1
|
Feng N, Huang X, Jia Y. Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol 2025; 389:115250. [PMID: 40194649 DOI: 10.1016/j.expneurol.2025.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Dopaminergic neuron loss caused by microglia activation is an important pathological factor of Parkinson's disease (PD). Previously, we reported that small extracellular vesicle from adipose derived stem cells (ADSC-sEVs) could inhibit the activation of microglia and protect neuron apoptosis from microglia activation. However, whether ADSC-sEVs have protective effect on the motor deficit of PD mouse and the exact mechanism remains unknown. In this study, ADSC-sEVs were delivered to experimental model of Parkinson's disease by tail vein injection to explore the in vivo effect of ADSC-sEVs on PD. Next, the potential key microRNA in ADSC-sEVs was screened by RNA sequencing (RNA-seq), and the exact mechanism was further explored. We found that ADSC-sEVs greatly alleviated the activation of microglia and reduced the loss of dopaminergic neurons in the substantia nigra of PD mice, the motor deficit was also significantly improved. By RNA-seq analysis, miR-100-5p was verified as a potential microRNA in this process, because knockdown of miR-100-5p in ADSC-sEVs weakened the protective effect of ADSC-sEVs on PD mouse as well as the anti-inflammatory effect on microglia activation. Finally, we found that miR-100-5p could target Deltex E3 ubiquitin ligase 3 L (DTX3L) and suppress its expression, which then decreased the expression and phosphorylation of Signal Transducers and Activators of Transcription 1 (STAT1), as well as alleviating the activation of microglia. Our findings illustrate that ADSC-sEVs are an effective therapy for PD, and it could be a promising therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nianhua Feng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China.
| | - Xiaoxi Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Yanjun Jia
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| |
Collapse
|
2
|
Li H, Liu H, Zhou Y, Cheng L, Wang B, Ma J. The multifaceted roles of extracellular vesicles in osteonecrosis of the femoral head. J Orthop Translat 2025; 52:70-84. [PMID: 40256260 PMCID: PMC12008682 DOI: 10.1016/j.jot.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a severe disease characterized by bone tissue necrosis due to vascular impairment, often leading to joint collapse and requiring surgical intervention. Extracellular vesicles (EVs) serve as crucial mediators of intercellular communication, influencing osteogenesis, angiogenesis, and immune regulation. This review summarizes the dual role of EVs in both the pathogenesis of ONFH and post-necrosis bone repair, highlighting the impact of various EV-mediated signaling pathways on bone regeneration and the potential crosstalk among these pathways. Additionally, EVs hold promise as diagnostic biomarkers or contrast agents to complement conventional imaging techniques for ONFH detection. By elucidating the role of EVs in osteonecrosis and addressing the current challenges, we aspire to establish a foundation for the timely identification and treatment of ONFH. The translational potential of this article: This review comprehensively discusses the role of EVs in ONFH, providing innovative and promising insights for its diagnosis and treatment, which also establishes a theoretical foundation for the future clinical application of EVs in ONFH.
Collapse
Affiliation(s)
- Hongxu Li
- Department of Orthopaedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Haoyang Liu
- Department of Orthopaedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Yu Zhou
- Department of Orthopaedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Liming Cheng
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jinhui Ma
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
3
|
Gong X, Chen X, Meng Z, Huang J, Jia S, Wu W, Li L, Zheng X. Depletion of MicroRNA-100-5p Promotes Osteogenesis Via Lysine(K)-Specific Demethylase 6B. Tissue Eng Part A 2024. [PMID: 39718900 DOI: 10.1089/ten.tea.2024.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects. Wild-type or microRNA 100 (miR-100) knockdown mice underwent critical-size defect (CSD) cranial surgery and collagen I/poly-γ-glutamic acid scaffold treatment. The crania was observed using microcomputed tomography, hematoxylin and eosin staining, Masson staining, alkaline phosphatase (ALP) staining, immunohistochemistry, and immunofluorescence. Primary-cultured BMSCs transfected with miR-100-5p mimic/inhibitor and KDM6B cDNA were evaluated for osteogenic differentiation using Alizarin Red staining, ALP activity detection, and Western blot analysis. Genetic transcription levels were detected using quantitative reverse transcription polymerase chain reaction. This study found that miR-100 depletion promotes defect healing in mouse calvaria, increases the proportion of new bone and osteoblasts in calvaria, and activates the expression of KDM6B and osteocalcin (OCN) proteins, promoting the transcription of bone morphogenetic protein-2, Runt-related transcription factor 2 (Runx2), OCN, and KDM6B, while methylation of lysine 27 on histone H3 (H3K27me3) decreased. Furthermore, miR-100-5p mimics suppressed osteogenic differentiation by inhibiting KDM6B with increased H3K27me3, ALP, Runx2, OCN, and osteopontin protein expression, while miR-100-5p inhibitors have opposite effects. Moreover, KDM6B can reverse miR-100-5p mimic effects. Notably, scaffolds carrying miR-100-5p mimics/inhibitors transfected BMSCs were placed in CSD mice and found that miR-100-5p inhibitors have a better effect on CSD healing and increase new bone without inflammatory cell infiltration. This study proved that miR-100-5p depletion promotes bone union and osteogenic differentiation of BMSCs via KDM6B/H3K27me3.
Collapse
Affiliation(s)
- Xiaokang Gong
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China
| | - Xi Chen
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou City, China
| | - Zhulong Meng
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China
| | - Jiehe Huang
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China
| | - Shunjie Jia
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China
| | - Weiqian Wu
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China
| | - Lihong Li
- Department of Cardiology, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China
| | - Xin Zheng
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China
| |
Collapse
|
4
|
Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, Dong M. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024; 15:407. [PMID: 39521993 PMCID: PMC11550564 DOI: 10.1186/s13287-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application. Recently, exosomes, which are small extracellular vesicles released by cells, have been found to effectively address these problems and better induce bone regeneration. Meanwhile, a growing line of research has shown the cargos of exosomes may provide effective therapeutic and biomarker tools for bone repair, including miRNA, lncRNA, and proteins. Moreover, engineered scaffolds loaded with exosomes can offer a cell-free bone repair strategy, addressing immunogenicity concerns and providing a more stable functional performance. Herein, we provide a comprehensive summary of the role played by scaffolds loaded with exosomes in bone regeneration, drawing on a systematic analysis of relevant literature available on PubMed, Scopus, and Google Scholar database.
