1
|
Wu A, Xu L, Zhang Y, Zhu Y, Wu Y, Wu J, Wen L, Yuan Z, Wang J. Tannic acid mitigates salmonella-induced lung injury via gut-lung axis in broilers. Poult Sci 2025; 104:104973. [PMID: 40058006 PMCID: PMC11930585 DOI: 10.1016/j.psj.2025.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Tannic acid (TA), a polyphenolic compound derived from plants, exhibits anti-inflammatory, antibacterial, antiviral, and antioxidant biological activities. Salmonella, a prevalent foodborne pathogen, poses a significant threat to poultry, resulting in considerable economic losses for the animal husbandry industry. In this study, we investigated the protective effects of TA against lung and intestinal injuries induced by a transient Salmonella infection in broilers. After a ten-day infection period, although Salmonella was not detected in the intestinal content of broilers, the infected broilers exhibited reduced body weight and compromised intestinal barrier function. Salmonella infection facilitated the growth of detrimental bacteria in the lungs and ileums, triggering an inflammatory response. TA inhibited the pathogen's colonization in the lungs and reduced serum levels of lipopolysaccharide (LPS) as well as lung levels of myeloperoxidase (MPO). Moreover, TA down-regulated the expression of pro-inflammatory cytokines and hindered the polarization of M1 macrophages in the lungs. In summary, TA mitigates Salmonella-induced lung inflammation and immune imbalance by its anti-inflammatory, antioxidant and antibacterial properties in broilers.
Collapse
Affiliation(s)
- Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Liu Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yinzhu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, PR China.
| |
Collapse
|
2
|
Ahmad AAM, Hussien EAM, Elian AAAM, Abdelmoneim M, Ali A, Abdelhamid AE, Elmowalid GA. Nigella sativa monophosphoryl lipid A nanoliposome: a promising antibiotic alternative and immunomodulator to control virulent pandemic drug-resistant Salmonella pullorum infection in broiler chicks. BMC Vet Res 2025; 21:132. [PMID: 40025471 PMCID: PMC11874670 DOI: 10.1186/s12917-025-04473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/03/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Salmonella enterica serovar Pullorum, the causative agent of pullorum disease, is one cause of the economic losses in the global poultry industry. Vaccination and antibiotics are still the most effective methods of controlling Salmonella, even though the vaccine contains the causative agent, and the antibiotic therapy has limited efficacy. We provide a novel immunostimulator and antibiotic substitute to protect against and avoid Salmonella pullorum (SP) infection. METHODS Nigella sativa-purified oil (NS) and monophosphoryl lipid A (MPLA) were formulated as nanoliposomal compounds (NS-MPLA). Their protective and immunomodulatory efficacies were experimentally tested orally in broiler chicks against challenge with virulent pandemic drug-resistant SP. Four chick groups were utilized: control; NS-MPLA-supplemented; SP-challenged; and SP-challenged, then NS-MPLA-treated. Clinical signs, organ gross pathology, colony-forming counts, and tissue histopathological alterations were investigated. The relative fold-changes in the expression of IL-1β, IL-4, IL-17, IL-22, TLR-4, INF-γ, IgA, and MUC2 genes were evaluated. RESULTS The SP-challenged chicks showed notable symptoms and extensive pathological lesions in their internal organs. The bacteria colonized the challenged chicks' livers and continued to shed in their feces for 5-6 days. A minor amount of immune cell tissue trafficking was noted. The NS-MPLA-treated chicks displayed opposing patterns after being challenged with SP. They exhibited mild clinical signs with modest gross pathology in the internal organs. After 3-4 days, the liver and the fecal droppings were cleared of SP. Significant heterophilic aggregation, lymphocytic infiltration, and lymphoid follicle enlargement were observed. Additionally, chicks challenged with SP and then NS-MPLA-treated showed a 5- to tenfold increase in immune-related cytokines, immunoglobulin A, and mucosal relative gene expression folds compared to the SP-challenged non-NS-MPLA-treated, which showed a sharp decline in IL-4 and IL-22 and a minor rise in the rest of the tested gene relative expressions. Chicks given NS-MPLA supplementation showed a significant upregulation of these genes compared to the control group. CONCLUSION In this first report on poultry, it is possible to draw the conclusion that NS-MPLA supplementation in SP-infected chicks boosts immunity and provides protection. It promoted bacterial clearance and tissue repair and stimulated the expression of genes linked to immunity and the mucosal surface. These findings suggest the potential application of NS-MPLA in salmonella control programs as an antibiotic substitute or in immunization strategies.
Collapse
Affiliation(s)
- Adel Attia M Ahmad
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Sharqiah, Egypt.
| | | | - Alaa A A M Elian
- Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Mohamed Abdelmoneim
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Sharqiah, Egypt
| | - A Ali
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Sharqiah, Egypt
| | - Ahmed E Abdelhamid
- Polymers and Pigments Department, National Research Center, Giza, Dokki, Egypt
| | - Gamal A Elmowalid
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Sharqiah, Egypt
| |
Collapse
|
3
|
Nassar YM, Abd El-Ghany WA, Ibrahim AK, Hamouda AS, El-Bakery AM, Mekkawy AM. Ameliorating effects of antibiotic alternatives on the performance and pathological parameters of Salmonella Typhimurium infected broiler chickens. Microb Pathog 2025; 200:107305. [PMID: 39824261 DOI: 10.1016/j.micpath.2025.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
The purpose of this study was to investigate the effects of thyme oil (TO), chitosan nanoparticles (CS-NPs), and TO-loaded-CS-NPs on controlling Salmonella Typhimurium (S. Typhimurium) infection in broiler chickens when compared to ciprofloxacin (Cip) antibiotic treatment. The CS-NPs and TO-loaded-CS-NPs were initially characterized using a transmission electron microscope. Two hundred and forty broiler chicks were divided into six equal groups. Group 1 was given TO (1ml/4L of the drinking water). However, group 2 and group 3 were given CS-NPs and TO-loaded-CS-NPs in a 2 ml/chick dose by oral gavage. Group 4 was given a Cip (0.5 g/mL of drinking water). Treatments started on the 20th day of age and continued for 5 successive days. Each chicken in groups 1-5 was orally infected with 1 ml of 1 × 109 CFU/ml S. Typhimurium 14 days old. Chickens in group 6 were kept as blank control negative without treatment or infection. All groups were kept for 4 weeks post-infection to record clinical observations, performance parameters, the shedding rate of S. Typhimurium, and the histopathological parameters of different organs. Results showed that the infected untreated group had the lowest performance (BWT: 2164.60 ± 31.90), with the highest bacterial count (BC) (8.56 ± 0.14) and lesion scores. The best results were obtained in response to TO-loaded-CS-NPs (BWT: 2422.70 ± 51.15 and BC: 6.62 ± 0.32) and Cip (BWT: 2431.50 ± 40.01 and BC: 5.32 ± 0.16). Therefore, it is recommended to use TO-loaded-CS-NPs as an alternative antibacterial agent in controlling S. Typhimurium infection without taking the risk of developing resistant bacterial strains as with antibiotics.
Collapse
Affiliation(s)
- Yousra M Nassar
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Adel K Ibrahim
- Clinical Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Hamouda
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amal M El-Bakery
- Plant Pathology Research Institute, Agricultural Research Centre (ARC), Giza, 12211, Egypt
| | - Aya M Mekkawy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
4
|
Braz M, Pereira C, Freire CSR, Almeida A. Evaluation of the potential of phage phSE-5 to fight Salmonella Typhimurium in milk, liquid whole egg, and eggshell. J Appl Microbiol 2025; 136:lxaf008. [PMID: 39794278 DOI: 10.1093/jambio/lxaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
AIMS This study aimed to evaluate the potential of phage phSE-5 to inactivate Salmonella enterica serovar Typhimurium in milk (at 4, 10, and 25°C), liquid whole egg, and eggshell (at 25°C for both matrices). METHODS AND RESULTS Since the success of phage treatment in food depends on maintaining phage viability towards different food conditions, firstly the stability of phage phSE-5 at different temperatures and pHs was assessed. The effect of phage phSE-5 against S. Typhimurium was then assessed in vitro (liquid culture medium-TSB) and finally in the selected food matrices. Phage phSE-5 was stable for long storage periods (56 days) at pH 7-8 and 4-25°C. At 25°C, the efficacy of phage phSE-5 was matrix-dependent with differences in the sample, relatively to the bacterial control, of 2.7, 4.6, 1.8, and 1.3 log colony-forming units (CFU) ml-1 in TSB, milk, liquid whole egg, and eggshell, respectively. Also, phage phSE-5 led to reductions relatively to the initial bacterial concentration only in TSB and milk with 1.9 and 2.1 log CFU ml-1 reduction, respectively. Additionally, this phage was more efficient at 25°C in the tested matrices than at 10°C (no reduction and 1.7 log CFU ml-1 reduction in TSB and milk, respectively; maximum difference of 1.7 and 3.3 log CFU ml-1 in TSB and milk, respectively) and 4°C (no bacterial reduction/difference was observed in both TSB and milk). However, the decrease in temperature from 25 to 10°C slowed down bacterial regrowth after phage treatment. CONCLUSIONS Our results show that phages are promising and environmentally friendly candidates for use as biocontrol agents against S. Typhimurium in milk, liquid whole egg, and eggshell, allowing a reduction in energy costs if carried out at 10°C.
Collapse
Affiliation(s)
- Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- Department of Chemistry and CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Carmen S R Freire
- Department of Chemistry and CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
5
|
Zhang J, Miao Q, Ma X, He D, Pan Y, Yuan L, Zhai Y, Hu G. Colistin-niclosamide effervescent dry suspension combats colistin-resistant Salmonella in vitro and in vivo. Poult Sci 2024; 103:104492. [PMID: 39500268 PMCID: PMC11570728 DOI: 10.1016/j.psj.2024.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
The increasing incidence of bacterial infections caused by multidrug-resistant (MDR) Gram-negative bacteria has deepened the need for new effective treatments. It has been reported that niclosamide (NIC) can restore the sensitivity of Gram-negative bacteria to colistin (COL). However, NIC is practically insoluble in water and sparingly soluble in organic solvents, leading to limited therapeutic applications. This study aims to prepare a COL-NIC effervescent dry suspension (CNEDS) and evaluate its antibacterial effect against COL-resistant Salmonella both in vitro and in broiler chickens. With the sedimentation volume ratio as an index, suitable suspending agent, wetting agent, filler and effervescent agent were screened through a single-factor method. The preparation conditions were optimized using the Box-Behnken response surface method to obtain the formulation for CNEDS. The quality evaluation results showed that the successfully prepared CNEDS had a sedimentation volume ratio of 0.99, a drying weight loss of 1.3%, and a re-dispersion capability of 1-2 times, all of which met pharmacopoeial requirements. In terms of pharmacological evaluation, we first demonstrated that CNEDS substantially restored COL sensitivity against COL-resistant bacteria. Subsequently, time-killing analysis, scanning electron microscopy (SEM) and live/dead assays confirmed the antibacterial activity of CNEDS against COL-resistant bacteria. Finally, a Salmonella infection model in broiler chickens was established to further assess the therapeutic effect of CNEDS in vivo. CNEDS improved the survival rate of broiler chickens, reduced the bacterial burden on organs. These findings suggest that CNEDS effectively overcome COL resistance, indicating its potential for the treatment of COL-resistant bacterial infections in broiler chickens.
Collapse
Affiliation(s)
- Junkai Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Qingqing Miao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaoyuan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| |
Collapse
|
6
|
Mora-Ochoa YI, Ramirez-Cando LJ. Salmonella pathogenesis-based In-silico design and immunoinformatic analysis of multi-epitope vaccine constructs in broiler veterinary medicine. Vet J 2024; 308:106240. [PMID: 39276848 DOI: 10.1016/j.tvjl.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Salmonellosis, a zoonotic gastrointestinal disease, presents a significant global health burden with a high incidence rate. Transmission primarily occurs through the consumption of contaminated poultry products, although water and contact with asymptomatic animals are also vectors. The disease's pervasiveness has prompted international health organizations to advocate for robust prevention and control strategies. This study focuses on the in-silico design of a multi-epitope vaccine targeting Salmonella enterica serovar Typhimurium's fimH protein, a fimbriae component crucial for bacterial adhesion and pathogenicity. The vaccine construct was developed by identifying and synthesizing non-allergenic, antigenic, and non-toxic epitopes for both Cytotoxic T Lymphocytes and Helper T Lymphocytes. Adjuvants were incorporated to enhance immunogenicity, and the vaccine's structure was modeled using advanced bioinformatics tools. The proposed vaccine demonstrated promising antigenicity and immunogenicity profiles, with a favorable physical-chemical property analysis. The vaccine's structures, designed by computational analysis, suggests high likelihood to native protein configurations. Antigenicity and allergenicity assessments validate the vaccine's immunogenic potential and hypoallergenic nature. Physicochemical evaluations indicate favorable stability and solubility profiles, essential for vaccine efficacy. This comprehensive approach to vaccine design expressed in Chlorella vulgaris holds promises for effective salmonellosis control. The multi-epitope vaccine, designed through meticulous in-silico methods, emerges as a promising candidate for controlling salmonellosis. Its strategic construction based on the fimH protein epitopes offers a targeted approach to elicit a robust immune response, potentially curbing the spread of this disease in poultry.
