C. concisus has two genomospecies (GS). This study systematically examined the colonization of GS1 and GS2 C. concisus in the human gastrointestinal tract. GS1 and GS2 specific polymorphisms in 23S rRNA gene were identified by comparison of the 23S rRNA genes of 49 C. concisus strains. Two newly designed PCR methods, based on the polymorphisms of 23S rRNA gene, were developed and validated. These PCR methods were used to detect and quantify GS1 and GS2 C. concisus in 56 oral and enteric samples collected from the gastrointestinal tract of patients with IBD and healthy controls. Meta-analysis of the composition of the isolated GS1 and GS2 C. concisus strains in previous studies was also conducted. The quantitative PCR methods revealed that there was more GS2 than GS1 C. concisus in samples collected from the upper and lower gastrointestinal tract of both patients with IBD and healthy controls, showing that GS2 C. concisus is better adapted to the human gastrointestinal tract. Analysis of GS1 and GS2 composition of isolated C. concisus strains in previous studies showed similar findings except that in healthy individuals a significantly lower GS2 than GS1 C. concisus strains were isolated from fecal samples, suggesting a potential difference in the C. concisus strains or the enteric environment between patients with gastrointestinal diseases and healthy controls. This study provides novel information regarding the adaptation of different genomospecies of C. concisus in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Xiang Zhang
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Heung Kit Leslie Chung
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South WalesSydney, NSW, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South WalesSydney, NSW, Australia
| | - Shu Zhang
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
28
|
Liu F, Ma R, Riordan SM, Grimm MC, Liu L, Wang Y, Zhang L. Azathioprine, Mercaptopurine, and 5-Aminosalicylic Acid Affect the Growth of IBD-Associated Campylobacter Species and Other Enteric Microbes. Front Microbiol 2017; 8:527. [PMID: 28424670 PMCID: PMC5372805 DOI: 10.3389/fmicb.2017.00527] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Campylobacter concisus is a bacterium that is associated with inflammatory bowel disease (IBD). Immunosuppressive drugs including azathioprine (AZA) and mercaptopurine (MP), and anti-inflammatory drug such as 5-aminosalicylic acid (5-ASA) are commonly used to treat patients with IBD. This study aimed to examine the effects of AZA, MP, and 5-ASA on the growth of IBD-associated bacterial species and to identify bacterial enzymes involved in immunosuppressive drug metabolism. A total of 15 bacterial strains of five species including 11 C. concisus strains, Bacteroides fragilis, Bacteroides vulgatus, Enterococcus faecalis, and Escherichia coli were examined. The impact of AZA, MP, and 5-ASA on the growth of these bacterial species was examined quantitatively using a plate counting method. The presence of enzymes involved in AZA and MP metabolism in these bacterial species was identified using bioinformatics tools. AZA and MP significantly inhibited the growth of all 11 C. concisus strains. C. concisus strains were more sensitive to AZA than MP. 5-ASA showed inhibitory effects to some C. concisus strains, while it promoted the growth of other C. concisus strains. AZA and MP also significantly inhibited the growth of B. fragilis and B. vulgatus. The growth of E. coli was significantly inhibited by 200 μg/ml of AZA as well as 100 and 200 μg/ml of 5-ASA. Bacterial enzymes related to AZA and MP metabolism were found, which varied in different bacterial species. In conclusion, AZA and MP have inhibitory effects to IBD-associated C. concisus and other enteric microbes, suggesting an additional therapeutic mechanism of these drugs in the treatment of IBD. The strain dependent differential impact of 5-ASA on the growth of C. concisus may also have clinical implication given that in some cases 5-ASA medications were found to cause exacerbations of colitis.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South WalesSydney, NSW, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South WalesSydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
29
|
Chung HKL, Tay A, Octavia S, Chen J, Liu F, Ma R, Lan R, Riordan SM, Grimm MC, Zhang L. Genome analysis of Campylobacter concisus strains from patients with inflammatory bowel disease and gastroenteritis provides new insights into pathogenicity. Sci Rep 2016; 6:38442. [PMID: 27910936 PMCID: PMC5133609 DOI: 10.1038/srep38442] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease. C. concisus has two major genomospecies, which appear to have different enteric pathogenic potential. Currently, no studies have compared the genomes of C. concisus strains from different genomospecies. In this study, a comparative genome analysis of 36 C. concisus strains was conducted including 27 C. concisus strains sequenced in this study and nine publically available C. concisus genomes. The C. concisus core-genome was defined and genomospecies-specific genes were identified. The C. concisus core-genome, housekeeping genes and 23S rRNA gene consistently divided the 36 strains into two genomospecies. Two novel genomic islands, CON_PiiA and CON_PiiB, were identified. CON_PiiA and CON_PiiB islands contained proteins homologous to the type IV secretion system, LepB-like and CagA-like effector proteins. CON_PiiA islands were found in 37.5% of enteric C. concisus strains (3/8) isolated from patients with enteric diseases and none of the oral strains (0/27), which was statistically significant. This study reports the findings of C. concisus genomospecies-specific genes, novel genomic islands that contain type IV secretion system and putative effector proteins, and other new genomic features. These data provide novel insights into understanding of the pathogenicity of this emerging opportunistic pathogen.
Collapse
Affiliation(s)
- Heung Kit Leslie Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jieqiong Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|