1
|
Benedicenti O, Dahle MK, Makvandi-Nejad S, Andresen AMS, Moldal T, Sindre H, Fosse JH. The Atlantic salmon gill transcriptional response to natural infection with HPR0-ISAV (Isavirus salaris) in three Norwegian smolt farms. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110096. [PMID: 39724996 DOI: 10.1016/j.fsi.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus that causes large economic losses in Atlantic salmon (Salmo salar L.) aquaculture. All virulent ISAV variants originally emerged from a non-virulent subtype, ISAV-HPR0. Transient ISAV-HPR0 infections are common in both freshwater and marine environments. ISAV-HPR0 infects juveniles, marine salmon at on-growing sites, and broodstock salmon. The shift in virulence from ISAV-HPR0 to the virulent HPRΔ is suggested to be a stochastic event that depends on the virus's replication frequency. Therefore, reducing the capacity to maintain ISAV-HPR0 infection within individual farms may limit the risk of emerging pathogenic ISAV variants and ISA disease. The absence of infection-related clinical signs and the lack of experimental models limit our understanding of ISAV-HPR0-host interactions. We characterise the host transcriptional response to natural ISAV-HPR0 infection, using Atlantic salmon gill tissues collected on three Norwegian smolt farms. The comparison of all infected (qPCR-positive) and non-infected (qPCR-negative) individuals revealed a classic antiviral response in the gills of ISAV-HPR0 infected fish in a site-independent transcriptomic analysis. Complementary analyses showed that the response to infection varied considerably between sites. Site-specific differences could be associated with a range of factors that are challenging to control in field studies, such as fish size, the stage of infection, and the presence of additional microorganisms. Our findings enhance our understanding of how Atlantic salmon respond to ISAV-HPR0 infection, pinpointing common HPR0-induced antiviral response genes. Future studies should investigate whether these candidate genes limit virus replication in the gill for risk of novel transitions to virulence.
Collapse
Affiliation(s)
| | - Maria K Dahle
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | | | | | - Torfinn Moldal
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | - Hilde Sindre
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | | |
Collapse
|
2
|
Mkulo EM, Wang B, Amoah K, Huang Y, Cai J, Jin X, Wang Z. The current status and development forecasts of vaccines for aquaculture and its effects on bacterial and viral diseases. Microb Pathog 2024; 196:106971. [PMID: 39307198 DOI: 10.1016/j.micpath.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The aquaculture sector predicts protein-rich meals by 2040 and has experienced significant economic shifts since 2000. However, challenges emanating from disease control measures, brood stock improvement, feed advancements, hatchery technology, and water quality management due to environmental fluctuations have been taken as major causative agents for hindering the sector's growth. For the past years, aquatic disease prevention and control have principally depended on the use of various antibiotics, ecologically integrated control, other immunoprophylaxis mechanisms, and chemical drugs, but the long-term use of chemicals such as antibiotics not only escalates antibiotic-resistant bacteria and genes but also harms the fish and the environments, resulting in drug residues in aquatic products, severely obstructing the growth of the aquaculture sector. The field of science has opened new avenues in basic and applied research for creating and producing innovative and effective vaccines and the enhancement of current vaccines to protect against numerous infectious diseases. Recent advances in vaccines and vaccinology could lead to novel vaccine candidates that can tackle fish diseases, including parasitic organism agents, for which the current vaccinations are inadequate. In this review, we study and evaluate the growing aquaculture production by focusing on the current knowledge, recent progress, and prospects related to vaccinations and immunizations in the aquaculture industry and their effects on treating bacterial and viral diseases. The subject matter covers a variety of vaccines, such as conventional inactivated and attenuated vaccines as well as advanced vaccines, and examines their importance in real-world aquaculture scenarios. To encourage enhanced importation of vaccines for aquaculture sustainability and profitability and also help in dealing with challenges emanating from diseases, national and international scientific and policy initiatives need to be informed about the fundamental understanding of vaccines.