Collapse
Affiliation(s)
- Yuliana I Mora-Ochoa
- School of Biological Sciences and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Urcuquí 100115, Ecuador
| | - Lenin J Ramirez-Cando
- School of Biological Sciences and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Urcuquí 100115, Ecuador.
| |
Collapse
|
7
|
Cui L, Li P, Xu Q, Huang J, Gu X, Song M, Sun S. Antimicrobial resistance and clonal relationships of Salmonella enterica Serovar Gallinarum biovar pullorum strains isolated in China based on whole genome sequencing. BMC Microbiol 2024; 24:414. [PMID: 39425016 PMCID: PMC11487782 DOI: 10.1186/s12866-024-03296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Pullorum disease is a serious problem in many countries. Caused by Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum), it creates huge economic losses in the poultry industry. Although pullorum disease has been well-controlled in many developed countries, it is still a critical problem in developing countries. However, there is still a lack of information on S. Pullorum strains isolated from different regions and sources in China. The objective of this study was to supply the antimicrobial resistance patterns and clonal relationships of S. Pullorum from breeder chicken farms. METHODS In this study, a total of 114 S. Pullorum strains recovered from 11 provinces and municipalities in China between 2020 and 2021 were selected. These 114 S. Pullorum strains were analyzed using whole genome sequencing (WGS). Antimicrobial resistance (AMR) was tested both by genotypic prediction using the WGS method and using disc diffusion to assess phenotypic AMR. RESULTS These 114 sequenced S. Pullorum strains were divided into three sequence types (STs), the dominant STs was ST92 (104/114). Further core genome multi-locus sequence typing analysis indicated that 114 S. Pullorum strains may have a close relationship, which could be clonally transmitted among different provinces and municipalities. Our results showed a close relationship between the S. Pullorum strains found in different regions, indicating these strains may have been transmitted in China a long time ago. Nearly all S. Pullorum strains 94.74% (n = 108) were resistant to at least one antimicrobial class, and 35.96% of the examined Salmonella strains were considered multiple drug resistant. CONCLUSION Overall, this study showed that S. Pullorum strains in China have a close genetic relationship in terms of antimicrobial resistance, suggesting widespread clonal transmission.
Collapse
Affiliation(s)
- Lulu Cui
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peiyong Li
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qi Xu
- China Animal Disease Control Center, Beijing, 102618, China
| | - Jiaqi Huang
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoxue Gu
- China Animal Disease Control Center, Beijing, 102618, China.
| | - Mengze Song
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Shuhong Sun
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
8
|
Kabeta T, Tolosa T, Duchateau L, Van Immerseel F, Antonissen G. Prevalence and serotype of poultry salmonellosis in Africa: a systematic review and meta-analysis. Avian Pathol 2024; 53:325-349. [PMID: 38639048 DOI: 10.1080/03079457.2024.2344549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Salmonellosis represents a significant economic and public health concern for the poultry industry in Africa, leading to substantial economic losses due to mortality, reduced productivity, and food safety problems. However, comprehensive information on the burden of poultry salmonellosis at the continental level is scarce. To address this gap, a systematic review and meta-analysis were conducted to consolidate information on the prevalence and circulating serotypes of poultry salmonellosis in African countries. This involved the selection and review of 130 articles published between 1984 and 2021. A detailed systematic review protocol was structured according to Cochrane STROBE and PRISMA statement guideline. From the 130 selected articles from 23 different African countries, the overall pooled prevalence estimate (PPE) of poultry salmonellosis in Africa was found to be 14.4% (95% CI = 0.145-0.151). Cameroon reported the highest PPE at 71.9%. The PPE was notably high in meat and meat products at 23%. The number of research papers reporting poultry salmonellosis in Africa has shown a threefold increase from 1984 to 2021. Salmonella Enteritidis and Typhimurium were the two most prevalent serotypes reported in 18 African countries. Besides, Salmonella Kentucky, Virchow, Gallinarum, and Pullorum were also widely reported. Western Africa had the highest diversity of reported Salmonella serotypes (141), in contrast to southern Africa, which reported only 27 different serotypes. In conclusion, poultry salmonellosis is highly prevalent across Africa, with a variety of known serotypes circulating throughout the continent. Consequently, it is crucial to implement strategic plans for the prevention and control of Salmonella in Africa.RESEARCH HIGHLIGHTS The pooled sample prevalence of poultry salmonellosis in Africa is high (14.4%).The highest PPE was recorded in meat and meat products.Salmonella serotypes of zoonotic importance were found in all sample types.Salmonella Enteritidis and Typhimurium are common serotypes spreading in Africa.
Collapse
Affiliation(s)
- Tadele Kabeta
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Tadele Tolosa
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Luc Duchateau
- Faculty of Veterinary Medicine, Biometrics Research Group, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Gunther Antonissen
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Devanathan N, Mukhopadhyay HK, Sihag KK, Terence Nathan A, Chakkaravarthi A, Srinivasan L, Srinivas MV, Vasu J, Shanmugam VP, Rahi M, Devaraju P. Synanthropic rodents and shrews are reservoirs of zoonotic bacterial pathogens and act as sentinels for antimicrobial resistance spillover in the environment: A study from Puducherry, India. One Health 2024; 18:100759. [PMID: 38784598 PMCID: PMC11111835 DOI: 10.1016/j.onehlt.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global public health concern and needs to be monitored for control. In this study, synanthropic rodents trapped from humans and animal habitats in Puducherry, India, were screened as sentinels for bacterial pathogens of public health importance and antimicrobial resistance spillover. From the trapped rodents and shrews (n = 100) pathogens viz., Staphylococcus sp, E. coli and Salmonella sp were isolated from oropharyngeal and rectal swabs on Mannitol salt, Mac Conkey and Xylose lysine deoxycholate media respectively. The AMR genes in these isolates were screened by PCR. A total of 76, S. aureus and 19, Staphylococcus non aureus were isolated. E. coli was isolated in 89 samples and among the Salmonella sp (n = 59), 16, were S. enteritidis and 29, were S. typhimurium. A total of 46 MRSA isolates with mec A (n = 40) and mec C (n = 6) were detected. Also, 36.84% and 5.3% Staphylococcus non aureus isolates were tested to have mec A and mec C genes. AMR genes encoding ESBL [blaTEM in 21, blaSHV in 45 and blaCTX-M in 11] was tested positive in 77 E. coli isolates. Among, Salmonella isolates 44/45 were screened to have AMR genes [tet in 13, sul3 & sul4 in 20 and qnrA in 11]. Antibiotic sensitivity test confirmed the antimicrobial resistance. Isolation of pathogens of public health importance and demonstration of genetic elements conferring antimicrobial resistance in the synanthropic rodents confirms that they act as reservoirs and appropriate sentinels to monitor AMR spillover in the environment.
Collapse
Affiliation(s)
- Nivedha Devanathan
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Hirak Kumar Mukhopadhyay
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Krishan Kumar Sihag
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - A. Terence Nathan
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Aravindasamy Chakkaravarthi
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Lakshmy Srinivasan
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Mouttou Vivek Srinivas
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Jayalakshmi Vasu
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Venkatesa Perumal Shanmugam
- Department of Veterinary Biochemistry, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Manju Rahi
- The Director, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Panneer Devaraju
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| |
Collapse
|
10
|
Ramatla T, Khasapane NG, Mlangeni LN, Mokgokong P, Ramaili T, Ndou R, Nkhebenyane JS, Lekota K, Thekisoe O. Detection of Salmonella Pathogenicity Islands and Antimicrobial-Resistant Genes in Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Broiler Chickens. Antibiotics (Basel) 2024; 13:458. [PMID: 38786186 PMCID: PMC11117945 DOI: 10.3390/antibiotics13050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Rapid growth in commercial poultry production is one of the major sources of Salmonella infections that leads to human salmonellosis. The two main Salmonella enterica serovars associated with human salmonellosis are enteritidis and typhimurium. The aim of this study was to determine the prevalence of S. enterica serovars Enteritidis and S. Typhimurium as well as their Salmonella pathogenicity islands (SPI) and antibiotic resistance profiles in broiler chicken feces from slaughterhouses. A total of 480 fecal samples from broiler chickens that were grouped into 96 pooled samples were identified to have Salmonella spp. using the invA gene, whilst the Spy and sdfI genes were used to screen for the presence of S. Enteritidis and S. Typhimurium serovars, respectively, by polymerase chain reaction (PCR) assays. The isolates were also screened for the presence of Salmonella pathogenicity islands (SPIs) using PCR. The disc diffusion assay was performed to determine the antibiotic resistance profiles of the isolates. A total of 36 isolates were confirmed as Salmonella spp. through amplification of the invA gene. Out of 36 confirmed Salmonella spp. a total of 22 isolates were classified as S. Enteritidis (n = 8) and were S. Typhimurium (n = 14) serovars. All (n = 22) S. Enteritidis and S. Typhimurium isolates possessed the hilA (SPI-1), ssrB (SPI-2) and pagC (SPI-11) pathogenicity islands genes. Amongst these serovars, 50% of the isolates (n = 11/22) were resistant to tetracycline and nalidixic acid. Only 22% of the isolates, S. Typhimurium (13.6%) and S. Enteritidis (9.1%) demonstrated resistance against three or more antibiotic classes. The most detected antibiotic resistance genes were tet(K), mcr-1, sulI and strA with 13 (59.1%), 9 (40.9%), 9 (40.9%) and 7 (31.8%), respectively. The findings of this study revealed that S. Typhimurium is the most prevalent serotype detected in chicken feces. To reduce the risk to human health posed by salmonellosis, a stringent public health and food safety policy is required.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Ntelekwane G. Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
| | - Lungile N. Mlangeni
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa;
| | - Rendani Ndou
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Jane S. Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| |
Collapse
|
11
|
Guan L, Hu A, Ma S, Liu J, Yao X, Ye T, Han M, Yang C, Zhang R, Xiao X, Wu Y. Lactiplantibacillus plantarum postbiotic protects against Salmonella infection in broilers via modulating NLRP3 inflammasome and gut microbiota. Poult Sci 2024; 103:103483. [PMID: 38354474 PMCID: PMC10875300 DOI: 10.1016/j.psj.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Salmonella infection is a major concern in poultry production which poses potential risks to food safety. Our previous study confirmed that Lactiplantibacillus plantarum (LP) postbiotic exhibited a strong antibacterial capacity on Salmonella in vitro. This study aimed to investigate the beneficial effects and underlying mechanism of LP postbiotic on Salmonella-challenged broilers. A total of 240 one-day-old male yellow-feathered broilers were pretreated with 0.8% deMan Rogosa Sharpe (MRS) medium or 0.8% LP postbiotic (LP cell-free culture supernatant, LPC) in drinking water for 28 d, and then challenged with 1×109 CFU Salmonella enterica serovar Enteritidis (SE). Birds were sacrificed 3 d postinfection. Results showed that LPC maintained the growth performance by increasing body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) in broilers under SE challenge. LPC significantly attenuated SE-induced intestinal mucosal damage. Specifically, it decreased the intestinal injury score, increased villus length and villus/crypt, regulated the expression of intestinal injury-related genes (Villin, matrix metallopeptidase 3 [MMP3], intestinal fatty acid-binding protein [I-FABP]), and enhanced tight junctions (zona occludens-1 [ZO-1] and Claudin-1). SE infection caused a dramatic inflammatory response, as indicated by the up-regulated concentrations of interleukin (IL)-1β, IL-6, TNF-α, and the downregulation of IL-10, while LPC pretreatment markedly reversed this trend. We then found that LPC inhibited the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome by decreasing the gene expression of Caspase-1, IL-lβ, and IL-18. Furthermore, LPC suppressed NLRP3 inflammasome activation by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway (the reduced levels of toll-like receptor 4 [TLR4], myeloid differentiation factor 88 [MyD88], and NF-κB). Finally, our results showed that LPC regulated gut microbiota by enhancing the percentage of Ligilactobacillus and decreasing Alistipes and Barnesiella. In summary, we found that LP postbiotic was effective to protect broilers against Salmonella infection, possibly through suppressing NLRP3 inflammasome and optimizing gut microbiota. Our study provides the potential of postbiotics on prevention of Salmonella infection in poultry.
Collapse
Affiliation(s)
- Leqi Guan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shiyue Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Xianci Yao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Ye
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Meng Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China.
| |
Collapse
|
12
|
Mohammed BT. Identification and bioinformatic analysis of invA gene of Salmonella in free range chicken. BRAZ J BIOL 2024; 84:e263363. [DOI: 10.1590/1519-6984.263363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Salmonella is a serious cause of the health issues in human and animal worldwide. Salmonella has been isolated from different biological samples and it considers as the key role in induction of inflammation of gastrointestinal tract which in turn cause diarrhoea in different species. To further understand the involvement of Salmonella in contaminating and infecting fresh eggs and meat of free-range chicken. This study aimed to establish the microbiological and molecular detections of Salmonella in the cloaca of the free-range chicken and to identify predicted biological functions using Kyoto Encyclopedia of Gene and Genomic (KEGG) pathways and protein-protein interaction. Cloacal swabs were collected from free range chicken raised in the local farm in Duhok city. The isolates were cultured and biochemical test performed using XLD and TSI, respectively. Molecular detection and functional annotation of invA gene was carried out using Conventional PCR and bioinformatics approaches. The present study found that Salmonella was detected in 36 out of 86 samples using microbiological methods. To confirm these findings, invA gene was utilised and 9 out of 36 Salmonella isolates have shown a positive signal of invA by agarose gel. In addition, bioinformatic analysis revealed that invA gene was mainly associated with bacterial secretion processes as well as their KEGG terms and Protein-Protein Interaction were involved in bacterial invasion and secretion pathways. These findings suggested that invA gene plays important role in regulating colonization and invasion processes of Salmonella within the gut host in the free range chicken.
