1
|
Felipone WK, Mambro LD, Ranieri BR, Ivanov GZ, Meves R, Martins L, Stilhano RS. The Controlled Release of Platelet-Rich Plasma-Loaded Alginate Repairs Muscle Damage With Less Fibrosis. Am J Sports Med 2025; 53:1152-1163. [PMID: 39994839 DOI: 10.1177/03635465251321108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
BACKGROUND Muscle injuries often result in dysfunctional muscle repair and reduced muscle strength. While platelet-rich plasma (PRP) has emerged as a new treatment option in orthopaedics, its use for muscle injuries remains controversial. HYPOTHESIS Encapsulating PRP within alginate hydrogels will achieve a localized and sustained release of growth factors at the site of the muscle injury, thereby enhancing skeletal muscle repair and reducing fibrosis. STUDY DESIGN Controlled laboratory study. METHODS Bimodal blends of hydrogels were formulated using 1% oxidized high- and low-molecular weight alginate. There were 2 types of PRP prepared: leukocyte-rich PRP (L-PRP) and pure PRP (P-PRP). These PRP types were loaded onto 75L25H alginate hydrogels, and the release of TGF-β1 was quantified over time. A laceration injury was induced in mice, which was then treated with various agents: alginate only, L-PRP, L-PRP-loaded alginate (L-PRPA), P-PRP, and P-PRP-loaded alginate (P-PRPA). An additional 2 groups were formed: injury with no treatment and control with no treatment or injury. RESULTS Our in vitro experiments showed that after an initial burst, TGF-β1 was released in a sustained manner for approximately 1 week after the encapsulation of both PRP preparations. The in vivo experiments showed that the groups treated with bolus injections of L-PRP or P-PRP did not show significant changes in the fibrotic area. However, the L-PRPA and P-PRPA groups demonstrated a 50% reduction in the fibrotic area (P < .05), resulting in a higher ratio of regenerating myofibers and higher levels of myogenic markers (myogenin and MyHC-emb) compared with all the other groups (P < .05). The L-PRPA group demonstrated significantly improved performance on the rotarod test; interestingly, this group also had more type I collagen than type III collagen. CONCLUSION The administration of L-PRP and P-PRP after a muscle injury did not reduce fibrosis. However, when loaded onto alginate hydrogels, they led to benefits, resulting in a smaller area of fibrosis and greater tissue regeneration. CLINICAL RELEVANCE The encapsulation of different preparations of PRP by alginate hydrogels was more effective in treating muscle lacerations than injections of PRP alone. This information is relevant for future clinical studies of PRP.
Collapse
Affiliation(s)
- William Kenzo Felipone
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Luana de Mambro
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- Post-graduate Program in Chemistry-Biology, Federal University of São Paulo, Diadema, Brazil
| | - Beatrice Rodrigues Ranieri
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Giovana Zaneti Ivanov
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- Post-graduate Program in Chemistry-Biology, Federal University of São Paulo, Diadema, Brazil
| | - Robert Meves
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- Santa Casa Spine Center, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Leonardo Martins
- Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
2
|
Eun SY, Lee CH, Cheon YH, Chung CH, Lee MS, Kim JY. Dual Action of Pueraria montana var. lobata Extract on Myogenesis and Muscle Atrophy. Nutrients 2025; 17:1217. [PMID: 40218975 PMCID: PMC11990788 DOI: 10.3390/nu17071217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Muscle atrophy, defined by diminished muscle mass and function, is a notable concern associated with aging, disease, and glucocorticoid treatment. Pueraria montana var. lobata extract (PMLE) demonstrates multiple bioactive properties, such as antioxidant, anti-inflammatory, and metabolic regulatory activities; however, its role in muscle atrophy has not been extensively investigated to date. This study examined how PMLE influences both muscle cell differentiation and dexamethasone (DEX)-induced muscle degeneration by focusing on the underlying molecular mechanisms. Methods: This study examined the effects of PMLE on myogenic differentiation and DEX-induced muscle atrophy. C2C12 myoblasts were treated with PMLE (10-100 ng/mL) and assessed for changes in the expression of myogenesis-related genes and activation of Akt/mTOR and AMPK/SIRT1/PGC-1α signaling cascades. In vivo, a DEX-induced muscle atrophy model was used to assess muscle mass, fiber morphology, and molecular changes. Results: PMLE PMLE promoted muscle cell development by increasing the expression of MyHC, MyoD, and myogenin while activating protein synthesis and mitochondrial biogenesis pathways. PMLE counteracted DEX-induced myotube atrophy, restoring myotube diameter and promoting cellular fusion in vitro. In vivo, PMLE mitigated muscle degradation in fast-twitch muscle groups and reversed DEX-induced suppression of key anabolic and mitochondrial pathways. Conclusions: These findings suggest that PMLE promotes myogenic differentiation and protects against muscle atrophy by regulating critical molecular pathways, indicating its promise as a treatment candidate for conditions involving muscle wasting. Further studies are required to assess its clinical application and long-term safety efficacy.
Collapse
Affiliation(s)
- So Young Eun
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (S.Y.E.); (C.H.L.); (Y.-H.C.); (C.H.C.)
- Department of Pharmacology, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Chang Hoon Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (S.Y.E.); (C.H.L.); (Y.-H.C.); (C.H.C.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Yoon-Hee Cheon
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (S.Y.E.); (C.H.L.); (Y.-H.C.); (C.H.C.)
| | - Chong Hyuk Chung
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (S.Y.E.); (C.H.L.); (Y.-H.C.); (C.H.C.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Myeung Su Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (S.Y.E.); (C.H.L.); (Y.-H.C.); (C.H.C.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (S.Y.E.); (C.H.L.); (Y.-H.C.); (C.H.C.)
| |
Collapse
|
3
|
Lou J, Huang H, Peng Y, Wang C, Xu M, Yu X. One-Month-Old Rabbits Exhibit a Longer Postoperative Remodeling in Extraocular Muscles Compared to 3-Month-Old Rabbits. Invest Ophthalmol Vis Sci 2025; 66:12. [PMID: 40042875 DOI: 10.1167/iovs.66.3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
Purpose To explore whether there is a difference in postoperative extraocular muscle (EOM) remodeling between 1-month-old and 3-month-old rabbits. Methods Recession (n = 16) and resection (n = 16) were performed on the right superior rectus (SR) muscles of 1-month-old and 3-month-old rabbits. SR tissues were harvested 1 and 4 weeks post-surgery (n = 4 for each group), and mid-belly sections were used to assess myosin heavy chain (MyHC) isoform expression (fast 2X, embryonic, and neonatal MyHCs), activated satellite cells (SCs), and centrally nucleated myofibers. Age-matched unoperated rabbits (n = 4) served as controls. Results In 1-month-old rabbits, fast 2X-MyHC expression continuously decreased post-recession (all P < 0.01), and embryonic MyHC expression increased both post-recession and post-resection (all P < 0.01), except in the global layer (GL) post-resection. In 3-month-old rabbits, fast 2X-MyHC decreased at 1 week post-recession (in both layers P < 0.01) but returned to preoperative levels by 4 weeks (in both layers P = 1). Embryonic MyHC remained stable (P = 0.239) or increased (in the GL post-recession and in the orbital layer (OL) post-resection, both P < 0.001) at 1 week postoperatively, except in the GL post-resection. It had returned (in the GL post-recession, P = 0.952; in the GL post-resection, P = 0.574) or nearly returned (in the OL post-resection, P = 0.038) to preoperative levels in both layers by 4 weeks. Activated SCs in 1-month-old rabbits continuously increased post-surgery (all P < 0.05), except in the OL post-resection. In 3-month-old rabbits, SCs remained stable at 1 week but decreased by 4 weeks post-surgery (all P < 0.01), except in the OL post-resection. Centrally nucleated myofibers were more prevalent in 1-month-old rabbits by 4 weeks postoperatively. Conclusions One-month-old rabbits displayed longer postoperative remodeling and greater plasticity in EOMs than 3-month-old rabbits. The difference in postoperative remodeling may impact strabismus surgery outcomes in patients of different developmental stages.
Collapse
Affiliation(s)
- Jiangtao Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hailu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yiyi Peng
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Meiping Xu
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xinping Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Then AA, Goenawan H, Lesmana R, Christoper A, Sylviana N, Gunadi JW. Exploring the potential regulation of DUOX in thyroid hormone‑autophagy signaling via IGF‑1 in the skeletal muscle (Review). Biomed Rep 2025; 22:39. [PMID: 39781041 PMCID: PMC11704872 DOI: 10.3892/br.2024.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 01/11/2025] Open
Abstract
Dual oxidases (DUOX) are enzymes that have the main function in producing reactive oxygen species (ROS) in various tissues. DUOX also play an important role in the synthesis of H2O2, which is essential for the production of thyroid hormone. Thyroid hormones can influence the process of muscle development through direct stimulation of ROS, 5' AMP-activated protein kinase (AMPK) and mTOR and indirect effect autophagy and the insulin-like growth factor 1 (IGF-1) pathway. IGF-1 signaling controls autophagy in two ways: Inhibiting autophagy through activation of the PI3K/AKT/mTOR/MAPK pathway and promoting mitophagy through the nuclear factor erythroid 2-related factor 2-binding receptor Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3. Thyroid hormone deficiency caused by the absence of DUOX should be considered because it might have a significant effect on the growth of skeletal muscle. The effect of DUOX regulation on thyroid hormone autophagy via IGF-1 in skeletal muscle has not been well investigated. The present review discussed the regulatory interactions between DUOX, thyroid hormone, IGF-1 and autophagy, which can influence skeletal muscle development.
Collapse
Affiliation(s)
- Andreas Adiwinata Then
- Master's Program in Basic Biomedical Sciences, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Andreas Christoper
- Doctoral Program in Medical Science, PMDSU Program Batch VI, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia
| |
Collapse
|
5
|
Taylor AB, Holmes MA, Laird MF, Terhune CE. Jaw-Muscle Structure and Function in Primates: Insights Into Muscle Performance and Feeding-System Behaviors. Evol Anthropol 2025; 34:e22053. [PMID: 39964129 PMCID: PMC11834762 DOI: 10.1002/evan.22053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/02/2024] [Accepted: 12/09/2024] [Indexed: 02/21/2025]
Abstract
The jaw-adductor muscles drive the movements and forces associated with primate feeding behaviors such as biting and chewing as well as social signaling behaviors such as wide-mouth canine display. The past several decades have seen a rise in research aimed at the anatomy and physiology of primate chewing muscles to better understand the functional and evolutionary significance of the primate masticatory apparatus. This review summarizes variation in jaw-adductor fiber types and muscle architecture in primates, focusing on physiological, architectural, and behavioral performance variables such as specific tension, fatigue resistance, muscle and bite force, and muscle stretch and gape. Paranthropus and Australopithecus are used as one paleontological example to showcase the importance of these data for addressing paleobiological questions. The high degree of morphological variation related to sex, age, muscle, and species suggests future research should bracket ranges of performance variables rather than focus on single estimates of performance.
