1
|
Teck Tan T, Kiang Lim S. Relevance of RNA to the therapeutic efficacy of mesenchymal stromal/stem cells extracellular vesicles. RNA Biol 2025; 22:1-7. [PMID: 39719370 PMCID: PMC12064053 DOI: 10.1080/15476286.2024.2446868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response. Several RNA sequencing studies reveal that miRNAs are underrepresented in the small RNA population of MSC-sEVs compared to the parent MSCs. Additionally, the majority of miRNAs are mature forms that are not associated with Argonaute (AGO) proteins, essential for their function in RNA-induced silencing complexes (RISCs). Compounding this, cellular uptake of EVs is generally inefficient, with less than 1% being internalized, and only a fraction of these reaching the cytosol. This suggests that EVs may not deliver miRNAs in sufficient quantities to meaningfully interact with AGO proteins, either through canonical or non-canonical pathways, or with other proteins like Toll-like receptors (TLRs). Further, MSC-sEV RNAs are generally small, with sizes less than 500 nucleotides indicating that any mRNA present is likely fragmented as the average mammalian mRNA is approximately 2000 nucleotides, a fact confirmed by RNA sequencing data. Together, these findings challenge the notion that RNA, particularly miRNAs and mRNAs, are primary therapeutic attributes of MSC-sEVs.
Collapse
Affiliation(s)
- Thong Teck Tan
- Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore
| | - Sai Kiang Lim
- Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore C/O NUHS Tower Block, Singapore, Republic of Singapore
| |
Collapse
|
2
|
Vatsa P, Srivastava A, Srivastava AK, Pandeya A, Singh A, Pant AB. Mesenchymal stem cell secretome restores monocrotophos induced toxicity in human neural progenitor cells. Biochem Biophys Res Commun 2025; 769:151987. [PMID: 40367904 DOI: 10.1016/j.bbrc.2025.151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
The attempts are being made to investigate the new approaches to identify and treat the chemical-induced neurotoxicity. The human mesenchymal stem cell (hMSC) secretome has been recognized as one of the promising approaches, as it is rich in bioactive factors that promote regeneration and neuroprotection. We examined the neuroprotective effects of stimulated and unstimulated hMSC-secretomes on human iPSC-derived neural progenitor cells (hNPCs) exposed to pesticide-monocrotophos (MCP). In-vitro assays were employed to assess the neuroprotective potential of MSC secretomes on hNPCs exposed to subtoxic concentrations of MCP. Comprehensive multi-omics analyses (proteomics and transcriptomics), bioenergetics assessments, and computational bioinformatics analyses were performed to elucidate the underlying molecular mechanisms and therapeutic effects. As anticipated, MCP exposure decreased viability, caused morphological changes, increased oxidative stress, and disrupted mitochondrial function in hNPCs. The treatment with MSC secretomes at 50 % concentration restored cell viability, morphology, and oxidative stress markers to near-normal levels. Bioenergetics analyses revealed significant improvements in mitochondrial oxygen consumption rates, ATP production, and spare respiratory capacity following secretome treatment, which was corroborated by proteomic analyses indicating restoration of mitochondrial protein expression and function. Transcriptomic profiling identified critical MCP-dysregulated miRNAs (including hsa-miR-138-5p and hsa-miR-219a-5p) and their inverse relationship with altered protein expression levels, highlighting the regulatory capacity of hMSC secretomes. The study demonstrates the therapeutic potential of MSC secretomes in mitigating chemical-induced developmental neurotoxicity by modulating oxidative stress, mitochondrial recovery, and miRNA-mediated signaling. Stimulated hMSC secretomes, which are enriched with bioactive molecules, showed enhanced efficacy, making them promising candidates for targeted therapies in chemical neurotoxicity interventions.
Collapse
Affiliation(s)
- P Vatsa
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - A Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - A K Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - A Pandeya
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - A Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - A B Pant
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
3
|
Saadh MJ, Hussein A, Bayani A, Dastafkan S, Amiri M, Akbari A, Shahsavan S, Soleimani Samarkhazan H, Shirani Asl V. Mesenchymal stem cell-derived exosomes: a novel therapeutic frontier in hematological disorders. Med Oncol 2025; 42:199. [PMID: 40327167 DOI: 10.1007/s12032-025-02742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells valued for their immunomodulatory and regenerative properties, positioning them as a cornerstone of regenerative medicine. Their derived exosomes small extracellular vesicles laden with bioactive molecules such as proteins, lipids, and nucleic acids have emerged as critical mediators of MSC therapeutic effects. This review systematically explores the biology of MSC-derived exosomes, detailing their biogenesis, molecular composition, and pivotal roles in hematopoiesis, inflammation, and immune regulation. In hematological disorders, including leukemia, lymphoma, and myelodysplastic syndromes, these exosomes exhibit significant therapeutic potential by modulating the tumor microenvironment, enhancing hematopoietic recovery, and suppressing malignant cell proliferation. Notable findings include their ability to induce cell cycle arrest in leukemia cells via the p53 pathway and to reduce chemoresistance through targeted signaling mechanisms, such as the IRF2/INPP4B axis. However, clinical translation is hindered by several challenges, including the standardization of isolation techniques such as ultracentrifugation which are costly and susceptible to contamination as well as difficulties in optimizing large-scale production and ensuring long-term safety and efficacy. Despite these obstacles, MSC-derived exosomes offer a promising, cell-free therapeutic alternative that minimizes risks such as immune rejection and tumorigenicity associated with whole-cell therapies. Future research must prioritize the refinement of isolation and production protocols, the development of precise delivery strategies, and the execution of comprehensive safety evaluations to unlock their full clinical potential in treating hematological disorders and beyond. This review integrates recent advancements to provide a clearer understanding of their multifaceted contributions and highlights the critical gaps that remain.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ahmed Hussein
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Alireza Bayani
- Division of Hematology and Blood Bank, Department of Laboratory Science, School of Paramedical Science, Shiraz University of Med1ical Sciences, Shiraz, Iran
| | - Shayan Dastafkan
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahdie Amiri
- Department of Laboratory Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Atie Akbari
- Department of Family Medicine, School of Medicine, Ziaeian Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shaghayegh Shahsavan
- HSCT Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani Samarkhazan
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vida Shirani Asl
- Division of Hematology and Blood Bank, Department of Laboratory Science, School of Paramedical Science, Shiraz University of Med1ical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Lai YH, Tu YF, Chen CH, Chang JH, Hsu CH, Ho MY, Huang LT, Chiu NC, Ho CS, Wang JL, Chen RM. Circulating MicroRNAs as a biomarker signature of perinatal asphyxia. Pediatr Neonatol 2025; 66:235-240. [PMID: 39187418 DOI: 10.1016/j.pedneo.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/11/2024] [Accepted: 05/06/2024] [Indexed: 08/28/2024] Open
Abstract
AIM This study aimed to explore whether microRNAs (miRNAs) could serve as biomarkers of perinatal asphyxia and whether they were correlated with severity of brain magnetic resonance imaging. METHODS We prospectively enrolled 26 full-term newborns, including 10 with perinatal asphyxia and 16 healthy controls. Plasma samples were collected at 0-6 h and 7 days of age. Encephalopathy was classified according to modified Sarnat staging. Magnetic resonance imaging was performed in surviving infants within 30 days of birth, and a score was established. We used next-generation sequencing to explore differentially expressed miRNAs, which were then further validated using quantitative reverse transcription real-time polymerase chain reaction (RT-PCR). RESULTS A significantly lower expression of miR-486-5p was found at 0-6 h of age in the asphyxiated newborns compared with the healthy controls (p = 0.005). The area under the receiver operating characteristic curve (AUC) of miR-486-5p at 0-6 h of age to differentiate the perinatal asphyxia group from the healthy control group was 0.831, and the AUC to differentiate newborns eligible for therapeutic hypothermia from others was 0.782. In addition, a lower expression of miR-486-5p at 7 days of age was noted in the asphyxiated newborns with adverse outcomes compared to those with normal outcomes. CONCLUSION MiR-486-5p may be a biomarker of perinatal asphyxia in newborns, and further research is warranted to clarify its role.
Collapse
Affiliation(s)
- Yin-Hsuan Lai
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, Camillian Saint Mary's Hospital Luodong, Yilan, Taiwan
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Huei Chen
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Jui-Hsing Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Chyong-Hsin Hsu
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Man-Yau Ho
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Nan-Chang Chiu
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Che-Sheng Ho
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Jinn-Li Wang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Xu F, Zhang Q, Liu Y, Tang R, Li H, Yang H, Lin L. The role of exosomes derived from various sources in facilitating the healing of chronic refractory wounds. Pharmacol Res 2025; 216:107753. [PMID: 40311956 DOI: 10.1016/j.phrs.2025.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Chronic refractory wounds (CRWs) represent a common and challenging issue in clinical practice, including diabetic foot ulcers, pressure ulcers, venous ulcers, and arterial ulcers. These wounds significantly impact patients' quality of life and may lead to severe consequences such as amputation. Their treatment requires a comprehensive consideration of both the patient's overall physical condition and the local wound situation. The major challenges in treatment include complex pathogenesis, a long treatment cycle, a high recurrence rate, and heavy economic pressure on the patients. Exosomes represent an emerging therapeutic modality with characteristics such as low immunogenicity, good biostability, and high targeting efficiency in the treatment of diseases. Exosomes derived from different sources exhibit heterogeneity, demonstrating their respective advantages and unique properties in treatment. This article delves into the potential applications and mechanisms of action of exosomes from various sources in the treatment of CRWs, aiming to provide new perspectives and ideas for the management of such wounds.
Collapse
Affiliation(s)
- Fengdan Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiling Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuling Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruying Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, China.
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Longfei Lin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
6
|
Massaro C, Sgueglia G, Muro A, Pieragostino D, Lanuti P, Cufaro MC, Giorgio C, D'Agostino E, Torre LD, Baglio SR, Pirozzi M, De Simone M, Altucci L, Dell'Aversana C. Vorinostat impairs the cancer-driving potential of leukemia-secreted extracellular vesicles. J Transl Med 2025; 23:421. [PMID: 40211278 PMCID: PMC11987450 DOI: 10.1186/s12967-025-06361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Leukemia-secreted extracellular vesicles (EVs) carry biologically active cargo that promotes cancer-supportive mechanisms, including aberrant proliferative signaling, immune escape, and drug resistance. However, how antineoplastic drugs affect EV secretion and cargo sorting remains underexplored. METHODS Leukemia-secreted extracellular vesicles (EVs) were isolated by Differential UltraCentrifugation, and their miRNome and proteomic profiling cargo were analyzed following treatment with SAHA (Vorinostat) in Acute Myeloid Leukemia (AML) and Chronic Myeloid Leukemia (CML). The epigenetic modulation of leukemia-secreted EVs content on interesting key target molecules was validated, and their differential functional impact on cellular viability, cell cycle progression, apoptosis, and tumorigenicity was assessed. RESULTS SAHA significantly alters the cargo of Leukemia-derived EVs, including miR-194-5p and its target BCLAF1 (mRNA and protein), key regulators of Leukemia cell survival and differentiation. SAHA upregulates miR-194-5p expression while selective loading BCLAF1 into EVs, reducing the miRNA levels in the same compartment. Additionally, SAHA alters miRNA profile and proteomic composition associated with leukemic EVs, altering their tumor-supportive potential, with differential effects observed between AML and CML. Furthermore, in silico predictions suggest that these modified EVs may influence cell sensitivity to antineoplastic agents, suggesting a dual role for SAHA in impairing oncogenic signaling while enhancing therapeutic responsiveness. CONCLUSIONS In conclusion, the capacity of SAHA to modulate secretion and molecular composition of Leukemia-secreted EVs, alongside its direct cytotoxic effects, underscores its potential in combination therapies aimed to overcoming refractory phenotype by targeting EV-mediated communication.