Collapse
|
13
|
Ashosh MI, El-Abasy MA, El-Borady OM, Elkhaiat I, Ismail MM. Comparative efficacy of difloxacin and nano-emulsion difloxacin as antibacterial agents against Salmonella enterica Serovar enteritidis in chickenss. Open Vet J 2024; 14:449-458. [PMID: 38633146 PMCID: PMC11018397 DOI: 10.5455/ovj.2024.v14.i1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Avian salmonellosis is a group of diseases caused by bacteria from the genus Salmonella with a negative impact on poultry, particularly chickens. In addition, salmonellosis is a global food-borne infection. Aim The aim of this study was to evaluate the effect of nano-emulsion difloxacin (NED) and commercial difloxacin (CD) water supplement on broiler's growth, feed intake, and body weight, weight gain, growth rate, feed conversion ratio (FCR), and mortality rate (MR). The antibiotic sensitivity was determined both in-vivo and in-vitro for NED against Salmonella enterica Serovar enteritidis in chickens. Methods 1500 one-day of age chicks were grouped into five groups as follows: group 1 (G1) control negative group, G2 control positive group (infected and not treated), G3 (infected and treated with CD, and G4 and G5 (infected and treated with NED at different doses). Samples, including the intestine, liver, and spleen were collected. Agar well diffusion test and minimum inhibitory concentrations were adopted. Histopathological lesions on different tissues were studied. During 35 days of the experiment, the feed intake, growth rate, growth gain, FCR, and MR were recorded daily. In addition, a variety of analytical techniques including transmission electron microscopic analysis, dynamic light scattering, UV-visible spectroscopy, and zeta-potential analysis were applied to characterize NED. Results The agar well diffusion test indicated that NED was in-vitro effective against S. enteritidis isolates than CD. The minimum inhibitory concentration was recorded as NED inhibited bacterial growth till well 8 at a concentration of 0.78 µg/ml; on the other hand, the CD inhibited bacterial growth till well 6 at a concentration of 0.62 µg/ml. Growth performance and MRs in the groups treated with NED are significantly reduced. Conclusion Treatment of broiler's drinking water with NED at doses of 0.5 and 1 ml instead of pure CD was able to enforce a new perspective, antibacterial efficacy, enhancing the productive performance, and reducing the MRs of broilers.
Collapse
Affiliation(s)
- Mohammed I. Ashosh
- Animal Production Research Institute (APRI), Agriculture Research Center, Dokki, Egypt
| | - Moshira A. El-Abasy
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ola M. El-Borady
- Institute for Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ibrahim Elkhaiat
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud M. Ismail
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
14
|
Mosa YI, Gharib AA, Abd-El Galil SY, Ali AM, Abo Remela EM. Transcriptional responses of cytokines, immunoglobulin A, and nitric oxide genes in 1-day-old chicks post Salmonella typhimurium infection: An experimental study. Open Vet J 2024; 14:200-213. [PMID: 38633162 PMCID: PMC11018442 DOI: 10.5455/ovj.2024.v14.i1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Salmonella has become one of the hazards prevalent foodborne pathogens causing different diseases in chickens. However, Salmonella typhimurium (ST), a nonhost-specific serovar, is a major avian agent that causes severe disturbance in young chicken wellness. Aim The occurrence of Salmonella in chickens and their antimicrobial resistance were explored in this study. In addition, the immune response of 1-day-old broiler chicks, against multidrug resistant (MDR) ST infection, was also assessed at 4 and 24 hours post infection (pi) in the cecum and spleen, representing their mucosal and systemic immune responses, respectively. Methods A total of 375 samples from 130 diseased and apparently healthy broiler and layer chickens were randomly collected for Salmonella isolation, identification, and resistance profile evaluation, from farms and different clinical laboratories. The immune response of 1-day-old broiler chicks, Ross 308, against in-vivo ST infection was ascertained through the evaluation of heterophile phagocytosis and s expression of cytokines, immunoglobulin A and other immune-regulating genes in the cecum and spleen. Twenty-four, 1-day-old nonvaccinated broiler chicks were used and divided into two groups. The chicks in the infected group were orally inoculated with 0.5 ml of 2 × 108 colony forming units (CFU)/ml of MDR ST suspension, while those in the control group were taken nutrient broth. Results Seven out of 130 (5.38%) examined chickens were positive for Salmonella. All isolates (100%) were resistant to amoxicillin-clavulanic acid (AMC), cefazolin (CZ), cefoxitin (FOX), ciprofloxacin (CIP), nalidixic acid (NA), tetracycline (TE), fosfomycin (FOS), and colistin (CT) with multiple antimicrobial resistances (MARs) index range of 0.72-0.83, where none of them was resistant to meropenem (MEM). The results of immune response revealed that chicks infected with ST showed significantly different phagocytosis percentages and index values compared to controls. According to the real-time quantitative polymerase chain reaction (RT-qPCR) results, the transcription of IL-8, iNOS, IL-18, IgA, and IFN-γ for chicks infected by ST showed a significantly increased trend (p < 0.01) with increasing chicken age and was higher in the cecum than spleen compared to controls (p < 0.05) during 24 hours after infection. Conclusion The findings indicated a strong mucosal immune response in the chicks after the ST challenge, which reflects humoral and cellular responses. Our insight recommended the occurrence of a natural immune response stimulator at 1 day age to face the infection, and this can prevent the resistance transfer, with efficient control measures.
Collapse
Affiliation(s)
- Yasmine I. Mosa
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
- These authors contributed equally to this work
| | - Ahlam A. Gharib
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
- These authors contributed equally to this work
| | - Sara Y. Abd-El Galil
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Amira. M. Ali
- The Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Etab M. Abo Remela
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Biology, College of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
15
|
Ahmad AAM, Elmowalid GA, Abdelhamid AE, Mohammad AAE, Abdelwahab AMO. Nigella sativa-chitosan nanoparticles: Novel intestinal mucosal immunomodulator controls and protects against Salmonella enterica serovar Enteritidis infection in broilers. BMC Vet Res 2023; 19:103. [PMID: 37528439 PMCID: PMC10391840 DOI: 10.1186/s12917-023-03632-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Salmonella Enteritidis (SE) propagates in chickens' gastrointestinal surfaces and is transmitted to humans, causing food poisoning. Oral supplementation with natural nanoparticles can overcome the harsh gastrointestinal conditions facing oral vaccines and requires no antibiotic administration to protect against microbial infection. This study was designed to study Nigella sativa-chitosan nanoparticles (CNP-NS) prophylactic immunomodulatory efficacy against SE infection in broiler chicks. The CNP-NS was prepared and characterized, and its in vivo immunomodulatory activities against an avian virulent-MDR SE-induced challenge in chicks were investigated. RESULT To verify the immune-protective activities of the CNP-NS, colony forming units (CFU) in the liver and fecal droppings; intestinal histopathological alterations and immune cell recruitment; MUC-2, TLR-4, cecal cytokines, and specific IgA gene expression levels were assessed. On the 7th and 12th days after the SE challenge, the CNP-NS supplemented chicks showed complete clearance of SE CFU in livers and fecal droppings, as well as an improvement in food conversion rate compared to non-supplemented CNP-NS that revealed the presence of the challenge SE CFU on the same days. A prominent influx of antigen presenting cells and lymphoid aggregates into the intestinal wall, spleen, and liver was detected with improvements in the intestinal villi morphometry of the CNP-NS-supplemented chicks. The changes of INF-γ, IL-1β, and IL-4 cecal cytokines, as well as TLR-4, MUC-2, and IgA mRNA expression levels, confirm CNP-NS immunomodulatory activities and provide a mechanism(s) for its protective actions against the induced SE challenge of the tested chickens. CONCLUSION These findings suggest promising useful insights into CNP-NS supplementation as a safe food additive for poultry meat consumers' and a protective immunomodulator of the chickens' mucosal immune systems. It could be recommended for epidemiological purposes to reduce the risk of SE food poisoning and transmission to humans.
Collapse
Affiliation(s)
- Adel Attia M Ahmad
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Gamal A Elmowalid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E Abdelhamid
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St, Dokki, Cairo, Egypt
| | | | - Ashraf M O Abdelwahab
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
16
|
Nabil NM, Tawakol MM, Samir A, Hassan HM, Yonis AE, Reda RM, Elsayed MM. Synergistic influence of probiotic and florfenicol on embryonic viability, performance, and multidrug-resistant Salmonella Enteritidis in broiler chickens. Sci Rep 2023; 13:9644. [PMID: 37316527 DOI: 10.1038/s41598-023-36238-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
This study was conducted during the period of August 2021 to April 2022 and divided into two parts. The first part involved the isolation and characterization of Salmonella from 200 diseased broiler chickens collected from farms in Dakahlia Governorate, Egypt, with the detection of its antimicrobial susceptibility. The second experimental part involved in ovo inoculation of probiotics and florfenicol to evaluate their effects on hatchability, embryonic viability, growth performance traits and the control of multidrug-resistant Salmonella Enteritidis infections post hatching. The point prevalence of Salmonella in the internal organs of diseased chickens was 13% (26/200), including 6 serotypes: S. Enteritidis, S. Typhimurium, S. Santiago, S. Colindale, S. Takoradi and S. Daula. Multidrug resistance was found in 92% (24/26) of the isolated strains with a multiantibiotic resistance index of 0.33-0.88 and 24 antibiotic resistance patterns. The in ovo inoculation of probiotic with florfenicol showed significant improvement in the growth performance parameters compared with other groups and had the ability to prevent colonization of multidrug resistant S. Enteritidis in the majority of the experimental chicks, and the remaining chicks showed very low colonization, as detected by RT‒PCR. These findings suggested the application of in ovo inoculation techniques with both probiotics and florfenicol as a promising tool to control multidrug-resistant S. Enteritidis in poultry farms.
Collapse
Affiliation(s)
- Nehal M Nabil
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki, 12618, Giza, Egypt
| | - Maram M Tawakol
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki, 12618, Giza, Egypt
| | - Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki, 12618, Giza, Egypt
| | - Heba M Hassan
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki, 12618, Giza, Egypt
| | - Ahlam E Yonis
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki, 12618, Giza, Egypt
| | - Reem M Reda
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki, 12618, Giza, Egypt
| | - Mona M Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
17
|
Farid N, Waheed A, Motwani S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023; 9:e17021. [PMID: 37484319 PMCID: PMC10361103 DOI: 10.1016/j.heliyon.2023.e17021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 07/25/2023] Open
Abstract
Food borne pathogens are one of the most common yet concerning cause of illnesses around the globe. These microbes invade the body via food items, through numerous mediums of contamination and it is impossible to completely eradicate these organisms from food. Extensive research has been made regarding their treatment. Unfortunately, the only available treatment currently is by antibiotics. Recent exponential increase in antibiotic resistance and the side effect of synthetic compounds have established a need for alternate therapies that could be utilized either on their own or along with antibiotics to provide protection against food-borne diseases. The aim of this review is to provide information regarding some common food borne diseases, their current and possible natural treatment. It will include details regarding some common foodborne pathogens, the disease they cause, prevalence, manifestations and treatment of the respective disease. Some natural modes of potential treatment will be summarized, which including phytochemicals, derived from plants either as crude extracts or as purified form and Bacteriocins as microbial based treatment, obtained from various types of bacteria. The paper will describe their mechanism of action, classification, susceptible organisms, some antimicrobial compounds and producing organisms, application in food systems and as potential treatment. Along with that, synthetic treatment i.e., antibiotics will be discussed including the first-line treatment of some common food borne infections, prevalence and mechanism of resistance against antibiotics in the pathogens.
Collapse
Affiliation(s)
- Neha Farid
- Corresponding author. Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Pakistan.
| | | | | |
Collapse
|
18
|
Salmonella Prophages, Their Propagation, Host Specificity and Antimicrobial Resistance Gene Transduction. Antibiotics (Basel) 2023; 12:antibiotics12030595. [PMID: 36978463 PMCID: PMC10045043 DOI: 10.3390/antibiotics12030595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Salmonella enterica subsp. enterica is a zoonotic bacterial pathogen that causes foodborne outbreaks in humans. Lytic bacteriophages to control Salmonella in food production are already being used in scientific studies and some are commercially available. However, phage application is still controversial. In addition to virulent phages, which are used in phage therapy and lyse the bacterial host, lysogenic phages coexist in the environment and can reside as prophages in the bacterial host. Therefore, information about Salmonella prophages is essential to understand successful phage therapy. In 100 Salmonella food isolates of the serovars Enteritidis and Typhimurium, we propagated prophages by oxidative stress. In isolates of the serovars Typhimurium and Enteritidis, 80% and 8% prophages could be activated, respectively. In the phage lysates from the serovar Typhimurium, the following antibiotic resistance genes or gene fragments were detected by PCR: sul1, sul2, blaTEM, strA and cmlA; however, no tetA,B,C, blaOXA, blaCMY, aadA1, dfr1,2 or cat were detected. In contrast, no resistance genes were amplified in the phage lysates of the serovar Enteritidis. None of the phage lysates was able to transduce phenotypic resistance to WT 14028s. Most of the prophage lysates isolated were able to infect the various Salmonella serovars tested. The high abundance of prophages in the genome of the serovar Typhimurium may counteract phage therapy through phage resistance and the development of hybrid phages.