Collapse
Affiliation(s)
- Evodia Moses Mkulo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Kwaku Amoah
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China.
| | - Yu Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Jia Cai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Xiao Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, China.
| |
Collapse
|
3
|
Rounsville TF, Polinski MP, Marini AG, Turner SM, Vendramin N, Cuenca A, Pietrak MR, Peterson BC, Bouchard DA. Rapid differentiation of infectious salmon anemia virus avirulent (HPR0) from virulent (HPRΔ) variants using multiplex RT-qPCR. J Vet Diagn Invest 2024; 36:329-337. [PMID: 38212882 PMCID: PMC11110766 DOI: 10.1177/10406387231223290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Infectious salmon anemia virus (ISAV; Isavirus salaris) causes an economically important disease of Atlantic salmon (Salmo salar L.). ISA outbreaks have resulted in significant losses of farmed salmon globally, often with a sudden onset. However, 2 phenotypically distinct variants of ISAV exist, each with divergent disease outcomes, associated regulations, and control measures. ISAV-HPRΔ, also known as ISAV-HPR deleted, is responsible for ISA outbreaks; ISAV-HPR0, is avirulent and is not known to cause fish mortality. Current detection methodology requires genetic sequencing of ISAV-positive samples to differentiate phenotypes, which may slow responses to disease management. To increase the speed of phenotypic determinations of ISAV, we developed a new, rapid multiplex RT-qPCR method capable of 1) detecting if a sample contains any form of ISAV, 2) discriminating whether positive samples contain HPRΔ or HPR0, and 3) validating RNA extractions with an internal control, all in a single reaction. Following assay development and optimization, we validated this new multiplex on 31 ISAV strains collected from North America and Europe (28 ISAV-HPRΔ, 3 ISAV-HPR0). Finally, we completed an inter-laboratory comparison of this multiplex qPCR with commercial ISAV testing and found that both methods provided equivalent results for ISAV detection.
Collapse
Affiliation(s)
- Thomas F. Rounsville
- Pest Management Unit, University of Maine Cooperative Extension Diagnostic and Research Laboratory, Orono, ME, USA
| | - Mark P. Polinski
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME, USA
| | - Alyssa G. Marini
- Pest Management Unit, University of Maine Cooperative Extension Diagnostic and Research Laboratory, Orono, ME, USA
- University of Maine School of Biology and Ecology, Orono, ME, USA
| | - Sarah M. Turner
- Aquatic Animal Health Laboratory, University of Maine Cooperative Extension Diagnostic and Research Laboratory, Orono, ME, USA
| | - Niccolò Vendramin
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Argelia Cuenca
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael R. Pietrak
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME, USA
| | - Brian C. Peterson
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME, USA
| | - Deborah A. Bouchard
- Aquatic Animal Health Laboratory, University of Maine Cooperative Extension Diagnostic and Research Laboratory, Orono, ME, USA
| |
Collapse
|
4
|
Zhong L, Carvalho LA, Gao S, Whyte SK, Purcell SL, Fast MD, Cai W. Transcriptome analysis revealed immune responses in the kidney of Atlantic salmon (Salmo salar) co-infected with sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109210. [PMID: 37951318 DOI: 10.1016/j.fsi.2023.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
Sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus (ISAv) are two of the most important pathogens in Atlantic salmon (Salmo salar) farming and typically cause substantial economic losses to the industry. However, the immune interactions between hosts and these pathogens are still unclear, especially in the scenario of co-infection. In this study, we artificially infected Atlantic salmon with sea lice and ISAv, and investigated the gene expression patterns of Atlantic salmon head kidneys in response to both lice only and co-infection with lice and ISAv by transcriptomic analysis. The challenge experiment indicated that co-infection resulted in a cumulative mortality rate of 47.8 %, while no mortality was observed in the lice alone infection. We identified 240 differentially expressed genes (DEGs) under the lice alone infection, of which 185 were down-regulated and 55 were up-regulated, while a total of 994 DEGs were identified in the co-infection, of which 206 were down-regulated and 788 were significantly up-regulated. The pathway enrichment analysis revealed that single-infection significantly suppressed the innate immune system (e.g., the complement system), whereas co-infection induced a strong immune response, leading to the activation of immune-related signaling pathways such as Toll-like receptors and NOD-like receptors pathways, as well as significant upregulation of genes related to the activation of interferon and MH class I protein complex. Our results provide the first global transcriptomic study of gene expression in the Atlantic salmon head kidney in response to co-infection with sea lice and ISAv, and provided the baseline knowledge for understanding the immune responses during co-infection.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Laura A Carvalho