Collapse
Grants
- P51 OD011132 NIH HHS
- The study was supported by the Emory National Primate Research Center (grant no. ORIP/OD P51OD011132) and the National Science Foundation (grant nos. BCS-0452160, BCS-0552285, BCS-0635649, BCS-0833394, BCS-0962677, BCS-1440516, BCS-1440541, BCS-1440542, BCS-1440545, BCS-1627206, BCS-1719743, BCS-1725925, BCS-1944642, BCS-1944915, BCS-1945767, and BCS-2316863).
Collapse
Affiliation(s)
- Andrea B. Taylor
- Department of Foundational Biomedical SciencesTouro University CaliforniaVallejoCaliforniaUSA
| | - Megan A. Holmes
- Department of Family Medicine and Community HealthDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Myra F. Laird
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Claire E. Terhune
- Department of AnthropologyUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
6
|
Huo L, Zhang H, Tang C, Cui G, Xue T, Guo H, Yao F, Zhang W, Feng W. Delta Opioid Peptide [d-Ala2, d-Leu5]-Enkephalin Improves Physical and Cognitive Function and Increases Lifespan in Aged Female Mice. Mol Neurobiol 2025; 62:3568-3582. [PMID: 39312071 DOI: 10.1007/s12035-024-04503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/14/2024] [Indexed: 02/04/2025]
Abstract
In this study, we explored the potential application of [d-Ala2, d-Leu5]-enkephalin (DADLE) in anti-ageing field in response to the trend of increasing global population ageing. We aimed to reveal experimentally whether DADLE can positively affect the lifespan and health of aged mammals through its unique anti-inflammatory or metabolic mechanisms. Forty-two female C57/BL6J mice aged 18 months were intraperitoneally injected with DADLE or normal saline for 2 months. Cognitive and motor functions were assessed using a water maze and treadmill stress test, respectively. The expressions of P16INK4A, Lamin B1 and sirtuin 1 were observed in the hippocampus and heart. The level of pro-inflammatory cytokines in the serum was measured by enzyme-linked immunosorbent assay. The telomere length of the mice was determined using the polymerase chain reaction method. Transcriptome analysis of 6-month-old female C57BL/6 J mice brains and hearts was assessed for body weight effects. Supplementation of exogenous DADLE to aged mice has demonstrated significant benefits, including improved motor function, enhanced cognitive performance and significantly extended lifespan. DADLE treatment resulted in a substantial increase in anti-ageing markers and a corresponding decrease in pro-ageing markers in the heart and brain of these mice. DADLE attenuated age-related inflammation, as evidenced by reductions in serum pro-inflammatory cytokines and inflammatory cell infiltration in tissues. Furthermore, DADLE supplementation significantly prolonged relative telomere length in aged female mice, suggesting a potential mechanism for its anti-ageing effects. Transcriptome analysis revealed that immune response and cellular signalling pathways are intricately involved in the protective effects of DADLE in aged mice, providing further insights into its mechanism of action. Inflammatory reaction may be improved by DADLE by regulating the infiltration of inflammatory cells in the liver and kidney and regulating the cognitive function of the brain and the ageing of the heart in mice.
Collapse
Affiliation(s)
- Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Hongquan Zhang
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Ge Cui
- Department of Pathology, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Tao Xue
- Clinical Research Center, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Huihui Guo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Fandi Yao
- Huzhou University, Huzhou, 313000, Zhejiang Province, China
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, No. 158, Guangchanghou Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Wei Zhang
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Wenming Feng
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, No. 158, Guangchanghou Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
7
|
Preethy S, Sakamoto S, Higuchi T, Ichiyama K, Yamamoto N, Ikewaki N, Iwasaki M, Dedeepiya VD, Srinivasan S, Raghavan K, Rajmohan M, Senthilkumar R, Abraham SJ. Enhanced expression of dystrophin, IGF-1, CD44 and MYH3 in plasma and skeletal muscles including diaphragm of mdx mice after oral administration of Neu REFIX beta 1,3-1,6 glucan. Sci Rep 2025; 15:7232. [PMID: 40021828 PMCID: PMC11871006 DOI: 10.1038/s41598-025-92258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/26/2025] [Indexed: 03/03/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disease, causing muscle degeneration due to lack of dystrophin with inadequate muscle regeneration culminating in muscle dysfunction. The N-163 strain of Aureobasidium Pullulans produced Beta-1,3 - 1,6-glucan (Neu REFIX) reported to be safe with anti-inflammatory and anti-fibrotic efficacy earlier, herein we evaluated its effects on muscle regeneration in mdx mice. Forty-five mice in three groups (n = 15 each): Group 1 (normal), Group 2 (mdx control), and Group 3 (mdx fed Neu REFIX) were evaluated for 45 days. IGF-1, Dystrophin, CD44 and MYH3 in diaphragm, plasma and skeletal muscle were evaluated by ELISA and immunohistochemistry. Mean IGF-1 expression was 20.32% and 16.27% higher in plasma (p = 0.03) and diaphragm respectively in Neu-REFIX group. Mean dystrophin was higher in Neu-REFIX group by 70.3% and 4.7% in diaphragm and plasma respectively than control. H-score intensity of CD44 + was > 2.0 with an MYH3-positivity 20% higher in Neu-REFIX than control. Oral administration of Neu REFIX was safe. Significantly enhanced plasma IGF-1 beside increased Dystrophin, MYH3 and CD44, proving a restoration of muscle regeneration and differentiation, especially in diaphragm, makes us recommend it as a disease modifying adjuvant in both early and advanced stages of DMD.
Collapse
Affiliation(s)
- Senthilkumar Preethy
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi University, Nankoku, Japan
| | - Takuma Higuchi
- Laboratory of Molecular Biology, Science Research Center, Kochi University, Nankoku, Japan
| | - Koji Ichiyama
- Antony-Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., Kofu, Japan
| | - Naoki Yamamoto
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Kounodai, Ichikawa, Chiba, Japan
| | - Nobunao Ikewaki
- Department of Medical Life Science, Kyushu University of Health and Welfare, Nobeoka, Japan
- Institute of Immunology, Junsei Educational Institute, Nobeoka, Miyazaki, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
| | | | - Subramaniam Srinivasan
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Kadalraja Raghavan
- Department of Paediatric Neurology, Jesuit Antonyraj Memorial Inter-disciplinary Centre for Advanced Recovery and Education (JAICARE), Madurai, India
| | - Mathaiyan Rajmohan
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Rajappa Senthilkumar
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
- Antony-Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., Kofu, Japan
| | - Samuel Jk Abraham
- Antony-Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., Kofu, Japan.
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan.
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India.
- R & D, Sophy Inc, Nyodogawa, Japan.
- Levy-Jurgen Transdisciplinary Exploratory (LJTE), Global Niche Corp., Wilmington, DE, USA.
- Haraguchi-Parikumar Advanced Remedies (HARP) & Cherian-Yoshii Shimpei Translational Exemplary (CYTE), Soul Synergy Ltd., Phoenix, Mauritius.
- II Department of Surgery, University of Yamanashi, School of Medicine, Chuo, Japan.
| |
Collapse
|
8
|
Donaka R, Zheng H, Ackert-Bicknell CL, Karasik D. Early life lipid overload in Native American Myopathy is phenocopied by stac3 knockout in zebrafish. Gene 2025; 936:149123. [PMID: 39592070 DOI: 10.1016/j.gene.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Understanding the early stages of human congenital myopathies is critical for proposing strategies for improving musculoskeletal muscle performance, such as restoring the functional integrity of the cytoskeleton. SH3 and cysteine-rich domain 3 (STAC3) are proteins involved in nutrient regulation and are an essential component of the excitation-contraction (EC) coupling machinery for Ca2+ releasing. A mutation in STAC3 causes debilitating Native American Myopathy (NAM) in humans, while loss of this gene in mice and zebrafish (ZF) results in premature death. Clinically, NAM patients demonstrated increased lipids in skeletal muscle, but it is unclear if neutral lipids are associated with altered muscle function in NAM. Using a CRISPR/Cas9 induced stac3-/- knockout (KO) zebrafish model, we determined that loss of stac3 leads to delayed larval hatching which corresponds with muscle weakness and decreased whole-body Ca2+ level during early skeletal development. Specifically, we observed defects in the cytoskeleton in F-actin and slow muscle fibers at 5 and 7 days post-fertilizations (dpf). Myogenesis regulators such as myoD and myf5, mstnb were significantly altered in stac3-/- larvae. These muscle alterations were associated with elevated neutral lipid levels starting at 5 dpf and persisting beyond 7 dpf. Larva lacking stac3 had reduced viability with no larva knockouts surviving past 11 dpf. This data suggests that our stac3-/- zebrafish serve as an alternative model to study the diminished muscle function seen in NAM patients. The data gathered from this new model over time supports a mechanistic view of lipotoxicity as a critical part of the pathology of NAM and the associated loss of function in muscle.
Collapse
Affiliation(s)
- Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - Houfeng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Cloud Town, Xihu District, 310024 Hangzhou, Zhejiang, China
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA.
| |
Collapse
|
9
|
Ai L, Binek A, Zhemkov V, Cho JH, Haghani A, Kreimer S, Israely E, Arzt M, Chazarin B, Sundararaman N, Sharma A, Marbán E, Svendsen CN, Van Eyk JE. Single Cell Proteomics Reveals Specific Cellular Subtypes in Cardiomyocytes Derived from Human iPSCs and Adult Hearts. Mol Cell Proteomics 2025:100910. [PMID: 39855627 DOI: 10.1016/j.mcpro.2025.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Single cell proteomics was performed on human induced pluripotent stem cells (iPSCs), iPSC-derived cardiomyocytes, and adult cardiomyocytes. Over 700 proteins could be simultaneously measured in each cell revealing unique subpopulations. A sub-set of iPSCs expressed higher levels of Lin28a and Tra-1-60 towards the outer edge of cell colonies. In the cardiomyocytes, two distinct populations were found that exhibited complementary metabolic profiles. Cardiomyocytes from iPSCs showed a glycolysis profile while adult cardiomyocytes were enriched in proteins involved with fatty acid metabolism. Interestingly, rare single cells also co-expressed markers of both cardiac and neuronal lineages, suggesting there maybe a novel hybrid cell type in the human heart.