Collapse
Affiliation(s)
- Li Deng
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yang Liu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Qian Wu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China.
| |
Collapse
|
5
|
Qiu Y, Luo Y, Guo G, Meng J, Bao N, Jiang H. BMSCs-derived exosomes carrying miR-668-3p promote progression of osteoblasts in osteonecrosis of the femoral head: Expression of proteins CD63 and CD9. Int J Biol Macromol 2024; 280:136177. [PMID: 39357704 DOI: 10.1016/j.ijbiomac.2024.136177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Recently, exosomes that are derived from bone marrow mesenchymal stem cells (BMSCs) have garnered considerable interest due to their significant roles in the processes of bone regeneration and repair. Among the various molecular components present within these exosomes, miR-668-3p has emerged as a pivotal microRNA that may be instrumental in modulating the function and proliferation of osteoblasts, the cells responsible for bone formation. The primary objective of this research was to examine the enhancing effects of BMSC-derived exosomes that are enriched with miR-668-3p on the advancement of osteoblasts in the context of osteonecrosis of the femoral head. Furthermore, the study aimed to analyze how the expression of specific exosomal proteins, namely CD63 and CD9, influences this biological process. To conduct the investigation, BMSCs were isolated from healthy rat models, followed by the extraction of their secreted exosomes. The subsequent phase of the study involved assessing the proliferation and differentiation of osteoblasts by introducing the exosomes enriched with miR-668-3p into an experimental setup representing osteonecrosis of the femoral head. The findings revealed that exosomes derived from BMSCs, which contained miR-668-3p, significantly enhanced the proliferation of osteoblasts as well as the expression of key osteogenic marker genes. Notably, the levels of CD63 and CD9 proteins were markedly increased in the treated groups, indicating that the mechanisms underlying this promotion might involve cell adhesion and the endocytic uptake of exosomes.
Collapse
Affiliation(s)
- Yang Qiu
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yibin Luo
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Guodong Guo
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jia Meng
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Nirong Bao
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Hui Jiang
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
6
|
Li P, Shang Y, Yuan L, Tong J, Chen Q. Targeting BMP2 for therapeutic strategies against hepatocellular carcinoma. Transl Oncol 2024; 46:101970. [PMID: 38797016 PMCID: PMC11152749 DOI: 10.1016/j.tranon.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the role of BMP2 in hepatocellular carcinoma (HCC) growth and metastasis using a dual approach combining single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq. METHODS scRNA-seq data from the GEO database and bulk RNA-seq data from the TCGA database were analyzed. Differentially expressed marker genes of endothelial cells were identified and analyzed using enrichment analysis, PPI analysis, correlation analysis, and GSEA. In vitro, experiments were conducted using the Huh-7 HCC cell line, and in vivo, models of HCC growth and metastasis were established by knocking down BMP2. RESULTS The scRNA-seq analysis identified BMP2 as a key marker gene in endothelial cells of HCC samples. Elevated BMP2 expression correlated with poor prognosis in HCC. In vitro experiments showed that silencing BMP2 inhibited the proliferation, migration, and invasion of liver cancer cells. In vivo studies confirmed increased BMP2 expression in HCC tissues, promoting angiogenesis and HCC growth. CONCLUSION This study highlights the role of BMP2 in tumor angiogenesis and HCC progression. Targeting BMP2 could be a promising therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Ping Li
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Liying Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Jialing Tong
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Quan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China.
| |
Collapse
|
7
|
Xiao Z, Zhao J, Ji G, Song X, Xue X, Zhang W, Sha G, Zhou Y, Zhou J, Tian Z, Zhao X, Jiang N. miR-493-5p Silenced by DNA Methylation Promotes Angiogenesis via Exosomes and VEGF-A-Mediated Intracellular Cross-Talk Between ESCC Cells and HUVECs. Int J Nanomedicine 2024; 19:7165-7183. [PMID: 39050873 PMCID: PMC11268713 DOI: 10.2147/ijn.s464403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Background Exosomal microRNAs (miRNAs) in the tumor microenvironment play crucial roles in tumorigenesis and tumor progression by participating in intercellular cross-talk. However, the functions of exosomal miRNAs and the mechanisms by which they regulate esophageal squamous cell carcinoma (ESCC) progression are unclear. Methods RNA sequencing and GEO analysis were conducted to identify candidate exosomal miRNAs involved in ESCC development. Receiver operating characteristic curve analysis was performed to assess the diagnostic value of plasma exosomal miR-493-5p. EdU, tube formation and Transwell assays were used to investigate the effects of exosomal miR-493-5p on human umbilical vein endothelial cells (HUVECs). A subcutaneous xenograft model was used to evaluate the antitumor effects of miR-493-5p and decitabine (a DNA methyltransferase inhibitor). The relationship between miR-493-5p and SP1/SP3 was revealed via a dual-luciferase reporter assay. A series of rescue assays were subsequently performed to investigate whether SP1/SP3 participate in exosomal miR-493-5p-mediated ESCC angiogenesis. Results We found that miR-493-5p expression was notably reduced in the plasma exosomes of ESCC patients, which showed the high potential value in early ESCC diagnosis. Additionally, miR-493-5p, as a candidate tumor suppressor, inhibited the proliferation, migration and tube formation of HUVECs by suppressing the expression of VEGFA and exerted its angiostatic effect via exosomes. Moreover, we found that SP1/SP3 are direct targets of miR-493-5p and that re-expression of SP1/SP3 could reverse the inhibitory effects of miR-493-5p. Further investigation revealed that miR-493-5p expression could be regulated by DNA methyltransferase 3A (DNMT3A) and DNMT3B, and either miR-493-5p overexpression or restoration of miR-493-5p expression with decitabine increased the antitumor effects of bevacizumab. Conclusion Exosomal miR-493-5p is a highly valuable ESCC diagnosis marker and inhibits ESCC-associated angiogenesis. miR-493-5p can be silenced via DNA methylation, and restoration of miR-493-5p expression with decitabine increases the antitumor effects of bevacizumab, suggesting its potential as a therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Zhaohua Xiao
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Guanhong Ji
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Xiangqing Song
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Xia Xue
- Department of Pharmacy, the Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Wenhao Zhang
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Guomeng Sha
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Yongjia Zhou
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Jie Zhou
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Zhongxian Tian
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
- Key Laboratory of Chest Cancer, Shandong University, the Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
- Key Laboratory of Chest Cancer, Shandong University, the Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Ning Jiang
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| |
Collapse
|
8
|
Yuan J, Wang Y, Huang Y, Li S, Zhang X, Wu Z, Zhao W, Zhu J, Zhang J, Huang G, Yu P, Cheng X, Wang X, Liu X, Jia J. Investigating Novel Therapeutic Approaches for Idiopathic Short Stature: Targeting siRNA and Growth Hormone Delivery to the Growth Plate Using Exosome Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309559. [PMID: 38639394 PMCID: PMC11200009 DOI: 10.1002/advs.202309559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Idiopathic short stature (ISS) is a common childhood condition with largely unknown underlying causes. Recent research highlights the role of circulating exosomes in the pathogenesis of various disorders, but their connection to ISS remains unexplored. In the experiments, human chondrocytes are cocultured with plasma exosomes from ISS patients, leading to impaired chondrocyte growth and bone formation. Elevated levels of a specific long non-coding RNA (lncRNA), ISSRL, are identified as a distinguishing factor in ISS, boasting high specificity and sensitivity. Silencing ISSRL in ISS plasma exosomes reverses the inhibition of chondrocyte proliferation and bone formation. Conversely, overexpression of ISSRL in chondrocytes impedes their growth and bone formation, revealing its mechanism of action through the miR-877-3p/GZMB axis. Subsequently, exosomes (CT-Exo-siISSRL-oeGH) with precise cartilage-targeting abilities are engineered, loaded with customized siRNA for ISSRL and growth hormone. This innovative approach offers a therapeutic strategy to address ISS by rectifying abnormal non-coding RNA expression in growth plate cartilage and delivering growth hormone with precision to promote bone growth. This research provides valuable insights into ISS diagnosis and treatment, highlighting the potential of engineered exosomes.