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Shengnan Gao
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shona K Whyte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Sara L Purcell
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
5
|
Petersen PE, Dahl MM, Vest NMO, Jansen MD, Fosse JH, Falk K, Christiansen DH. Validation of a TaqMan one-step real-time RT-PCR assay targeting ISAV segment 7 spliced mRNA. J Virol Methods 2023; 321:114791. [PMID: 37562733 DOI: 10.1016/j.jviromet.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Infectious salmon anaemia virus (ISAV) can cause severe systemic infection in Atlantic salmon (Salmo salar L.), and a timely diagnosis is critical. Conventional real-time reverse transcription PCR (RT-qPCR) assays target unspliced RNA from either ISAV segment 7 or 8 and provide data on viral load. Here, we evaluate a TaqMan one-step RT-qPCR assay that detects explicitly a spliced messenger RNA (mRNA) of ISAV segment 7, thus providing evidence of active viral transcription. Assay performance was comparable with existing unspliced segment 7 and segment 8 assays. PCR efficiency as evaluated from dilutions of a synthetic DNA fragment was 98 % (R2 = 1.00). The assay also performed well on clinical heart samples with PCR efficiency of 108 % (R2 = 1.00). Finally, evaluation on kidney samples from experimental infection revealed higher levels of active transcription for high-virulent compared to low-virulent ISAV. At early, peak, and late infection, mean ratios of spliced to unspliced segment 7 RNA were 3.0 % (± 0.7), 1.7 % (± 0.3), and 1.5 % (± 0.1) for the low virulent and 9.4 % (± 2.2), 4.7 % (± 0.8), and 6.2 % (± 0.1) for the high virulent isolate, respectively. By detection and quantification of active ISAV transcription, this assay may provide a more detailed understanding of ISAV infection dynamics.
Collapse
Affiliation(s)
- Petra Elisabeth Petersen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands.
| | - Maria Marjunardóttir Dahl
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| | - Nicolina Maria Ovadóttir Vest
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| | - Mona Dverdal Jansen
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Johanna Hol Fosse
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Debes Hammershaimb Christiansen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| |
Collapse
|
6
|
Løkka G, Gamil AAA, Evensen Ø, Kortner TM. Establishment of an In Vitro Model to Study Viral Infections of the Fish Intestinal Epithelium. Cells 2023; 12:1531. [PMID: 37296652 PMCID: PMC10252704 DOI: 10.3390/cells12111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are still a major concern for the aquaculture industry. For salmonid fish, even though breeding strategies and vaccine development have reduced disease outbreaks, viral diseases remain among the main challenges having a negative impact on the welfare of fish and causing massive economic losses for the industry. The main entry port for viruses into the fish is through mucosal surfaces including that of the gastrointestinal tract. The contradictory functions of this surface, both creating a barrier towards the external environment and at the same time being responsible for the uptake of nutrients and ion/water regulation make it particularly vulnerable. The connection between dietary components and viral infections in fish has been poorly investigated and until now, a fish intestinal in vitro model to investigate virus-host interactions has been lacking. Here, we established the permissiveness of the rainbow trout intestinal cell line RTgutGC towards the important salmonid viruses-infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (subtype 3, SAV3) and infectious salmon anemia virus (ISAV)-and explored the infection mechanisms of the three different viruses in these cells at different virus to cell ratios. Cytopathic effect (CPE), virus replication in the RTgutGC cells, antiviral cell responses and viral effects on the barrier permeability of polarized cells were investigated. We found that all virus species infected and replicated in RTgutGC cells, although with different replication kinetics and ability to induce CPE and host responses. The onset and progression of CPE was more rapid at high multiplicity of infection (MOI) for IPNV and SAV3 while the opposite was true of ISAV. A positive correlation between the MOI used and the induction of antiviral responses was observed for IPNV while a negative correlation was detected for SAV3. Viral infections compromised barrier integrity at early time points prior to observations of CPE microscopically. Further, the replication of IPNV and ISAV had a more pronounced effect on barrier function than SAV3. The in vitro infection model established herein can thus provide a novel tool to generate knowledge about the infection pathways and mechanisms used to surpass the intestinal epithelium in salmonid fish, and to study how a virus can potentially compromise gut epithelial barrier functions.