Collapse
MESH Headings
- Extracellular Vesicles/drug effects
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/pathology
- Vorinostat/pharmacology
- Vorinostat/therapeutic use
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Proteomics
- Proteome/analysis
- Proteome/drug effects
- Cell Line, Tumor
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Computer Simulation
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Epigenesis, Genetic/drug effects
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Annamaria Muro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Maria Concetta Cufaro
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Cristina Giorgio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via De Amicis, 80131, Naples, Italy
| | - Erika D'Agostino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Laura Della Torre
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Serena Rubina Baglio
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Marinella Pirozzi
- Istituto degli Endotipi in Oncologia, Metabolismo e Immunologia "G. Salvatore" (IEOMI)-National Research Council (CNR), 80131, Naples, Italy
| | - Mariacarla De Simone
- Stem Cell Transplantation Unit, Division Hematology, Cardarelli Hospital, 80131, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
- Istituto degli Endotipi in Oncologia, Metabolismo e Immunologia "G. Salvatore" (IEOMI)-National Research Council (CNR), 80131, Naples, Italy.
- BIOGEM, 83031, Ariano Irpino, Italy.
- Medical Epigenetics Program, Vanvitelli Hospital, Naples, Italy.
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
- Istituto degli Endotipi in Oncologia, Metabolismo e Immunologia "G. Salvatore" (IEOMI)-National Research Council (CNR), 80131, Naples, Italy.
- Department of Medicine and Surgery, LUM University, Casamassima, BA, Italy.
| |
Collapse
|
7
|
Hoseini SM, Montazeri F. Cell origin and microenvironment: The players of differentiation capacity in human mesenchymal stem cells. Tissue Cell 2025; 93:102709. [PMID: 39765135 DOI: 10.1016/j.tice.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited. Differentiation of human MSCs (hMSCs) is a complex process influenced by various elements such as growth factors, pharmaceutical compounds, microRNAs, 3D scaffolds, and mechanical and electrical stimulation. Research has shown that different culture conditions can affect the differentiation potential of hMSCs obtained from multiple fetal and adult sources. Additionally, it seems that what affects the differentiation capacities of these cells is their secretory characteristics, which are influenced by the origin of the cells and the local microenvironment where the cells are located. The review can provide insights into the microenvironment-based mechanisms involved in MSC differentiation, which can be valuable for future therapeutic applications.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
8
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
9
|
Noorizadeh S, Tehranchi M, Taleghani F, Hakimiha N, Pourhajibagher M, Hodjat M. Effects of photobiomodulation therapy with 808 nm diode laser on the expression of RANKL and OPG genes in exosomes isolated from MG63 osteoblast-like cells: An in-vitro study. Photodiagnosis Photodyn Ther 2025; 53:104566. [PMID: 40122481 DOI: 10.1016/j.pdpdt.2025.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND AND AIM This study assessed the effects of 808 nm diode laser on the gene expression of receptor activator of nuclear factor kappa beta ligand (RANKL) and osteoprotegerin (OPG), key regulators of bone remodeling, in exosomes derived from osteoblast-like cells. MATERIALS AND METHODS The cultured MG63 cells were subjected to 808 nm diode laser irradiation at energy densities of 3 J/cm², 6 J/cm², and 9 J/cm², along with a control group with no intervention. The irradiation sessions were conducted twice, with a 24-hour interval between them. Next the exosomes from the target cells were isolated, and the mRNA levels of the RANKL and OPG genes were assessed using qPCR. RESULTS The OPG mRNA level in exosomes extracted from cells exposed to 9 J/cm² was found to be significantly elevated compared to both the control group and 6 J/cm². Conversely, the mRNA level of RANKL in group exposed to 9 J/cm² was significantly reduced in comparison to the control group and 6 J/cm². Additionally, the RANKL mRNA level in 6 J/cm² was also significantly lower than that observed in the control group and 3 J/cm². CONCLUSION Using 808 nm diode laser at an energy density of 9 J/cm² resulted in an upregulation of exosomal mRNA for OPG and a downregulation of RANKL. Photobiomodulation may enhance bone regeneration via exosomal signaling. Considering the promising clinical application of exosomes in bone regeneration, our results highlight the potential of photobiomodulation to manipulate exosomal content for therapeutic purposes.
Collapse
Affiliation(s)
- Sara Noorizadeh
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Maryam Tehranchi
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Ferial Taleghani
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Kostyusheva A, Romano E, Yan N, Lopus M, Zamyatnin AA, Parodi A. Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging. Adv Drug Deliv Rev 2025; 218:115522. [PMID: 39855273 DOI: 10.1016/j.addr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Exosomes have emerged as promising tools for targeted drug delivery in biomedical applications and medicine. This review delves into the scientific advancements, challenges, and future prospects specifically associated with these technologies. In this work, we trace the research milestones that led to the discovery and characterization of exosomes and extracellular vesicles, and discuss strategies for optimizing the synthetic yield and the loading of these particles with various therapeutics. In addition, we report the current major issues affecting the field and hampering the clinical translation of these technologies. Highlighting the pivotal role of imaging techniques, we explore how they drive exosome therapy and development by offering insights into biodistribution and cellular trafficking dynamics. Methodologies for vesicle isolation, characterization, loading, and delivery mechanisms are thoroughly examined, alongside strategies aimed at enhancing their therapeutic efficacy. Special emphasis was dedicated to their therapeutic properties, particularly to their ability to deliver biologics into the cytoplasm. Furthermore, we delve into the intricate balance between surface modifications and targeting properties including also transgenic methods aimed at their functionalization and visualization within biological systems. This review underscores the transformative potential of these carriers in targeted drug delivery and identifies crucial areas for further research and clinical translation.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | | | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Andrey A Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia.
| |
Collapse
|
12
|
Man X, Lin T, Xie Z, Jin J, He Q. Beneficial effects of cell-derived exosomes on diabetic nephropathy: a systematic review and meta-analysis of preclinical evidence. Acta Diabetol 2025:10.1007/s00592-025-02473-8. [PMID: 39998649 DOI: 10.1007/s00592-025-02473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
AIMS Recent studies indicate that cell-derived exosomes are effective in treating diabetic renal injury, though their precise mechanisms remain unclear. This meta-analysis evaluates the therapeutic efficacy of exosomes in diabetic nephropathy. METHODS In addition to reviewing references and consulting experts, we systematically searched PubMed, Cochrane Library, EMBASE, and Web of Science for studies on exosome therapy for diabetic nephropathy. Seven outcome measures were selected to evaluate efficacy: blood glucose [(fasting blood glucose (FBG) and random blood glucose (RBG)], renal function parameters [serum creatinine (SCR), blood urea nitrogen (BUN), 24-hour urinary protein (24 h UP) and albumin-to-creatinine ratio (UACR)], and inflammatory factors. Study quality was assessed using the SYRCLE risk of bias tool, and data were analyzed using RevMan (version 5.3) software. RESULTS We included 17 studies involving 288 animals, with follow-up durations ranging from 2 to 14 weeks. Pooled analysis demonstrated that exosome treatment significantly improved GLU (FBG: SMD - 1.39, 95% CI -2.70 to -0.08, P = 0.04; RBG: SMD - 1.29, 95% CI -2.25 to -0.34, P < 0.008), SCR (SMD - 1.45, 95% CI -2.14 to -0.76, P < 0.0001), BUN (SMD - 2.06, 95% CI -3.01 to -1.11, P < 0.0001), 24 UP (SMD - 2.88, 95% CI -3.97 to -1.78, P < 0.00001), and UACR (SMD - 2.00, 95% CI -3.15 to -0.85, P = 0.0007) compared to the diabetic model group. Qualitative analysis revealed that exosomes increased anti-inflammatory factors while reducing pro-inflammatory factors (P < 0.05). No adverse effects of exosomes were reported in any of the included studies. CONCLUSIONS Current evidence indicates that exosomes attenuate diabetic nephropathy progression through anti-inflammatory, anti-fibrotic, anti-apoptotic, and autophagy-inducing mechanisms. To demonstrate the most efficient exosomes and therapeutic parameters for the treatment of diabetic nephropathy, future studies should conduct sizable, randomized, double-blind trials with high-quality, long-term follow-ups.
Collapse
Affiliation(s)
- Xueli Man
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Ting Lin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Zhixuan Xie
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
13
|
Russo M, Lepre CC, Conza G, Tangredi N, D’Amico G, Braile A, Moretti A, Tarantino U, Gimigliano F, D’Amico M, Trotta MC, Toro G. New Insights on the miRNA Role in Diabetic Tendinopathy: Adipose-Derived Mesenchymal Stem Cell Conditioned Medium as a Potential Innovative Epigenetic-Based Therapy for Tendon Healing. Biomolecules 2025; 15:264. [PMID: 40001567 PMCID: PMC11852990 DOI: 10.3390/biom15020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) improved the viability and wound closure of human tenocytes (HTCN) exposed to high glucose (HG) by activating the transforming growth factor beta 1 (TGF-β1) pathway. OBJECTIVES Since ASC-CM can also modulate microRNAs (miRNAs) in recipient cells, this study investigated the effects of ASC-CM on the miRNAs regulating tendon repair (miR-29a-3p, miR-210-3p and miR-21-5p) in HG-HTNC. METHODS ASC-CM was obtained by ASCs isolated from the abdominal fat tissue of seven non-diabetic patients. HTNC were cultured in HG for 20 days, then scratched and exposed for 24 h to ASC-CM. qRT-PCR and ELISAs assessed miRNA and target levels. RESULTS HG-HTNC exhibited a significant downregulation of miRNAs. ASC-CM restored the levels of miRNAs and their related targets involved in tendon repair. CONCLUSIONS The epigenetic modulation observed in HG-HTNC exposed to ASC-CM could be an innovative option in the management of diabetic tendinopathy.
Collapse
Affiliation(s)
- Marina Russo
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.R.); (F.G.)
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.C.L.); (N.T.); (M.D.)
- Ph.D. Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gianluca Conza
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.C.); (A.M.); (G.T.)
| | - Nicoletta Tangredi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.C.L.); (N.T.); (M.D.)
| | | | - Adriano Braile
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.C.); (A.M.); (G.T.)
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.C.); (A.M.); (G.T.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.R.); (F.G.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.C.L.); (N.T.); (M.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.C.L.); (N.T.); (M.D.)
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.C.); (A.M.); (G.T.)
| |
Collapse
|
14
|
Zheng L, Zhang C, Liao L, Hai Z, Luo X, Xiao H. Knockdown of Gfi1 increases BMSCs exosomal miR-150-3p to inhibit osteoblast ferroptosis in steroid-induced osteonecrosis of the femoral head through BTRC/Nrf2 axis. Endocr J 2025; 72:205-219. [PMID: 39675999 PMCID: PMC11850103 DOI: 10.1507/endocrj.ej24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/02/2024] [Indexed: 12/17/2024] Open
Abstract
The ferroptosis of osteoblasts has been demonstrated to play a significant role in the development of steroid-induced osteonecrosis of the femoral head (SONFH). Additionally, microRNAs (miRNAs) have been identified as regulators of SONFH progression. However, the precise role of miRNAs in the regulation of osteoblast ferroptosis remains unclear. This study explored the role of exosomal miR-150-3p, derived from bone marrow mesenchymal stem cells (BMSCs), in osteoblast ferroptosis in SONFH. Dexamethasone (DEX) was used to treat osteoblasts to induce ferroptosis. BMSCs exosomes with different levels of miR-150-3p were introduced into a co-culture with the cells. To verify the targeting relationship between growth factor independence 1 (Gfi1) and the miR-150-3p promoter, as well as between miR-150-3p and beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC), respectively, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), and dual luciferase assays were employed. It was found that BMSCs-Exos-miR-150-3p mitigated DEX-triggered ferroptosis in osteoblasts. MiR-150-3p directly targeted BTRC, leading to its downregulation in osteoblasts. The BTRC/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was involved in the inhibition of DEX-induced osteoblast ferroptosis by BMSCs-Exos-miR-150-3p. Overexpression of BTRC reversed the inhibitory effect of BMSCs-Exos-miR-150-3p. In a SONFH rat model, BMSCs-Exos-miR-150-3p alleviated ferroptosis in osteoblasts through BTRC/Nrf2. In addition, Gfi1 bonded to the miR-150-3p promoter and inhibited its transcription. Gfi1 silencing elevated miR-150-3p levels and improves cell viability of BMSCs. In conclusion, our results suggest that BMSCs-Exos-miR-150-3p alleviates SONFH by suppressing ferroptosis through the regulation of BTRC/Nrf2 and miR-150-3p may be a potential target for SONFH treatment.