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Yameng Wang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Yanzhe Huang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Shengqin Li
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Xiaowen Zhang
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Zhiwen Wu
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Wenrui Zhao
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Junchao Zhu
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Junqiu Zhang
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Guowen Huang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Peng Yu
- Department of Endocrinology and MetabolismThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Xigao Cheng
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Xijuan Liu
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Jingyu Jia
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| |
Collapse
|
9
|
Wang Y, Wen J, Lu T, Han W, Jiao K, Li H. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone-Related Diseases: Intercellular Communication Messengers and Therapeutic Engineering Protagonists. Int J Nanomedicine 2024; 19:3233-3257. [PMID: 38601346 PMCID: PMC11005933 DOI: 10.2147/ijn.s441467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024] Open
Abstract
Extracellular vesicles (EVs) can deliver various bioactive molecules among cells, making them promising diagnostic and therapeutic alternatives in diseases. Mesenchymal stem cell-derived EVs (MSC-EVs) have shown therapeutic potential similar to MSCs but with drawbacks such as lower yield, reduced biological activities, off-target effects, and shorter half-lives. Improving strategies utilizing biotechniques to pretreat MSCs and enhance the properties of released EVs, as well as modifying MSC-EVs to enhance targeting abilities and achieve controlled release, shows potential for overcoming application limitations and enhancing therapeutic effects in treating bone-related diseases. This review focuses on recent advances in functionalizing MSC-EVs to treat bone-related diseases. Firstly, we underscore the significance of MSC-EVs in facilitating crosstalk between cells within the skeletal environment. Secondly, we highlight strategies of functional-modified EVs for treating bone-related diseases. We explore the pretreatment of stem cells using various biotechniques to enhance the properties of resulting EVs, as well as diverse approaches to modify MSC-EVs for targeted delivery and controlled release. Finally, we address the challenges and opportunities for further research on MSC-EVs in bone-related diseases.
Collapse
Affiliation(s)
- Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Tong Lu
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Wei Han
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Shi H, Yang Y, Xing H, Jia J, Xiong W, Guo S, Yang S. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. J Tissue Eng 2024; 15:20417314241286606. [PMID: 39371940 PMCID: PMC11456177 DOI: 10.1177/20417314241286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation, The First Hospital of China Medical University, Shenyang, China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Mai Z, Liu J, Jiang X, Gu W, Wang W, Li S, Schmalz G, Xiao H, Zhao J. Long noncoding RNA KCNMA1-AS1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by activating the SMAD9 signaling pathway. Biol Direct 2023; 18:81. [PMID: 38017487 PMCID: PMC10685465 DOI: 10.1186/s13062-023-00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
The human bone marrow mesenchymal stem cells (hBMSCs) undergo intense osteogenic differentiation, a crucial bone formation mechanism. Evidence from prior studies suggested an association between long noncoding RNAs (lncRNAs) and the osteogenic differentiation of hBMSCs. However, precise roles and molecular mechanisms are still largely unknown. In this work, we report for the first time that lncRNA KCNMA1 antisense RNA 1 (KCNMA1-AS1) plays a vital role in regulating hBMSCs' osteogenic differentiation. Here, it was observed that the KCNMA1-AS1 expression levels were significantly upregulated during osteogenic differentiation. In addition, KCNMA1-AS1 overexpression enhanced in vitro osteogenic differentiation of hBMSCs and in vivo bone formation, whereas knockdown of KCNMA1-AS1 resulted in the opposite result. Additionally, the interaction between KCNMA1-AS1 and mothers against decapentaplegic homolog 9 (SMAD9) was confirmed by an RNA pull-down experiment, mass spectrometry, and RIP assay. This interaction regulated the activation of the SMAD9 signaling pathway. Moreover, rescue assays demonstrated that the inhibitor of the SMAD9 signaling pathway reversed the stimulative effects on osteogenic differentiation of hBMSCs by KCNMA1-AS1 overexpression. Altogether, our results stipulate that KCNMA1-AS1 promotes osteogenic differentiation of hBMSCs via activating the SMAD9 signaling pathway and can serve as a biomarker and therapeutic target in treating bone defects.