Collapse
|
19
|
Igbinosa IH, Amolo CN, Beshiru A, Akinnibosun O, Ogofure AG, El-Ashker M, Gwida M, Okoh AI, Igbinosa EO. Identification and characterization of MDR virulent Salmonella spp isolated from smallholder poultry production environment in Edo and Delta States, Nigeria. PLoS One 2023; 18:e0281329. [PMID: 36735693 PMCID: PMC9897568 DOI: 10.1371/journal.pone.0281329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Salmonella is responsible for some foodborne disease cases worldwide. It is mainly transmitted to humans through foods of animal origin through the consumption of poultry products. The increased international trade and the ease of transboundary movement could propel outbreaks of local origin to translate into severe global threats. The present study aimed to characterize Salmonella serovars isolated from poultry farms in Edo and Delta States, Nigeria. A total of 150 samples (faecal, water and feed) were collected from ten poultry farms between January and August 2020 and analyzed for Salmonella characterization using standard bacteriological and molecular methods. Salmonella serovars identified include: Salmonella Enteritidis [n = 17 (39.5%)], Salmonella Typhimurium [n = 13 (30.2%)] and other Salmonella serovars [n = 13 (30.2%)]. All Salmonella serovars were cefotaxime and ampicillin resistant. The presence of the invA gene ranged from 9(69.2%) to 15(88.2%). The spvC gene ranged from 2(14.4%) to 10(58.8%). All Salmonella serovars had sdiA gene. The Salmonella isolates produced some extracellular virulence factors (such as protease, lipase, β-hemolytic activity, and gelatinase), while 13(30.2%) of the overall isolates formed strong biofilms. In conclusion, the detection of multiple antibiotic-resistant Salmonella serovars in faecal sources, which also exhibited virulence determinants, constituted a public health risk as these faecal samples have the potential as manure in the growing of crops. These pathogens can be transmitted to humans nearby and through poultry products, resulting in difficult-to-treat infections and economic loss.
Collapse
Affiliation(s)
- Isoken H. Igbinosa
- Department of Environmental Management & Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Chukwunonso N. Amolo
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Olajide Akinnibosun
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abraham G. Ogofure
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Maged El-Ashker
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mayada Gwida
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Anthony I. Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
| | - Etinosa O. Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
| |
Collapse
|
20
|
Comparative Analysis between Salmonella enterica Isolated from Imported and Chinese Native Chicken Breeds. Microorganisms 2023; 11:microorganisms11020390. [PMID: 36838355 PMCID: PMC9962450 DOI: 10.3390/microorganisms11020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Salmonella enterica is considered a significant threat to the global poultry industry and public health. In recent decades, antimicrobial resistance in Salmonella enterica has attracted increasing concern throughout the world. However, limited information is available on Salmonella enterica among different breeds of breeder chickens. Thus, this study aimed to compare the prevalence, serotype distribution, emergence of extended-spectrum beta-lactamases (ESBLs), antimicrobial resistance, and genetic resistance mechanisms in Salmonella enterica among different breeds of breeder chickens. A total of 693 samples (dead embryos, cloacal swabs, water, feed, environmental swabs, and meconium of newly hatched chicks) were selected and cultured for Salmonella from four breeder chicken farms in Shandong province, China, representing one imported and three native breeds, and the isolates were further serotyped. Of the Salmonella isolates, susceptibility to 11 antimicrobials of 5 classes, ESBL screening, and the presence of 21 antimicrobial resistance genes were determined in the present study. Overall, 94 (13.6%) isolates were recovered, which were divided into 3 serotypes (Salmonella Pullorum (n = 36), Salmonella Thompson (n = 32), and Salmonella Enteritidis (n = 26)). The results showed that the prevalence of Salmonella enterica isolates from the imported breeds was higher compared with the three domestic breeds. Eight of the ninety-four isolates were ESBL-positive strains, which were recovered from a domestic breed chicken farm. These eight ESBL-producing isolates were serotyped to Pullorum. Surprisingly, Salmonella Enteritidis (S. enteritidis) and S. pullorum were simultaneously isolated from a single dead embryo observed among one native breed. Meanwhile, among the Salmonella isolates, 53.2% (50/94) were multidrug-resistant strains, and 44.7% (42/94) of the isolates presented resistance to at least five antibiotics. Nearly all of the isolates (97.9%, 92/94) were resistant to at least one antimicrobial; one isolate of S. Thompson was resistant to seven antimicrobial agents belonging to four different classes. The carriage rate of three resistance genes (tetA, tetB, and sul1) among isolates from the imported breeds (87%, 70%, and 65.2%) was higher than that in those from domestic breeds (35.2%, 36.6, and 14.1%). To our knowledge, this is the first report of ESBLs-producing Salmonella isolated from a Chinese native breed of breeder chickens. Our results also highlight that a high prevalence of multidrug-resistant Salmonella enterica contamination is widespread among different breeds of breeder chickens, which is a major risk of food-borne diseases and public health.
Collapse
|
21
|
Abdel-Rahman MAA, Hamed EA, Abdelaty MF, Sorour HK, Badr H, Hassan WM, Shalaby AG, Mohamed AAE, Soliman MA, Roshdy H. Distribution pattern of antibiotic resistance genes in Escherichia coli isolated from colibacillosis cases in broiler farms of Egypt. Vet World 2023; 16:1-11. [PMID: 36855348 PMCID: PMC9967716 DOI: 10.14202/vetworld.2023.1-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023] Open
Abstract
Background and Aim Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance mechanism in E. coli is the acquisition of genes encoding broad-spectrum β-lactamases, known as extended-spectrum β-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes (conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect β-lactamase and colistin resistance genes of E. coli isolated from broiler farms in Egypt. Materials and Methods Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through polymerase chain reaction amplification. Results Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018-2020) were serotyped into 13 serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. Twenty-eight selected isolates from the most recent 3 years (2018-2020) were found to have MDR, where the prevalence of the antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates. Conclusion The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a high public health significance because of its zoonotic relevance. These results strengthen the application of continuous surveillance programs.
Collapse
Affiliation(s)
- Mona A. A. Abdel-Rahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Engy A. Hamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - May F. Abdelaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Hend K. Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Heba Badr
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Wafaa M. Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Azhar G. Shalaby
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Ahmed Abd-Elhalem Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Mohamed A. Soliman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Heba Roshdy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| |
Collapse
|
22
|
Pal P, Bhatta R, Bhattarai R, Acharya P, Singh S, Harries AD. Antimicrobial resistance in bacteria isolated from the poultry production system in Nepal. Public Health Action 2022; 12:165-170. [PMID: 36561909 PMCID: PMC9716825 DOI: 10.5588/pha.22.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
SETTING Twenty poultry farms in five provinces of Nepal were selected for studying bacterial pathogens and their antimicrobial resistance (AMR) patterns. OBJECTIVE To document the proportion of cloacal swabs collected from 3,230 broiler and 3,230 layer chickens from September to December 2021 that grew isolates of Escherichia coli, Enterococcus spp. and Salmonella spp. along with their AMR patterns. DESIGN This was a cross-sectional descriptive study. RESULTS In broiler birds, Enterococcus spp., Salmonella spp. and E. coli were identified in respectively 36%, 39% and 63% of swabs. In layer birds, Enterococcus spp., Salmonella spp. and E. coli were identified in respectively 31%, 48% and 60% of swabs. For both bird types, there was variation in bacterial prevalence between the regions. For all three bacterial isolates, the lowest antimicrobial resistance was found with amikacin. For the other nine antibiotics tested, >50% of bacterial isolates showed resistance; between 60% and 90% of isolates showed resistance to ciprofloxacin and trimethoprim-sulfamethoxazole. Multidrug resistance ranged from 45% to 46% for Salmonella spp., 37-44% for E. coli and 13-17% for Enterococcus spp. CONCLUSION This study shows that a large proportion of poultry in Nepal are infected with potentially pathogenic bacteria, and these are frequently resistant to commonly used antibiotics. Nepal urgently needs to implement corrective measures.
Collapse
Affiliation(s)
- P. Pal
- Agriculture and Forestry University, Chitwan, Nepal
| | - R. Bhatta
- Agriculture and Forestry University, Chitwan, Nepal
| | - R. Bhattarai
- Agriculture and Forestry University, Chitwan, Nepal
| | - P. Acharya
- Agriculture and Forestry University, Chitwan, Nepal
| | - S. Singh
- Agriculture and Forestry University, Chitwan, Nepal
| | - A. D. Harries
- International Union Against Tuberculosis and Lung Disease, Paris, France
, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
23
|
Shalaby A, Ismail MM, El-Sharkawy H. Isolation, Identification, and Genetic Characterization of Antibiotic Resistance of Salmonella Species Isolated from Chicken Farms. J Trop Med 2022; 2022:6065831. [PMID: 36482931 PMCID: PMC9726267 DOI: 10.1155/2022/6065831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
Salmonella is a major cause of foodborne outbreaks. It causes gastroenteritis in humans and animals. This micro-organism causes severe illness in chickens and has a major impact on chicken productivity and the poultry industry. This study aimed to address the prevalence of Salmonella infection in broiler chicken farms in Kafrelsheikh, Gharbia, and Menofeya provinces in Egypt during 2020-2022. This work also aimed to evaluate the genetic characterization and antibiotic resistance of the isolated Salmonella strains. Clinical signs and mortalities were observed and recorded. In total, 832 samples were collected from 52 broiler flocks, including 26 from both one-week-old and 6-week-old chicken farms from different organs (liver, intestinal content, spleen, and gallbladder). The prevalence of Salmonella infections was reported in the study region to be 36.54%. Of the 26 one-week-old farms surveyed, 11 (42.31%) and 8/26 (30.77%) of the six-week-old broiler chicken farms had Salmonella infections. Recovered isolates were serotyped as 9 (47.37%) S. enteritidis O 1,9,12, ad monophasic H: g, m: -, 6 (31.58.%) S. shangani 2, (10.53%) S. gueuletapee 1, (5.26%) S. II (salamae), and 1 (5.26%) untypable. The results showed that Salmonella infection was predominant in one-week-old chicks compared to infection in six-week-old and uninfected flocks. All Salmonella isolates were resistant to ampicillin and erythromycin, while all isolates were sensitive to ciprofloxacin, chloramphenicol, and levofloxacin. The isolates also contained 10.53% (2/19) streptomycin, 10.53% (2/21) gentamicin, 15.79% (3/19) doxycycline, and 26.32% (5/19) lincomycin and colistin. The phenotypically resistant Salmonella samples against ampicillin, erythromycin, and macrolide harbored bla TEM , bla SHV , ermB, ereA, mphA, and ermB, respectively. This baseline data on Salmonella spp. prevalence, serotyping, and antibiotic profiles are combined to define the antimicrobial resistance to this endemic disease. Elucidation of the mechanisms underlying this drug resistance should be of general importance in understanding both the treatment and prevention of Salmonella infection in this part of Egypt.
Collapse
Affiliation(s)
- Ahmed Shalaby
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Mahmoud M. Ismail
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| |
Collapse
|
24
|
Hossain T, Khan MAS, Ahmed MF, Rahman SR. Prevalence and molecular detection of multidrug-resistant Salmonella spp. isolated from eggshells in the local markets of Dhaka, Bangladesh. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.101-107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background and Aim: Salmonella spp. are frequently associated with various parts of the egg, including the shell, and cause foodborne outbreaks worldwide. Antibiotic-resistant Salmonella spp. pose serious threats to human and animal health; therefore, preventive measures against these pathogens are important. This study aimed to isolate and characterize Salmonella spp. from eggshell samples from different local markets in Dhaka, Bangladesh.
Materials and Methods: Salmonella spp. were recovered from eggshells by enrichment culture and biochemical tests and characterized through molecular amplification of Salmonella-specific genes. Antibiotic sensitivity testing and molecular detection of isolates were performed by disk diffusion method and polymerase chain reaction (PCR), respectively. The invA, fliC, and sdfI genes were used in PCR to identify the genus Salmonella, and the species Salmonella Typhimurium and Salmonella Enteritidis, respectively.
Results: The prevalence of Salmonella spp. was recorded as 40%, in which S. Typhimurium was the predominant serotype. PCR analysis revealed that 100%, 59%, and 13.6% of these isolates possessed the invA, fliC, and sdfI genes, respectively. The isolates exhibited multidrug resistance phenotypes, with resistance (95.5%) toward tetracycline, sulfamethoxazole, and clindamycin and sensitivity (86.3%) toward chloramphenicol.
Conclusion: The findings of this study reflect the potential of eggs as a reservoir of multidrug-resistant Salmonella spp.; therefore, we recommend the careful handling of eggs to avoid contamination from farm to market.