Collapse
Affiliation(s)
- Liwen Zheng
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Changjie Zhang
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lele Liao
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zhijie Hai
- Medical Laboratory Center, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xin Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Haoliang Xiao
- Laboratory Animal Centre, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
15
|
wu Z, Xu Y, Zhou C, Zhang Y, Chen J. tsRNA in head and neck tumors: Opportunities and challenges in the field. Noncoding RNA Res 2025; 10:223-230. [PMID: 39468996 PMCID: PMC11513501 DOI: 10.1016/j.ncrna.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a newly recognized class of small non-coding RNAs that are implicated in a variety of cancers, including head and neck tumors. Studies have identified tsRNAs with differential expression profiles in head and neck malignancies, highlighting their potential as biomarkers for diagnosis and prognosis. Functional analyses show that tsRNAs are involved in regulating critical cellular pathways, including those related to cell proliferation, migration, and metabolic processes. Despite these encouraging insights, there are myriad challenges that must be tackled. In summary, tsRNAs present considerable potential as therapeutic targets and biomarkers in the realm of head and neck tumors, meriting further investigation and clinical application to optimize outcomes in the management of these complex diseases. This literature review synthesizes current research on tsRNAs, tsRNAs hold significant promise as biomarkers and therapeutic targets, with the potential to transform diagnostic and treatment strategies for head and neck tumors, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zhuo wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yufeng Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| | - Changzeng Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yongbo Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| |
Collapse
|
16
|
Xu S, Liu D, Zhang F, Tian Y. Innovative treatment of age-related hearing loss using MSCs and EVs with Apelin. Cell Biol Toxicol 2025; 41:31. [PMID: 39820591 PMCID: PMC11739245 DOI: 10.1007/s10565-025-09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Utilizing single-cell transcriptome sequencing (scRNA-seq) technology, this study explores the viability of employing mesenchymal stem cells (MSCs) as a therapeutic approach for age-related hearing loss (ARHL). The research demonstrates MSCs' ability to differentiate into inner ear cell subpopulations, particularly hair cells, delivering Apelin via extracellular vesicles (EVs) to promote M2 macrophage polarization. In vitro experiments show reduced inflammation and preservation of hair cell health. In elderly mice, MSCs transplantation leads to hair cell regeneration, restoring auditory function. These findings highlight the regenerative capabilities of MSCs and EV-mediated therapeutic approaches for ARHL.
Collapse
Affiliation(s)
- Shengqun Xu
- Ear, Nose, Throat, Head and Neck Surgery Comprehensive Ward, Shengjing Hospital of China Medical University, Shenyang, 110020, China
| | - Dongliang Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fang Zhang
- Department of Otorhinolaryngology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Yuan Tian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
17
|
Silva RO, Haddad M, Counil H, Zaouter C, Patten SA, Fulop T, Ramassamy C. Exploring the potential of plasma and adipose mesenchymal stem cell-derived extracellular vesicles as novel platforms for neuroinflammation therapy. J Control Release 2025; 377:880-898. [PMID: 39617173 DOI: 10.1016/j.jconrel.2024.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Persistent reactive oxygen species (ROS) and neuroinflammation contribute to the onset and progression of neurodegenerative diseases, underscoring the need for targeted therapeutic strategies to mitigate these effects. Extracellular vesicles (EVs) show promise in drug delivery due to their biocompatibility, ability to cross biological barriers, and specific interactions with cell and tissue receptors. In this study, we demonstrated that human plasma-derived EVs (pEVs) exhibit higher brain-targeting specificity, while adipose-derived mesenchymal stem cells EVs (ADMSC-EVs) offer regenerative and immunomodulatory properties. We further investigated the potential of these EVs as therapeutic carriers for brain-targeted drug delivery, using Donepezil (DNZ) as the model drug. DNZ, a cholinesterase inhibitor commonly used for Alzheimer's disease (AD), also has neuroprotective and anti-inflammatory properties. The size of EVs used ranged from 50 to 300 nm with a surface charge below -30 mV. Both formulations showed rapid cellular internalization, without toxicity, and the ability to cross the blood-brain barrier (BBB) in a zebrafish model. The have analyzed the anti-inflammatory and antioxidant actions of pEVs-DNZ and ADMSC-EVs-DNZ in the presence of lipopolysaccharide (LPS). ADMSC-EVs significantly reduced the inflammatory mediators released by HMC3 microglial cells while treatment with pEVs-DNZ and ADMSC-EVs-DNZ lowered both phagocytic activity and ROS levels in these cells. In vivo experiments using zebrafish larvae revealed that both EV formulations reduced microglial proliferation and exhibited antioxidant effects. Overall, this study highlights the potential of EVs loaded with DNZ as a novel approach for treating neuroinflammation underlying various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Hermine Counil
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Charlotte Zaouter
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
18
|
Padilla JCA, Barutcu S, Deschamps-Francoeur G, Lécuyer E. Exploring Extracellular Vesicle Transcriptomic Diversity Through Long-Read Nanopore Sequencing. Methods Mol Biol 2025; 2880:227-241. [PMID: 39900762 DOI: 10.1007/978-1-0716-4276-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Nanopore long-read RNA sequencing is reshaping extracellular vesicle (EV) research by providing the capacity to analyze full-length RNA molecules. EVs are crucial for intercellular communication, carrying a diverse range of RNA cargo that can regulate recipient cell behavior. However, traditional short-read sequencing methods involve transcript fragmentation, limiting our understanding of the EV transcriptomic landscape. Furthermore, it has been generally assumed that EV RNAs are likely to be fragmentation products of cellular RNAs, and the extent to which full length RNAs are present within EVs remains to be clarified. Recent advancements in sequencing technology, particularly long-read sequencing by Oxford Nanopore Technologies (ONT), offer a solution to this limitation. Hence, long-read sequencing allows for the analysis of full-length EV RNA molecules, providing deeper insights into their integrity and isoform diversity. Here, we present a comprehensive protocol for EV RNA purification, cDNA library preparation, and sequencing using ONT's MinION platform.
Collapse
Affiliation(s)
- Juan-Carlos A Padilla
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Seda Barutcu
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | | | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
19
|
Liang Z, Wu Y, Bao J, Xiao Q, Luo S, Liu X, Wang Y, Xie C, Zhang L. Osterix mRNA Enrichment in Small Extracellular Vesicles Derived From Osteogenically Induced ADSCs: A Promoter of Osteogenic Differentiation in BMSCs. J Cell Mol Med 2025; 29:e70353. [PMID: 39804160 PMCID: PMC11727376 DOI: 10.1111/jcmm.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood. In this study, we investigated the mRNA expression profile of ADSC-sEVs+ and explored the role of specific mRNAs in the osteogenic differentiation of BMSCs. We first validated the osteogenic induction activity of ADSC-sEVs+ through both in vitro and in vivo experiments. Using reverse transcription polymerase chain reaction, we compared mRNA expression between ADSC-sEVs+ and ADSC-sEVs and further assessed the impact of specific mRNAs on the differentiation of BMSCs through a series of in vitro experiments. One of our key findings was that osterix mRNA was highly enriched in ADSC-sEVs+, which significantly enhanced alkaline phosphatase staining and upregulated downstream osteoblastic markers in BMSCs. Both overexpression and knockdown experiments confirmed that osterix mRNA is a critical signalling molecule that facilitates the differentiation of BMSCs into osteoblasts through ADSC-sEVs+. This finding expands our understanding of the molecular mechanisms underlying the osteogenic differentiation of BMSCs and offers a promising strategy for targeted osteoblastic differentiation in clinical applications.
Collapse
Affiliation(s)
- Zhaoquan Liang
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuelin Wu
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General HospitalSouthern Medical UniversityGuangzhouChina
| | - Junhao Bao
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General HospitalSouthern Medical UniversityGuangzhouChina
| | - Qiang Xiao
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General HospitalSouthern Medical UniversityGuangzhouChina
| | - Sidong Luo
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General HospitalSouthern Medical UniversityGuangzhouChina
| | - Xinfang Liu
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General HospitalSouthern Medical UniversityGuangzhouChina
| | - Yeyang Wang
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General HospitalSouthern Medical UniversityGuangzhouChina
| | - Chao Xie
- Department of Joint and Orthopedics, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Li Zhang
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General HospitalJinan UniversityGuangzhouChina
| |
Collapse
|
20
|
Stanisławowski M. Effect of adipose tissue on the development of multiple myeloma. Mol Biol Rep 2024; 52:74. [PMID: 39708277 DOI: 10.1007/s11033-024-10174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Multiple myeloma (MM), also referred to as Kahler's disease, is a cancer characterized by the uncontrolled growth of abnormal plasma cells and is associated with alterations in the bone tissue microenvironment. Bone marrow adipose tissue (BMAT), which comprises approximately ten percent of total body fat, can influence the progression, survival, and drug resistance of MM cells through paracrine, hormonal, and metabolic pathways. Obesity can lead to an increase in BMAT mass, which not only disrupts bone metabolism but also reduces bone density, potentially progressing from monoclonal gammopathy of undetermined significance, a benign condition, to MM. A range of factors, including impaired fatty acid metabolism, increased production of adipokines that support myeloma, and heightened expression of oncogenic microRNAs in multiple myeloma, contribute to the progression of this incurable blood cancer. To better understand the relationship between excess adipose tissue accumulation and the risk of developing multiple myeloma, a comprehensive review of published data was conducted.
Collapse
Affiliation(s)
- Marcin Stanisławowski
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| |
Collapse
|
21
|
Tang A, Shu Q, Jia S, Lai Z, Tian J. Adipose Mesenchymal Stem Cell-Derived Exosomes as Nanocarriers for Treating Musculoskeletal Disorders. Int J Nanomedicine 2024; 19:13547-13562. [PMID: 39720215 PMCID: PMC11668248 DOI: 10.2147/ijn.s486622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Musculoskeletal disorders are a series of diseases involving bone, muscle, cartilage, and tendon, mainly caused by chronic strain, degenerative changes, and structural damage due to trauma. The disorders limit the function of patients due to pain and significantly reduce their quality of life. In recent years, adipose-derived mesenchymal stem cells have been extensively applied in regeneration medicine research due to their particular abilities of self-renewal, differentiation, and targeted homing and are more easily accessed compared with other sources. The paracrine effect of ADSCs plays a crucial role in intercellular communication by releasing mass mediators, including cytokines and growth factors, particularly the exosomes they secrete. Not only do these exosomes possess low immunogenicity, low toxicity, and an enhanced ability to penetrate a bio-barrier, but they also inherit their parent cells' characteristics and carry various bioactive molecules to release to targeted cells, modulating their biological process. Meanwhile, these characteristics also make exosomes a natural nanocarrier capable of targeted drug delivery to specific sites, enhancing the bioavailability of drugs within the body and achieving precision therapy with fewer toxic side effects. Furthermore, the integration of exosomes with tissue engineering and chemical modification strategies can also significantly enhance their efficacy in facilitating tissue repair. However, the current research on ADSC-Exos for improving MSDs remains at an early stage and needs further exploration. Therefore, this review summarized the ADSC-Exo as a nanodrug carrier characteristics and mechanism in the treatment of fracture, osteoporosis, osteoarthritis, intervertebral disc degeneration, and tendon injury, which push forward the research progress of ADSC-Exo therapy for MSDs.