Collapse
Affiliation(s)
- Zhaoyi Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingpeng Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Jiang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenli Gu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103, Leipzig, Germany
| | - Hui Xiao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M, Akbari Dilmaghani N. Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res 2023; 8:350-362. [PMID: 37250456 PMCID: PMC10209650 DOI: 10.1016/j.ncrna.2023.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Exosomes are an important group of extracellular vesicles that transfer several kinds of biomolecules and facilitate cell-cell communication. The content of exosomes, particularly the amounts of microRNA (miRNAs) inside these vesicles, demonstrates a disease-specific pattern reflecting pathogenic processes and may be employed as a diagnostic and prognostic marker. miRNAs may enter recipient cells through exosomes and generate a RISC complex that can cause degradation of the target mRNAs or block translation of their corresponding proteins. Therefore, exosome-derived miRNAs constitute an important mechanism of gene regulation in recipient cells. The miRNA content of exosomes can be used as an important tool in the detection of diverse disorders, particularly cancers. This research field has an important situation in cancer diagnosis. In addition, exosomal microRNAs offer a great deal of promise in the treatment of human disorders. However, there are still certain challenges to be resolved. The most important challenges are as follow: the detection of exosomal miRNAs should be standardized, exosomal miRNAs-associated studies should be conducted in large number of clinical samples, and experiment settings and detection criteria should be consistent across different labs. The goal of this article is to present an overview of the effects of exosome-derived microRNAs on a variety of diseases, including gastrointestinal, pulmonary, neurological, and cardiovascular diseases, with a particular emphasis on malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Liu R, Wu S, Liu W, Wang L, Dong M, Niu W. microRNAs delivered by small extracellular vesicles in MSCs as an emerging tool for bone regeneration. Front Bioeng Biotechnol 2023; 11:1249860. [PMID: 37720323 PMCID: PMC10501734 DOI: 10.3389/fbioe.2023.1249860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Bone regeneration is a dynamic process that involves angiogenesis and the balance of osteogenesis and osteoclastogenesis. In bone tissue engineering, the transplantation of mesenchymal stem cells (MSCs) is a promising approach to restore bone homeostasis. MSCs, particularly their small extracellular vesicles (sEVs), exert therapeutic effects due to their paracrine capability. Increasing evidence indicates that microRNAs (miRNAs) delivered by sEVs from MSCs (MSCs-sEVs) can alter gene expression in recipient cells and enhance bone regeneration. As an ideal delivery vehicle of miRNAs, MSCs-sEVs combine the high bioavailability and stability of sEVs with osteogenic ability of miRNAs, which can effectively overcome the challenge of low delivery efficiency in miRNA therapy. In this review, we focus on the recent advancements in the use of miRNAs delivered by MSCs-sEVs for bone regeneration and disorders. Additionally, we summarize the changes in miRNA expression in osteogenic-related MSCs-sEVs under different microenvironments.
Collapse
Affiliation(s)
| | | | | | | | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Chen Y, Tang B, Jiang W, Sun M, Zhang H, Tao Y, Wang H, Xiang D, Bai H, Guo M, Zhao P, Yan W, Huang X, Chen T, Lian C, Zhang J. miR-486-5p Attenuates Steroid-Induced Adipogenesis and Osteonecrosis of the Femoral Head Via TBX2/P21 Axis. Stem Cells 2023; 41:711-723. [PMID: 37210668 DOI: 10.1093/stmcls/sxad038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Enhanced adipogenic differentiation of mesenchymal stem cells (MSCs) is considered as a major risk factor for steroid-induced osteonecrosis of the femoral head (SOFNH). The role of microRNAs during this process has sparked interest. miR-486-5p expression was down-regulated significantly in femoral head bone tissues of both SONFH patients and rat models. The purpose of this study was to reveal the role of miR-486-5p on MSCs adipogenesis and SONFH progression. The present study showed that miR-486-5p could significantly inhibit adipogenesis of 3T3-L1 cells by suppressing mitotic clonal expansion (MCE). And upregulated expression of P21, which was caused by miR-486-5p mediated TBX2 decrease, was responsible for inhibited MCE. Further, miR-486-5p was demonstrated to effectively inhibit steroid-induced fat formation in the femoral head and prevented SONFH progression in a rat model. Considering the potent effects of miR-486-5p on attenuating adipogenesis, it seems to be a promising target for the treatment of SONFH.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Boyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Weiqian Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingjie Sun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongrui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuzhang Tao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongwei Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dulei Xiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haobo Bai
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingkang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Pei Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenlong Yan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengjie Lian
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Konarski W, Poboży T, Konarska K, Śliwczyński A, Kotela I, Hordowicz M, Krakowiak J. Osteonecrosis Related to Steroid and Alcohol Use-An Update on Pathogenesis. Healthcare (Basel) 2023; 11:1846. [PMID: 37444680 DOI: 10.3390/healthcare11131846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Osteonecrosis (ON) is usually a progressive disease that negatively affects the quality of life and leads to significant disability. Most patients are aged 30-50 years and require multiple surgical interventions throughout their lifetime. In non-traumatic ON, alcohol abuse and corticosteroids are involved in up to 80% of cases. This narrative review aims to summarize data on their impact on healthy bone and the development of pathophysiological processes leading to ON development. We conducted EMBASE and MEDLINE database reviews to identify relevant research. We found that for both agents, the risk was time and dose-dependent. ON in alcohol and steroid use shared many pathogenetic mechanisms leading to the development of necrosis, including increased adipogenesis, the induction of chronic inflammation, vascular alterations, and impaired bone-cell differentiation. Because both alcohol and steroid use are modifiable factors, both general physicians and orthopedic surgeons should encourage patients to limit ethanol intake and avoid corticosteroid overuse. In the presence of ON, because both alcohol- and steroid-induced disease tend to be multifocal, addiction treatment and limiting steroid use are justified.
Collapse
Affiliation(s)
- Wojciech Konarski
- Department of Orthopaedic Surgery, Ciechanów Hospital, 06-400 Ciechanów, Poland
| | - Tomasz Poboży
- Department of Orthopaedic Surgery, Ciechanów Hospital, 06-400 Ciechanów, Poland
| | - Klaudia Konarska
- Medical Rehabilitation Center, Sobieskiego 47D, 05-120 Legionowo, Poland
| | - Andrzej Śliwczyński
- Social Medicine Institute, Department of Social and Preventive Medicine, Medical University of Lodz, 90-647 Lodz, Poland
| | - Ireneusz Kotela
- Department of Orthopedic Surgery and Traumatology, Central Research Hospital of Ministry of Interior, Wołoska 137, 02-507 Warsaw, Poland
| | - Martyna Hordowicz
- Department of Psychiatry, Independent Regional Complex of Public Psychiatric Health Care Facilities in Warsaw, 00-665 Warsaw, Poland
| | - Jan Krakowiak
- Social Medicine Institute, Department of Social and Preventive Medicine, Medical University of Lodz, 90-647 Lodz, Poland
| |
Collapse
|
17
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Shahin RK, Midan HM, Sallam AAM, Elbadry AM, Mohamed AK, Ishak NW, Hassan KA, Ayoub AM, Shalaby RE, Elrebehy MA. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses. Pathol Res Pract 2023; 245:154440. [PMID: 37031531 DOI: 10.1016/j.prp.2023.154440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.