Collapse
Affiliation(s)
- Talal Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md. Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | |
Collapse
|
25
|
Cao S, Yang W, Zhu X, Liu C, Lu J, Si Z, Pei L, Zhang L, Hu W, Li Y, Wang Z, Pang Z, Xue X, Li Y. Isolation and identification of the broad-spectrum high-efficiency phage vB_SalP_LDW16 and its therapeutic application in chickens. BMC Vet Res 2022; 18:386. [PMID: 36329508 PMCID: PMC9632116 DOI: 10.1186/s12917-022-03490-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Salmonella infection in livestock and poultry causes salmonellosis, and is mainly treated using antibiotics. However, the misuse use of antibiotics often triggers the emergence of multi-drug-resistant Salmonella strains. Currently, Salmonella phages is safe and effective against Salmonella, serving as the best drug of choice. This study involved 16 Salmonella bacteriophages separated and purified from the sewage and the feces of the broiler farm. A phage, vB_SalP_LDW16, was selected based on the phage host range test. The phage vB_SalP_LDW16 was characterized by the double-layer plate method and transmission electron microscopy. Furthermore, the clinical therapeutic effect of phage vB_SalP_LDW16 was verified by using the pathogenic Salmonella Enteritidis in the SPF chicken model. RESULTS The phage vB_SalP_LDW16 with a wide host range was identified to the family Siphoviridae and the order Caudoviridae, possess a double-stranded DNA and can lyse 88% (22/25) of Salmonella strains stored in the laboratory. Analysis of the biological characteristics, in addition, revealed the optimal multiplicity of infection (MOI) of vB_SalP_LDW16 to be 0.01 and the phage titer to be up to 3 × 1014 PFU/mL. Meanwhile, the phage vB_SalP_LDW16 was found to have some temperature tolerance, while the titer decreases rapidly above 60 ℃, and a wide pH (i.e., 5-12) range as well as relative stability in pH tolerance. The latent period of phage was 10 min, the burst period was 60 min, and the burst size was 110 PFU/cell. Furthermore, gastric juice was also found to highly influence the activity of the phage. The clinical treatment experiments showed that phage vB_SalP_LDW16 was able to significantly reduce the bacterial load in the blood through phage treatment, thereby improving the pathological changes in the intestinal, liver, and heart damage, and promoting the growth and development of the chicken. CONCLUSIONS The phage vB_SalP_LDW16 is a highly lytic phage with a wide host range, which can be potentially used for preventing and treating chicken salmonellosis, as an alternative or complementary antibiotic treatment in livestock farming.
Collapse
Affiliation(s)
- Shengliang Cao
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wenwen Yang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xihui Zhu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhenshu Si
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Lanying Pei
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Leilei Zhang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wensi Hu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Yanlan Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhiwei Wang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zheyu Pang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xijuan Xue
- Shandong Sinder Technology Co., Ltd., Sinder Industrial Park, Shungeng Road, Zhucheng Development Zone, Weifang, Shandong, 262200, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
| |
Collapse
|
26
|
Ramatla TA, Mphuthi N, Ramaili T, Taioe M, Thekisoe O, Syakalima M. Molecular detection of zoonotic pathogens causing gastroenteritis in humans:
Salmonella
spp.,
Shigella
spp. and
Escherichia coli
isolated from
Rattus
species inhabiting chicken farms in North West Province, South Africa. J S Afr Vet Assoc 2022; 93:63-69. [DOI: 10.36303/jsava.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- TA Ramatla
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - N Mphuthi
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - T Ramaili
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - M Taioe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Epidemiology, Parasites and Vectors, Agriculture Research Council, Onderstepoort Veterinary Research,
South Africa
| | - O Thekisoe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
| | - M Syakalima
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control,
Zambia
| |
Collapse
|
27
|
Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamases and AmpC β-lactamase-Producing Enterobacteriaceae among Human, Cattle, and Poultry. Pathogens 2022; 11:pathogens11080852. [PMID: 36014973 PMCID: PMC9414889 DOI: 10.3390/pathogens11080852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are a universal public health alarm frequently identified among humans, animals, and poultry. Livestock and poultry production are a possible source of multidrug-resistant microorganisms, including ESBL-producing Enterobacteriaceae, which confer antimicrobial resistance to different β-lactam antimicrobial agents. From January to May 2020, a cross-sectional study was carried out in three dairy cattle farms and four poultry farms in different districts of northern Egypt to assess the prevalence of ESBLs, AmpC beta-lactamase-producing E. coli and Klebsiella in livestock, poultry, and human contacts, and to investigate the genetic relatedness of the recovered isolates. In total, 140 samples were collected, including human fecal samples (n = 20) of workers with intimate livestock contact, cattle rectal swabs (n = 34), milk (n = 14), milking machine swabs (n = 8), rations (n = 2), and water (n = 2) from different cattle farms, as well as cloacal swabs (n = 45), rations (n = 5), water (n = 5) and litter (n = 5) from poultry farms. The specimens were investigated for ESBL-producing E. coli and Klebsiella using HiCrome ESBL media agar. The agar disk diffusion method characterized the isolated strains for their phenotypic antimicrobial susceptibility. The prevalence of ESBL-producing Enterobacteriaceae was 30.0%, 20.0%, and 25.0% in humans, cattle, and poultry, respectively. Further genotypic characterization was performed using conventional and multiplex PCR assays for the molecular identification of ESBL and AmpC genes. The majority of the ESBL-producing Enterobacteriaceae showed a multi-drug resistant phenotype. Additionally, blaSHV was the predominant ESBL genotype (n = 31; 93.94%), and was mainly identified in humans (n = 6), cattle (n = 11), and poultry (14); its existence in various reservoirs is a concern, and highlights the necessity of the development of definite control strategies to limit the abuse of antimicrobial agents.
Collapse
|
28
|
Hassan ER, Alhatami AO, Abdulwahab HM, Schneider BS. Characterization of plasmid-mediated quinolone resistance genes and extended-spectrum beta-lactamases in non-typhoidal Salmonella enterica isolated from broiler chickens. Vet World 2022; 15:1515-1522. [PMID: 35993066 PMCID: PMC9375215 DOI: 10.14202/vetworld.2022.1515-1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Antibiotic-resistant Salmonella is a public health concern. Fluoroquinolones and extended-spectrum beta-lactams are widely used for the treatment of Salmonella infections. This study focused on the detection of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum beta-lactamase (ESBL) genes among multidrug-resistant (MDR) Salmonella enterica isolated from broilers. Materials and Methods: A total of 40 non-typhoidal S. enterica isolates were collected from 28 broiler chicken farms in four Iraqi Governorates. These isolates were examined for their susceptibility to 10 antimicrobial agents by disk-diffusion method followed by polymerase chain reaction assay for the detection of PMQR determinants and ESBLs genes. Results: Salmonella strains revealed high levels of resistance to the following antibiotics: Nalidixic acid 100%, levofloxacin (LEV) 97.5%, amoxicillin-clavulanic acid 95.0%, tetracycline 92.5%, and nitrofurantoin 80.0%. Otherwise, all isolates were susceptible to cefotaxime and ceftriaxone. All isolates were MDR, with 15 different profiles observed. Among 38 amoxicillin/clavulanic acid-resistant Salmonella isolates, 20 (52.6%) had the blaTEM gene, while blaSHV, blaCTX-M, and blaOXA genes were not detected. Only 5 (12.8%) out of 39 LEV-resistant isolates were positive for qnrB, three of which had blaTEM. No qnrC or qnrD, qnrS, aac(6`)-Ib-cr, qunA, and oqxAB genes were found in any of the tested isolates. Conclusion: This study demonstrates that broiler chickens may be considered a potential source for spreading MDR non-typhoidal Salmonella and ESBL traits in poultry production. Therefore, it is important to continuously monitor ESBL and PMQR genes to avoid the spread of resistant strains in the food chain and impact public health.
Collapse
Affiliation(s)
- Esraa Razzaq Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Abdullah O. Alhatami
- Department of Public Health, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | | | | |
Collapse
|
29
|
Ramtahal MA, Amoako DG, Akebe ALK, Somboro AM, Bester LA, Essack SY. A Public Health Insight into Salmonella in Poultry in Africa: A Review of the Past Decade: 2010-2020. Microb Drug Resist 2022; 28:710-733. [PMID: 35696336 DOI: 10.1089/mdr.2021.0384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Poultry is a cheap source of animal protein and constituent of diets in Africa. Poultry can serve as a reservoir for Salmonella and cause food-borne infections in humans. This review describes Salmonella contamination of food, poultry, and the farming environment, antimicrobial resistance profiles, and serotypes of Salmonella, as well as the farming systems, antimicrobial use (AMU), hygiene, and husbandry conditions used to rear poultry in Africa. Using the PRISMA (preferred reporting items for systematic reviews and meta-analysis) guidelines, PubMed, Science Direct, and Web of Science databases were searched using a set of predefined keywords. Full-length research articles in English were examined for the period 2010-2020 and relevant information extracted for the narrative synthesis. Of the articles that met the inclusion criteria, 63.1% were conducted on farms and among households, while 36.9% were undertaken at government-controlled laboratories, which quarantine imported birds, processing plants, and retail outlets. The farming systems were intensive, semi-intensive, and extensive. AMU was described in 11.5% of the studies and varied within and across countries. Multidrug-resistant (MDR) Salmonella isolates were detected in 30 studies and the prevalence ranged from 12.1% in Zimbabwe to 100% in Egypt, Ethiopia, Nigeria, Senegal, and South Africa. A total of 226 different Salmonella serotypes were reported. Twenty-four (19.7%) of the studies reported food-borne Salmonella contamination in eggs, poultry, and poultry products at retail outlets and processing plants. The apparent extensive use of antimicrobials and circulation of MDR Salmonella isolates of various serotypes in Africa is a concern. It is important to implement stricter biosecurity measures on farms, regulate the use of antimicrobials and implement surveillance systems, in addition to food safety measures to monitor the quality of poultry and poultry products for human consumption.
Collapse
Affiliation(s)
- Melissa A Ramtahal
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Abia L K Akebe
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anou M Somboro
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
30
|
Kong L, Lu Y, Yang L, Zhang W, Zuo B, Peng X, Qin Z, Li M, Zeng Z, Zeng D. Pharmacokinetics and Pharmacodynamics of Colistin Combined With Isopropoxy Benzene Guanidine Against mcr-1-Positive Salmonella in an Intestinal Infection Model. Front Microbiol 2022; 13:907116. [PMID: 35668766 PMCID: PMC9163831 DOI: 10.3389/fmicb.2022.907116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmid-borne colistin resistance mediated by mcr-1 is a growing problem, which poses a serious challenge to the clinical application of colistin for Gram-negative bacterial infections. Drug combination is one of the effective strategies to treat colistin-resistant bacteria. Here, we found a guanidine compound, namely, isopropoxy benzene guanidine (IBG), which boosted the efficacy of colistin against mcr-1-positive Salmonella. This study aimed to develop a pharmacokinetics/pharmacodynamics (PK/PD) model by combining colistin with IBG against mcr-1-positive Salmonella in an intestinal infection model. Antibiotic susceptibility testing, checkerboard assays and time-kill curves were used to investigate the antibacterial activity of the synergistic activity of the combination. PK studies of colistin in the intestine were determined through oral gavage of single dose of 2, 4, 8, and 16 mg/kg of body weight in broilers with intestinal infection. On the contrary, PD studies were conducted over 24 h based on a single dose ranging from 2 to 16 mg/kg. The inhibitory effect Imax model was used for PK/PD modeling. The combination of colistin and IBG showed significant synergistic activity. The AUC0−24h/MIC index was used to evaluate the relationship between PK and PD, and the correlation was >0.9085. The AUC0−24h /MIC targets in combination required to achieve the bacteriostatic action, 3-log10 kill, and 4-log10 kill of bacterial counts were 47.55, 865.87, and 1894.39, respectively. These results can facilitate the evaluation of the use of IBG as a potential colistin adjuvant in the treatment of intestinal diseases in broilers caused by colistin-resistant Salmonella.
Collapse
Affiliation(s)
- Lingli Kong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liuye Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wanying Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Beini Zuo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xianfeng Peng
- Guangzhou Insighter Biotechnology Co., Ltd., Guangzhou, China
| | - Zonghua Qin
- Guangzhou Insighter Biotechnology Co., Ltd., Guangzhou, China
| | - Miao Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Zhenling Zeng
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Dongping Zeng
| |
Collapse
|
31
|
Moharreri M, Vakili R, Oskoueian E, Rajabzadeh G. Evaluation of Microencapsulated Essential Oils in Broilers Challenged with Salmonella Enteritidis: A Focus on the Body's Antioxidant Status, Gut Microbiology, and Morphology. ARCHIVES OF RAZI INSTITUTE 2022; 77:629-639. [PMID: 36284969 PMCID: PMC9548249 DOI: 10.22092/ari.2021.354334.1634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/19/2021] [Indexed: 11/15/2022]
Abstract
Restrictions on antibiotic use encourage researchers to seek natural substitutes with the same effects without adverse end effects resulting from antibiotic use. Savory and black pepper have been challenged against Salmonella enteritidis (S. enteritidis) bacterium using the spray dryer method to evaluate growth performance, antioxidant status, immune response, and intestinal health parameters in broilers. In this study, thyme essential oil (50%), savory (25%), peppermint (12.5%), and black pepper seeds (12.5%) were mixed to form essential oil-loaded spherical microcapsules with the particle size of 323 nm and encapsulation efficiency of 96.2%. The main bioactive compounds used in the core of microcapsules included thymol, carvacrol, p-cymene, γ-terpinene, and menthol. Moreover, modified starch (25%) and maltodextrin (55%) were used for the preparation of spherical microcapsules for the enclosed wall with 20% whey protein concentrate. The dietary addition of microcapsules containing essential oil significantly reduced the S. enteritidis population in both ileum and cecum (P<0.05). The results revealed that the dietary inclusion of essential oil-loaded microcapsules significantly (P<0.05) increased the villus height, villus width, V: C ratio, and the number of goblet cells and decreased the crypt depth. Microcapsules have antioxidant and antibacterial activity and their dietary use as feed additive at 0.5, 1, and 2 kg/t concentrations in broilers has been challenged and showed that the final weight, total feed intake, and FCR improved the body's antioxidant status, structure, and inflammation in the ileum tissue.