Collapse
Affiliation(s)
- Lizhuo Ai
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Aleksandra Binek
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.
| | - Vladimir Zhemkov
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jae Hyung Cho
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ali Haghani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Simion Kreimer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Edo Israely
- Department of Medicine Research, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Madelyn Arzt
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | - Blandine Chazarin
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Niveda Sundararaman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Arun Sharma
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Clive N Svendsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048.
| |
Collapse
|
10
|
Shewale B, Ebrahim T, Samal A, Dubois N. Molecular Regulation of Cardiomyocyte Maturation. Curr Cardiol Rep 2025; 27:32. [PMID: 39836238 DOI: 10.1007/s11886-024-02189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF THE REVIEW This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart. RECENT FINDINGS Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades. Recently, there has been a renewed, highly focused interest in this process, driven by clinically motivated research areas where enhancing maturation may lead to improved therapeutic opportunities. These include using pluripotent stem cell models for cell therapy and disease modeling, as well as recent advancements in adult cardiac regeneration approaches. We highlight key processes underlying maturation of the heart, including cellular and organ growth, and electrophysiological, metabolic, and contractile maturation. We further discuss how these processes integrate and interact to contribute to the overall complexity of the developing heart. Finally, we emphasize the transformative potential for translating relevant maturation concepts to emerging models of heart disease and regeneration.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tasneem Ebrahim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arushi Samal
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Zhang RX, Zhai YY, Ding RR, Huang JH, Shi XC, Liu H, Liu XP, Zhang JF, Lu JF, Zhang Z, Leng XK, Li DF, Xiao JY, Xia B, Wu JW. FNDC1 is a myokine that promotes myogenesis and muscle regeneration. EMBO J 2025; 44:30-53. [PMID: 39567831 PMCID: PMC11695938 DOI: 10.1038/s44318-024-00285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Myogenesis is essential for skeletal muscle formation and regeneration after injury, yet its regulators are largely unknown. Here we identified fibronectin type III domain containing 1 (FNDC1) as a previously uncharacterized myokine. In vitro studies showed that knockdown of Fndc1 in myoblasts reduces myotube formation, while overexpression of Fndc1 promotes myogenic differentiation. We further generated recombinant truncated mouse FNDC1 (mFNDC1), which retains reliable activity in promoting myoblast differentiation in vitro. Gain- and loss-of-function studies collectively showed that FNDC1 promotes cardiotoxin (CTX)-induced muscle regeneration in adult mice. Furthermore, recombinant FNDC1 treatment ameliorated pathological muscle phenotypes in the mdx mouse model of Duchenne muscular dystrophy. Mechanistically, FNDC1 bound to the integrin α5β1 and activated the downstream FAK/PI3K/AKT/mTOR pathway to promote myogenic differentiation. Pharmacological inhibition of integrin α5β1 or of the downstream FAK/PI3K/AKT/mTOR pathway abolished the pro-myogenic effect of FNDC1. Collectively, these results suggested that myokine FNDC1 might be used as a therapeutic agent to regulate myogenic differentiation and muscle regeneration for the treatment of acute and chronic muscle disease.
Collapse
Affiliation(s)
- Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Yuan Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rong Rong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia He Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Peng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Feng Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhe Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiang Kai Leng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - De Fu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Sosnicki A, Gonzalez J, Fields B, Knap P. A review of porcine skeletal muscle plasticity and implications for genetic improvement of carcass and meat quality. Meat Sci 2025; 219:109676. [PMID: 39362021 DOI: 10.1016/j.meatsci.2024.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Skeletal muscle is characterized by a remarkable plasticity to adapt to stimuli such as contractile activity, loading conditions, substrate supply or environmental factors. The existing knowledge of muscle plasticity along with developed genetic and genomic technologies, have enabled creating animal breeding strategies and allowed for implementing agriculturally successful porcine genetic improvement programs. The primary focus of this review paper is on pig skeletal muscle plasticity as it relates to genetic improvement of desirable carcass composition and pork quality traits. Biological constraints between practically realized breeding objectives, pig skeletal muscle biology, and pork quality are also discussed. Future applications of genetic and genomic technologies and plausible focus on new breeding objectives enhancing pork production sustainability are proposed as well.
Collapse
Affiliation(s)
| | - John Gonzalez
- University of Georgia, Department of Animal and Dairy Science, 425 River Road, Athens, GA 30602, USA
| | - Brandon Fields
- GenusPIC, 100 Bluegrass Commons, Hendersonville, TN 37075, USA
| | - Pieter Knap
- GenusPIC, 100 Bluegrass Commons, Hendersonville, TN 37075, USA
| |
Collapse
|
13
|
Joshi AS, Castillo MB, Tomaz da Silva M, Vuong AT, Gunaratne PH, Darabi R, Liu Y, Kumar A. Single-nucleus transcriptomic analysis reveals the regulatory circuitry of myofiber XBP1 during regenerative myogenesis. iScience 2024; 27:111372. [PMID: 39650729 PMCID: PMC11625362 DOI: 10.1016/j.isci.2024.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) is activated in skeletal muscle under multiple conditions. However, the role of the UPR in the regulation of muscle regeneration remains less understood. We demonstrate that gene expression of various markers of the UPR is induced in both myogenic and non-myogenic cells in regenerating muscle. Genetic ablation of X-box binding protein 1 (XBP1), a downstream target of the Inositol requiring enzyme 1α (IRE1α) arm of the UPR, in myofibers attenuates muscle regeneration in adult mice. Single nucleus RNA sequencing (snRNA-seq) analysis showed that deletion of XBP1 in myofibers perturbs proteolytic systems and mitochondrial function in myogenic cells. Trajectory analysis of snRNA-seq dataset showed that XBP1 regulates the abundance of satellite cells and the formation of new myofibers in regenerating muscle. In addition, ablation of XBP1 disrupts the composition of non-myogenic cells in injured muscle microenvironment. Collectively, our study suggests that myofiber XBP1 regulates muscle regeneration through both cell-autonomous and -non-autonomous mechanisms.
Collapse
Affiliation(s)
- Aniket S. Joshi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Micah B. Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Meiricris Tomaz da Silva
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Anh Tuan Vuong
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Radbod Darabi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Yu Liu
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Ashok Kumar
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
14
|
Martins SG, Ribeiro V, Melo C, Paulino-Cavaco C, Antonini D, Dayalan Naidu S, Murtinheira F, Fonseca I, Saget B, Pita M, Fernandes DR, Gameiro Dos Santos P, Rodrigues G, Zilhão R, Herrera F, Dinkova-Kostova AT, Carlos AR, Thorsteinsdóttir S. Laminin-α2 chain deficiency in skeletal muscle causes dysregulation of multiple cellular mechanisms. Life Sci Alliance 2024; 7:e202402829. [PMID: 39379105 PMCID: PMC11463332 DOI: 10.26508/lsa.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
LAMA2, coding for the laminin-α2 chain, is a crucial ECM component, particularly abundant in skeletal muscle. Mutations in LAMA2 trigger the often-lethal LAMA2-congenital muscular dystrophy (LAMA2-CMD). Various phenotypes have been linked to LAMA2-CMD; nevertheless, the precise mechanisms that malfunction during disease onset in utero remain unknown. We generated Lama2-deficient C2C12 cells and found that Lama2-deficient myoblasts display proliferation, differentiation, and fusion defects, DNA damage, oxidative stress, and mitochondrial dysfunction. Moreover, fetal myoblasts isolated from the dy W mouse model of LAMA2-CMD display impaired differentiation and fusion in vitro. We also showed that disease onset during fetal development is characterized by a significant down-regulation of gene expression in muscle fibers, causing pronounced effects on cytoskeletal organization, muscle differentiation, and altered DNA repair and oxidative stress responses. Together, our findings provide unique insights into the critical importance of the laminin-α2 chain for muscle differentiation and muscle cell homeostasis.
Collapse
Affiliation(s)
- Susana G Martins
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa Ribeiro
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Melo
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Paulino-Cavaco
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Fernanda Murtinheira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fonseca
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Bérénice Saget
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Pita
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo R Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Gameiro Dos Santos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriela Rodrigues
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Zilhão
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Herrera
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ana Rita Carlos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Choi S, Lee MJ, Kim M, Bae Y, Park JU, Cho SW. Durable Muscle Extracellular Matrix Engineered with Adhesive Phenolic Moieties for Effective Skeletal Muscle Regeneration in Muscle Atrophy. Adv Healthc Mater 2024; 13:e2401826. [PMID: 39420690 DOI: 10.1002/adhm.202401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Muscle atrophy detrimentally impacts health and exacerbates physical disability, leading to increased mortality. In particular, sarcopenia, aging-related degenerative muscle loss, necessitates urgent remedies. Current approaches for treating muscle atrophy include exercise and nutrition, while drug exploration remains in its early stages. Cell therapy, focusing on satellite cells, faces significant challenge due to poor engraftment, safety issue, and high cost. Cell-free approach using extracellular matrix (ECM) shows a regenerative potential, but a lack of mechanical and adhesive properties hinders prolonged efficacy of ECM therapy. Here, durable muscle ECM (MEM) hydrogels for muscle atrophy by fortifying MEM with adhesive phenolic moieties including catechol and pyrogallol are demonstrated. The resultant phenolic MEM hydrogels exhibit enhanced mechanical and adhesive properties and provide sustained muscle-like microenvironments to address muscle atrophy. No local and systemic toxicities are observed after phenolic MEM injection into tibialis anterior muscle. Notably, these engineered MEM hydrogels, devoid of cells or drugs, induce tissue rejuvenation by promoting muscle protein synthesis and facilitating functional muscle recovery in mouse models of disuse- and age-induced atrophy. This study introduces cell-free, ECM-based therapeutics with translational potential for muscle atrophy by reversing muscle loss and restoring function.