Collapse
|
18
|
Su D, Swearson S, Krongbaramee T, Sun H, Hong L, Amendt BA. Exploring microRNAs in craniofacial regenerative medicine. Biochem Soc Trans 2023; 51:841-854. [PMID: 37073783 PMCID: PMC11244734 DOI: 10.1042/bst20221448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
microRNAs (miRs) have been reported over the decades as important regulators in bone development and bone regeneration. They play important roles in maintaining the stem cell signature as well as regulating stem cell fate decisions. Thus, delivering miRs and miR inhibitors to the defect site is a potential treatment towards craniofacial bone defects. However, there are challenges in translation of basic research to clinics, including the efficiency, specificity, and efficacy of miR manipulation methods and the safety of miR delivery systems. In this review, we will compare miR oligonucleotides, mimics and antagomirs as therapeutic reagents to treat disease and regenerate tissues. Newer technology will be discussed as well as the efficiency and efficacy of using these technologies to express or inhibit miRs in treating and repairing oral tissues. Delivery of these molecules using extracellular vesicles and nanoparticles can achieve different results and depending on their composition will elicit specific effects. We will highlight the specificity, toxicity, stability, and effectiveness of several miR systems in regenerative medicine.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
| | - Samuel Swearson
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
| | - Tadkamol Krongbaramee
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
- Division of Endodontics, Department of Restorative Dentistry & Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Liu Hong
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| |
Collapse
|
19
|
Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. EXPLORATION (BEIJING, CHINA) 2023; 3:20210105. [PMID: 37324030 PMCID: PMC10190954 DOI: 10.1002/exp.20210105] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and complicated disease with an unclear etiology. Femoral head-preserving surgeries have been devoted to delaying and hindering the collapse of the femoral head since their introduction in the last century. However, the isolated femoral head-preserving surgeries cannot prevent the natural progression of ONFH, and the combination of autogenous or allogeneic bone grafting often leads to many undesired complications. To tackle this dilemma, bone tissue engineering has been widely developed to compensate for the deficiencies of these surgeries. During the last decades, great progress has been made in ingenious bone tissue engineering for ONFH treatment. Herein, we comprehensively summarize the state-of-the-art progress made in bone tissue engineering for ONFH treatment. The definition, classification, etiology, diagnosis, and current treatments of ONFH are first described. Then, the recent progress in the development of various bone-repairing biomaterials, including bioceramics, natural polymers, synthetic polymers, and metals, for treating ONFH is presented. Thereafter, regenerative therapies for ONFH treatment are also discussed. Finally, we give some personal insights on the current challenges of these therapeutic strategies in the clinic and the future development of bone tissue engineering for ONFH treatment.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yingjie Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wei Zhu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Feng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chaoliang Tan
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
20
|
Pu P, Wu S, Zhang K, Xu H, Guan J, Jin Z, Sun W, Zhang H, Yan B. Mechanical force induces macrophage-derived exosomal UCHL3 promoting bone marrow mesenchymal stem cell osteogenesis by targeting SMAD1. J Nanobiotechnology 2023; 21:88. [PMID: 36915132 PMCID: PMC10012474 DOI: 10.1186/s12951-023-01836-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM), a process of alveolar bone remodelling, is induced by mechanical force and regulated by local inflammation. Bone marrow-derived mesenchymal stem cells (BMSCs) play a fundamental role in osteogenesis during OTM. Macrophages are mechanosensitive cells that can regulate local inflammatory microenvironment and promote BMSCs osteogenesis by secreting diverse mediators. However, whether and how mechanical force regulates osteogenesis during OTM via macrophage-derived exosomes remains elusive. RESULTS Mechanical stimulation (MS) promoted bone marrow-derived macrophage (BMDM)-mediated BMSCs osteogenesis. Importantly, when exosomes from mechanically stimulated BMDMs (MS-BMDM-EXOs) were blocked, the pro-osteogenic effect was suppressed. Additionally, compared with exosomes derived from BMDMs (BMDM-EXOs), MS-BMDM-EXOs exhibited a stronger ability to enhance BMSCs osteogenesis. At in vivo, mechanical force-induced alveolar bone formation was impaired during OTM when exosomes were blocked, and MS-BMDM-EXOs were more effective in promoting alveolar bone formation than BMDM-EXOs. Further proteomic analysis revealed that ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) was enriched in MS-BMDM-EXOs compared with BMDM-EXOs. We went on to show that BMSCs osteogenesis and mechanical force-induced bone formation were impaired when UCHL3 was inhibited. Furthermore, mothers against decapentaplegic homologue 1 (SMAD1) was identified as the target protein of UCHL3. At the mechanistic level, we showed that SMAD1 interacted with UCHL3 in BMSCs and was downregulated when UCHL3 was suppressed. Consistently, overexpression of SMAD1 rescued the adverse effect of inhibiting UCHL3 on BMSCs osteogenesis. CONCLUSIONS This study suggests that mechanical force-induced macrophage-derived exosomal UCHL3 promotes BMSCs osteogenesis by targeting SMAD1, thereby promoting alveolar bone formation during OTM.