Collapse
Affiliation(s)
- Guro Løkka
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; (A.A.A.G.); (Ø.E.); (T.M.K.)
| | | | | | | |
Collapse
|
7
|
Gervais O, Papadopoulou A, Gratacap R, Hillestad B, Tinch AE, Martin SAM, Houston RD, Robledo D. Transcriptomic response to ISAV infection in the gills, head kidney and spleen of resistant and susceptible Atlantic salmon. BMC Genomics 2022; 23:775. [PMID: 36443659 PMCID: PMC9703674 DOI: 10.1186/s12864-022-09007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. RESULTS Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. CONCLUSIONS Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome.
Collapse
Affiliation(s)
- Ophélie Gervais
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Athina Papadopoulou
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Remi Gratacap
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Alan E. Tinch
- Benchmark Genetics, Penicuik, UK ,The Center for Aquaculture Technologies, San Diego, USA
| | - Samuel A. M. Martin
- grid.7107.10000 0004 1936 7291School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ross D. Houston
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Diego Robledo
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Aamelfot M, Fosse JH, Viljugrein H, Ploss FB, Benestad SL, McBeath A, Christiansen DH, Garver K, Falk K. Destruction of the vascular viral receptor in infectious salmon anaemia provides in vivo evidence of homologous attachment interference. PLoS Pathog 2022; 18:e1010905. [PMID: 36240255 PMCID: PMC9621750 DOI: 10.1371/journal.ppat.1010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/31/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Viral interference is a process where infection with one virus prevents a subsequent infection with the same or a different virus. This is believed to limit superinfection, promote viral genome stability, and protect the host from overwhelming infection. Mechanisms of viral interference have been extensively studied in plants, but remain poorly understood in vertebrates. We demonstrate that infection with infectious salmon anaemia virus (ISAV) strongly reduces homologous viral attachment to the Atlantic salmon, Salmo salar L. vascular surface. A generalised loss of ISAV binding was observed after infection with both high-virulent and low-virulent ISAV isolates, but with different kinetics. The loss of ISAV binding was accompanied by an increased susceptibility to sialidase, suggesting a loss of the vascular 4-O-sialyl-acetylation that mediates ISAV attachment and simultaneously protects the sialic acid from cleavage. Moreover, the ISAV binding capacity of cultured cells dramatically declined 3 days after ISAV infection, accompanied by reduced cellular permissiveness to infection with a second antigenically distinct isolate. In contrast, neither infection with infectious haematopoietic necrosis virus nor stimulation with the viral mimetic poly I:C restricted subsequent cellular ISAV attachment, revealing an ISAV-specific mechanism rather than a general cellular antiviral response. Our study demonstrates homologous ISAV attachment interference by de-acetylation of sialic acids on the vascular surface. This is the first time the kinetics of viral receptor destruction have been mapped throughout the full course of an infection, and the first report of homologous attachment interference by the loss of a vascular viral receptor. Little is known about the biological functions of vascular O-sialyl-acetylation. Our findings raise the question of whether this vascular surface modulation could be linked to the breakdown of central vascular functions that characterises infectious salmon anaemia. Viral interference, also referred to as superinfection exclusion, is a process that supports viral genome integrity and protects the host from overwhelming infection. Here, we demonstrate that infection of Atlantic salmon with infectious salmon anaemia virus (ISAV) results in the destruction of the viral vascular surface receptor, thus preventing virus attachment. We also observed that the loss of viral receptor strongly restricted the extent of a second ISAV infection in cultured cells, suggesting viral interference. To our knowledge, this is the first time the kinetics of viral receptor destruction has been explored in an infected host. This is important, because we know little of how such responses develop in animals and humans. Our study therefore improves the general understanding of how viral infections progress. Finally, our findings raise the question of whether modulation of the vascular surface by ISAV and other viruses may contribute to the pathogenesis of viral disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kyle Garver