Collapse
Affiliation(s)
- Soojeong Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Moohyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yunsu Bae
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| |
Collapse
|
16
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
17
|
Cho S, Servián-Morilla E, Garrido VN, Rodriguez-Gonzalez B, Yuan Y, Cano R, Rambhiya AA, Darabi R, Haltiwanger RS, Paradas C, Jafar-Nejad H. The glycosyltransferase POGLUT1 regulates muscle stem cell development and maintenance in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625261. [PMID: 39651163 PMCID: PMC11623641 DOI: 10.1101/2024.11.25.625261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Mutations in protein O -glucosyltransferase 1 ( POGLUT1 ) cause a recessive form of limb-girdle muscular dystrophy (LGMD-R21) associated with reduced satellite cell number and NOTCH1 signaling in adult patient muscles and impaired myogenic capacity of patient-derived muscle progenitors. However, the in vivo roles of POGLUT1 in the development, function, and maintenance of satellite cells are not well understood. Here, we show that conditional deletion of mouse Poglut1 in myogenic progenitors leads to early lethality, postnatal muscle growth defects, reduced Pax7 expression, abnormality in muscle extracellular matrix, and impaired muscle repair. Poglut1 -deficient muscle progenitors exhibit reduced proliferation, enhanced differentiation, and accelerated fusion into myofibers. Inducible loss of Poglut1 in adult satellite cells leads to their precocious differentiation and impairs muscle repair upon serial injury. Cell-based signaling assays and mass spectrometric analysis indicate that POGLUT1 is required for the activation of NOTCH1, NOTCH2, and NOTCH3 in myoblasts and that NOTCH3 is a target of POGLUT1 like NOTCH1 and NOTCH2. These observations provide insight into the roles of POGLUT1 in muscle development and repair and the pathophysiology of LGMD-R21.
Collapse
|
18
|
Vangipurapu R, Oliva J, Fox A, Sverdrup FM. Temporal variation in p38-mediated regulation of DUX4 in facioscapulohumeral muscular dystrophy. Sci Rep 2024; 14:26437. [PMID: 39488616 PMCID: PMC11531483 DOI: 10.1038/s41598-024-77911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a degenerative muscle disease caused by loss of epigenetic silencing and ectopic reactivation of the embryonic double homeobox protein 4 gene (DUX4) in skeletal muscle. The p38 MAP kinase inhibitor losmapimod is currently being tested in FSHD clinical trials due to the finding that p38 inhibition suppresses DUX4 expression in preclinical models. However, the role of p38 in regulating DUX4 at different myogenic stages has not been investigated. We used genetic and pharmacologic tools in FSHD patient-derived myoblasts/myocytes to explore the temporal role of p38 in differentiation-induced DUX4 expression. Deletion of MAPK14/11 or inhibition of p38α/β caused a significant reduction in early differentiation-dependent increases in DUX4 and DUX4 target gene expression. However, in MAPK14/11 knockout cells, there remains a differentiation-associated increase in DUX4 and DUX4 target gene expression later in differentiation. Furthermore, pharmacologic inhibition of p38α/β only partially decreased DUX4 and DUX4 target gene expression in late differentiating myotubes. In xenograft studies, p38α/β inhibition by losmapimod failed to suppress DUX4 target gene expression in late FSHD xenografts. Our results show that while p38 is critical for DUX4 expression during early myogenesis, later in myogenesis a significant level of DUX4 expression is independent of p38α/β activity.
Collapse
Affiliation(s)
- Rajanikanth Vangipurapu
- Deparment of Biochemistry and Molecular Biology, Saint Louis University, Doisy Research #4171100 South Grand, Saint Louis, MO, 63104, USA.
| | - Jonathan Oliva
- Deparment of Biochemistry and Molecular Biology, Saint Louis University, Doisy Research #4171100 South Grand, Saint Louis, MO, 63104, USA
| | - Amelia Fox
- Deparment of Biochemistry and Molecular Biology, Saint Louis University, Doisy Research #4171100 South Grand, Saint Louis, MO, 63104, USA
| | - Francis M Sverdrup
- Deparment of Biochemistry and Molecular Biology, Saint Louis University, Doisy Research #4171100 South Grand, Saint Louis, MO, 63104, USA.
| |
Collapse
|
19
|
Santocildes G, Viscor G, Pagès T, Torrella JR. Simulated altitude is medicine: intermittent exposure to hypobaric hypoxia and cold accelerates injured skeletal muscle recovery. J Physiol 2024; 602:5855-5878. [PMID: 38153352 DOI: 10.1113/jp285398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Muscle injuries are the leading cause of sports casualties. Because of its high plasticity, skeletal muscle can respond to different stimuli to maintain and improve functionality. Intermittent hypobaric hypoxia (IHH) improves muscle oxygen delivery and utilization. Hypobaria coexists with cold in the biosphere, opening the possibility to consider the combined use of both environmental factors to achieve beneficial physiological adjustments. We studied the effects of IHH and cold exposure, separately and simultaneously, on muscle regeneration. Adult male rats were surgically injured in one gastrocnemius and randomly assigned to the following groups: (1) CTRL: passive recovery; (2) COLD: intermittently exposed to cold (4°C); (3) HYPO: submitted to IHH (4500 m); (4) COHY: exposed to intermittent simultaneous cold and hypoxia. Animals were subjected to these interventions for 4 h/day for 9 or 21 days. COLD and COHY rats showed faster muscle regeneration than CTRL, evidenced after 9 days at histological (dMHC-positive and centrally nucleated fibre reduction) and functional levels after 21 days. HYPO rats showed a full recovery from injury (at histological and functional levels) after 9 days, while COLD and COHY needed more time to induce a total functional recovery. IHH can be postulated as an anti-fibrotic treatment since it reduces collagen I deposition. The increase in the pSer473Akt/total Akt ratio observed after 9 days in COLD, HYPO and COHY, together with the increase in the pThr172AMPKα/total AMPKα ratio observed in the gastrocnemius of HYPO, provides clues to the molecular mechanisms involved in the improved muscle regeneration. KEY POINTS: Only intermittent hypobaric exposure accelerated muscle recovery as early as 9 days following injury at histological and functional levels. Injured muscles from animals treated with intermittent (4 h/day) cold, hypobaric hypoxia or a simultaneous combination of both stimuli regenerated histological structure and recovered muscle function 21 days after injury. The combination of cold and hypoxia showed a blunting effect as compared to hypoxia alone in the time course of the muscle recovery. The increased expression of the phosphorylated forms of Akt observed in all experimental groups could participate in the molecular cascade of events leading to a faster regeneration. The elevated levels of phosphorylated AMPKα in the HYPO group could play a key role in the modulation of the inflammatory response during the first steps of the muscle regeneration process.
Collapse
Affiliation(s)
- Garoa Santocildes
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Pagès
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Ramon Torrella
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Sun C, Swoboda CO, Morales FM, Calvo C, Petrany MJ, Parameswaran S, VonHandorf A, Weirauch MT, Lepper C, Millay DP. Lineage tracing of nuclei in skeletal myofibers uncovers distinct transcripts and interplay between myonuclear populations. Nat Commun 2024; 15:9372. [PMID: 39477931 PMCID: PMC11526147 DOI: 10.1038/s41467-024-53510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Multinucleated skeletal muscle cells need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in cells that already harbor hundreds of nuclei. Here we utilize nuclear RNA-sequencing approaches and develop a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.
Collapse
Affiliation(s)
- Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fabian Montecino Morales
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cristofer Calvo
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
21
|
Sommers O, Tomsine RA, Khacho M. Mitochondrial Dynamics Drive Muscle Stem Cell Progression from Quiescence to Myogenic Differentiation. Cells 2024; 13:1773. [PMID: 39513880 PMCID: PMC11545319 DOI: 10.3390/cells13211773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
From quiescence to activation and myogenic differentiation, muscle stem cells (MuSCs) experience drastic alterations in their signaling activity and metabolism. Through balanced cycles of fission and fusion, mitochondria alter their morphology and metabolism, allowing them to affect their decisive role in modulating MuSC activity and fate decisions. This tightly regulated process contributes to MuSC regulation by mediating changes in redox signaling pathways, cell cycle progression, and cell fate decisions. In this review, we discuss the role of mitochondrial dynamics as an integral modulator of MuSC activity, fate, and maintenance. Understanding the influence of mitochondrial dynamics in MuSCs in health and disease will further the development of therapeutics that support MuSC integrity and thus may aid in restoring the regenerative capacity of skeletal muscle.
Collapse
Affiliation(s)
- Olivia Sommers
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rholls A. Tomsine
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Center for Neuromuscular Disease (CNMD), University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
22
|
Xue S, Benvie AM, Blum JE, Kolba NJ, Cosgrove BD, Thalacker-Mercer A, Berry DC. Suppressing PDGFRβ Signaling Enhances Myocyte Fusion to Promote Skeletal Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618247. [PMID: 39464006 PMCID: PMC11507758 DOI: 10.1101/2024.10.15.618247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Muscle cell fusion is critical for forming and maintaining multinucleated myotubes during skeletal muscle development and regeneration. However, the molecular mechanisms directing cell-cell fusion are not fully understood. Here, we identify platelet-derived growth factor receptor beta (PDGFRβ) signaling as a key modulator of myocyte fusion in adult muscle cells. Our findings demonstrate that genetic deletion of Pdgfrβ enhances muscle regeneration and increases myofiber size, whereas PDGFRβ activation impairs muscle repair. Inhibition of PDGFRβ activity promotes myonuclear accretion in both mouse and human myotubes, whereas PDGFRβ activation stalls myotube development by preventing cell spreading to limit fusion potential. Transcriptomics analysis show that PDGFRβ signaling cooperates with TGFβ signaling to direct myocyte size and fusion. Mechanistically, PDGFRβ signaling requires STAT1 activation, and blocking STAT1 phosphorylation enhances myofiber repair and size during regeneration. Collectively, PDGFRβ signaling acts as a regenerative checkpoint and represents a potential clinical target to rapidly boost skeletal muscle repair.