Collapse
Affiliation(s)
- M Moharreri
- Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar, Iran
| | - R Vakili
- Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar, Iran
| | - E Oskoueian
- Agricultural Biotechnology Research Institute of Iran, Mashhad, Iran
| | - Gh Rajabzadeh
- Research Institute of Food Science and Technology, Mashhad, Iran
| |
Collapse
|
32
|
CRISPR-Cas System: An Adaptive Immune System’s Association with Antibiotic Resistance in Salmonella enterica Serovar Enteritidis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9080396. [PMID: 35386307 PMCID: PMC8979702 DOI: 10.1155/2022/9080396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Several factors are involved in the emergence of antibiotic-resistant bacteria and pose a serious threat to public health safety. Among them, clustered regularly interspaced short palindromic repeat- (CRISPR-) Cas system, an adaptive immune system, is thought to be involved in the development of antibiotic resistance in bacteria. The current study was aimed at determining not only the presence of antibiotic resistance and CRISPR-Cas system but also their association with each other in Salmonella enteritidis isolated from the commercial poultry. A total of 139 samples were collected from poultry birds sold at the live bird markets of Lahore City, and both phenotypic and genotypic methods were used to determine antimicrobial resistance. The presence of the CRISPR-Cas system was determined by PCR, followed by sequencing. All isolates of S. enteritidis (100%) were resistant to nalidixic acid, whereas 95% of isolates were resistant to ampicillin. Five multidrug-resistant isolates (MDR) such as S. enteritidis isolate (S. E1, S. E2, S. E4, S. E5, and S. E8) were found in the present study. The CRISPR-Cas system was detected in all of these MDR isolates, and eight spacers were detected within the CRISPR array. In addition, an increased expression of CRISPR-related genes was observed in the standard strain and MDR S. enteritidis isolates. The association of the CRISPSR-Cas system with multiple drug resistance highlights the exogenous acquisition of genes by horizontal transfer. The information could be used further to combat antibiotic resistance in pathogens like Salmonella.
Collapse
|
33
|
de Mesquita Souza Saraiva M, Lim K, do Monte DFM, Givisiez PEN, Alves LBR, de Freitas Neto OC, Kariuki S, Júnior AB, de Oliveira CJB, Gebreyes WA. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz J Microbiol 2022; 53:465-486. [PMID: 34775576 PMCID: PMC8590523 DOI: 10.1007/s42770-021-00635-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) remains a major global public health crisis. The food animal industry will face escalating challenges to increase productivity while minimizing AMR, since the global demand for animal protein has been continuously increasing and food animals play a key role in the global food supply, particularly broiler chickens. As chicken products are sources of low-cost, high-quality protein, poultry production is an important economic driver for livelihood and survival in developed and developing regions. The globalization of the food supply, markedly in the poultry industry, is aligned to the globalization of the whole modern society, with an unprecedented exchange of goods and services, and transit of human populations among regions and countries. Considering the increasing threat posed by AMR, human civilization is faced with a complex, multifaceted problem compromising its future. Actions to mitigate antimicrobial resistance are needed in all sectors of the society at the human, animal, and environmental levels. This review discusses the problems associated with antimicrobial resistance in the globalized food chain, using the poultry sector as a model. We cover critical aspects of the emergence and dissemination of antimicrobial resistance in the poultry industry and their implications to public health in a global perspective. Finally, we provide current insights using the multidisciplinary One Health approach to mitigate AMR at the human-animal-environment interface.
Collapse
Affiliation(s)
- Mauro de Mesquita Souza Saraiva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Kelvin Lim
- Veterinary Health Management Branch, National Parks Board, 6 Perahu Road, Singapore, Singapore
| | - Daniel Farias Marinho do Monte
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Patrícia Emília Naves Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Lucas Bocchini Rodrigues Alves
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | | | - Samuel Kariuki
- Kenya Medical Research Institute, Nairobi, Kenya
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Angelo Berchieri Júnior
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Wondwossen Abebe Gebreyes
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Siddiky NA, Sarker S, Khan SR, Rahman T, Kafi A, Samad MA. Virulence and antimicrobial resistance profile of non-typhoidal Salmonella enterica serovars recovered from poultry processing environments at wet markets in Dhaka, Bangladesh. PLoS One 2022; 17:e0254465. [PMID: 35130286 PMCID: PMC8820648 DOI: 10.1371/journal.pone.0254465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
The rapid emergence of virulent and multidrug-resistant (MDR) non-typhoidal Salmonella (NTS) enterica serovars is a growing public health concern globally. The present study focused on the assessment of the pathogenicity and antimicrobial resistance (AMR) profiling of NTS enterica serovars isolated from the chicken processing environments at wet markets in Dhaka, Bangladesh. A total of 870 samples consisting of carcass dressing water (CDW), chopping board swabs (CBS), and knife swabs (KS) were collected from 29 wet markets. The prevalence of Salmonella was found to be 20% in CDW, 19.31% in CBS, and 17.58% in KS, respectively. Meanwhile, the MDR Salmonella was found to be 72.41%, 73.21%, and 68.62% in CDW, CBS, and KS, respectively. All isolates were screened by polymerase chain reaction (PCR) for eight virulence genes, namely invA, agfA, IpfA, hilA, sivH, sefA, sopE, and spvC. The S. Enteritidis and untyped Salmonella isolates harbored all virulence genes while S. Typhimurium isolates carried six virulence genes, except sefA and spvC. Phenotypic resistance revealed decreased susceptibility to ciprofloxacin, streptomycin, ampicillin, tetracycline, gentamicin, sulfamethoxazole-trimethoprim, amoxicillin-clavulanic acid, and azithromycin. Genotypic resistance showed a higher prevalence of plasmid-mediated blaTEM followed by tetA, sul1, sul2, sul3, and strA/B genes. The phenotypic and genotypic resistance profiles of the isolates showed a harmonic and symmetrical trend. According to the findings, MDR and virulent NTS enterica serovars predominate in wet market conditions and can easily enter the human food chain. The chi-square analysis showed significantly higher associations among the phenotypic resistance, genotypic resistance and virulence genes in CDW, CBS, and KS respectively (p < 0.05).
Collapse
Affiliation(s)
- Nure Alam Siddiky
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Samun Sarker
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Shahidur Rahman Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanvir Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed A. Samad
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| |
Collapse
|
35
|
Thiam M, Barreto Sánchez AL, Zhang J, Wen J, Zhao G, Wang Q. Investigation of the Potential of Heterophil/Lymphocyte Ratio as a Biomarker to Predict Colonization Resistance and Inflammatory Response to Salmonella enteritidis Infection in Chicken. Pathogens 2022; 11:pathogens11010072. [PMID: 35056020 PMCID: PMC8778401 DOI: 10.3390/pathogens11010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Salmonella causes significant economic loss to the poultry industry and represents a real threat to human health. The region of difference 21 (ROD21) pathogenicity island removal is a genetic mechanism by which Salmonellaenteritidis (SE) invades the intestinal epithelium and induces systemic infection in mice. The heterophil/lymphocyte (H/L) ratio reflects the chicken’s robustness and immune system status. The H/L ratio is considered a disease resistance trait, and it could be used as a marker for selecting Salmonella resistance in live chickens. However, the association of the H/L ratio with Salmonella resistance and the inflammatory response remains to be elucidated. Moreover, the kinetics of ROD21 excision in the intestine and immune organs of chickens is unknown. Therefore, this study aimed to investigate the bacterial load, the ROD21 excision, the IL-1β, IL-8, and INF-γ blood serum concentration kinetics, and the association with the H/L ratio in chicken at 1, 3, 7, and 21 days post-SE infection. The results showed a significant correlation between the H/L ratio and the bacterial load in the ileum and caecum at 7 dpi. The ROD21 pathogenicity island absolute and relative excision in the caecum were positively correlated at 1 dpi but negatively correlated at 7 dpi with the H/L ratio. However, in the liver, we found the opposite tendency. The association of the H/L ratio with IL-1β, IL-8, and INF-γ blood serum concentrations showed that a low H/L ratio is correlated with increased IL-1β and INF-γ at 21 dpi. This study confirmed that the H/L ratio is associated with robustness and Salmonella-resistance in chicken. The methodology used in this study can separate individuals into susceptible and resistant and can help in the selection and breeding of Salmonella-resistant chickens.
Collapse
|
36
|
Antimicrobial Resistance of Salmonella enteritidis and Salmonella typhimurium Isolated from Laying Hens, Table Eggs, and Humans with Respect to Antimicrobial Activity of Biosynthesized Silver Nanoparticles. Animals (Basel) 2021; 11:ani11123554. [PMID: 34944331 PMCID: PMC8698057 DOI: 10.3390/ani11123554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Salmonella enterica are common foodborne pathogens that cause gastrointestinal signs in a wide range of unrelated host species including poultry and humans. The overuse of antibiotics as therapeutic agents and growth promoters in the poultry industry has led to the emergence of multidrug-resistant (MDR) microorganisms. Thus, there is a need to find alternatives to conventional antibiotics. Recently, the biosynthesized silver nanoparticles (AgNPs) have shown an excellent antimicrobial activity. In this study, we investigated the antibacterial, antivirulent, and antiresistant activities of the biosynthesized AgNPs on the MDR and virulent S. enteritidis and S. typhimurium isolated from laying hens, table eggs, and humans. The obtained results indicated that AgNPs have the potential to be effective antimicrobial agents against MDR S. enteritidis and S. typhimurium and could be recommended for use in laying hen farms. Abstract Salmonella enterica is one of the most common causes of foodborne illness worldwide. Contaminated poultry products, especially meat and eggs are the main sources of human salmonellosis. Thus, the aim of the present study was to determine prevalence, antimicrobial resistance profiles, virulence, and resistance genes of Salmonella Enteritidis (S. enteritidis) and Salmonella Typhimurium (S. Typhimurium) isolated from laying hens, table eggs, and humans, in Sharkia Governorate, Egypt. The antimicrobial activity of Biosynthesized Silver Nanoparticles (AgNPs) was also evaluated. Salmonella spp. were found in 19.3% of tested samples with laying hens having the highest isolation rate (33.1%). S. Enteritidis) (5.8%), and S. Typhimurium (2.8%) were the dominant serotypes. All isolates were ampicillin resistant (100%); however, none of the isolates were meropenem resistant. Multidrug-resistant (MDR) was detected in 83.8% of the isolates with a multiple antibiotic resistance index of 0.21 to 0.57. Most isolates (81.1%) had at least three virulence genes (sopB, stn, and hilA) and none of the isolates harbored the pefA gene; four resistance genes (blaTEM, tetA, nfsA, and nfsB) were detected in 56.8% of the examined isolates. The AgNPs biosynthesized by Aspergillus niveus exhibit an absorption peak at 420 nm with an average size of 27 nm. AgNPs had a minimum inhibitory concentration of 5 µg/mL against S. enteritidis and S. typhimurium isolates and a minimum bactericidal concentration of 6 and 8 µg/mL against S. enteritidis and S. typhimurium isolates, respectively. The bacterial growth and gene expression of S. enteritidis and S. typhimurium isolates treated with AgNPs were gradually decreased as storage time was increased. In conclusion, this study indicates that S. enteritidis and S. typhimurium isolated from laying hens, table eggs, and humans exhibits resistance to multiple antimicrobial classes. The biosynthesized AgNPs showed potential antimicrobial activity against MDR S. enteritidis and S. typhimurium isolates. However, studies to assess the antimicrobial effectiveness of the biosynthesized AgNPs in laying hen farms are warranted.
Collapse
|
37
|
Nurjanah S, Rahayu WP, Dewanti-Hariyadi R, Asthiti NGAMW, Melati RP. SIMPLEKS DAN MULTIPLEKS PRE-ENRICHMENT-PCR UNTUK DETEKSI Salmonella Enteritidis DAN Typhimurium PADA KARKAS AYAM. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2021. [DOI: 10.6066/jtip.2021.32.2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A PCR assay has been developed and applied to detect Salmonella contamination in chicken carcasses. However, a concentration fewer than 3 cells per gram lead to false-negative results due to difficulties in the DNA extraction. The objective of this study was to evaluate of the influence of pre-enrichment on the sensitivity of simplex and multiplex PCR methods the detection of for Salmonella spp., S. Enteritidis and S. Typhimurium in chicken carcasses. Artificial contamination was done using very low number of Salmonella Hadar, S. Enteritidis dan S. Typhimurium and pre-enrichment was carried out by 8 hours incubation in non-selective (BPW) medium. The results showed that simplex PCR could detect Salmonella spp., S. Enteritidis and S. Typhimurium at initial numbers of 2.3, 0.9 and 2.3 MPN/mL of cells in broth medium, respectively. A multiplex PCR could detect mixed culture of the three Salmonella serovars at an initial number of 0.73 MPN/mL of cells. When compared to non-enrichment treatment, simplex pre-enrichment-PCR gave an increase in the percentage of positive results in chicken carcasses (n= 12), from 75 to 100% for Salmonella spp., from 8 to 58% for S. Typhimurium, and from 58 to 75% for S. Enteritidis. Increasing in the positive percentage was also occurred at multiplex pre-enrichment-PCR, however the concentration of S. Enteritidis primer was not optimum for detection. Pre-enrichment step significantly increases the sensitivity of PCR-based assay for detection Salmonella.