- Fisheries and Oceans Canada Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Knut Falk
- Norwegian Veterinary Institute, Ås, Norway
- * E-mail:
| |
Collapse
|
9
|
Adamek M, Rebl A, Matras M, Lodder C, Abd El Rahman S, Stachnik M, Rakus K, Bauer J, Falco A, Jung-Schroers V, Piewbang C, Techangamsuwan S, Surachetpong W, Reichert M, Tetens J, Steinhagen D. Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:118-133. [PMID: 35367372 DOI: 10.1016/j.fsi.2022.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Christian Lodder
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202, Elche, Spain
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany; Center for Integrated Breeding Research, Georg-August-University of Göttingen, Göttingen, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
10
|
Piewbang C, Tattiyapong P, Techangamsuwan S, Surachetpong W. Tilapia lake virus immunoglobulin G (TiLV IgG) antibody: Immunohistochemistry application reveals cellular tropism of TiLV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 116:115-123. [PMID: 34186182 DOI: 10.1016/j.fsi.2021.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Tilapia lake virus (TiLV) is a notable contagious agent that causes massive economic losses in the tilapia industry globally. Evaluations of the histological changes associated with TiLV infection are not only crucial for diagnosis, but also to gain an understanding of the disease. We therefore synthesized a rabbit polyclonal immunoglobulin G antibody against TiLV and developed an immunohistochemical (IHC) procedure to detect TiLV localization in the tissues of infected fish for comparison with in situ hybridization (ISH) testing. A total of four different sample cohorts derived from TiLV-infected fish was used to validate the IHC procedure. The TiLV IHC application was successfully developed and facilitated nuclear and cytoplasmic immunolabelling in the intestines, gills, brain, liver, pancreas, spleen, and kidneys that corresponded with the ISH results. Apart from the ISH results, TiLV-IHC signals were clearly evident in the endothelial cells of various organs, the circulating leukocytes in the blood vessels, and the areas of tissue inflammation. Among the tested sample cohorts, the intestines, gills, and brain had IHC-positive signals, highlighting the possibility of these organs as common TiLV targets. Immunological staining pattern and distribution corresponded with the TiLV viral load but not the inoculation route. The TiLV IHC was also capable of detecting TiLV infection in the experimentally challenged ornamental cichlids, Mozambique tilapia, giant gourami, and naturally infected tilapia, indicating the dynamic range of IHC for TiLV detection. Overall, our study delivers the first IHC platform to detect TiLV infection and provides novel evidence of cellular tropism during TiLV infection. Our findings also reveal the TiLV distribution pattern of infected fish and propose the endotheliotropism and lymphotropism of this virus, which requires further elaboration. Importantly, this new IHC procedure could be applied to study the pathogenesis and interaction of TiLV in future research.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
11
|
Alarcón M, Moldal T, Dverdal Jansen M, Aamelfot M, Sindre H, Lyngstad TM, Falk K. Infectious salmon anaemia virus detected by RT-qPCR in Norwegian farmed rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). JOURNAL OF FISH DISEASES 2021; 44:479-481. [PMID: 33284992 DOI: 10.1111/jfd.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Marta Alarcón
- Norwegian Veterinary Institute, Oslo, Norway