Collapse
Affiliation(s)
- Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Shaohui Jia
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
22
|
Wolski M, Ciesielski T, Buczma K, Fus Ł, Girstun A, Trzcińska-Danielewicz J, Cudnoch-Jędrzejewska A. Administration of Adipose-Derived Stem Cells After the Onset of the Disease Does Not Lower the Levels of Inflammatory Cytokines IL1 and IL6 in a Rat Model of Necrotizing Enterocolitis. Biomedicines 2024; 12:2897. [PMID: 39767803 PMCID: PMC11727438 DOI: 10.3390/biomedicines12122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Research on the roles of stem cells in necrotizing enterocolitis (NEC) has primarily focused on the effects of bone marrow- and amniotic fluid-derived stem cells in mitigating the clinical manifestations of the disease. However, the potential of adipose tissue-derived stem cells (ADSCs) remains unexplored in this context. The aim of this study was to evaluate the therapeutic potential of ADSC administration during the active inflammatory phase of NEC, with a specific focus on reducing the levels of the inflammatory cytokines IL-1 and IL-6. Methods: A self-modified hypoxia-hypothermia-formula feeding rat NEC model was employed. A total of 117 rat pups were divided into two groups: a treatment group (NEC-ADSC, n = 55) and a control group (NEC-PLCB (placebo), n = 62). In the NEC-ADSC group, ADSCs were administered intraperitoneally 24 h into the NEC protocol. After 72 h, bowel and fluid samples were collected for analysis. Results: The analysis revealed no significant effect on NEC histopathology (p = 0.347) or on the levels of IL-1 and IL-6 (p = 0.119 and p = 0.414, respectively). Conclusions: The administration of adipose tissue-derived stem cells after the onset of necrotizing enterocolitis does not reduce the levels of inflammatory cytokines IL-1 and IL-6, nor does it influence the histopathological outcomes of the disease in the rat model. Further research is needed to explore the potential therapeutic role of adipose tissue-derived stem cells in the treatment of necrotizing enterocolitis.
Collapse
Affiliation(s)
- Marek Wolski
- Department of Pediatric Surgery, Medical University of Warsaw, Zwirki i Wigury 63a, 02-091 Warsaw, Poland
| | - Tomasz Ciesielski
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| | - Kasper Buczma
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| | - Łukasz Fus
- Department of Pathology, Medical University of Warsaw, Pawinskiego 7, 02-106 Warsaw, Poland;
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (A.G.); (J.T.-D.)
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (A.G.); (J.T.-D.)
| | - Agnieszka Cudnoch-Jędrzejewska
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| |
Collapse
|
23
|
Kong Y, Wang Y, Yang Y, Hou Y, Yu J, Liu M, Xie S, Song Y. Intra-articular injection of exosomes derived from different stem cells in animal models of osteoarthritis: a systematic review and meta- analysis. J Orthop Surg Res 2024; 19:834. [PMID: 39696589 DOI: 10.1186/s13018-024-05227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In recent years, the increasing incidence of osteoarthritis (OA) has attracted widespread public attention; however, the available effective treatments are limited. As a result, new therapeutic approaches, including stem cell and exosome therapies, have been proposed and are gradually gaining popularity. Because exosomes are immunocompatible, there is thought to be more potential for their use in clinical settings. This study summarizes the efficacy of exosomes in the treatment of OA. METHODS In total, we conducted a comprehensive search of the PubMed, Web of Science, and Embase databases using medical subject headings terms to identify studies published from their inception until November 2023 that investigated the use of stem cell-derived exosomes in treating OA. We focused on specific outcomes including osteophyte score, chondrocyte count, pain level, qPCR and histological assessments such as the OARSI (Osteoarthritis research society international) score to measure cartilage degeneration. For data extraction, we used GetData Graph Digitizer to retrieve values from graphs, and the meta-analysis was conducted using RevMan 5.3 software. We chose mean difference (MD) as the primary effect measure since all included studies reported the same outcomes. Ultimately, 20 articles met the inclusion criteria and were included in the meta-analysis. RESULTS We evaluated 20 studies comprising a total of 400 subjects. Compared with control groups, the exosome-treated groups showed significantly improved histological outcomes, as measured by the OARSI score (n = 400; MD = -3.54; 95% CI = [-4.30, -2.79]; P < 0.00001; I2 = 98%). This indicates a marked reduction in cartilage degeneration and OA severity in the exosome-treated groups. Notably, exosome therapy was more effective when administered during the early stages of OA. Additionally, a once-weekly dosing schedule yielded better results compared to more frequent administrations. Of the three exosome isolation methods assessed, kit-based extraction demonstrated a trend toward superior therapeutic efficacy. CONCLUSIONS Exosome treatment improved OA compared to placebo treatment.
Collapse
Affiliation(s)
- Yajie Kong
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Yuzhong Wang
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
- Hebei Key Laboratory of Rare Disease, Shijiazhuang, 050000, Hebei Province, People's Republic of China
| | - Yujia Yang
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Yu Hou
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Jingjing Yu
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Meiling Liu
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Siyi Xie
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Yongzhou Song
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.
- Hebei Key Laboratory of Rare Disease, Shijiazhuang, 050000, Hebei Province, People's Republic of China.
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China.
| |
Collapse
|
24
|
Buitrago JC, Cruz-Barrera M, Dorsant-Ardón V, Medina C, Hernández-Mejía DG, Beltrán K, Flórez N, Camacho B, Gruber J, Salguero G. Large and small extracellular vesicles from Wharton's jelly MSCs: Biophysics, function, and strategies to improve immunomodulation. Mol Ther Methods Clin Dev 2024; 32:101353. [PMID: 39512906 PMCID: PMC11541841 DOI: 10.1016/j.omtm.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Extracellular vesicles (EVs) have emerged as mediators of immunosuppression and pro-regenerative processes, particularly through mesenchymal stromal cells (MSCs) across various disease models. Despite significant progress, there is still a need for a deeper understanding of EV content and functionality to fully harness their biomedical potential. Moreover, strategies to enhance EV production for clinical scalability are still under development. This study aimed to characterize two distinct types of EV-large EV (lgEV) and small EV (smEV)-secreted by Wharton's jelly MSCs (WJ-MSCs). Strategies were explored to augment both EV production and their immunoregulatory effects. Both lgEV and smEV displayed typical EV markers and demonstrated inhibition of human lymphocyte proliferation. Furthermore, analysis of IsomiR content revealed a pronounced immunomodulating signature within MSC-derived EVs, validated by a dual-fluorescence reporter system. MSC primed with pro-inflammatory cytokines yielded increased production of lgEV and smEV, enhancing their immunomodulatory potency. Finally, genetically engineering WJ-MSC to express CD9 resulted in lgEV and smEV with heightened efficacy in suppressing lymphocyte proliferation. This study successfully isolated, characterized, and demonstrated the potent immunosuppressive effect of WJ-MSC-derived lgEV and smEV. We propose cytokine preconditioning and genetic manipulation as viable strategies to enhance the therapeutic potential of WJ-MSC-derived EV in inflammatory conditions.
Collapse
Affiliation(s)
- July Constanza Buitrago
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
- Curexsys GmbH, Göttingen, Germany
- PhD Biomedical and Biological Sciences Program, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mónica Cruz-Barrera
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Valerie Dorsant-Ardón
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Carlos Medina
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - David G. Hernández-Mejía
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Karl Beltrán
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Natalia Flórez
- Faculty of Medicine, Universidad EAN, Medellín, Colombia
| | - Bernardo Camacho
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | | | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| |
Collapse
|
25
|
Thakur A, Rai D. Global requirements for manufacturing and validation of clinical grade extracellular vesicles. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100278. [PMID: 40027307 PMCID: PMC11863704 DOI: 10.1016/j.jlb.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 03/05/2025]
Abstract
Extracellular vesicles (EVs) are nanovesicles released from different cell types from biofluids such as blood, urine, and cerebrospinal fluid. They vary in size and biomarkers, and their biogenesis pathways allow them to be divided into three major types: exosomes, micro-vesicles, and apoptotic bodies. EVs have been studied in the context of diagnosis and therapeutic intervention of various pathological conditions such as cancer, neurodegenerative diseases, and pulmonary diseases. However, the production of EV-based therapeutics can be affected by the source, heterogeneity, or disease, raising questions about the manufacturing and validation of EVs of clinical grade and their scope regarding good manufacturing practice (GMP) in the industry. To address this, we have discussed the state-of-the-art requirements for EV production that must occur in a GMP-compliant environment with a reliable and traceable source. Additionally, EVs' homogeneity and the therapeutics' purity and stability must be analyzed and validated. Quality control measures must also be established to ensure the safety and efficacy of EVs. In conclusion, these considerations must be weighed carefully when manufacturing and validating EVs of clinical grade to ensure their safety and efficacy for therapeutic use.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Deepika Rai
- Smidt Heart Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, United States
| |
Collapse
|
26
|
Douvris A, Viñas JL, Akbari S, Tailor K, Lalu MM, Burger D, Burns KD. Systematic review of microRNAs in human acute kidney injury. Ren Fail 2024; 46:2419960. [PMID: 39477814 PMCID: PMC11533245 DOI: 10.1080/0886022x.2024.2419960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION Early diagnosis of acute kidney injury (AKI) is limited with current tools. MicroRNAs (miRNAs) are implicated in AKI pathogenesis in preclinical models, but less is known about their role in humans. We conducted a systematic review to identify dysregulated miRNAs in humans with AKI. METHODS We searched Ovid MEDLINE, Embase, Web of Science, and CENTRAL (August 21, 2023) for studies of human subjects with AKI. We excluded reviews and pre-clinical studies without human data. The primary outcome was dysregulated miRNAs in AKI. Two reviewers screened abstracts, reviewed full texts, performed data extraction and quality assessment (Newcastle Ottawa Scale). RESULTS We screened 2,456 reports and included 92 for synthesis without meta-analysis. All studies except one were observational. Studies were grouped by etiology of AKI: cardiac surgery-associated (CS-AKI, n = 13 studies), sepsis (n = 25), nephrotoxic (n = 9), kidney transplant (n = 26), and other causes (n = 19). In total, 128 miRNAs were identified to be dysregulated across AKI studies (45 miRNAs upregulated, 55 downregulated, 28 both). miR-21 was the most frequently reported (n = 17 studies) and it was increased in all etiologies except CS-AKI where it was decreased (n = 3 studies). Study limitations included bias due to targeted approaches, absence of clinical data/controls, and miRNA normalization methods. Overall study quality was fair (median 5/9, range 2-8 points). CONCLUSION Dysregulated miRNAs, particularly miR-21, have potential as AKI biomarkers. These results should be interpreted cautiously due to methodological limitations. Standardized methods and unbiased approaches are needed to validate candidate miRNA biomarkers.Registration: International Prospective Register of Systematic Reviews (PROSPERO CRD42020201253).
Collapse
Affiliation(s)
- Adrianna Douvris
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jose L. Viñas
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Shareef Akbari
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karishma Tailor
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Department of Anesthesiology and Pain Medicine, Clinical Epidemiology and Regenerative Medicine Program, Blueprint Translational Research Group, The Ottawa Hospital Research Institute, The University of Ottawa and The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Dylan Burger
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin D. Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Khazeni S, Ghavimi M, Mesgari-Abbasi M, Roshangar L, Abedi S, Pourlak T. Therapeutic effects of mesenchymal stem cells derived from bone marrow and adipose tissue in a rat model of temporomandibular osteoarthritis. J Oral Biosci 2024; 66:107-115. [PMID: 39059718 DOI: 10.1016/j.job.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES To examine the potential of intra-articular administration of mesenchymal stem cells (MSCs) derived from bone marrow or adipose tissue to mitigate synovial inflammation in a rat model of temporomandibular joint (TMJ) osteoarthritis (OA). METHODS In this experimental study, 40 rats were divided into 4 groups: (1) Control group; (2) Untreated TMJ-OA group; (3) TMJ-OA group treated with bone marrow-derived MSCs; (4) TMJ-OA group treated with adipose tissue-derived MSCs. The TMJ-OA model was established by inducing synovial inflammation through the intra-articular administration of complete Freund's adjuvant (CFA). After 8 weeks of TMJ-OA establishment, the animals were sacrificed and each mandibular condyle was extracted for histological evaluation. RESULTS The untreated TMJ-OA group had significantly higher synovial inflammation, as indicated microscopically by higher grades of synovial membrane hyperplasia and adhesion, vascular vasodilation, and fibrin deposition than the control group (p < 0.001). Both TMJ-OA groups treated with MSCs had lower grades of synovial inflammation and less severe synovitis than the untreated TMJ-OA group (p < 0.001). The TMJ-OA group treated with adipose tissue-derived MSCs showed lower grades of synovial membrane hyperplasia and higher grades of fibrin deposition than the that treated with bone marrow-derived MSCs (p < 0.001). Other indicators of synovial inflammation and synovitis severity were comparable between the two treatment groups. CONCLUSIONS Administration of CFA to the TMJ-OA rat model augmented synovial inflammation. Intra-articular administration of MSCs derived from either bone marrow or adipose tissue attenuated the microscopic manifestations of this inflammation, indicating the therapeutic potential of this treatment for TMJ-OA.