Collapse
Affiliation(s)
- Siwen Xue
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Abigail M Benvie
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Jamie E Blum
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Current address: Department of Chemical Engineering; Stanford University; Stanford, CA
| | - Nikolai J Kolba
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | | | - Anna Thalacker-Mercer
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel C Berry
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Corresponding author
| |
Collapse
|
23
|
Mcleod JC, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza AC, Colenso-Semple L, McKendry J, Morton RW, Mitchell CJ, Oikawa SY, Wahlestedt C, Paul Chapple J, McGlory C, Timmons JA, Phillips SM. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.606848. [PMID: 39416175 PMCID: PMC11482748 DOI: 10.1101/2024.08.11.606848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customised RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n=144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR - which was leukocyte-associated (FDR = 4.9 ×10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C. Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, Canada
| | - Robert W. Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sara Y. Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, Canada
| | - James A. Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Wang L, Zhang S. Investigating the Causal Effects of Exercise-Induced Genes on Sarcopenia. Int J Mol Sci 2024; 25:10773. [PMID: 39409102 PMCID: PMC11476887 DOI: 10.3390/ijms251910773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Exercise is increasingly recognized as an effective strategy to counteract skeletal muscle aging and conditions such as sarcopenia. However, the specific exercise-induced genes responsible for these protective effects remain unclear. To address this, we conducted an eight-week aerobic exercise regimen on late-middle-aged mice and developed an integrated approach that combines mouse exercise-induced genes with human GWAS datasets to identify causal genes for sarcopenia. This approach led to significant improvements in the skeletal muscle phenotype of the mice and the identification of exercise-induced genes and miRNAs. By constructing a miRNA regulatory network enriched with transcription factors and GWAS signals related to muscle function and traits, we focused on 896 exercise-induced genes. Using human skeletal muscle cis-eQTLs as instrumental variables, 250 of these exercise-induced genes underwent two-sample Mendelian randomization analysis, identifying 40, 68, and 62 causal genes associated with sarcopenia and its clinical indicators-appendicular lean mass (ALM) and hand grip strength (HGS), respectively. Sensitivity analyses and cross-phenotype validation confirmed the robustness of our findings. Consistently across the three outcomes, RXRA, MDM1, RBL2, KCNJ2, and ADHFE1 were identified as risk factors, while NMB, TECPR2, MGAT3, ECHDC2, and GINM1 were identified as protective factors, all with potential as biomarkers for sarcopenia progression. Biological activity and disease association analyses suggested that exercise exerts its anti-sarcopenia effects primarily through the regulation of fatty acid oxidation. Based on available drug-gene interaction data, 21 of the causal genes are druggable, offering potential therapeutic targets. Our findings highlight key genes and molecular pathways potentially responsible for the anti-sarcopenia benefits of exercise, offering insights into future therapeutic strategies that could mimic the safe and mild protective effects of exercise on age-related skeletal muscle degeneration.
Collapse
Affiliation(s)
- Li Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
25
|
Di Filippo ES, Chiappalupi S, Falone S, Dolo V, Amicarelli F, Marchianò S, Carino A, Mascetti G, Valentini G, Piccirillo S, Balsamo M, Vukich M, Fiorucci S, Sorci G, Fulle S. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue. NPJ Microgravity 2024; 10:92. [PMID: 39362881 PMCID: PMC11450100 DOI: 10.1038/s41526-024-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely to occur in the muscles of post-flight astronauts following damage.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Marchianò
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Adriana Carino
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | | | | | | | - Michele Balsamo
- Kayser Italia S.r.l, Via di Popogna, 501, 57128, Livorno, Italy
| | - Marco Vukich
- European Space Agency, Keplerlaan 1, NL-2200, AG, Noordwijk, The Netherlands
| | - Stefano Fiorucci
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy.
| |
Collapse
|
26
|
Mcleod J, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza A, Colenso-Semple L, McKendry J, Morton R, Mitchell C, Oikawa S, Wahlestedt C, Chapple J, McGlory C, Timmons J, Phillips S. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. NAR MOLECULAR MEDICINE 2024; 1:ugae016. [PMID: 39669123 PMCID: PMC11632610 DOI: 10.1093/narmme/ugae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customized RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n = 144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR-which was leukocyte-associated (false discovery rate [FDR] = 4.9 × 10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, V6T 1Z4, Canada
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Cameron J Mitchell
- School of Kinesiology, University of British Columbia, BC, V6T 1Z1, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Claes Wahlestedt
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, K7L 3N6, Canada
| | - James A Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
27
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
28
|
Pallotta I, Stec MJ, Schriver B, Golann DR, Considine K, Su Q, Barahona V, Napolitano JE, Stanley S, Garcia M, Feric NT, Durney KM, Aschar‐Sobbi R, Bays N, Shavlakadze T, Graziano MP. Electrical stimulation of biofidelic engineered muscle enhances myotube size, force, fatigue resistance, and induces a fast-to-slow-phenotype shift. Physiol Rep 2024; 12:e70051. [PMID: 39384537 PMCID: PMC11464147 DOI: 10.14814/phy2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/11/2024] Open
Abstract
Therapeutic development for skeletal muscle diseases is challenged by a lack of ex vivo models that recapitulate human muscle physiology. Here, we engineered 3D human skeletal muscle tissue in the Biowire II platform that could be maintained and electrically stimulated long-term. Increasing differentiation time enhanced myotube formation, modulated myogenic gene expression, and increased twitch and tetanic forces. When we mimicked exercise training by applying chronic electrical stimulation, the "exercised" skeletal muscle tissues showed increased myotube size and a contractility profile, fatigue resistance, and gene expression changes comparable to in vivo models of exercise training. Additionally, tissues also responded with expected physiological changes to known pharmacological treatment. To our knowledge, this is the first evidence of a human engineered 3D skeletal muscle tissue that recapitulates in vivo models of exercise. By recapitulating key features of human skeletal muscle, we demonstrated that the Biowire II platform may be used by the pharmaceutical industry as a model for identifying and optimizing therapeutic drug candidates that modulate skeletal muscle function.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Su
- Regeneron PharmaceuticalsTarrytownNew YorkUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fullenkamp DE, Maeng WY, Oh S, Luan H, Kim KS, Chychula IA, Kim JT, Yoo JY, Holgren CW, Demonbreun AR, George S, Li B, Hsu Y, Chung G, Yoo J, Koo J, Park Y, Efimov IR, McNally EM, Rogers JA. Simultaneous electromechanical monitoring in engineered heart tissues using a mesoscale framework. SCIENCE ADVANCES 2024; 10:eado7089. [PMID: 39259797 PMCID: PMC11389789 DOI: 10.1126/sciadv.ado7089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Engineered heart tissues (EHTs) generated from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent powerful platforms for human cardiac research, especially in drug testing and disease modeling. Here, we report a flexible, three-dimensional electronic framework that enables real-time, spatiotemporal analysis of electrophysiologic and mechanical signals in EHTs under physiological loading conditions for dynamic, noninvasive, longer-term assessments. These electromechanically monitored EHTs support multisite measurements throughout the tissue under baseline conditions and in response to stimuli. Demonstrations include uses in tracking physiological responses to pharmacologically active agents and in capturing electrophysiological characteristics of reentrant arrhythmias. This platform facilitates precise analysis of signal location and conduction velocity in human cardiomyocyte tissues, as the basis for a broad range of advanced cardiovascular studies.
Collapse
Affiliation(s)
- Dominic E. Fullenkamp
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Woo-Youl Maeng
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Seyong Oh
- Division of Electrical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyung Su Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ivana A. Chychula
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae-Young Yoo
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon 16417, Republic of Korea
| | - Cory W. Holgren
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sharon George
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Binjie Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yaching Hsu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Gooyoon Chung
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jeongmin Yoo
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Yoonseok Park
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Igor R. Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Sha R, Guo R, Duan H, Peng Q, Yuan N, Wang Z, Li Z, Xie Z, You X, Feng Y. SRSF2 is a key player in orchestrating the directional migration and differentiation of MyoD progenitors during skeletal muscle development. eLife 2024; 13:RP98175. [PMID: 39248331 PMCID: PMC11383525 DOI: 10.7554/elife.98175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
SRSF2 plays a dual role, functioning both as a transcriptional regulator and a key player in alternative splicing. The absence of Srsf2 in MyoD + progenitors resulted in perinatal mortality in mice, accompanied by severe skeletal muscle defects. SRSF2 deficiency disrupts the directional migration of MyoD progenitors, causing them to disperse into both muscle and non-muscle regions. Single-cell RNA-sequencing analysis revealed significant alterations in Srsf2-deficient myoblasts, including a reduction in extracellular matrix components, diminished expression of genes involved in ameboid-type cell migration and cytoskeleton organization, mitosis irregularities, and premature differentiation. Notably, one of the targets regulated by Srsf2 is the serine/threonine kinase Aurka. Knockdown of Aurka led to reduced cell proliferation, disrupted cytoskeleton, and impaired differentiation, reflecting the effects seen with Srsf2 knockdown. Crucially, the introduction of exogenous Aurka in Srsf2-knockdown cells markedly alleviated the differentiation defects caused by Srsf2 knockdown. Furthermore, our research unveiled the role of Srsf2 in controlling alternative splicing within genes associated with human skeletal muscle diseases, such as BIN1, DMPK, FHL1, and LDB3. Specifically, the precise knockdown of the Bin1 exon17-containing variant, which is excluded following Srsf2 depletion, profoundly disrupted C2C12 cell differentiation. In summary, our study offers valuable insights into the role of SRSF2 in governing MyoD progenitors to specific muscle regions, thereby controlling their differentiation through the regulation of targeted genes and alternative splicing during skeletal muscle development.
Collapse
Affiliation(s)
- Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruochen Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huimin Duan
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhigang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
31
|
Reisman EG, Botella J, Huang C, Schittenhelm RB, Stroud DA, Granata C, Chandrasiri OS, Ramm G, Oorschot V, Caruana NJ, Bishop DJ. Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men. Nat Commun 2024; 15:7677. [PMID: 39227581 PMCID: PMC11371815 DOI: 10.1038/s41467-024-50632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity). Most training-induced changes in different mitochondrial functional groups, in both fibre types, were no longer significant in our study when normalised to changes in markers of mitochondrial content.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Javier Botella
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia
| | - Cesare Granata
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Owala S Chandrasiri
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
32
|
Siemionow M, Ziemiecka A, Bożyk K, Siemionow K. Mechanisms of Chimeric Cell Therapy in Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1996. [PMID: 39335509 PMCID: PMC11428244 DOI: 10.3390/biomedicines12091996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Despite scientific efforts, there is no cure for Duchenne muscular dystrophy (DMD), a lethal, progressive, X-linked genetic disorder caused by mutations in the dystrophin gene. DMD leads to cardiac and skeletal muscle weakness, resulting in premature death due to cardio-pulmonary complications. We have developed Dystrophin Expressing Chimeric (DEC) cell therapy, DT-DEC01, by fusing human myoblasts from healthy donors and from DMD patients. Preclinical studies on human DEC cells showed increased dystrophin expression and improved cardiac, pulmonary, and skeletal muscle function after intraosseous administration. Our clinical study confirmed the safety and efficacy of DT-DEC01 therapy up to 24 months post-administration. In this study, we conducted in vitro assays to test the composition and potency of DT-DEC01, assessing chimerism level and the presence of dystrophin, desmin, and myosin heavy chain. Myoblast fusion resulted in the transfer of healthy donor mitochondria and the creation of chimeric mitochondria within DT-DEC01. The Pappenheim assay confirmed myotube formation in the final product. This study highlights the unique properties of DT-DEC01 therapy and their relevance to DMD treatment mechanisms.