Collapse
Affiliation(s)
- Panjun Pu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shengnan Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Jiani Guan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China.
| |
Collapse
|
21
|
Breulmann FL, Hatt LP, Schmitz B, Wehrle E, Richards RG, Della Bella E, Stoddart MJ. Prognostic and therapeutic potential of microRNAs for fracture healing processes and non-union fractures: A systematic review. Clin Transl Med 2023; 13:e1161. [PMID: 36629031 PMCID: PMC9832434 DOI: 10.1002/ctm2.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Approximately 10% of all bone fractures result in delayed fracture healing or non-union; thus, the identification of biomarkers and prognostic factors is of great clinical interest. MicroRNAs (miRNAs) are known to be involved in the regulation of the bone healing process and may serve as functional markers for fracture healing. AIMS AND METHODS This systematic review aimed to identify common miRNAs involved in fracture healing or non-union fractures using a qualitative approach. A systematic literature search was performed with the keywords 'miRNA and fracture healing' and 'miRNA and non-union fracture'. Any original article investigating miRNAs in fracture healing or non-union fractures was screened. Eventually, 82 studies were included in the qualitative analysis for 'miRNA and fracture healing', while 19 were selected for the 'miRNA and fracture non-union' category. RESULTS AND CONCLUSIONS Out of 151 miRNAs, miR-21, miR-140 and miR-214 were the most investigated miRNAs in fracture healing in general. miR-31-5p, miR-221 and miR-451-5p were identified to be regulated specifically in non-union fractures. Large heterogeneity was detected between studies investigating the role of miRNAs in fracture healing or non-union in terms of patient population, sample types and models used. Nonetheless, our approach identified some miRNAs with the potential to serve as biomarkers for non-union fractures, including miR-31-5p, miR-221 and miR-451-5p. We provide a discussion of involved pathways and suggest on alignment of future research in the field.
Collapse
Affiliation(s)
- Franziska Lioba Breulmann
- AO Research Institute DavosDavos PlatzSwitzerland
- Department of Orthopedic Sports MedicineKlinikum Rechts der IsarTechnical University of MunichMunichGermany
| | - Luan Phelipe Hatt
- AO Research Institute DavosDavos PlatzSwitzerland
- Institute for BiomechanicsETH ZürichZurichSwitzerland
| | - Boris Schmitz
- Department of Rehabilitation SciencesFaculty of HealthUniversity of Witten/HerdeckeWittenGermany
- DRV Clinic KönigsfeldCenter for Medical RehabilitationEnnepetalGermany
| | - Esther Wehrle
- AO Research Institute DavosDavos PlatzSwitzerland
- Institute for BiomechanicsETH ZürichZurichSwitzerland
| | - Robert Geoff Richards
- AO Research Institute DavosDavos PlatzSwitzerland
- Faculty of MedicineMedical Center‐Albert‐Ludwigs‐University of FreiburgAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | | | - Martin James Stoddart
- AO Research Institute DavosDavos PlatzSwitzerland
- Faculty of MedicineMedical Center‐Albert‐Ludwigs‐University of FreiburgAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| |
Collapse
|
22
|
Guo R, Zhuang H, Chen X, Ben Y, Fan M, Wang Y, Zheng P. Tissue engineering in growth plate cartilage regeneration: Mechanisms to therapeutic strategies. J Tissue Eng 2023; 14:20417314231187956. [PMID: 37483459 PMCID: PMC10359656 DOI: 10.1177/20417314231187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
The repair of growth plate injuries is a highly complex process that involves precise spatiotemporal regulation of multiple cell types. While significant progress has been made in understanding the pathological mechanisms underlying growth plate injuries, effectively regulating this process to regenerate the injured growth plate cartilage remains a challenge. Tissue engineering technology has emerged as a promising therapeutic approach for achieving tissue regeneration through the use of functional biological materials, seed cells and biological factors, and it is now widely applied to the regeneration of bone and cartilage. However, due to the unique structure and function of growth plate cartilage, distinct strategies are required for effective regeneration. Thus, this review provides an overview of current research on the application of tissue engineering to promote growth plate regeneration. It aims to elucidates the underlying mechanisms by which tissue engineering promotes growth plate regeneration and to provide novel insights and therapeutic strategies for future research on the regeneration of growth plate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Wang Z, Wen S, Zhong M, Yang Z, Xiong W, Zhang K, Yang S, Li H, Guo S. Epigenetics: Novel crucial approach for osteogenesis of mesenchymal stem cells. J Tissue Eng 2023; 14:20417314231175364. [PMID: 37342486 PMCID: PMC10278427 DOI: 10.1177/20417314231175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.
Collapse
Affiliation(s)
- Zhaohua Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Meiqi Zhong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kuo Zhang
- College of Humanities and Social Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huizheng Li
- Department of Otorhinolaryngology & Head and Neck Surgery, Dalian Friendship Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
24
|
Wang R, Zhang M, Hu Y, He J, Lin Q, Peng N. MiR-100-5p inhibits osteogenic differentiation of human bone mesenchymal stromal cells by targeting TMEM135. Hum Cell 2022; 35:1671-1683. [PMID: 35947339 DOI: 10.1007/s13577-022-00764-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a disorder characterized by reduced bone mass, disruption of bone microarchitecture, and a propensity to fracture. The osteogenic differentiation of human bone mesenchymal stromal cells (hBMSCs) exerts a critical effect on preventing bone loss during osteoporosis. Herein, the study recognized miR-100-5p as a deregulated miRNA during osteoporosis (upregulated) and BMSC osteogenic differentiation (downregulated). miR-100-5p was upregulated in osteoporosis patients-isolated BMSCs compared to non-osteoporosis trauma patients-isolated BMSCs. hBMSCs, overexpression inhibited hBMSC proliferation and osteogenic differentiation, whereas miR-100-5p inhibition exerted opposite effects. TMEM135 was downregulated in osteoporosis and upregulated in differentiated osteoblasts, as well as downregulated upon the overexpression of miR-100-5p. MiR-100-5p directly targeted and inhibited TMEM135. In hBMSCs, TMEM135 silencing also inhibited hBMSC osteogenic differentiation. When co-transfected to hBMSCs, antagomir-100-5p promoted, whereas TMEM135 silencing inhibited hBMSC osteogenic differentiation; TMEM135 knockdown dramatically attenuated the effects of miR-100-5p inhibition. Taken together, miR-100-5p forms a regulatory axis with TMEM135 by direct binding. The miR-100-5p/TMEM135 axis modulates hBMSC differentiation into osteoblast. Considering the critical effect of BMSC osteogenesis on osteoporosis, this axis might play a role in osteoporosis, and further in vivo and clinical investigations are required.