Collapse
|
38
|
Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2021; 10:antibiotics10121435. [PMID: 34943647 PMCID: PMC8698067 DOI: 10.3390/antibiotics10121435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/19/2023] Open
Abstract
One of the main global concerns is the usage and spread of antibiotic resistant Salmonella serovars. The animals, humans, and environmental components interact and contribute to the rapid emergence and spread of antimicrobial resistance, directly or indirectly. Therefore, this study aimed to determine antibiotic resistance (AR) profiles of Salmonella serotypes isolated from the environment, animals, and humans in South Africa by a systematic review and meta-analysis. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed to search four databases for studies published from 1980 to 2021, that reported the antibiotic resistance profiles of Salmonella serotypes isolated in South Africa. The AR was screened from 2930 Salmonella serotypes which were isolated from 6842 samples. The Western Cape province had high pooled prevalence estimates (PPE) of Salmonella isolates with AR profiles followed by North West, Gauteng, and Eastern Cape with 94.3%, 75.4%, 59.4%, and 46.2%, respectively. The high PPE and heterogeneity were observed from environmental samples [69.6 (95% CI: 41.7−88.3), Q = 303.643, I2 = 98.353, Q-P = 0.045], animals [41.9 (95% CI: 18.5–69.5), Q = 637.355, I2 = 98.745, Q-P = 0.577], as well as animals/environment [95.9 (95% CI: 5.4−100), Q = 55.253, I2 = 96.380, Q-P = 0.300]. The majority of the salmonella isolates were resistant to sulphonamides (92.0%), enrofloxacin and erythromycin (89.3%), oxytetracycline (77.4%), imipenem (72.6%), tetracycline (67.4%), as well as trimethoprim (52.2%), among the environment, animals, and humans. The level of multidrug-resistance recorded for Salmonella isolates was 28.5% in this review. This study has highlighted the occurrence of AR by Salmonella isolates from animals, humans, and environmental samples in South Africa and this calls for a consolidated “One Health” approach for antimicrobial resistance epidemiological research, as well as the formulation of necessary intervention measures to prevent further spread.
Collapse
|
39
|
Antimicrobial resistance in Indian isolates of non typhoidal Salmonella of livestock, poultry and environmental origin from 1990 to 2017. Comp Immunol Microbiol Infect Dis 2021; 80:101719. [PMID: 34847457 DOI: 10.1016/j.cimid.2021.101719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022]
Abstract
A retrospective antimicrobial resistance study of nontyphoidal Salmonella enterica isolates from India during 1990-2017 was conducted to study the microbial susceptibility to antibiotics. A total of 271 Salmonella enterica isolates from poultry (n = 146), farm animals (n = 55) and environmental sources (n = 70) were tested for susceptibility using 15 antimicrobial drugs. The drug classes include aminoglycosides, phenicols, cephalosporins, penicillins, carbapenems, fluoroquinolones, and sulphonamide-trimethoprim. Study revealed that overall, 133 (49.08%) of 271 isolates were resistant to ≥ 1 antimicrobial drugs and 81 (29.89%) out of 271 isolates were multidrug resistant (resistance to ≥ 3 drugs). Majority (68.96%) of Typhimurium serovars (n = 87) were susceptible to all antibiotics tested, whereas only 5% Kentucky serovars (n = 40) were pan susceptible. All the drugs revealed decreasing trend of susceptibility from 1990 towards 2017 except cephalosporins and carbapenems. Statistical analysis of association between time period and antimicrobial resistance revealed a significance of < 0.05. Molecular detection of genetic determinants associated with antimicrobial resistance revealed the presence of genes like class I integrons, sul1, sul2, catIII, cmlA, dfrA, blaTEM, blaAmpC in the resistant isolates. Furthermore, plasmid mediated quinolone resistant determinants like qnrD and qnrS were also reported in the current study.
Collapse
|
40
|
Diaz D, Hernandez-Carreño PE, Velazquez DZ, Chaidez-Ibarra MA, Montero-Pardo A, Martinez-Villa FA, Canizalez-Roman A, Ortiz-Navarrete VF, Rosiles R, Gaxiola SM, Jimenez-Trejo F. Prevalence, main serovars and anti-microbial resistance profiles of non-typhoidal Salmonella in poultry samples from the Americas: A systematic review and meta-analysis. Transbound Emerg Dis 2021; 69:2544-2558. [PMID: 34724337 DOI: 10.1111/tbed.14362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 01/14/2023]
Abstract
Poultry and poultry-derived products such as meat and eggs are among the main sources of non-typhoidal Salmonella (NTS) transmission to humans. Therefore, we performed a systematic review and used random-effects meta-analyses to (1) estimate the prevalence of NTS in poultry samples from birds, products and subproducts and environmental samples, (2) examine the diversity and frequency of their serovars and (3) estimate the prevalence and profiles of anti-microbial resistance (AMR) in NTS isolates reported in studies from the Americas. We included 157 studies from 15 countries comprising 261,408 poultry samples and estimated an overall pooled prevalence of 17.9% (95% Confidence Interval: 10.8-26.3) in birds, 21.8% (17.7-26.1) in products and subproducts and 29.5% (24.2-35.1) in environmental samples. At the national level, the prevalence of NTS was heterogeneous across countries with the highest values in Mexico, the United States and Canada. In total, 131 serovars were identified from 13,388 isolates; Heidelberg, Kentucky, Enteritidis and Typhimurium were the most prevalent in the overall top 10 ranking (range 6.5%-20.8%). At the national level, Enteritidis and Typhimurium were identified in most of the countries, though with national differences in their ranks. The prevalence of AMR increased from 24.1% for 1 antibiotic to 36.2% for 2-3 antibiotics and 49.6% for ≥ 4 antibiotics. Kentucky, Heidelberg, Typhimurium and Enteritidis were the serovars with the highest prevalence of AMR. Besides, tetracycline, ampicillin, streptomycin, ceftiofur and amoxicillin-clavulanic acid were the most frequent antibiotics to which NTS showed resistance. In conclusion, NTS was distributed through the avian production chain with high and heterogeneous values of prevalence in poultry samples. Besides, there were distinctive patterns of serovars distribution across countries and an alarming prevalence of AMR among zoonotic serovars.
Collapse
Affiliation(s)
- Daniel Diaz
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México.,Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | | | - Diana Zuleika Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | - Miguel Angel Chaidez-Ibarra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | - Arnulfo Montero-Pardo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | | | - Adrian Canizalez-Roman
- Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | | | - Rene Rosiles
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Soila Maribel Gaxiola
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | - Francisco Jimenez-Trejo
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, Ciudad de México, México
| |
Collapse
|
41
|
Pavelquesi SLS, de Oliveira Ferreira ACA, Rodrigues ARM, de Souza Silva CM, Orsi DC, da Silva ICR. Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Antibiotics (Basel) 2021; 10:antibiotics10111314. [PMID: 34827252 PMCID: PMC8615168 DOI: 10.3390/antibiotics10111314] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Tetracyclines and sulfonamides are broad-spectrum antibacterial agents which have been used to treat bacterial infections for over half a century. The widespread use of tetracyclines and sulfonamides led to the emergence of resistance in a diverse group of bacteria. This resistance can be studied by searching for resistance genes present in the bacteria responsible for different resistance mechanisms. Salmonella is one of the leading bacteria causing foodborne diseases worldwide, and its resistance to tetracyclines and sulfonamides has been widely reported. The literature review searched the Virtual Health Library for articles with specific data in the studied samples: the resistance genes found, the primers used in PCR, and the thermocycler conditions. The results revealed that Salmonella presented high rates of resistance to tetracycline and sulfonamide, and the most frequent samples used to isolate Salmonella were poultry and pork. The tetracycline resistance genes most frequently detected from Salmonella spp. were tetA followed by tetB. The gene sul1 followed by sul2 were the most frequently sulfonamide resistance genes present in Salmonella. These genes are associated with plasmids, transposons, or both, and are often conjugative, highlighting the transference potential of these genes to other bacteria, environments, animals, and humans.
Collapse
|
42
|
Hamed EA, Abdelaty MF, Sorour HK, Roshdy H, AbdelRahman MAA, Magdy O, Ibrahim WA, Sayed A, Mohamed H, Youssef MI, Hassan WM, Badr H. Monitoring of Antimicrobial Susceptibility of Bacteria Isolated from Poultry Farms from 2014 to 2018. Vet Med Int 2021; 2021:6739220. [PMID: 34540194 PMCID: PMC8448596 DOI: 10.1155/2021/6739220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The current situation of antibiotic resistance of most bacterial pathogens was a threat to the poultry and public health with increasing economic losses. Regarding this problem, monitoring of the circulating microorganisms occurred with the antibiotic resistance profile. A total of 657 different samples from internal organs (liver, heart, lung, and yolk) and paper-lining chick boxes were collected from native chicken farms which were submitted to the Reference Laboratory for Veterinary Quality Control on Poultry Production in the period from 2014 to 2018 for the detection of Salmonella, Escherichia coli (E. coli), and Staphylococcus. The bacterial isolates were tested for their antimicrobial susceptibility by disk diffusion technique. Salmonella was isolated from 128 out of 657 (19.5%), E. coli was isolated from 496 out of 657 (75.5%), and Staphylococcus species was isolated from 497 out of 657 (75.6%). All Salmonella positive samples were examined for antibiotic resistance against 10 different antibiotics, and the highest percentage all over the five years was against penicillin, ampicillin, and tetracycline. All E. coli positive samples were examined for antibiotic resistance against 14 different antibiotics, and the highest percentage all over the five years was with ampicillin, tetracycline, norfloxacin, streptomycin, and danofloxacin. All Staphylococcus positive sample species were examined for antibiotic resistance against 14 different antibiotics, and the highest percentage of resistance all over the five years was shown with tetracycline, streptomycin, ampicillin, and nalidixic acid.
Collapse
Affiliation(s)
- Engy Ahmed Hamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - May Fathy Abdelaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Hend Karam Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Heba Roshdy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Mona Aly Abdelhalim AbdelRahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Ola Magdy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Waleed Abdelfatah. Ibrahim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Ahmed Sayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Hytham Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Mohammed Iraqi Youssef
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Wafaa Mohamed Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| | - Heba Badr
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center (ARC), Nadi El-Seid Street, Dokki P.O. Box 246, Giza 12618, Egypt
| |
Collapse
|
43
|
Herrera-Sánchez MP, Castro-Vargas RE, Fandiño-de-Rubio LC, Rodríguez-Hernández R, Rondón-Barragán IS. Molecular identification of fluoroquinolone resistance in Salmonella spp. isolated from broiler farms and human samples obtained from two regions in Colombia. Vet World 2021; 14:1767-1773. [PMID: 34475696 PMCID: PMC8404129 DOI: 10.14202/vetworld.2021.1767-1773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Salmonella is one of the most common foodborne pathogens, the emergence of antibiotic-resistant strains of which is increasing. The aim of this study was to phenotypically and genotypically characterize the fluoroquinolone resistance of Salmonella isolates from broiler and humans in two regions of Colombia. Materials and Methods: Salmonella strains (n=49) were evaluated. The phenotype of antibiotic resistance was assessed by an automated method and agar diffusion method, as well as the presence of the quinolone resistance genes qnrA, qnrB, qnrC, qnrD, qnrS, and aac(6’)-Ib as determined by polymerase chain reaction. Results: Strains were resistant to ciprofloxacin (75%), levofloxacin (57.1%), and enrofloxacin (38.8%). Molecular identification showed that 24 out of 49 strains possessed the qnrB gene (48.9%), while only one isolate from the Santander region possessed the aac(6’)-Ib gene. Regarding Class 1 integron, it was present in 11 out of the 49 strains (22.44%). Conclusion: This study reports the presence of the gene qnrB as well the presence of Class 1 integrons in broiler Salmonella isolates, which may contribute to the resistance to fluoroquinolones.