Collapse
Affiliation(s)
- Maria Siemionow
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60612, USA
- Chair and Department of Traumatology, Orthopedics and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Anna Ziemiecka
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland
| | - Katarzyna Bożyk
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland
| | - Krzysztof Siemionow
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
33
|
Hedberg-Oldfors C, Jennions E, Visuttijai K, Oldfors A. Abnormal expression of myosin heavy chains in early postnatal stages of spinal muscular atrophy type I at single fibre level. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2024; 43:89-94. [PMID: 39468964 PMCID: PMC11537715 DOI: 10.36185/2532-1900-558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 10/30/2024]
Abstract
Objective We investigated myosin heavy chain (MyHC) isoform expression at early postnatal stages of clinically and genetically confirmed spinal muscular atrophy type 1 (SMA1) patients, in order to study the muscle fibre differentiation compared to age-matched controls at single fibre level. Methods Open skeletal muscle biopsies were performed from the quadriceps muscle in four SMA1 patients and three age-matched controls. Standard techniques were used for immunohistochemistry of embryonic and foetal MyHCs. Type I, IIa and IIx MyHCs were assessed by applying quadruple immunofluorescence. Western blot was performed to analyse the amount of survival motor neuron (SMN) protein in the muscle samples. Results There were profound and early alterations in MyHC expression from 7 days of life compared to age-matched controls. The expression of type IIx MyHC was completely lost in SMA1 and instead developmental isoforms remained highly expressed. Foetal MyHC was still, at 3.5 months of age, expressed in the majority of muscle fibres in SMA1 patients, whereas it was completely downregulated in age-matched controls. The level of SMN protein was reduced in all SMN1 patients. Conclusions The abnormal pattern of MyHC expression in postnatal stages of SMA1 was observed early in the newborn period, which may have implications for the effects of gene therapy, since there are clear clinical benefits from early treatment. Whether such aberrant and delayed expression of MyHCs can be completely restored by postnatal gene therapy remains to be studied and may also have implications for new phenotypes that will evolve with new therapies.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elizabeth Jennions
- Department of Paediatrics, Institute of Clinical Sciences, University of Gothenburg, Sweden
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Covert LT, Prinz JA, Swain-Lenz D, Dvergsten J, Truskey GA. Genetic changes from type I interferons and JAK inhibitors: clues to drivers of juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:SI240-SI248. [PMID: 38317053 PMCID: PMC11381683 DOI: 10.1093/rheumatology/keae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To better understand the pathogenesis of juvenile dermatomyositis (JDM), we examined the effect of the cytokines type I interferons (IFN I) and JAK inhibitor drugs (JAKi) on gene expression in bioengineered pediatric skeletal muscle. METHODS Myoblasts from three healthy pediatric donors were used to create three-dimensional skeletal muscle units termed myobundles. Myobundles were treated with IFN I, either IFNα or IFNβ. A subset of IFNβ-exposed myobundles was treated with JAKi tofacitinib or baricitinib. RNA sequencing analysis was performed on all myobundles. RESULTS Seventy-six myobundles were analysed. Principal component analysis showed donor-specific clusters of gene expression across IFNα and IFNβ-exposed myobundles in a dose-dependent manner. Both cytokines upregulated interferon response and proinflammatory genes; however, IFNβ led to more significant upregulation. Key downregulated pathways involved oxidative phosphorylation, fatty acid metabolism and myogenesis genes. Addition of tofacitinib or baricitinib moderated the gene expression induced by IFNβ, with partial reversal of upregulated inflammatory and downregulated myogenesis pathways. Baricitinib altered genetic profiles more than tofacitinib. CONCLUSION IFNβ leads to more pro-inflammatory gene upregulation than IFNα, correlating to greater decrease in contractile protein gene expression and reduced contractile force. JAK inhibitors, baricitinib more so than tofacitinib, partially reverse IFN I-induced genetic changes. Increased IFN I exposure in healthy bioengineered skeletal muscle leads to IFN-inducible gene expression, inflammatory pathway enrichment, and myogenesis gene downregulation, consistent with what is observed in JDM.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Joseph A Prinz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
| | - Devjanee Swain-Lenz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
35
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
36
|
Senevirathne G, Shubin NH. Molecular basis of urostyle development in frogs: genes and gene regulation underlying an evolutionary novelty. Open Biol 2024; 14:240111. [PMID: 39191278 DOI: 10.1098/rsob.240111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Evolutionary novelties entail the origin of morphologies that enable new functions. These features can arise through changes to gene function and regulation. One key novelty is the fused rod at the end of the vertebral column in anurans, the urostyle. This feature is composed of a coccyx and a hypochord, both of which ossify during metamorphosis. To elucidate the genetic basis of these features, we used laser capture microdissection of these tissues and did RNA-seq and ATAC-seq at three developmental stages in tadpoles of Xenopus tropicalis. RNA-seq reveals that the coccyx and hypochord have two different molecular signatures. Neuronal (TUBB3) and muscle markers (MYH3) are upregulated in coccygeal tissues, whereas T-box genes (TBXT, TBXT.2), corticosteroid stress hormones (CRCH.1) and matrix metallopeptidases (MMP1, MMP8 and MMP13) are upregulated in the hypochord. ATAC-seq reveals potential regulatory regions that are observed in proximity to candidate genes that regulate ossification identified from RNA-seq. Even though an ossifying hypochord is only present in anurans, this ossification between the vertebral column and the notochord resembles a congenital vertebral anomaly seen prenatally in humans caused by an ectopic expression of the TBXT/TBXT.2 gene. This work opens the way to functional studies that can elucidate anuran bauplan evolution.
Collapse
Affiliation(s)
- Gayani Senevirathne
- Human Evolutionary Biology, Harvard University , Cambridge, MA 02138, USA
- Organismal Biology and Anatomy, University of Chicago Biological Sciences Division , Chicago, IL 60637, USA
| | - Neil H Shubin
- Organismal Biology and Anatomy, University of Chicago Biological Sciences Division , Chicago, IL 60637, USA
| |
Collapse
|
37
|
Kumar U, Fang CY, Roan HY, Hsu SC, Wang CH, Chen CH. Whole-body replacement of larval myofibers generates permanent adult myofibers in zebrafish. EMBO J 2024; 43:3090-3115. [PMID: 38839992 PMCID: PMC11294464 DOI: 10.1038/s44318-024-00136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Drastic increases in myofiber number and size are essential to support vertebrate post-embryonic growth. However, the collective cellular behaviors that enable these increases have remained elusive. Here, we created the palmuscle myofiber tagging and tracking system for in toto monitoring of the growth and fates of ~5000 fast myofibers in developing zebrafish larvae. Through live tracking of individual myofibers within the same individuals over extended periods, we found that many larval myofibers readily dissolved during development, enabling the on-site addition of new and more myofibers. Remarkably, whole-body surveillance of multicolor-barcoded myofibers further unveiled a gradual yet extensive elimination of larval myofiber populations, resulting in near-total replacement by late juvenile stages. The subsequently emerging adult myofibers are not only long-lasting, but also morphologically and functionally distinct from the larval populations. Furthermore, we determined that the elimination-replacement process is dependent on and driven by the autophagy pathway. Altogether, we propose that the whole-body replacement of larval myofibers is an inherent yet previously unnoticed process driving organismic muscle growth during vertebrate post-embryonic development.
Collapse
Affiliation(s)
- Uday Kumar
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-Yi Fang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Han Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
38
|
Bizieff A, Cheng M, Chang K, Mohammed H, Ziari N, Nyangau E, Fitch M, Hellerstein MK. Changes in protein fluxes and gene expression in non-injured muscle tissue distant from an acute myotoxic injury in male mice. J Physiol 2024; 602:3661-3691. [PMID: 38968395 DOI: 10.1113/jp286307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 07/07/2024] Open
Abstract
The response to acute myotoxic injury requires stimulation of local repair mechanisms in the damaged tissue. However, satellite cells in muscle distant from acute injury have been reported to enter a functional state between quiescence and active proliferation. Here, we asked whether protein flux rates are altered in muscle distant from acute local myotoxic injury and how they compare to changes in gene expression from the same tissue. Broad and significant alterations in protein turnover were observed across the proteome in the limb contralateral to injury during the first 10 days after. Interestingly, mRNA changes had almost no correlation with directly measured protein turnover rates. In summary, we show consistent and striking changes in protein flux rates in muscle tissue contralateral to myotoxic injury, with no correlation between changes in mRNA levels and protein synthesis rates. This work motivates further investigation of the mechanisms, including potential neurological factors, responsible for this distant effect. KEY POINTS: Previous literature demonstrates that stem cells of uninjured muscle respond to local necrotic muscle tissue damage and regeneration. We show that muscle tissue that was distant from a model of local necrotic damage had functional changes at both the gene expression and the protein turnover level. However, these changes in distant tissue were more pronounced during the earlier stages of tissue regeneration and did not correlate well with each other. The results suggest communication between directly injured tissue and non-affected tissues that are distant from injury, which warrants further investigation into the potential of this mechanism as a proactive measure for tissue regeneration from damage.