Collapse
Affiliation(s)
- Rui Wang
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Miao Zhang
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ying Hu
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Juan He
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qiao Lin
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Nianchun Peng
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
25
|
Lan X, Ma H, Xiong Y, Zou L, Yuan Z, Xiao Y. Bone marrow mesenchymal stem cells‐derived exosomes mediate nuclear receptor coactivator‐3 expression in osteoblasts by delivering miR‐532‐5p to influence osteonecrosis of the femoral head development. Cell Biol Int 2022; 46:2185-2197. [DOI: 10.1002/cbin.11902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- XiaoYong Lan
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - HaiPing Ma
- Department of Nursing Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - YiPin Xiong
- Department of Ultrasound (Musculoskeletal Ultrasound) Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - LingFeng Zou
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - Zhen Yuan
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - YuHong Xiao
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| |
Collapse
|
26
|
Chen SC, Jiang T, Liu QY, Liu ZT, Su YF, Su HT. Hsa_circ_0001485 promoted osteogenic differentiation by targeting BMPR2 to activate the TGFβ-BMP pathway. Stem Cell Res Ther 2022; 13:453. [PMID: 36064455 PMCID: PMC9446709 DOI: 10.1186/s13287-022-03150-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a new type of stable noncoding RNA and have been proven to play a crucial role in osteoporosis. This study explored the role and mechanism of hsa_circ_0001485 in osteogenic differentiation. Methods Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) enrichment analysis were performed according to the previous sequencing data in human bone marrow mesenchymal stem cells (BMSC) before and after the induction of osteogenic differentiation on the differentially expressed circRNAs, to screen out signaling pathways associated with osteogenic differentiation. The hFOB 1.19 cells were used to verify the function and mechanism of specific circRNAs in osteogenic differentiation. Additionally, small interfering fragments and overexpression plasmids were used to determine the role of specific circRNAs during osteogenic differentiation. Furthermore, pull-down experiments and mass spectrometry were performed to determine the proteins that bind to specific circRNAs. Results The KEGG and GO enrichment analyses showed that the TGFβ-BMP signaling pathway was related to the osteogenic differentiation process, and four circRNAs were associated with the pathway. The quantitative polymerase chain reaction analysis revealed that hsa_circ_0001485 expression was increased during the osteogenic differentiation process of BMSCs. Knockdown of hsa_circ_0001485 suppressed the activity of the alkaline phosphatase enzyme and the expression of RUNX2, osteopontin, and osteocalcin in the osteogenic hFOB 1.19 cells, whereas overexpression of hsa_circ_0001485 promoted their expression. Additionally, we found that hsa_circ_0001485 and BMPR2 targeted binding to activate the TGFβ-BMP signaling pathway and promoted osteogenic differentiation through mass spectrometry analysis. Conclusion This study demonstrates that hsa_circ_0001485 is highly expressed in the osteogenic hFOB 1.19 cells, which activate the TGFβ-BMP pathway through targeted binding of BMPR2, and plays a positive role in regulating osteogenic differentiation.
Collapse
Affiliation(s)
- Shan-Chuang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Tao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China.
| | - Qi-Yu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Zi-Tao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Yu-Fei Su
- Department of Rehabilitation and Recovery, Albury Wodonga Health, Albury, NSW, 2640, Australia
| | - Hai-Tao Su
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
27
|
Ren YZ, Ding SS, Jiang YP, Wen H, Li T. Application of exosome-derived noncoding RNAs in bone regeneration: Opportunities and challenges. World J Stem Cells 2022; 14:473-489. [PMID: 36157529 PMCID: PMC9350624 DOI: 10.4252/wjsc.v14.i7.473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
With advances in the fields of regenerative medicine, cell-free therapy has received increased attention. Exosomes have a variety of endogenous properties that provide stability for molecular transport across biological barriers to cells, as a form of cell-to-cell communication that regulates function and phenotype. In addition, exosomes are an important component of paracrine signaling in stem-cell-based therapy and can be used as a stand-alone therapy or as a drug delivery system. The remarkable potential of exosomes has paved the pathway for cell-free treatment in bone regeneration. Exosomes are enriched in distinct noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs. Different ncRNAs have multiple functions. Altered expression of ncRNA in exosomes is associated with the regenerative potential and development of various diseases, such as femoral head osteonecrosis, myocardial infarction, and cancer. Although there is increasing evidence that exosome-derived ncRNAs (exo-ncRNAs) have the potential for bone regeneration, the detailed mechanisms are not fully understood. Here, we review the biogenesis of exo-ncRNA and the effects of ncRNAs on angiogenesis and osteoblast- and osteoclast-related pathways in different diseases. However, there are still many unsolved problems and challenges in the clinical application of ncRNA; for instance, production, storage, targeted delivery and therapeutic potency assessment. Advancements in exo-ncRNA methods and design will promote the development of therapeutics, revolutionizing the present landscape.
Collapse
Affiliation(s)
- Yuan-Zhong Ren
- Department of Emergency Trauma Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Shan-Shan Ding
- Department of Geriatrics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Ya-Ping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hui Wen
- Department of Emergency Trauma Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
28
|
Duan P, Wang H, Yi X, Zhang H, Chen H, Pan Z. C/EBPα regulates the fate of bone marrow mesenchymal stem cells and steroid-induced avascular necrosis of the femoral head by targeting the PPARγ signalling pathway. Stem Cell Res Ther 2022; 13:342. [PMID: 35883192 PMCID: PMC9327281 DOI: 10.1186/s13287-022-03027-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/02/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The imbalance of osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is closely related to steroid-induced avascular necrosis of the femoral head (SANFH). We aimed to investigate the epigenetic mechanism of intramedullary fat accumulation and continuous osteonecrosis after glucocorticoid (GC) withdrawal in SANFH. METHODS An SANFH model was established in SD rats, which received an intermittent high GC dose for the first 4 weeks followed by an additional 4 weeks without GC. We explored the synergistic effects and mechanisms of C/EBPα and PPARγ on the differentiation of BMSCs by lentivirus-mediated gene knockdown and overexpression assays. A chromatin immunoprecipitation assay was performed to identify epigenetic modification sites on PPARγ in vivo and in vitro. RESULTS In the SANFH model, intramedullary fat was significantly increased, and the transcription factors C/EBPα and PPARγ were upregulated simultaneously in the femoral head. In vitro, C/EBPα promoted adipogenic differentiation of BMSCs by targeting the PPARγ signalling pathway, while overexpression of C/EBPα significantly impaired osteogenic differentiation. Further studies demonstrated that histone H3K27 acetylation of PPARγ played an important role in the epigenetic mechanism underlying SANFH. C/EBPα upregulates the histone H3K27 acetylation level in the PPARγ promoter region by inhibiting HDAC1. Additionally, inhibiting the histone acetylation level of PPARγ effectively prevented adipogenic differentiation, thus slowing the progression of SANFH. CONCLUSIONS Our results demonstrate the molecular mechanism by which C/EBPα regulates PPARγ expression by acetylating histones and revealed the epigenetic phenomenon in SANFH for the first time.