Collapse
Affiliation(s)
- María Paula Herrera-Sánchez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| | - Rafael Enrique Castro-Vargas
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia.,Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| | - Luz Clemencia Fandiño-de-Rubio
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia.,Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| |
Collapse
|
44
|
Elbediwi M, Tang Y, Shi D, Ramadan H, Xu Y, Xu S, Li Y, Yue M. Genomic Investigation of Antimicrobial-Resistant Salmonella enterica Isolates From Dead Chick Embryos in China. Front Microbiol 2021; 12:684400. [PMID: 34497590 PMCID: PMC8419455 DOI: 10.3389/fmicb.2021.684400] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella spp. is recognized as an important zoonotic pathogen. The emergence of antimicrobial resistance in Salmonella enterica poses a great public health concern worldwide. While the knowledge on the incidence and the characterization of different S. enterica serovars causing chick embryo death remains obscure in China. In this study, we obtained 45 S. enterica isolates from 2,139 dead chick embryo samples collected from 28 breeding chicken hatcheries in Henan province. The antimicrobial susceptibility assay was performed by the broth microdilution method and the results showed that 31/45 (68.8%) isolates were multidrug-resistant (≥3 antimicrobial classes). Besides the highest resistance rate was observed in the aminoglycoside class, all the isolates were susceptible to chloramphenicol, azithromycin, and imipenem. Furthermore, genomic characterization revealed that S. Enteritidis (33.33%; 15/45) was a frequent serovar that harbored a higher number of virulence factors compared to other serovars. Importantly, genes encoding β-lactamases were identified in three serovars (Thompson, Enteritidis, and Kottbus), whereas plasmid-mediated quinolone resistance genes (qnrB4) were detected in certain isolates of S. Thompson and the two S. Kottbus isolates. All the examined isolates harbored the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Additionally, a correlation analysis between the antimicrobial resistance genes, phenotype, and plasmids was conducted among Salmonella isolates. It showed strong positive correlations (r < 0.6) between the different antimicrobial-resistant genes belonging to certain antimicrobial classes. Besides, IncF plasmid showed a strong negative correlation (r > −0.6) with IncHI2 and IncHI2A plasmids. Together, our study demonstrated antimicrobial-resistant S. enterica circulating in breeding chicken hatcheries in Henan province, highlighting the advanced approach, by using genomic characterization and statistical analysis, in conducting the routine monitoring of the emerging antimicrobial-resistant pathogens. Our findings also proposed that the day-old breeder chicks trading could be one of the potential pathways for the dissemination of multidrug-resistant S. enterica serovars.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Yanting Tang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Dawei Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.,Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Sihong Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Mshana SE, Sindato C, Matee MI, Mboera LEG. Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review. Antibiotics (Basel) 2021; 10:976. [PMID: 34439026 PMCID: PMC8389036 DOI: 10.3390/antibiotics10080976] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 01/10/2023] Open
Abstract
In Africa, there is dearth of information on antimicrobial use (AMU) in agriculture and food production systems and its consequential resistance in pathogens that affect animal, human and environmental health. Data published between 1980 and 2021 on the magnitude of AMU and AMR in agriculture and food productions systems in Africa were reviewed. Data from 13-27 countries in Africa indicate that 3558-4279 tonnes of antimicrobials were used in animals from 2015 to 2019. Tetracyclines and polypeptides contributed the largest proportion of antimicrobials used. Cattle and poultry production account for the largest consumption of antimicrobials in Africa. Although limited studies have reported AMR in crops, fish and beekeeping, AMR from a variety of farm animals has been substantially documented in Africa. Some countries in Africa have developed policies/plans to address AMU and AMR in agriculture and food production systems; however, their enforcement is challenged by weak regulations. In conclusion, although there is limited information on the quantities of antimicrobials used in agriculture and food production system, the levels of AMR are high. There is a need to strengthen regulatory authorities with a capacity to monitor AMU in agriculture and food production systems in Africa.
Collapse
Affiliation(s)
- Stephen E. Mshana
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- Catholic University of Health and Allied Sciences, P.O. Box 1424, Mwanza 33109, Tanzania
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- National Institute for Medical Research, P.O. Box 482, Tabora 45026, Tanzania
| | - Mecky I. Matee
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam 11103, Tanzania
| | - Leonard E. G. Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
| |
Collapse
|
46
|
Isolation and Characterization of Bacteriophage ZCSE6 against Salmonella spp.: Phage Application in Milk. Biologics 2021. [DOI: 10.3390/biologics1020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.
Collapse
|
47
|
Siddique A, Azim S, Ali A, Andleeb S, Ahsan A, Imran M, Rahman A. Antimicrobial Resistance Profiling of Biofilm Forming Non Typhoidal Salmonella enterica Isolates from Poultry and Its Associated Food Products from Pakistan. Antibiotics (Basel) 2021; 10:785. [PMID: 34203245 PMCID: PMC8300803 DOI: 10.3390/antibiotics10070785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonellosis caused by non-typhoidal Salmonella enterica from poultry products is a major public health concern worldwide. This study aimed at estimating the pathogenicity and antimicrobial resistance in S. enterica isolates obtained from poultry birds and their food products from different areas of Pakistan. In total, 95/370 (25.67%) samples from poultry droppings, organs, eggs, and meat were positive for Salmonella. The isolates were further identified through multiplex PCR (mPCR) as Salmonella Typhimurium 14 (14.7%), Salmonella Enteritidis 12 (12.6%), and other Salmonella spp. 69 (72.6%). The phenotypic virulence properties of 95 Salmonella isolates exhibited swimming and/or swarming motility 95 (100%), DNA degrading activity 93 (97.8%), hemolytic activity 92 (96.8%), lipase activity 87 (91.6%), and protease activity 86 (90.5%). The sopE virulence gene known for conferring zoonotic potential was detected in S. Typhimurium (92.8%), S. Enteritidis (100%), and other Salmonella spp. (69.5%). The isolates were further tested against 23 antibiotics (from 10 different antimicrobial groups) and were found resistant against fifteen to twenty-one antibiotics. All isolates showed multiple drug resistance and were found to exhibit a high multiple antibiotic-resistant (MAR) index of 0.62 to 0.91. The strong biofilm formation at 37 °C reflected their potential adherence to intestinal surfaces. There was a significant correlation between antimicrobial resistance and the biofilm formation potential of isolates. The resistance determinant genes found among the isolated strains were blaTEM-1 (59.3%), blaOxA-1 (18%), blaPSE-1 (9.5%), blaCMY-2 (43%), and ampC (8.3%). The detection of zoonotic potential MDR Salmonella in poultry and its associated food products carrying cephalosporin and quinolone resistance genes presents a major threat to the poultry industry and public health.
Collapse
Affiliation(s)
- Abubakar Siddique
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan; (A.S.); (S.A.); (A.A.); (S.A.)
| | - Sara Azim
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan; (A.S.); (S.A.); (A.A.); (S.A.)
| | - Amjad Ali
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan; (A.S.); (S.A.); (A.A.); (S.A.)
| | - Saadia Andleeb
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan; (A.S.); (S.A.); (A.A.); (S.A.)
| | - Aitezaz Ahsan
- Animal Health Program, Animal Sciences Institute, National Agriculture Research Centre, Park Road, Islamabad 44000, Pakistan;
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Park Road, Islamabad 44000, Pakistan;
| | - Abdur Rahman
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan; (A.S.); (S.A.); (A.A.); (S.A.)
| |
Collapse
|
48
|
Arafat N, Abd El Rahman S, Naguib D, El-Shafei RA, Abdo W, Eladl AH. Co-infection of Salmonella enteritidis with H9N2 avian influenza virus in chickens. Avian Pathol 2021; 49:496-506. [PMID: 32835500 DOI: 10.1080/03079457.2020.1778162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Salmonella and avian influenza virus are important pathogens affecting the poultry industry and human health worldwide. In this experimental study, we evaluated the consequences of co-infection of Salmonella enteritidis (SE) with H9N2 avian influenza virus (H9N2-AIV) in chickens. Four groups were included: control group, H9N2-AIV group, H9N2-AIV + SE group, and SE group. Infected chickens were intranasally inoculated with H9N2-AIV at 21 days of age and then orally administered SE on the same day. The birds were monitored for clinical signs, mortality rates, and alterations in body weight. Sera, intestinal fluids, oropharyngeal, and cloacal swabs, and tissue samples were collected at 2, 6, 10, and 14 days post-infection (dpi). Significant increases in clinical signs and mortality rates were observed in the H9N2-AIV + SE group. Moreover, chickens with co-infection showed a significant change in body weight. SE faecal shedding and organ colonization were significantly higher in the H9N2-AIV + SE group than in the SE group. H9N2-AIV infection compromised the systemic and mucosal immunity against SE, as evidenced by a significant decrease in lymphoid organ indices as well as systemic antibody and intestinal immunoglobulin A (IgA) responses to SE and a significant increase in splenic and bursal lesion scores. Moreover, SE infection significantly increased shedding titres and duration of H9N2-AIV. In conclusion, this is the first report of co-infection of SE with H9N2-AIV in chickens, which leads to increased pathogenicity, SE faecal shedding and organ colonization, and H9N2-AIV shedding titre and duration, resulting in substantial economic losses and environmental contamination, ultimately leading to increased zoonoses.
Collapse
Affiliation(s)
- Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reham A El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdelfattah H Eladl
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
49
|
Geresu MA, Desta WZ. Carriage, Risk Factors, and Antimicrobial Resistance Patterns of Salmonella Isolates from Raw Beef in Jimma, Southwestern Ethiopia. Infect Drug Resist 2021; 14:2349-2360. [PMID: 34194231 PMCID: PMC8238549 DOI: 10.2147/idr.s313485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Consumption of raw beef infected with multidrug-resistant Salmonella is pertinent to the world public health risk of antimicrobial resistance. Henceforth, this study aimed to investigate the carriage, antimicrobial resistance (AR) patterns, and the revealing risk factors of Salmonella-contaminating beef in abattoirs and butcher shops in Jimma town. Methods A cross-sectional study was conducted to investigate the carriage and AR patterns and to reveal the risk factors of beef contaminated by Salmonella spp. Three hundred and forty-eight swab samples were collected from abattoirs (n=210) and butcher shops (n=138) and the conventional cultural methods were employed for identification of Salmonella. Isolates were subjected to 12 antimicrobials using the Kirby-Bauer disk diffusion method for AR patterns. Results The occurrence of Salmonella isolates from the abattoir samples was 11.4%, whereas about 6.52% of isolates were recovered from butcher shops. Educational status (abattoir: odds ratio (OR)=8.40, confidence interval (CI)=1.186-59.493; butcher shops: OR=9.17, CI=1.15-73.239), job related training (abattoir: OR=5.50, CI=1.065-28.416), contamination risk perception (abattoir: OR=5.31, CI=1.256-22.489), neatness of knives (abattoir: OR=7.6, CI=0.892-65.376), source of contamination (abattoir: OR=8.44, CI=1.682-42.39), wearing of protective cloth (butcher shops: OR=8.44, CI=1.682-42.39), manner of hand washing (butcher shops: OR=7.25, CI=1.210-43.442), and money handling (butcher shops: OR= 9.69, CI=1.578-59.474) were among the potential risk factors significantly associated with Salmonella carcass contamination in the abattoir and butcher shops. Of the 33 Salmonella isolates, 14 (58.3%) and six (66.7%) of the abattoir and butcher shops isolates, correspondingly, were resistant to two or more antibiotics. Conclusion The finding of this investigation exhibited extensive multidrug-resistant Salmonella isolates in the study setting. Hence, establishing standard meat safety requirements and provision of training for meat handlers and prudent use of antimicrobials are recommended.
Collapse
Affiliation(s)
- Minda Asfaw Geresu
- Department of Veterinary Science, College of Agriculture and Environmental Science, Arsi University, Asella, Ethiopia
| | - Wondimu Zeleke Desta
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| |
Collapse
|
50
|
Bahramianfard H, Derakhshandeh A, Naziri Z, Khaltabadi Farahani R. Prevalence, virulence factor and antimicrobial resistance analysis of Salmonella Enteritidis from poultry and egg samples in Iran. BMC Vet Res 2021; 17:196. [PMID: 34030671 PMCID: PMC8142639 DOI: 10.1186/s12917-021-02900-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most common serovars, associated with human salmonellosis. The food-borne outbreak of this bacterium is mainly related to the consumption of contaminated poultry meat and poultry products, including eggs. Therefore, rapid and accurate detection, besides investigation of virulence characteristics and antimicrobial resistance profiles of S. Enteritidis in poultry and poultry egg samples is essential. A total of 3125 samples (2250 poultry and 875 poultry egg samples), sent to the administrative centers of veterinary microbiology laboratories in six provinces of Iran, were examined for Salmonella contamination, according to the ISO 6579 guideline. Next, duplex PCR was conducted on 250 presumptive Salmonella isolates to detect invA gene for identification of the genus Salmonella and sdf gene for identification of S. Enteritidis. Subsequently, the S. Enteritidis isolates were examined for detection of important virulence genes (pagC, cdtB, msgA, spaN, tolC, lpfC, and spvC) and determination of antibiotic resistance patterns against nalidixic acid, trimethoprim-sulfamethoxazole, cephalothin, ceftazidime, colistin sulfate, and kanamycin by the disk diffusion method. RESULTS Overall, 8.7 and 2.3% of poultry samples and 6.3 and 1.3% of eggs were contaminated with Salmonella species and S. Enteritidis, respectively. The invA and msgA genes (100%) and cdtB gene (6.3%) had the highest and the lowest prevalence rates in S. Enteritidis isolates. The spvC gene, which is mainly located on the Salmonella virulence plasmid, was detected in 50.8% of S. Enteritidis isolates. The S. Enteritidis isolates showed the highest and the lowest resistance to nalidixic acid (87.3%) and ceftazidime (11.1%), respectively. Unfortunately, 27.0% of S. Enteritidis isolates were multidrug-resistant (MDR). CONCLUSION The rate of contamination with Salmonella in the poultry and egg samples, besides the presence of antimicrobial resistant and MDR Salmonella isolates harboring the virulence genes in these samples, could significantly affect food safety and subsequently, human health. Therefore, continuous monitoring of animal-source foods, enhancement of poultry farm control measures, and limiting the use of antibiotics for prophylactic purposes in food producing animals, are essential for reducing the zoonotic risk of this foodborne pathogen for consumers and also choosing effective antibiotics for the treatment of salmonellosis.
Collapse
Affiliation(s)
- Hassan Bahramianfard
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zahra Naziri
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Reza Khaltabadi Farahani
- Department of Poultry Disease, National Reference Laboratories, Applied Studies and Diagnosis Center, Tehran, Iran
| |
Collapse
|