Collapse
Affiliation(s)
- Saba Khazeni
- Department of Oral and Maxillofacial Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Ghavimi
- Department of Oral and Maxillofacial Surgery, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Leila Roshangar
- Anatomical Science Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Abedi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tannaz Pourlak
- Department of Oral and Maxillofacial Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Elashry MI, Speer J, De Marco I, Klymiuk MC, Wenisch S, Arnhold S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr Issues Mol Biol 2024; 46:13078-13104. [PMID: 39590374 PMCID: PMC11593097 DOI: 10.3390/cimb46110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)-cargoes of microRNA, proteins, lipids, and nucleic acids-to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Julia Speer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| |
Collapse
|
29
|
Su KK, Yu DC, Cao XF, Li P, Chang L, Yu XL, Li ZQ, Li M. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Nuclear Pulposus Cells Degeneration Through the miR-145a-5p/USP31/HIF-1α Signaling Pathway. Stem Cell Rev Rep 2024; 20:2268-2282. [PMID: 39212824 DOI: 10.1007/s12015-024-10781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes possess therapeutic potential against degenerative diseases. This study aimed to investigate the effects of BMSC-derived exosomes on intervertebral disc degeneration (IVDD) and explore the underlying molecular mechanisms. Through transcriptome sequencing and histological analysis, we observed a significant increase in HIF-1α expression in degenerative nucleus pulposus (NP) tissues. The addition of HIF-1α resulted in elevated expression of inflammatory factors IL-1β and IL-6, higher levels of matrix-degrading enzyme MMP13, and lower expression of aggrecan in NP cells. Co-culturing with BMSCs diminished the expression of HIF-1α, MMP13, IL-1β, and IL-6 in degenerative NP cells induced by overload pressure. miRNA chip analysis and PCR validation revealed that miR-145a-5p was the primary miRNA carried by BMSC-derived exosomes. Overexpression of miR-145a-5p was effective in minimizing the expression of HIF-1α, MMP13, IL-1β, and IL-6 in degenerative NP cells. Luciferase reporter assays confirmed USP31 as the target gene of miR-145a-5p, and the regulation of NP cells by BMSC-derived exosomes via miR-145a-5p was dependent on USP31. In conclusion, BMSC-derived exosomes alleviated IVDD through the miR-145a-5p/USP31/HIF-1α signaling pathway, providing valuable insights into the treatment of IVDD.
Collapse
Affiliation(s)
- Kang-Kang Su
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - De-Chen Yu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Xiong-Fei Cao
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Pan Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Le Chang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Xiao-Lei Yu
- Department of Cardiology, Air Force Medical University Tangdu Hospital, Xi'an710000, China
| | - Zhi-Quan Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China.
| | - Mo Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China.
| |
Collapse
|
30
|
Clua‐Ferré L, Suau R, Vañó‐Segarra I, Ginés I, Serena C, Manyé J. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med 2024; 14:e70075. [PMID: 39488745 PMCID: PMC11531661 DOI: 10.1002/ctm2.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as key regulators of intercellular communication, orchestrating essential biological processes by delivering bioactive cargoes to target cells. Available evidence suggests that MSC-EVs can mimic the functions of their parental cells, exhibiting immunomodulatory, pro-regenerative, anti-apoptotic, and antifibrotic properties. Consequently, MSC-EVs represent a cell-free therapeutic option for patients with inflammatory bowel disease (IBD), overcoming the limitations associated with cell replacement therapy, including their non-immunogenic nature, lower risk of tumourigenicity, cargo specificity and ease of manipulation and storage. MAIN TOPICS COVERED This review aims to provide a comprehensive examination of the therapeutic efficacy of MSC-EVs in IBD, with a focus on their mechanisms of action and potential impact on treatment outcomes. We examine the advantages of MSC-EVs over traditional therapies, discuss methods for their isolation and characterisation, and present mechanistic insights into their therapeutic effects through transcriptomic, proteomic and lipidomic analyses of MSC-EV cargoes. We also discuss available preclinical studies demonstrating that MSC-EVs reduce inflammation, promote tissue repair and restore intestinal homeostasis in IBD models, and compare these findings with those of clinical trials. CONCLUSIONS Finally, we highlight the potential of MSC-EVs as a novel therapy for IBD and identify challenges and opportunities associated with their translation into clinical practice. HIGHLIGHTS The source of mesenchymal stem cells (MSCs) strongly influences the composition and function of MSC-derived extracellular vesicles (EVs), affecting their therapeutic potential. Adipose-derived MSC-EVs, known for their immunoregulatory properties and ease of isolation, show promise as a treatment for inflammatory bowel disease (IBD). MicroRNAs are consistently present in MSC-EVs across cell types and are involved in pathways that are dysregulated in IBD, making them potential therapeutic agents. For example, miR-let-7a is associated with inhibition of apoptosis, miR-100 supports cell survival, miR-125b helps suppress pro-inflammatory cytokines and miR-20 promotes anti-inflammatory M2 macrophage polarisation. Preclinical studies in IBD models have shown that MSC-EVs reduce intestinal inflammation by suppressing pro-inflammatory mediators (e.g., TNF-α, IL-1β, IL-6) and increasing anti-inflammatory factors (e.g., IL-4, IL-10). They also promote mucosal healing and strengthen the integrity of the gut barrier, suggesting their potential to address IBD pathology.
Collapse
Affiliation(s)
- Laura Clua‐Ferré
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Roger Suau
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Irene Vañó‐Segarra
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Iris Ginés
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Carolina Serena
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Josep Manyé
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
- Centro de Investigación Biomédica en RedMadridSpain
| |
Collapse
|
31
|
Wolski M, Ciesielski T, Buczma K, Fus Ł, Girstun A, Trzcińska-Danielewicz J, Cudnoch-Jędrzejewska A. Administration of Adipose Tissue Derived Stem Cells before the Onset of the Disease Lowers the Levels of Inflammatory Cytokines IL-1 and IL-6 in the Rat Model of Necrotizing Enterocolitis. Int J Mol Sci 2024; 25:11052. [PMID: 39456833 PMCID: PMC11507542 DOI: 10.3390/ijms252011052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
There is little research concerning the role of stem cells in necrotizing enterocolitis (NEC). Bone marrow-derived mesenchymal stem cells (BMDSC) and amniotic fluid-derived stem cells significantly reduced the amount and severity of NEC in the animal models. ADSCs share similar surface markers and differentiation potential with BMDSCs. Their potential role in the setting of NEC has not been researched before. The hypothesis of the study was that prophylactic intraperitoneal administration of ADSCs before the onset of the disease will result in limiting the inflammatory response, effecting a lower incidence of NEC. On a molecular level, this should result in lowering the levels of inflammatory cytokines IL-1 and IL-6. The local ethical committee for animal experiments approval was acquired (WAW2/093/2021). We utilized a self-modified rat NEC model based on single exposure to hypothermia, hypoxia, and formula feeding. One hundred and twenty-eight rat puppies were divided into two groups-prophylaxis (ADSC-NEC, n = 66) and control group (NEC-PLCB, n = 62)-to measure the influence of ADSCs administration on the inflammatory changes in NEC, the level of cell engraftment, and the histopathology of the disease. The analysis did not show a significant effect on histopathology between groups, H(2) = 2.12; p = 0.347; η²H = 0.00. The intensity of the NEC variable results was similar across the analyzed groups (NEC-PLCB and ADSC-NEC). For IL-1 and IL-6, the difference between the NEC-PLCB group and the ADSC-NEC group was statistically significant, p = 0.002 and p < 0.001, respectively. To conclude, administration of adipose tissue-derived stem cells before the onset of the disease lowers the levels of inflammatory cytokines IL-1 and IL-6 but does not affect the histopathological results in the rat model of NEC.
Collapse
Affiliation(s)
- Marek Wolski
- Department of Pediatric Surgery, Medical University of Warsaw, Zwirki i Wigury 63a, 02-091 Warsaw, Poland
| | - Tomasz Ciesielski
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| | - Łukasz Fus
- Department of Pathology, Medical University of Warsaw, Pawinskiego 7, 02-106 Warsaw, Poland;
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (A.G.); (J.T.-D.)
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (A.G.); (J.T.-D.)
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (T.C.); (K.B.); (A.C.-J.)
| |
Collapse
|
32
|
Rody E, Zwaig J, Derish I, Khan K, Kachurina N, Gendron N, Giannetti N, Schwertani A, Cecere R. Evaluating the Reparative Potential of Secretome from Patient-Derived Induced Pluripotent Stem Cells during Ischemia-Reperfusion Injury in Human Cardiomyocytes. Int J Mol Sci 2024; 25:10279. [PMID: 39408608 PMCID: PMC11477076 DOI: 10.3390/ijms251910279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/20/2024] Open
Abstract
During a heart attack, ischemia causes losses of billions of cells; this is especially concerning given the minimal regenerative capability of cardiomyocytes (CMs). Heart remuscularization utilizing stem cells has improved cardiac outcomes despite little cell engraftment, thereby shifting focus to cell-free therapies. Consequently, we chose induced pluripotent stem cells (iPSCs) given their pluripotent nature, efficacy in previous studies, and easy obtainability from minimally invasive techniques. Nonetheless, using iPSC secretome-based therapies for treating injured CMs in a clinical setting is ill-understood. We hypothesized that the iPSC secretome, regardless of donor health, would improve cardiovascular outcomes in the CM model of ischemia-reperfusion (IR) injury. Episomal-generated iPSCs from healthy and dilated cardiomyopathy (DCM) donors, passaged 6-10 times, underwent 24 h incubation in serum-free media. Protein content of the secretome was analyzed by mass spectroscopy and used to treat AC16 immortalized CMs during 5 h reperfusion following 24 h of hypoxia. IPSC-derived secretome content, independent of donor health status, had elevated expression of proteins involved in cell survival pathways. In IR conditions, iPSC-derived secretome increased cell survival as measured by metabolic activity (p < 0.05), cell viability (p < 0.001), and maladaptive cellular remodelling (p = 0.052). Healthy donor-derived secretome contained increased expression of proteins related to calcium contractility compared to DCM donors. Congruently, only healthy donor-derived secretomes improved CM intracellular calcium concentrations (p < 0.01). Heretofore, secretome studies mainly investigated differences relating to cell type rather than donor health. Our work suggests that healthy donors provide more efficacious iPSC-derived secretome compared to DCM donors in the context of IR injury in human CMs. These findings illustrate that the regenerative potential of the iPSC secretome varies due to donor-specific differences.