Collapse
Affiliation(s)
- Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanyu Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
29
|
Ma B, Wang T, Li J, Wang Q. Extracellular matrix derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. Stem Cell Res Ther 2022; 13:327. [PMID: 35851415 PMCID: PMC9290299 DOI: 10.1186/s13287-022-03009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Angiogenesis is required in many physiological conditions, including bone regeneration, wound healing, and tissue regeneration. Mesenchymal stem cells-derived extracellular matrix (MSCs-ECM) could guide intricate cellular and tissue processes such as homeostasis, healing and regeneration. METHODS The purpose of this study is to explore the effect and mechanism of ECM derived from decellularized Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) on endothelial cell viability and angiogenesis. The human umbilical vein endothelial cells (HUVECs) were pretreated with WJ-MSCs ECM for 2d/7d/14d, respectively. After pretreatment, the angiogenesis ability of HUVECs was detected. RESULTS In this study, we found for the first time that WJ-MSCs ECM could improve the angiogenesis ability of HUVECs with a time-dependent manner in vitro. Mechanically, WJ-MSCs ECM activated the focal adhesion kinase (FAK)/P38 signaling pathway via integrin αVβ3, which further promoted the expression of the cellular (c)-Myc. Further, c-Myc increased histone acetylation levels of the vascular endothelial growth factor (VEGF) promoter by recruiting P300, which ultimately promoting VEGF expression. CONCLUSIONS ECM derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. This study is expected to provide a new approach to promote angiogenesis in bone and tissue regeneration.
Collapse
Affiliation(s)
- Beilei Ma
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tengkai Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
30
|
Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, Wu L, Pathak JL, Zheng Z. The Emerging Role of Non-Coding RNAs in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:903278. [PMID: 35652090 PMCID: PMC9150698 DOI: 10.3389/fcell.2022.903278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autologous bone marrow-derived mesenchymal stem cells (BMSCs) are more easily available and frequently used for bone regeneration in clinics. Osteogenic differentiation of BMSCs involves complex regulatory networks affecting bone formation phenomena. Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, mainly including microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, transfer RNA-derived small RNAs, etc. Recent in vitro and in vivo studies had revealed the regulatory role of ncRNAs in osteogenic differentiation of BMSCs. NcRNAs had both stimulatory and inhibitory effects on osteogenic differentiation of BMSCs. During the physiological condition, osteo-stimulatory ncRNAs are upregulated and osteo-inhibitory ncRNAs are downregulated. The opposite effects might occur during bone degenerative disease conditions. Intracellular ncRNAs and ncRNAs from neighboring cells delivered via exosomes participate in the regulatory process of osteogenic differentiation of BMSCs. In this review, we summarize the recent advances in the regulatory role of ncRNAs on osteogenic differentiation of BMSCs during physiological and pathological conditions. We also discuss the prospects of the application of modulation of ncRNAs function in BMSCs to promote bone tissue regeneration in clinics.
Collapse
Affiliation(s)
- Xiaoying Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ming Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuhan Shi
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Liang D, Song G, Zhang Z. miR‑216a‑3p inhibits osteogenic differentiation of human adipose‑derived stem cells via Wnt3a in the Wnt/β‑catenin signaling pathway. Exp Ther Med 2022; 23:309. [PMID: 35340869 DOI: 10.3892/etm.2022.11238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/12/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Daning Liang
- Department of Medical Beauty, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong 518107, P.R. China
| | - Guodong Song
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Beijing 100144, P.R. China
| | - Zhenning Zhang
- Department of Medical Beauty, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
32
|
Zhang X, Zhang Y, Yang L, Wu Y, Ma X, Tong G, Ban Z, Zhao H. IRF4 suppresses osteogenic differentiation of BM-MSCs by transcriptionally activating miR-636/DOCK9 axis. Clinics (Sao Paulo) 2022; 77:100019. [PMID: 35397366 PMCID: PMC8989710 DOI: 10.1016/j.clinsp.2022.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Osteoblasts are derived from Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs), which play an indispensable role in bone formation. In this study, the authors aim to investigate the role of IRF4 in the osteogenic differentiation of BM-MSCs and its potential molecular mechanism. METHODS The authors used lentivirus infection to overexpress IRF4 in BM-MSCs. The expression of IRF4 and osteogenesis-related genes were detected by qRT-PCR and western blot analysis. The osteogenic differentiation of BM-MSCs was evaluated by Alkaline Phosphatase (ALP) activity, Alizarin red staining, and Alkaline Phosphatase (ALP) staining. Chromatin Immunoprecipitation (ChIP), Dual-Luciferase reporter assay and RNA Immunoprecipitation Assay were applied to confirm the regulatory mechanism between IRF4, miR-636 and DOCK9. RESULTS The authors found IRF4 was down-regulated during the osteogenic differentiation of BM-MSCs, and IRF4 overexpression could decrease the osteogenic differentiation of BM-MSCs by specifically promoting the reduction of Alkaline Phosphatase (ALP) activity and down-regulating osteogenic indicators, including OCN, OPN, Runx2 and CollA1. Mechanistically, IRF4 activated microRNA-636 (miR-636) expression via binding to its promoter region, and Dedicator of Cytokinesis 9 (DOCK9) was identified as the target of miR-636 in BM-MSCs. Moreover, the damage in the capacity of osteogenic differentiation of BM-MSCs induced by IRF4 overexpression could be rescued by miR-636 inhibition. CONCLUSIONS In summary, this paper proposed that IRF4/miR-636/DOCK9 may be considered as targets for the treatment of osteoporosis (OP).
Collapse
Affiliation(s)
- Xuepu Zhang
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Yue Zhang
- Dental Department, The Second Affiliated Hospital of Jinzhou Medical University, China
| | - Limin Yang
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Yuexin Wu
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Xiaohu Ma
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Gang Tong
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Zhaoliang Ban
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Haosen Zhao
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China.
| |
Collapse
|