- Fish Vet Group, Benchmark Norway AS, Norway
| | | | | | - Maria Aamelfot
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Trude M Lyngstad
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway
- AkvaMed Consulting AS, Oslo, Norway
| |
Collapse
|
12
|
Charoenwai O, Senapin S, Dong HT, Sonthi M. Detection of scale drop disease virus from non-destructive samples and ectoparasites of Asian sea bass, Lates calcarifer. JOURNAL OF FISH DISEASES 2021; 44:461-467. [PMID: 33118189 DOI: 10.1111/jfd.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Non-destructive sampling methods offer practical advantages to detection and monitoring of viral pathogens in economically important farmed fish and broodstock. Here, we investigated whether blood, mucus and fin can be used as non-lethal sample sources for detection of scale drop disease virus (SDDV) in farmed Asian sea bass, Lates calcarifer. Detection of SDDV was performed in parallel from three non-destructive and seven destructive sample types, collected from both clinically sick fish and subclinical fish obtained from an affected farm. The results showed that SDDV was detectable in all 10 sample types with the percentage ranging from 20% to 100%. Blood was the best non-destructive sample source exhibited by the fact that it yielded 100% SDDV-positive tests from both sick (n = 12, 95% CI: 69.9-99.2) and clinically healthy fish (n = 4, 95% CI: 39.6%-97.4%) and is considered a "sterile" sample. This study also revealed concurrent infection of SDDV and two ectoparasites Lernanthropus sp. and Diplectanum sp., in all affected fish (n = 8, 95% CI: 46.7-99.3) during the disease outbreak. These ectoparasites also tested positive for SDDV by PCR, indicating that they were potential sample sources for PCR-based detection of SDDV and possibly other viruses infecting Asian sea bass.
Collapse
Affiliation(s)
- Onanong Charoenwai
- Faculty of Marine Technology, Burapha University Chanthaburi Campus, Chanthaburi, Thailand
- Aquatic Animal Disease Diagnostics and Immunology Research Unit, Burapha University Chanthaburi Campus, Chanthaburi, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Faculty of Science, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Molruedee Sonthi
- Faculty of Marine Technology, Burapha University Chanthaburi Campus, Chanthaburi, Thailand
- Aquatic Animal Disease Diagnostics and Immunology Research Unit, Burapha University Chanthaburi Campus, Chanthaburi, Thailand
| |
Collapse
|
13
|
Samsing F, Rigby M, Tengesdal HK, Taylor RS, Farias D, Morrison RN, Godwin S, Giles C, Carson J, English CJ, Chong R, Wynne JW. Seawater transmission and infection dynamics of pilchard orthomyxovirus (POMV) in Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2021; 44:73-88. [PMID: 32944982 DOI: 10.1111/jfd.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The Tasmanian salmon industry had remained relatively free of major viral diseases until the emergence of pilchard orthomyxovirus (POMV). Originally isolated from wild pilchards, POMV is of concern to the industry as it can cause high mortality in farmed salmon (Salmo salar). Field observations suggest the virus can spread from pen to pen and between farms, but evidence of passive transmission in sea water was unclear. Our aim was to establish whether direct contact between infected and naïve fish was required for transmission, and to examine viral infection dynamics. Atlantic salmon post-smolts were challenged with POMV by either direct exposure via cohabitation or indirect exposure via virus-contaminated sea water. POMV was transmissible in sea water and direct contact between fish was not required for infection. Head kidney and heart presented the highest viral loads in early stages of infection. POMV survivors presented low viral loads in most tissues, but these remained relatively high in gills. A consistent feature was the infiltration of viral-infected melanomacrophages in different tissues, suggesting an important role of these in the immune response to POMV. Understanding POMV transmission and host-pathogen interactions is key for the development of improved surveillance tools, transmission models and ultimately for disease prevention.