Collapse
Affiliation(s)
- Elise Rody
- Department of Surgery, Division of Cardiac Surgery, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Jeremy Zwaig
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
| | - Ida Derish
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
- Department of Surgical and Interventional Sciences, McGill University, Montreal, QC H3G 1A4, Canada
| | - Kashif Khan
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Nadezda Kachurina
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Natalie Gendron
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Nadia Giannetti
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Adel Schwertani
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Renzo Cecere
- Department of Surgery, Division of Cardiac Surgery, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
33
|
Shah S, Mansour HM, Aguilar TM, Lucke-Wold B. Mesenchymal Stem Cell-Derived Exosomes as a Neuroregeneration Treatment for Alzheimer's Disease. Biomedicines 2024; 12:2113. [PMID: 39335626 PMCID: PMC11428860 DOI: 10.3390/biomedicines12092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent kind of dementia and is a long-term degenerative disease. Pathologically, it is defined by the development of extracellular amyloid-β plaques and intracellular neurofibrillary tangles made up of hyperphosphorylated tau protein. This causes neuronal death, particularly in the hippocampus and cortex. Mesenchymal stem cell (MSC)-derived exosomes have been identified as possibly therapeutic and have promise for Alzheimer's disease due to their regenerative characteristics. METHODS A systematic retrieval of information was performed on PubMed. A total of 60 articles were found in a search on mesenchymal stem cells, exosomes, and Alzheimer's disease. A total of 16 ongoing clinical trials were searched and added from clinicaltrials.gov. We added 23 supporting articles to help provide information for certain sections. In total, we included 99 articles in this manuscript: 50 are review articles, 13 are preclinical studies, 16 are clinical studies, 16 are ongoing clinical trials, and 4 are observational studies. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. The clinical trials on mesenchymal stem cell exosomes for Alzheimer's disease were searched on clinicaltrials.gov. RESULTS Several experimental investigations have shown that MSC-Exo improves cognitive impairment in rats. In this review paper, we summarized existing understanding regarding the molecular and cellular pathways behind MSC-Exo-based cognitive function restoration, with a focus on MSC-Exo's therapeutic potential in the treatment of Alzheimer's disease. CONCLUSION AD is a significant health issue in our culture and is linked to several important neuropathological characteristics. Exosomes generated from stem cells, such as mesenchymal stem cells (MSCs) or neural stem cells (NSCs), have been examined more and more in a variety of AD models, indicating that they may be viable therapeutic agents for the treatment of diverse disorders. Exosome yields may be increased, and their therapeutic efficacy can be improved using a range of tailored techniques and culture conditions. It is necessary to provide standardized guidelines for exosome manufacture to carry out excellent preclinical and clinical research.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (B.L.-W.)
| | - Hadeel M. Mansour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (B.L.-W.)
| | - Tania M. Aguilar
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (B.L.-W.)
| |
Collapse
|
34
|
Ahmed AI, Dowidar MF, Negm AF, Abdellatif H, Alanazi A, Alassiri M, Samy W, Mekawy DM, Abdelghany EMA, El-Naseery NI, Ibrahem MA, Albadawi EA, Salah W, Eldesoqui M, Tîrziu E, Bucur IM, Arisha AH, Khamis T. Bone marrow mesenchymal stem cells expressing Neat-1, Hotair-1, miR-21, miR-644, and miR-144 subsided cyclophosphamide-induced ovarian insufficiency by remodeling the IGF-1-kisspeptin system, ovarian apoptosis, and angiogenesis. J Ovarian Res 2024; 17:184. [PMID: 39267091 PMCID: PMC11396253 DOI: 10.1186/s13048-024-01498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
Ovarian insufficiency is one of the common reproductive disorders affecting women with limited therapeutic aids. Mesenchymal stem cells have been investigated in such disorders before yet, the exact mechanism of MSCs in ovarian regeneration regarding their epigenetic regulation remains elusive. The current study is to investigate the role of the bone marrow-derived mesenchymal stem cells (BM-MSCs) lncRNA (Neat-1 and Hotair1) and miRNA (mir-21-5p, mir-144-5p, and mir-664-5p) in mitigating ovarian granulosa cell apoptosis as well as searching BM-MSCs in altering the expression of ovarian and hypothalamic IGF-1 - kisspeptin system in connection to HPG axis in a cyclophosphamide-induced ovarian failure rat model. Sixty mature female Sprague Dawley rats were divided into 3 equal groups; control group, premature ovarian insufficiency (POI) group, and POI + BM-MSCs. POI female rat model was established with cyclophosphamide. The result revealed that BM-MSCs and their conditioned media displayed a significant expression level of Neat-1, Hotair-1, mir-21-5p, mir-144-5p, and mir-664-5p. Moreover, BM-MSCs transplantation in POI rats improves; the ovarian and hypothalamic IGF-1 - kisspeptin, HPG axis, ovarian granulosa cell apoptosis, steroidogenesis, angiogenesis, energy balance, and oxidative stress. BM-MSCs expressed higher levels of antiapoptotic lncRNAs and microRNAs that mitigate ovarian insufficiency.
Collapse
Affiliation(s)
- Amany I Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed F Dowidar
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa F Negm
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asma Alanazi
- Collage of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Basic Medical Sciences, College of Science and Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Walaa Samy
- Medical biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Dina Mohamed Mekawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr City, 11829, Egypt
| | - Eman M A Abdelghany
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Ibrahem
- Obstetrics and Gynecology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Emad Ali Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Wed Salah
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O.Box 71666, Riyadh, 11597, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Emil Tîrziu
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, "King Mihai I" from Timisoara [ULST], Aradului St. 119, Timisoara, 300645, Romania
| | - Iulia Maria Bucur
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, "King Mihai I" from Timisoara [ULST], Aradului St. 119, Timisoara, 300645, Romania.
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City, 11829, Egypt.
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
35
|
Singer J, Knezic N, Layne J, Gohring G, Christiansen J, Rothrauff B, Huard J. Enhancing Cartilage Repair: Surgical Approaches, Orthobiologics, and the Promise of Exosomes. Life (Basel) 2024; 14:1149. [PMID: 39337932 PMCID: PMC11432843 DOI: 10.3390/life14091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Treating cartilage damage is challenging as its ability for self-regeneration is limited. Left untreated, it can progress to osteoarthritis (OA), a joint disorder characterized by the deterioration of articular cartilage and other joint tissues. Surgical options, such as microfracture and cell/tissue transplantation, have shown promise as techniques to harness the body's endogenous regenerative capabilities to promote cartilage repair. Nonetheless, these techniques have been scrutinized due to reported inconsistencies in long-term outcomes and the tendency for the defects to regenerate as fibrocartilage instead of the smooth hyaline cartilage native to joint surfaces. Orthobiologics are medical therapies that utilize biologically derived substances to augment musculoskeletal healing. These treatments are rising in popularity because of their potential to enhance surgical standards of care. More recent developments in orthobiologics have focused on the role of exosomes in articular cartilage repair. Exosomes are nano-sized extracellular vesicles containing cargo such as proteins, lipids, and nucleic acids, and are known to facilitate intercellular communication, though their regenerative potential still needs to be fully understood. This review aims to demonstrate the advancements in cartilage regeneration, highlight surgical and biological treatment options, and discuss the recent strides in understanding the precise mechanisms of action involved.
Collapse
Affiliation(s)
- Jacob Singer
- Linda and Mitch Hart Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Noah Knezic
- Linda and Mitch Hart Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Jonathan Layne
- Linda and Mitch Hart Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Greta Gohring
- Linda and Mitch Hart Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Jeff Christiansen
- Linda and Mitch Hart Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Ben Rothrauff
- Linda and Mitch Hart Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Johnny Huard
- Linda and Mitch Hart Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| |
Collapse
|
36
|
Wu J, Zhu Y, Liu D, Cong Q, Bai C. Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review). Oncol Rep 2024; 52:113. [PMID: 38994765 PMCID: PMC11253085 DOI: 10.3892/or.2024.8772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
In recent years, microRNAs (miRNAs or miRs) have been increasingly studied for their role in cancer and have shown potential as cancer biomarkers. miR‑143‑3p and miR‑143‑5p are the mature miRNAs derived from pre‑miRNA‑143. At present, there are numerous studies on the function of miR‑143‑3p in cancer progression, but there are no systematic reviews describing the function of miR‑143‑3p in cancer. It is widely considered that miR‑143‑3p is downregulated in most malignant tumors and that upstream regulators can act on this gene, which in turn regulates the corresponding target to act on the tumor. In addition, miRNA‑143‑3p can regulate target genes to affect the biological process of tumors through various signaling pathways, such as the PI3K/Akt, Wnt/β‑catenin, AKT/STAT3 and Ras‑Raf‑MEK‑ERK pathways. The present review comprehensively described the biogenesis of miR‑143‑3p, the biological functions of miR‑143‑3p and the related roles and mechanisms in different cancer types. The potential of miR‑143‑3p as a biomarker for cancer was also highlighted and valuable future research directions were discussed.
Collapse
Affiliation(s)
- Jia Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Dandan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Qingwei Cong
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Changchuan Bai
- Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116013, P.R. China
| |
Collapse
|
37
|
Zhou B, Chen Q, Zhang Q, Tian W, Chen T, Liu Z. Therapeutic potential of adipose-derived stem cell extracellular vesicles: from inflammation regulation to tissue repair. Stem Cell Res Ther 2024; 15:249. [PMID: 39113098 PMCID: PMC11304935 DOI: 10.1186/s13287-024-03863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Inflammation is a key pathological feature of many diseases, disrupting normal tissue structure and resulting in irreversible damage. Despite the need for effective inflammation control, current treatments, including stem cell therapies, remain insufficient. Recently, extracellular vesicles secreted by adipose-derived stem cells (ADSC-EVs) have garnered attention for their significant anti-inflammatory properties. As carriers of bioactive substances, these vesicles have demonstrated potent capabilities in modulating inflammation and promoting tissue repair in conditions such as rheumatoid arthritis, osteoarthritis, diabetes, cardiovascular diseases, stroke, and wound healing. Consequently, ADSC-EVs are emerging as promising alternatives to conventional ADSC-based therapies, offering advantages such as reduced risk of immune rejection, enhanced stability, and ease of storage and handling. However, the specific mechanisms by which ADSC-EVs regulate inflammation under pathological conditions are not fully understood. This review discusses the role of ADSC-EVs in inflammation control, their impact on disease prognosis, and their potential to promote tissue repair. Additionally, it provides insights into future clinical research focused on ADSC-EV therapies for inflammatory diseases, which overcome some limitations associated with cell-based therapies.