Collapse
Affiliation(s)
- Alec Bizieff
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Maggie Cheng
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Kelvin Chang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Naveed Ziari
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Edna Nyangau
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Mark Fitch
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| |
Collapse
|
39
|
Chen HH, Yeo HT, Huang YH, Tsai LK, Lai HJ, Tsao YP, Chen SL. AAV-NRIP gene therapy ameliorates motor neuron degeneration and muscle atrophy in ALS model mice. Skelet Muscle 2024; 14:17. [PMID: 39044305 PMCID: PMC11267858 DOI: 10.1186/s13395-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS. METHODS We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human NRIP gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice. RESULTS SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice. CONCLUSIONS AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hsin-Tung Yeo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yun-Hsin Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, 104, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
40
|
Coles CA, Woodman KG, Gibbs EM, Crosbie RH, White JD, Lamandé SR. Benfotiamine improves dystrophic pathology and exercise capacity in mdx mice by reducing inflammation and fibrosis. Hum Mol Genet 2024; 33:1339-1355. [PMID: 38710523 PMCID: PMC11262745 DOI: 10.1093/hmg/ddae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive and fatal neuromuscular disease. Cycles of myofibre degeneration and regeneration are hallmarks of the disease where immune cells infiltrate to repair damaged skeletal muscle. Benfotiamine is a lipid soluble precursor to thiamine, shown clinically to reduce inflammation in diabetic related complications. We assessed whether benfotiamine administration could reduce inflammation related dystrophic pathology. Benfotiamine (10 mg/kg/day) was fed to male mdx mice (n = 7) for 15 weeks from 4 weeks of age. Treated mice had an increased growth weight (5-7 weeks) and myofibre size at treatment completion. Markers of dystrophic pathology (area of damaged necrotic tissue, central nuclei) were reduced in benfotiamine mdx quadriceps. Grip strength was increased and improved exercise capacity was found in mdx treated with benfotiamine for 12 weeks, before being placed into individual cages and allowed access to an exercise wheel for 3 weeks. Global gene expression profiling (RNAseq) in the gastrocnemius revealed benfotiamine regulated signalling pathways relevant to dystrophic pathology (Inflammatory Response, Myogenesis) and fibrotic gene markers (Col1a1, Col1a2, Col4a5, Col5a2, Col6a2, Col6a2, Col6a3, Lum) towards wildtype levels. In addition, we observed a reduction in gene expression of inflammatory gene markers in the quadriceps (Emr1, Cd163, Cd4, Cd8, Ifng). Overall, these data suggest that benfotiamine reduces dystrophic pathology by acting on inflammatory and fibrotic gene markers and signalling pathways. Given benfotiamine's excellent safety profile and current clinical use, it could be used in combination with glucocorticoids to treat DMD patients.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Inbred mdx
- Fibrosis/drug therapy
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Male
- Thiamine/analogs & derivatives
- Thiamine/pharmacology
- Physical Conditioning, Animal
- Disease Models, Animal
Collapse
Affiliation(s)
- Chantal A Coles
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Keryn G Woodman
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
- Department of Genetics, Yale Medical School, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, 612 Charles E Young Dr S, Los Angeles 90095, California, USA
- Center for Duchenne Muscular Dystrophy, University of California, 615 Charles E Young Dr S, Los Angeles 90095, California, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, 612 Charles E Young Dr S, Los Angeles 90095, California, USA
- Center for Duchenne Muscular Dystrophy, University of California, 615 Charles E Young Dr S, Los Angeles 90095, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California, 610 Charles E Young Dr S, Los Angeles, California 90095, USA
| | - Jason D White
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
- Charles Sturt University, Office of the Deputy Vice Chancellor Research, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Shireen R Lamandé
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
41
|
Lorenzetti WR, Ibelli AMG, Peixoto JDO, Savoldi IR, Mores MAZ, de Souza Romano G, do Carmo KB, Ledur MC. The downregulation of genes encoding muscle proteins have a potential role in the development of scrotal hernia in pigs. Mol Biol Rep 2024; 51:822. [PMID: 39023774 DOI: 10.1007/s11033-024-09766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Testicular descent is a physiological process regulated by many factors. Eventually, disturbances in the embryological/fetal development path facilitate the occurrence of scrotal hernia, a congenital malformation characterized by the presence of intestinal portions within the scrotal sac due to the abnormal expansion of the inguinal ring. In pigs, some genes have been related to this anomaly, but the genetic mechanisms involved remain unclear. This study aimed to investigate the expression profile of a set of genes potentially involved with the manifestation of scrotal hernia in the inguinal ring tissue. METHODS AND RESULTS Tissue samples from the inguinal ring/canal of normal and scrotal hernia-affected male pigs with approximately 30 days of age were used. Relative expression analysis was performed using qPCR to confirm the expression profile of 17 candidate genes previously identified in an RNA-Seq study. Among them, the Myosin heavy chain 1 (MYH1), Desmin (DES), and Troponin 1 (TNNI1) genes were differentially expressed between groups and had reduced levels of expression in the affected animals. These genes encode proteins involved in the formation of muscle tissue, which seems to be important for increasing the resistance of the inguinal ring to the abdominal pressure, which is essential to avoid the occurrence of scrotal hernia. CONCLUSIONS The downregulation of muscular candidate genes in the inguinal tissue clarifies the genetic mechanisms involved with this anomaly in its primary site, providing useful information for developing strategies to control this malformation in pigs and other mammals.
Collapse
Affiliation(s)
- William Raphael Lorenzetti
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, São Carlos, São Paulo, 13560-970, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
- Laudo laboratório Avícola, Rodovia BR-365, Morumbi, Uberlândia, Minas Gerais, 38407180, Brazil
| | - Marcos Antônio Zanella Mores
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
| | | | - Kamilla Bleil do Carmo
- Universidade do Contestado, Concórdia, Santa Catarina, Brazil
- Instituto Federal Catarinense, Rodovia SC 283, km 17, Concórdia, Santa Catarina, 89703-720, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil.
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil.
| |
Collapse
|
42
|
Gao H, Huang X, Cai Z, Cai B, Wang K, Li J, Kuang J, Wang B, Zhai Z, Ming J, Cao S, Qin Y, Pei D. Generation of musculoskeletal cells from human urine epithelium-derived presomitic mesoderm cells. Cell Biosci 2024; 14:93. [PMID: 39010176 PMCID: PMC11251367 DOI: 10.1186/s13578-024-01274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Numerous studies have shown that somite development is a necessary stage of myogenesis chondrogenesis and osteogenesis. Our previous study has established a stable presomitic mesoderm progenitor cell line (UiPSM) in vitro. Naturally, we wanted to explore whether UiPSM cell can develop bone and myogenic differentiation. RESULTS Selective culture conditions yielded PAX3 and PAX7 positive skeletal muscle precursors from UiPSM cells. The skeletal muscle precursors undergo in vitro maturation resulting in myotube formation. MYOD effectively promoted the maturity of the skeletal myocytes in a short time. We found that UiPSM and MYOD mediated UiPSM cell-derived skeletal myocytes were viable after transplantation into the tibialis anterior muscle of MITRG mice, as assessed by bioluminescence imaging and scRNA-seq. Lack of teratoma formation and evidence of long-term myocytes engraftment suggests considerable potential for future therapeutic applications. Moreover, UiPSM cells can differentiate into osteoblast and chondroblast cells in vitro. CONCLUSIONS UiPSM differentiation has potential as a developmental model for musculoskeletal development research and treatment of musculoskeletal disorders.
Collapse
Affiliation(s)
- Huiru Gao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Zepo Cai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Baomei Cai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kaipeng Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Junyang Li
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Ziwei Zhai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | | | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
43
|
Soucy A, Potts C, Kaija A, Harrington A, McGilvrey M, Sutphin GL, Korstanje R, Tero B, Seeker J, Pinz I, Vary C, Ryzhova L, Liaw L. Effects of a Global Rab27a Null Mutation on Murine PVAT and Cardiovascular Function. Arterioscler Thromb Vasc Biol 2024; 44:1601-1616. [PMID: 38660803 PMCID: PMC11209784 DOI: 10.1161/atvbaha.124.320969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.
Collapse
Affiliation(s)
- Ashley Soucy
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Christian Potts
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Abigail Kaija
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Anne Harrington
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Marissa McGilvrey
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - George L. Sutphin
- The Jackson Laboratory, Bar Harbor, ME
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ (current affiliation)
| | - Ron Korstanje
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
- The Jackson Laboratory, Bar Harbor, ME
| | - Benjamin Tero
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Jacob Seeker
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Ilka Pinz
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Calvin Vary
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Larisa Ryzhova
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Lucy Liaw
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| |
Collapse
|
44
|
Sharma A, Zehra A, Mathew SJ. Myosin heavy chain-perinatal regulates skeletal muscle differentiation, oxidative phenotype and regeneration. FEBS J 2024; 291:2836-2848. [PMID: 38358038 DOI: 10.1111/febs.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/28/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Myosin heavy chain-perinatal (MyHC-perinatal) is one of two development-specific myosin heavy chains expressed exclusively during skeletal muscle development and regeneration. The specific functions of MyHC-perinatal are unclear, although mutations are known to lead to contracture syndromes such as Trismus-pseudocamptodactyly syndrome. Here, we characterize the functions of MyHC-perinatal during skeletal muscle differentiation and regeneration. Loss of MyHC-perinatal function leads to enhanced differentiation characterized by increased expression of myogenic regulatory factors and differentiation index as well as reduced reserve cell numbers in vitro. Proteomic analysis revealed that loss of MyHC-perinatal function results in a switch from oxidative to glycolytic metabolism in myofibers, suggesting a shift from slow type I to fast type IIb fiber type, also supported by reduced mitochondrial numbers. Paracrine signals mediate the effect of loss of MyHC-perinatal function on myogenic differentiation, possibly mediated by non-apoptotic caspase-3 signaling along with enhanced levels of the pro-survival apoptosis regulator Bcl2 and nuclear factor kappa-B (NF-κB). Knockdown of MyHC-perinatal during muscle regeneration in vivo results in increased expression of the differentiation marker myogenin (MyoG) and impaired differentiation, evidenced by smaller myofibers, elevated fibrosis and reduction in the number of satellite cells. Thus, we find that MyHC-perinatal is a crucial regulator of myogenic differentiation, myofiber oxidative phenotype and regeneration.