Collapse
Affiliation(s)
- Francisca Samsing
- CSIRO Agriculture and Food, Livestock and Aquaculture Program, Hobart, Tas., Australia
| | - Megan Rigby
- CSIRO Agriculture and Food, Livestock and Aquaculture Program, Hobart, Tas., Australia
| | - Hedda K Tengesdal
- CSIRO Agriculture and Food, Livestock and Aquaculture Program, Hobart, Tas., Australia
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Richard S Taylor
- CSIRO Agriculture and Food, Livestock and Aquaculture Program, Hobart, Tas., Australia
| | - Daniela Farias
- CSIRO Agriculture and Food, Livestock and Aquaculture Program, Hobart, Tas., Australia
| | - Richard N Morrison
- DPIPWE Centre for Aquatic Animal Health and Vaccines, Launceston, Tas., Australia
| | - Scott Godwin
- DPIPWE Centre for Aquatic Animal Health and Vaccines, Launceston, Tas., Australia
| | - Carla Giles
- DPIPWE Centre for Aquatic Animal Health and Vaccines, Launceston, Tas., Australia
| | - Jeremy Carson
- DPIPWE Centre for Aquatic Animal Health and Vaccines, Launceston, Tas., Australia
| | - Chloe J English
- CSIRO Agriculture and Food, Livestock and Aquaculture Program, Brisbane, Qld., Australia
| | - Roger Chong
- CSIRO Agriculture and Food, Livestock and Aquaculture Program, Brisbane, Qld., Australia
| | - James W Wynne
- CSIRO Agriculture and Food, Livestock and Aquaculture Program, Hobart, Tas., Australia
| |
Collapse
|
14
|
Rimstad E, Markussen T. Infectious salmon anaemia virus-molecular biology and pathogenesis of the infection. J Appl Microbiol 2020; 129:85-97. [PMID: 31885186 DOI: 10.1111/jam.14567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Aquaculture has a long history in many parts of the world, but it is still young at an industrial scale. Marine fish farming in open nets of a single fish species at high densities compared to their wild compatriots opens a plethora of possible infections. Infectious salmon anaemia (ISA) is an example of disease that surfaced after large-scale farming of Atlantic salmon (Salmo salar) appeared. Here, a review of the molecular biology of the ISA virus (ISAV) with emphasis on its pathogenicity is presented. The avirulent HPR0 variant of ISAV has resisted propagation in cell cultures, which has restricted the ability to perform in vivo experiments with this variant. The transition from avirulent HPR0 to virulent HPRΔ has not been methodically studied under controlled experimental conditions, and the triggers of the transition from avirulent to virulent forms have not been mapped. Genetic segment reassortment, recombination and mutations are important mechanisms in ISAV evolution, and for the development of virulence. In the 25 years since the ISAV was identified, large amounts of sequence data have been collected for epidemiologic and transmission studies, however, the lack of good experimental models for HPR0 make the risk evaluation of the presence of this avirulent, ubiquitous variant uncertain. This review summarizes the current knowledge related to molecular biology and pathogenicity of this important aquatic orthomyxovirus.
Collapse
Affiliation(s)
- E Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - T Markussen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
15
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
16
|
Lyngstad TM, Qviller L, Sindre H, Brun E, Kristoffersen AB. Risk Factors Associated With Outbreaks of Infectious Salmon Anemia (ISA) With Unknown Source of Infection in Norway. Front Vet Sci 2018; 5:308. [PMID: 30574509 PMCID: PMC6292176 DOI: 10.3389/fvets.2018.00308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
The occurrence of infectious salmon anemia (ISA) outbreaks in marine farmed Atlantic salmon constitutes a recurring challenge in Norway. Here, we aim to identify risk factors associated with ISA outbreaks with an unknown source of infection (referred to as primary ISA outbreaks). Primary ISA outbreaks are here defined by an earlier published transmission model. We explored a wide range of possible risk factors with logistic regression analysis, trying to explain occurrence of primary ISA with available data from all Norwegian farm sites from 2004 to June 2017. Explanatory variables included site latitude and a range of production and disease data. The mean annual risk of having a primary outbreak of ISA in Norway was 0.7% during this study period. We identified the occurrence of infectious pancreatic necrosis (IPN), having a stocking period longer than 2 months, having the site located at high latitude and high fish density (biomass per cage volume) in the first six months after transfer to sea site as significant risk factors (p < 0.05). We have identified factors related to management routines, other disease problems, and latitude that may help to understand the hitherto unidentified drivers behind the emergence of primary ISA outbreaks. Based on our findings, we also provide management advice that may reduce the incidence of primary ISA outbreaks.