Collapse
Affiliation(s)
- Bohuai Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuwen Zhang
- The Affiliated Stomatological Hospital Southwest Medical University, Luzhou, 646000, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Bao H, Mao S, Hu X, Li L, Tao H, Zhou J, Xu L, Fang Y, Zhang Y, Chu L. Exosomal miR-486 derived from bone marrow mesenchymal stem cells promotes angiogenesis following cerebral ischemic injury by regulating the PTEN/Akt pathway. Sci Rep 2024; 14:18086. [PMID: 39103424 PMCID: PMC11300871 DOI: 10.1038/s41598-024-69172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been shown to promote angiogenesis after ischemic stroke, in which microRNAs (miRs) are believed to play an important role in exosome-mediated therapeutic effects, though the mechanism is still not clear. In this study, a series of molecular biological and cellular assays, both in vitro and in vivo, were performed to elucidate the role of exosomal miR-486 in angiogenesis following cerebral ischemic and its molecular mechanisms. Our results revealed that BMSC-Exos significantly improved neurological function and increased microvessel density in ischemic stroke rats. In vitro assays showed that BMSC-Exos promoted the proliferation, migration, and tube formation ability of oxygen-glucose deprivation/reoxygenation (OGD/R) injured rat brain microvascular endothelial cells (RBMECs). Importantly, BMSC-Exos increased the expression of miR-486 and phosphorylated protein kinase B (p-Akt) and down-regulated the protein level of phosphatase and tensin homolog (PTEN) in vivo and in vitro. Mechanistic studies demonstrated that transfection with miR-486 mimic enhanced RBMECs angiogenesis and increased p-Akt expression, while inhibited PTEN expression. On the other hand, the miR-486 inhibitor induced an opposite effect, which could be blocked by PTEN siRNA. It was thus concluded that exosomal miR-486 from BMSCs may enhance the functional recovery by promoting angiogenesis following cerebral ischemic injury, which might be related to its regulation of the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Hangyang Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shihui Mao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaowei Hu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua, 321017, China
| | - Jie Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lanxi Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Fang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yani Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lisheng Chu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
39
|
Liu Y, Sun L, Li Y, Holmes C. Mesenchymal stromal/stem cell tissue source and in vitro expansion impact extracellular vesicle protein and miRNA compositions as well as angiogenic and immunomodulatory capacities. J Extracell Vesicles 2024; 13:e12472. [PMID: 39092563 PMCID: PMC11294870 DOI: 10.1002/jev2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Recently, therapies utilizing extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have begun to show promise in clinical trials. However, EV therapeutic potential varies with MSC tissue source and in vitro expansion through passaging. To find the optimal MSC source for clinically translatable EV-derived therapies, this study aims to compare the angiogenic and immunomodulatory potentials and the protein and miRNA cargo compositions of EVs isolated from the two most common clinical sources of adult MSCs, bone marrow and adipose tissue, across different passage numbers. Primary bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs) were isolated from adult female Lewis rats and expanded in vitro to the indicated passage numbers (P2, P4, and P8). EVs were isolated from the culture medium of P2, P4, and P8 BMSCs and ASCs and characterized for EV size, number, surface markers, protein content, and morphology. EVs isolated from different tissue sources showed different EV yields per cell, EV sizes, and protein yield per EV. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of proteomics data and miRNA seq data identified key proteins and pathways associated with differences between BMSC-EVs and ASC-EVs, as well as differences due to passage number. In vitro tube formation assays employing human umbilical vein endothelial cells suggested that both tissue source and passage number had significant effects on the angiogenic capacity of EVs. With or without lipopolysaccharide (LPS) stimulation, EVs more significantly impacted expression of M2-macrophage genes (IL-10, Arg1, TGFβ) than M1-macrophage genes (IL-6, NOS2, TNFα). By correlating the proteomics analyses with the miRNA seq analysis and differences observed in our in vitro immunomodulatory, angiogenic, and proliferation assays, this study highlights the trade-offs that may be necessary in selecting the optimal MSC source for development of clinical EV therapies.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Yan Li
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
40
|
Margiana R, Pilehvar Y, Amalia FL, Lestari SW, Supardi S, I'tishom R. Mesenchymal stem cell secretome: A promising therapeutic strategy for erectile dysfunction? Asian J Urol 2024; 11:391-405. [PMID: 39139521 PMCID: PMC11318444 DOI: 10.1016/j.ajur.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/06/2023] [Indexed: 08/15/2024] Open
Abstract
Objective The secretome, comprising bioactive chemicals released by mesenchymal stem cells (MSCs), holds therapeutic promise in regenerative medicine. This review aimed to explore the therapeutic potential of the MSC secretome in regenerative urology, particularly for treating erectile dysfunction (ED), and to provide an overview of preclinical and clinical research on MSCs in ED treatment and subsequently to highlight the rationales, mechanisms, preclinical investigations, and therapeutic potential of the MSC secretome in this context. Methods The review incorporated an analysis of preclinical and clinical research involving MSCs in the treatment of ED. Subsequently, it delved into the existing knowledge regarding the MSC secretome, exploring its therapeutic potential. The methods included a comprehensive examination of relevant literature to discern the processes underlying the therapeutic efficacy of the MSC secretome. Results Preclinical research indicated the effectiveness of the MSC secretome in treating various models of ED. However, the precise mechanisms of its therapeutic efficacy remain unknown. The review provided insights into the anti-inflammatory, pro-angiogenic, and trophic properties of the MSC secretome. It also discussed potential advantages, such as avoiding issues related to cellular therapy, including immunogenicity, neoplastic transformation, and cost. Conclusion This review underscores the significant therapeutic potential of the MSC secretome in regenerative urology, particularly for ED treatment. While preclinical studies demonstrate promising outcomes, further research is essential to elucidate the specific mechanisms underlying the therapeutic efficacy before clinical application. The review concludes by discussing future perspectives and highlighting the challenges associated with the clinical translation of the MSC secretome in regenerative urology.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Fatkhurrohmah L. Amalia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvia W. Lestari
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Reny I'tishom
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga Surabaya, Indonesia
| |
Collapse
|
41
|
Wystrychowski G, Simka-Lampa K, Witkowska A, Sobecko E, Skubis-Sikora A, Sikora B, Wojtyna E, Golda A, Gwizdek K, Wróbel M, Sędek Ł, Górczyńska-Kosiorz S, Szweda-Gandor N, Trautsolt W, Francuz T, Kruszniewska-Rajs C, Gola J. Selected microRNA Expression and Protein Regulator Secretion by Adipose Tissue-Derived Mesenchymal Stem Cells and Metabolic Syndrome. Int J Mol Sci 2024; 25:6644. [PMID: 38928349 PMCID: PMC11204268 DOI: 10.3390/ijms25126644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The role of adipose mesenchymal stem cells (Ad-MSCs) in metabolic syndrome remains unclear. We aimed to assess the expression of selected microRNAs in Ad-MSCs of non-diabetic adults in relation to Ad-MSC secretion of protein regulators and basic metabolic parameters. Ten obese, eight overweight, and five normal weight subjects were enrolled: 19 females and 4 males; aged 43.0 ± 8.9 years. Ad-MSCs were harvested from abdominal subcutaneous fat. Ad-MSC cellular expressions of four microRNAs (2-ΔCt values) and concentrations of IL-6, IL-10, VEGF, and IGF-1 in the Ad-MSC-conditioned medium were assessed. The expressions of miR-21, miR-122, or miR-192 did not correlate with clinical parameters (age, sex, BMI, visceral fat, HOMA-IR, fasting glycemia, HbA1c, serum lipids, CRP, and eGFR). Conversely, the expression of miR-155 was lowest in obese subjects (3.69 ± 2.67 × 10-3 vs. 7.07 ± 4.42 × 10-3 in overweight and 10.25 ± 7.05 × 10-3 in normal weight ones, p = 0.04). The expression of miR-155 correlated inversely with BMI (sex-adjusted r = -0.64; p < 0.01), visceral adiposity (r = -0.49; p = 0.03), and serum CRP (r = -0.63; p < 0.01), whereas it correlated positively with serum HDL cholesterol (r = 0.51; p = 0.02). Moreover, miR-155 synthesis was associated marginally negatively with Ad-MSC secretion of IGF-1 (r = -0.42; p = 0.05), and positively with that of IL-10 (r = 0.40; p = 0.06). Ad-MSC expression of miR-155 appears blunted in visceral obesity, which correlates with Ad-MSC IGF-1 hypersecretion and IL-10 hyposecretion, systemic microinflammation, and HDL dyslipidemia. Ad-MSC studies in metabolic syndrome should focus on miR-155.
Collapse
Affiliation(s)
| | - Klaudia Simka-Lampa
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | | | - Ewelina Sobecko
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | - Aleksandra Skubis-Sikora
- Department of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.S.-S.); (B.S.)
| | - Bartosz Sikora
- Department of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.S.-S.); (B.S.)
| | - Ewa Wojtyna
- Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland;
| | - Agnieszka Golda
- Alfamed General Practice, 41-100 Siemianowice Slaskie, Poland;
| | - Katarzyna Gwizdek
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Marta Wróbel
- Department of Internal Medicine, Diabetology and Cardiometabolic Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Nikola Szweda-Gandor
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Wanda Trautsolt
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.G.)
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.G.)
| |
Collapse
|
42
|
Samavati SF, Yarani R, Kiani S, HoseinKhani Z, Mehrabi M, Levitte S, Primavera R, Chetty S, Thakor AS, Mansouri K. Therapeutic potential of exosomes derived from mesenchymal stem cells for treatment of systemic lupus erythematosus. J Inflamm (Lond) 2024; 21:20. [PMID: 38867277 PMCID: PMC11170788 DOI: 10.1186/s12950-024-00381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Autoimmune diseases are caused by an imbalance in the immune system, producing autoantibodies that cause inflammation leading to tissue damage and organ dysfunction. Systemic Lupus Erythematosus (SLE) is one of the most common autoimmune diseases and a major contributor to patient morbidity and mortality. Although many drugs manage the disease, curative therapy remains elusive, and current treatment regimens have substantial side effects. Recently, the therapeutic potential of exosomes has been extensively studied, and novel evidence has been demonstrated. A direct relationship between exosome contents and their ability to regulate the immune system, inflammation, and angiogenesis. The unique properties of extracellular vesicles, such as biomolecule transportation, biodegradability, and stability, make exosomes a promising treatment candidate for autoimmune diseases, particularly SLE. This review summarizes the structural features of exosomes, the isolation/purification/quantification method, their origin, effect, immune regulation, a critical consideration for selecting an appropriate source, and their therapeutic mechanisms in SLE.
Collapse
Affiliation(s)
- Shima Famil Samavati
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh HoseinKhani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Steven Levitte
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Shashank Chetty
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
43
|
Shen J, Hu L, Huang X, Mao J, Wu Y, Xie Z, Lan Y. Skeleton-derived extracellular vesicles in bone and whole-body aging: From mechanisms to potential applications. Bone 2024; 183:117076. [PMID: 38521235 DOI: 10.1016/j.bone.2024.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The skeleton serves as a supportive and protective organ for the body. As individuals age, their bone tissue undergoes structural, cellular, and molecular changes, including the accumulation of senescent cells. Extracellular vesicles (EVs) play a crucial role in aging through the cellular secretome and have been found to induce or accelerate age-related dysfunction in bones and to contribute further via the circulatory system to the aging of phenotypes of other bodily systems. However, the extent of these effects and their underlying mechanisms remain unclear. Therefore, this paper attempts to give an overview of the current understanding of age-related alteration in EVs derived from bones. The role of EVs in mediating communications among bone-related cells and other body parts is discussed, and the significance of bones in the whole-body aging process is highlighted. Ultimately, it is hoped that gaining a clearer understanding of the relationship between EVs and aging mechanisms may serve as a basis for new treatment strategies for age-related degenerative diseases in the skeleton and other systems.
Collapse
Affiliation(s)
- Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Lingling Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
44
|
Huang S, Zeng Y, Guo Q, Zou T, Yin ZQ. Small extracellular vesicles of organoid-derived human retinal stem cells remodel Müller cell fate via miRNA: A novel remedy for retinal degeneration. J Control Release 2024; 370:405-420. [PMID: 38663753 DOI: 10.1016/j.jconrel.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Remodeling retinal Müller glial fate, including gliosis inhibition and pro-reprogramming, represents a crucial avenue for treating degenerative retinal diseases. Stem cell transplantation exerts effects on modulating retinal Müller glial fate. However, the optimized stem cell products and the underlying therapeutic mechanisms need to be investigated. In the present study, we found that retinal progenitor cells from human embryonic stem cell-derived retinal organoids (hERO-RPCs) transferred extracellular vesicles (EVs) into Müller cells following subretinal transplantation into RCS rats. Small EVs from hERO-RPCs (hERO-RPC-sEVs) were collected and were found to delay photoreceptor degeneration and protect retinal function in RCS rats. hERO-RPC-sEVs were taken up by Müller cells both in vivo and in vitro, and inhibited gliosis while promoting early dedifferentiation of Müller cells. We further explored the miRNA profiles of hERO-RPC-sEVs, which suggested a functional signature associated with neuroprotection and development, as well as the regulation of stem cell and glial fate. Mechanistically, hERO-RPC-sEVs might regulate the fate of Müller cells by miRNA-mediated nuclear factor I transcription factors B (NFIB) downregulation. Collectively, our findings offer novel mechanistic insights into stem cell therapy and promote the development of EV-centered therapeutic strategies.