Collapse
Affiliation(s)
- Akashi Sharma
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
- Affiliated to KIIT University, Bhubaneswar, India
| | - Aatifa Zehra
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
| | - Sam J Mathew
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
- Affiliated to KIIT University, Bhubaneswar, India
| |
Collapse
|
45
|
Johnson D, Tobo C, Au J, Nagarapu A, Ziemkiewicz N, Chauvin H, Robinson J, Shringarpure S, Tadiwala J, Brockhouse J, Flaveny CA, Garg K. Combined regenerative rehabilitation improves recovery following volumetric muscle loss injury in a rat model. J Biomed Mater Res B Appl Biomater 2024; 112:e35438. [PMID: 38923755 PMCID: PMC11210688 DOI: 10.1002/jbm.b.35438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Volumetric muscle loss (VML) injury causes irreversible deficits in muscle mass and function, often resulting in permanent disability. The current standard of care is physical therapy, but it is limited in mitigating functional deficits. We have previously optimized a rehabilitation technique using electrically stimulated eccentric contraction training (EST) that improved muscle mass, strength, and size in VML-injured rats. A biosponge scaffold composed of extracellular matrix proteins has previously enhanced muscle function postVML. This study aimed to determine whether combining a regenerative therapy (i.e., biosponge) with a novel rehabilitation technique (i.e., EST) could enhance recovery in a rat model of VML. A VML defect was created by removing ~20% of muscle mass from the tibialis anterior muscle in adult male Lewis rats. Experimental groups included VML-injured rats treated with biosponge with EST or biosponge alone (n = 6/group). EST was implemented 2 weeks postinjury at 150 Hz and was continued for 4 weeks. A linear increase in eccentric torque over 4 weeks showed the adaptability of the VML-injured muscle to EST. Combining biosponge with EST improved peak isometric torque by ~52% compared with biosponge treatment alone at 6 weeks postinjury. Application of EST increased MyoD gene expression and the percentage of large (>2000 μm2) type 2B myofibers but reduced fibrotic tissue deposition in VML-injured muscles. Together, these changes may provide the basis for improved torque production. This study demonstrates the potential for combined regenerative and rehabilitative therapy to improve muscle recovery following VML.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Connor Tobo
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Jeffrey Au
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Aakash Nagarapu
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Hannah Chauvin
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Jessica Robinson
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Jamshid Tadiwala
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Julia Brockhouse
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Koyal Garg
- Department of Biomedical Engineering, School of Sciences and Engineering
| |
Collapse
|
46
|
Engquist EN, Greco A, Joosten LA, van Engelen BG, Banerji CR, Zammit PS. Transcriptomic gene signatures measure satellite cell activity in muscular dystrophies. iScience 2024; 27:109947. [PMID: 38840844 PMCID: PMC11150970 DOI: 10.1016/j.isci.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The routine need for myonuclear turnover in skeletal muscle, together with more sporadic demands for hypertrophy and repair, are performed by resident muscle stem cells called satellite cells. Muscular dystrophies are characterized by muscle wasting, stimulating chronic repair/regeneration by satellite cells. Here, we derived and validated transcriptomic signatures for satellite cells, myoblasts/myocytes, and myonuclei using publicly available murine single cell RNA-Sequencing data. Our signatures distinguished disease from control in transcriptomic data from several muscular dystrophies including facioscapulohumeral muscular dystrophy (FSHD), Duchenne muscular dystrophy, and myotonic dystrophy type I. For FSHD, the expression of our gene signatures correlated with direct counts of satellite cells on muscle sections, as well as with increasing clinical and pathological severity. Thus, our gene signatures enable the investigation of myogenesis in bulk transcriptomic data from muscle biopsies. They also facilitate study of muscle regeneration in transcriptomic data from human muscle across health and disease.
Collapse
Affiliation(s)
- Elise N. Engquist
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University if Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Christopher R.S. Banerji
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, UK
- University College London Hospitals, NHS Foundation Trust, London NW1 2BU, UK
| | - Peter S. Zammit
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
47
|
Kaplan MM, Zeidler M, Knapp A, Hölzl M, Kress M, Fritsch H, Krogsdam A, Flucher BE. Spatial transcriptomics in embryonic mouse diaphragm muscle reveals regional gradients and subdomains of developmental gene expression. iScience 2024; 27:110018. [PMID: 38883818 PMCID: PMC11177202 DOI: 10.1016/j.isci.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The murine embryonic diaphragm is a primary model for studying myogenesis and neuro-muscular synaptogenesis, both representing processes regulated by spatially organized genetic programs of myonuclei located in distinct myodomains. However, a spatial gene expression pattern of embryonic mouse diaphragm has not been reported. Here, we provide spatially resolved gene expression data for horizontally sectioned embryonic mouse diaphragms at embryonic days E14.5 and E18.5. These data reveal gene signatures for specific muscle regions with distinct maturity and fiber type composition, as well as for a central neuromuscular junction (NMJ) and a peripheral myotendinous junction (MTJ) compartment. Comparing spatial expression patterns of wild-type mice with those of transgenic mice lacking either the skeletal muscle calcium channel CaV1.1 or β-catenin, reveals curtailed muscle development and dysregulated expression of genes potentially involved in NMJ formation. Altogether, these datasets provide a powerful resource for further studies of muscle development and NMJ formation in the mouse.
Collapse
Affiliation(s)
| | - Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Annabella Knapp
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Martina Hölzl
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Helga Fritsch
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
48
|
Rebboah E, Rezaie N, Williams BA, Weimer AK, Shi M, Yang X, Liang HY, Dionne LA, Reese F, Trout D, Jou J, Youngworth I, Reinholdt L, Morabito S, Snyder MP, Wold BJ, Mortazavi A. The ENCODE mouse postnatal developmental time course identifies regulatory programs of cell types and cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598567. [PMID: 38915583 PMCID: PMC11195270 DOI: 10.1101/2024.06.12.598567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Postnatal genomic regulation significantly influences tissue and organ maturation but is under-studied relative to existing genomic catalogs of adult tissues or prenatal development in mouse. The ENCODE4 consortium generated the first comprehensive single-nucleus resource of postnatal regulatory events across a diverse set of mouse tissues. The collection spans seven postnatal time points, mirroring human development from childhood to adulthood, and encompasses five core tissues. We identified 30 cell types, further subdivided into 69 subtypes and cell states across adrenal gland, left cerebral cortex, hippocampus, heart, and gastrocnemius muscle. Our annotations cover both known and novel cell differentiation dynamics ranging from early hippocampal neurogenesis to a new sex-specific adrenal gland population during puberty. We used an ensemble Latent Dirichlet Allocation strategy with a curated vocabulary of 2,701 regulatory genes to identify regulatory "topics," each of which is a gene vector, linked to cell type differentiation, subtype specialization, and transitions between cell states. We find recurrent regulatory topics in tissue-resident macrophages, neural cell types, endothelial cells across multiple tissues, and cycling cells of the adrenal gland and heart. Cell-type-specific topics are enriched in transcription factors and microRNA host genes, while chromatin regulators dominate mitosis topics. Corresponding chromatin accessibility data reveal dynamic and sex-specific regulatory elements, with enriched motifs matching transcription factors in regulatory topics. Together, these analyses identify both tissue-specific and common regulatory programs in postnatal development across multiple tissues through the lens of the factors regulating transcription.
Collapse
Affiliation(s)
- Elisabeth Rebboah
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, USA
| | - Narges Rezaie
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, USA
| | - Brian A. Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Annika K. Weimer
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Minyi Shi
- Department of Next Generation Sequencing and Microchemistry, Proteomics and Lipidomics, Genentech, San Francisco, USA
| | - Xinqiong Yang
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Heidi Yahan Liang
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
| | | | - Fairlie Reese
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
| | - Diane Trout
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Jennifer Jou
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Ingrid Youngworth
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | | | - Samuel Morabito
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Barbara J. Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Ali Mortazavi
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, USA
| |
Collapse
|
49
|
Wan S, Lou M, Zhang S, Li S, Ling Y. Transcriptome analysis revealed differences in gene expression in sheep muscle tissue at different developmental stages. BMC Genom Data 2024; 25:54. [PMID: 38849746 PMCID: PMC11162047 DOI: 10.1186/s12863-024-01235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The analysis of differentially expressed genes in muscle tissues of sheep at different ages is helpful to analyze the gene expression trends during muscle development. In this study, the longissimus dorsi muscle of pure breeding Hu sheep (H), Suffolk sheep and Hu sheep hybrid F1 generation (SH) and East Friesian and Hu sheep hybrid sheep (EHH) three strains of sheep born 2 days (B2) and 8 months (M8) was used as the research object, and transcriptome sequencing technology was used to identify the differentially expressed genes of sheep longissimus dorsi muscle in these two stages. Subsequently, GO and KEGG enrichment analysis were performed on the differential genes. Nine differentially expressed genes were randomly selected and their expression levels were verified by qRT-PCR. RESULTS The results showed that 842, 1301 and 1137 differentially expressed genes were identified in H group, SH group and EHH group, respectively. Among them, 191 differential genes were enriched in these three strains, including pre-folding protein subunit 6 (PFDN6), DnaJ heat shock protein family member A4 (DNAJA4), myosin heavy chain 8 (MYH8) and so on. GO and KEGG enrichment analysis was performed on 191 differentially expressed genes shared by the three strains to determine common biological pathways. The results showed that the differentially expressed genes were significantly enriched in ribosomes, unfolded protein binding, FoxO signaling pathway, glycolysis / glycogen generation and glutathione signaling pathway that regulate muscle protein synthesis and energy metabolism. The results of qRT-PCR were consistent with transcriptome sequencing, which proved that the sequencing results were reliable. CONCLUSIONS Overall, this study revealed the important genes and signaling pathways related to sheep skeletal muscle development, and the result laid a foundation for further understanding the mechanism of sheep skeletal muscle development.
Collapse
Affiliation(s)
- Sailuo Wan
- College of Agricultural Engineering, Anhui Open University, Hefei, 230022, P.R. China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Mengyu Lou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Sihuan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Shuang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China.
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, 230036, P.R. China.
| |
Collapse
|
50
|
Bizieff A, Cheng M, Chang K, Mohammed H, Ziari N, Nyangau E, Fitch M, Hellerstein MK. Changes in protein fluxes in skeletal muscle during sequential stages of muscle regeneration after acute injury in male mice. Sci Rep 2024; 14:13172. [PMID: 38849371 PMCID: PMC11161603 DOI: 10.1038/s41598-024-62115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Changes in protein turnover play an important role in dynamic physiological processes, including skeletal muscle regeneration, which occurs as an essential part of tissue repair after injury. The inability of muscle tissue to recapitulate this regenerative process can lead to the manifestation of clinical symptoms in various musculoskeletal diseases, including muscular dystrophies and pathological atrophy. Here, we employed a workflow that couples deuterated water (2H2O) administration with mass spectrometry (MS) to systematically measure in-vivo protein turnover rates across the muscle proteome in 8-week-old male C57BL6/J mice. We compared the turnover kinetics of over 100 proteins in response to cardiotoxin (CTX) induced muscle damage and regeneration at unique sequential stages along the regeneration timeline. This analysis is compared to gene expression data from mRNA-sequencing (mRNA-seq) from the same tissue. The data reveals quantitative protein flux signatures in response to necrotic damage, in addition to sequential differences in cell proliferation, energy metabolism, and contractile gene expression. Interestingly, the mRNA changes correlated poorly with changes in protein synthesis rates, consistent with post-transcriptional control mechanisms. In summary, the experiments described here reveal the signatures and timing of protein flux changes during skeletal muscle regeneration, as well as the inability of mRNA expression measurements to reveal changes in directly measured protein turnover rates. The results of this work described here provide a better understanding of the muscle regeneration process and could help to identify potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alec Bizieff
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA.
| | - Maggie Cheng
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Kelvin Chang
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Hussein Mohammed
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Naveed Ziari
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Edna Nyangau
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Mark Fitch
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| | - Marc K Hellerstein
- Division of Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|