Collapse
Affiliation(s)
- Shudong Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiang Guo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China; Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
45
|
Amaro-Prellezo E, Gómez-Ferrer M, Hakobyan L, Ontoria-Oviedo I, Peiró-Molina E, Tarazona S, Salguero P, Ruiz-Saurí A, Selva-Roldán M, Vives-Sanchez R, Sepúlveda P. Extracellular vesicles from dental pulp mesenchymal stem cells modulate macrophage phenotype during acute and chronic cardiac inflammation in athymic nude rats with myocardial infarction. Inflamm Regen 2024; 44:25. [PMID: 38807194 PMCID: PMC11134765 DOI: 10.1186/s41232-024-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND/AIMS Extracellular vesicles (EVs) derived from dental pulp mesenchymal stem cells (DP-MSCs) are a promising therapeutic option for the treatment of myocardial ischemia. The aim of this study is to determine whether MSC-EVs could promote a pro-resolving environment in the heart by modulating macrophage populations. METHODS EVs derived from three independent biopsies of DP-MSCs (MSC-EVs) were isolated by tangential flow-filtration and size exclusion chromatography and were characterized by omics analyses. Biological processes associated with these molecules were analyzed using String and GeneCodis platforms. The immunomodulatory capacity of MSC-EVs to polarize macrophages towards a pro-resolving or M2-like phenotype was assessed by evaluating surface markers, cytokine production, and efferocytosis. The therapeutic potential of MSC-EVs was evaluated in an acute myocardial infarction (AMI) model in nude rats. Infarct size and the distribution of macrophage populations in the infarct area were evaluated 7 and 21 days after intramyocardial injection of MSC-EVs. RESULTS Lipidomic, proteomic, and miRNA-seq analysis of MSC-EVs revealed their association with biological processes involved in tissue regeneration and regulation of the immune system, among others. MSC-EVs promoted the differentiation of pro-inflammatory macrophages towards a pro-resolving phenotype, as evidenced by increased expression of M2 markers and decreased secretion of pro-inflammatory cytokines. Administration of MSC-EVs in rats with AMI limited the extent of the infarcted area at 7 and 21 days post-infarction. MSC-EV treatment also reduced the number of pro-inflammatory macrophages within the infarct area, promoting the resolution of inflammation. CONCLUSION EVs derived from DP-MSCs exhibited similar characteristics at the omics level irrespective of the biopsy from which they were derived. All MSC-EVs exerted effective pro-resolving responses in a rat model of AMI, indicating their potential as therapeutic agents for the treatment of inflammation associated with AMI.
Collapse
Affiliation(s)
- Elena Amaro-Prellezo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Lusine Hakobyan
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain
| | - Sonia Tarazona
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Pedro Salguero
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Amparo Ruiz-Saurí
- Department of Pathology, University of Valencia, Valencia, 46010, Spain
| | - Marta Selva-Roldán
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Rosa Vives-Sanchez
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain.
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain.
- Department of Pathology, University of Valencia, Valencia, 46010, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), III Institute of Health, Madrid, Carlos, Spain.
| |
Collapse
|
46
|
Chen X, Yang N, Li B, Gao X, Wang Y, Wang Q, Liu X, Zhang Z, Zhang R. Visualization Analysis of Small Extracellular Vesicles in the Application of Bone-Related Diseases. Cells 2024; 13:904. [PMID: 38891036 PMCID: PMC11171653 DOI: 10.3390/cells13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Small extracellular vesicles were shown to have similar functional roles to their parent cells without the defect of potential tumorigenicity, which made them a great candidate for regenerative medicine. The last twenty years have witnessed the rapid development of research on small extracellular vesicles. In this paper, we employed a scientometric synthesis method to conduct a retrospective analysis of small extracellular vesicles in the field of bone-related diseases. The overall background analysis consisted the visualization of the countries, institutions, journals, and authors involved in research. The current status of the research direction and future trends were presented through the analysis of references and keywords, which showed that engineering strategies, mesenchymal stem cell derived exosomes, and cartilage damage were the most concerning topics, and scaffold, osteoarthritis, platelet-rich plasma, and senescence were the future trends. We also discussed the current problems and challenges in practical applications, including the in-sight mechanisms, the building of relevant animal models, and the problems in clinical trials. By using CiteSpace, VOSviewer, and Bibliometrix, the presented data avoided subjective selectivity and tendency well, which made the conclusion more reliable and comprehensive. We hope that the findings can provide new perspectives for researchers to understand the evolution of this field over time and to search for novel research directions.
Collapse
Affiliation(s)
- Xinjiani Chen
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Yang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
| | - Bailei Li
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinyu Gao
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
| | - Yayu Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| | - Zhen Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
| | - Rongqing Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| |
Collapse
|
47
|
Scheepbouwer C, Aparicio-Puerta E, Gómez-Martin C, van Eijndhoven MA, Drees EE, Bosch L, de Jong D, Wurdinger T, Zijlstra JM, Hackenberg M, Gerber A, Pegtel DM. Full-length tRNAs lacking a functional CCA tail are selectively sorted into the lumen of extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593148. [PMID: 38765958 PMCID: PMC11100784 DOI: 10.1101/2024.05.12.593148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Small extracellular vesicles (sEVs) are heterogenous lipid membrane particles typically less than 200 nm in size and secreted by most cell types either constitutively or upon activation signals. sEVs isolated from biofluids contain RNAs, including small non-coding RNAs (ncRNAs), that can be either encapsulated within the EV lumen or bound to the EV surface. EV-associated microRNAs (miRNAs) are, despite a relatively low abundance, extensively investigated for their selective incorporation and their role in cell-cell communication. In contrast, the sorting of highly-structured ncRNA species is understudied, mainly due to technical limitations of traditional small RNA sequencing protocols. Here, we adapted ALL-tRNAseq to profile the relative abundance of highly structured and potentially methylated small ncRNA species, including transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and Y RNAs in bulk EV preparations. We determined that full-length tRNAs, typically 75 to 90 nucleotides in length, were the dominant small ncRNA species (>60% of all reads in the 18-120 nucleotides size-range) in all cell culture-derived EVs, as well as in human plasma-derived EV samples, vastly outnumbering 21 nucleotides-long miRNAs. Nearly all EV-associated tRNAs were protected from external RNAse treatment, indicating a location within the EV lumen. Strikingly, the vast majority of luminal-sorted, full-length, nucleobase modification-containing EV-tRNA sequences, harbored a dysfunctional 3' CCA tail, 1 to 3 nucleotides truncated, rendering them incompetent for amino acid loading. In contrast, in non-EV associated extracellular particle fractions (NVEPs), tRNAs appeared almost exclusively fragmented or 'nicked' into tRNA-derived small RNAs (tsRNAs) with lengths between 18 to 35 nucleotides. We propose that in mammalian cells, tRNAs that lack a functional 3' CCA tail are selectively sorted into EVs and shuttled out of the producing cell, offering a new perspective into the physiological role of secreted EVs and luminal cargo-selection.
Collapse
Affiliation(s)
- Chantal Scheepbouwer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Cristina Gómez-Martin
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Monique A.J. van Eijndhoven
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Esther E.E. Drees
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Leontien Bosch
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Josée M. Zijlstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Michael Hackenberg
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), Biotechnology Institute, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Genetics Department, Faculty of Science, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - Alan Gerber
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
| | - D. Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
48
|
Bhat A, Malik A, Yadav P, Ware WJ, Kakalij P, Chand S. Mesenchymal stem cell‐derived extracellular vesicles: Recent therapeutics and targeted drug delivery advances. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3. [DOI: 10.1002/jex2.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe targeted drug delivery field is rapidly advancing, focusing on developing biocompatible nanoparticles that meet rigorous criteria of non‐toxicity, biocompatibility, and efficient release of encapsulated molecules. Conventional synthetic nanoparticles (SNPs) face complications such as elevated immune responses, complex synthesis methods, and toxicity, which restrict their utility in therapeutics and drug delivery. Extracellular vesicles (EVs) have emerged as promising substitutes for SNPs, leveraging their ability to cross biological barriers, biocompatibility, reduced toxicity, and natural origin. Notably, mesenchymal stem cell‐derived EVs (MSC‐EVs) have garnered much curiosity due to their potential in therapeutics and drug delivery. Studies suggest that MSC‐EVs, the central paracrine contributors of MSCs, replicate the therapeutic effects of MSCs. This review explores the characteristics of MSC‐EVs, emphasizing their potential in therapeutics and drug delivery for various diseases, including CRISPR/Cas9 delivery for gene editing. It also delves into the obstacles and challenges of MSC‐EVs in clinical applications and provides insights into strategies to overcome the limitations of biodistribution and target delivery.
Collapse
Affiliation(s)
- Anjali Bhat
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| | - Anshu Malik
- Institute for Quantitative Health Science and Engineering (IQ) Michigan State University East Lansing Michigan USA
- Department of Biomedical Engineering Michigan State University East Lansing Michigan USA
| | - Poonam Yadav
- Medical Science Interdepartmental Area University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | | | - Pratiksha Kakalij
- Department of Pharmaceutical Sciences University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Subhash Chand
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
49
|
Che D, Xiang X, Xie J, Chen Z, Bao Q, Cao D. Exosomes Derived from Adipose Stem Cells Enhance Angiogenesis in Diabetic Wound Via miR-146a-5p/JAZF1 Axis. Stem Cell Rev Rep 2024; 20:1026-1039. [PMID: 38393667 PMCID: PMC11087353 DOI: 10.1007/s12015-024-10685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Chronic trauma in diabetes is a leading cause of disability and mortality. Exosomes show promise in tissue regeneration. This study investigates the role of exosomes derived from adipose stem cells (ADSC-Exos) in angiogenesis. MiRNA-seq analysis revealed significant changes in 47 genes in human umbilical vein endothelial cells (HUVECs) treated with ADSC-Exos, with miR-146a-5p highly expressed. MiR-146a-5p mimics enhanced the pro-angiogenic effects of ADSC-Exos, while inhibitors had the opposite effect. JAZF1 was identified as a direct downstream target of miR-146a-5p through bioinformatics, qRT-PCR, and dual luciferase assay. Overexpress of JAZF1 resulted in decreased proliferation, migration, and angiogenic capacity of HUVECs, and reduced VEGFA expression. This study proposes that ADSC-Exos regulate angiogenesis partly via the miR-146a-5p/JAZF1 axis.
Collapse
Affiliation(s)
- Dehui Che
- Department of Plastic and Reconstructive, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinjian Xiang
- Department of Plastic and Reconstructive, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Xie
- Department of Plastic and Reconstructive, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zenghong Chen
- Department of Plastic and Reconstructive, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiong Bao
- Department of Plastic and Reconstructive, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongsheng Cao
- Department of Plastic and Reconstructive, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
50
|
Dellar ER, Hill C, Carter DRF, Baena‐Lopez LA. Oxidative stress-induced changes in the transcriptomic profile of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e150. [PMID: 38938847 PMCID: PMC11080704 DOI: 10.1002/jex2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) have been proposed to play dual roles in cellular homeostasis, functioning both to remove unwanted intracellular molecules, and to enable communication between cells as a means of modulating cellular responses in different physiological and pathological scenarios. EVs contain a broad range of cargoes, including multiple biotypes of RNA, which can vary depending on the cell status, and may function as signalling molecules. In this study, we carried out comparative transcriptomic analysis of Drosophila EVs and cells, demonstrating that the RNA profile of EVs is distinct from cells and shows dose-dependent changes in response to oxidative stress. We identified a high abundance of snoRNAs in EVs, alongside an enrichment of intronic and untranslated regions (UTRs) of mRNAs under stress. We also observed an increase in the relative abundance of either aberrant or modified mRNAs under stress. These findings suggest that EVs may function both for the elimination of specific cellular RNAs, and for the incorporation of RNAs that may hold signalling potential.
Collapse
Affiliation(s)
- Elizabeth R. Dellar
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Centre for Public HealthQueen's University BelfastBelfastUK
| | - David R. F. Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Evox Therapeutics LimitedOxford Science ParkOxfordUK
| | | |
Collapse
|