Collapse
Affiliation(s)
| | | | | | - Edgar Brun
- Norwegian Veterinary Institute, Oslo, Norway
| | | |
Collapse
|
17
|
Souto S, Olveira JG, Alonso MC, Dopazo CP, Bandín I. Betanodavirus infection in bath-challenged Solea senegalensis juveniles: A comparative analysis of RGNNV, SJNNV and reassortant strains. JOURNAL OF FISH DISEASES 2018; 41:1571-1578. [PMID: 30028012 DOI: 10.1111/jfd.12865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Senegalese sole has been shown to be highly susceptible to betanodavirus infection, although virulence differences were observed between strains. To study the mechanisms involved in these differences, we have analysed the replication in brain tissue of three strains with different genotypes during 15 days after bath infection. In addition, possible portals of entry for betanodavirus into sole were investigated. The reassortant RGNNV/SJNNV and the SJNNV strain reached the brain after 1 and 2 days postinfection, respectively. Although no RGNNV replication was detected until day 3-4 postinfection, at the end of the experiment this strain yielded the highest viral load; this is in accordance with previous studies in which sole infected with the reassortant showed more acute signs and earlier mortality than the RGNNV and SJNNV strains. Differences between strains were also observed in the possible portals of entry. Thus, whereas the reassortant strain could infect sole mainly through the skin or the oral route, and, to a minor extent, through the gills, the SJNNV strain seems to enter fish only through the gills and the RGNNV strain could use all tissues indistinctly. Taken together, all these results support the hypothesis that reassortment has improved betanodavirus infectivity for sole.
Collapse
Affiliation(s)
- Sandra Souto
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
18
|
LeBlanc F, Leadbeater S, Laflamme M, Gagné N. In vivo virulence and genomic comparison of infectious Salmon Anaemia Virus isolates from Atlantic Canada. JOURNAL OF FISH DISEASES 2018; 41:1373-1384. [PMID: 29938793 DOI: 10.1111/jfd.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The infectious salmon anaemia virus (ISAV) is capable of causing a significant disease in Atlantic salmon, which has resulted in considerable financial losses for salmon farmers around the world. Since the first detection of ISAV in Canada in 1996, it has been a high priority for aquatic animal health management and surveillance programmes have led to the identification of many genetically distinct ISAV isolates of variable virulence. In this study, we evaluated the virulence of three ISAV isolates detected in Atlantic Canada in 2012 by doing in vivo-controlled disease challenges with two sources of Atlantic salmon. We measured viral loads in fish tissues during the course of infection. Sequences of the full viral RNA genomes of these three ISAV isolates were obtained and compared to a high-virulence and previously characterized isolate detected in the Bay of Fundy in 2004, as well as a newly identified ISAV NA-HPR0 isolate. All three ISAV isolates studied were shown to be of low to mid-virulence with fish from source A having a lower mortality rate than fish from source B. Viral load estimation using an RT-qPCR assay targeting viral segment 8 showed a high degree of similarity between tissues. Through genomic comparison, we identified various amino acid substitutions unique to some isolates, including a stop codon in the segment 8 ORF2 not previously reported in ISAV, present in the isolate with the lowest observed virulence.
Collapse
Affiliation(s)
- Francis LeBlanc
- Fisheries & Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| | - Steven Leadbeater
- Fisheries & Oceans Canada, St Andrews Biological Station, St Andrews, NB, Canada
| | - Mark Laflamme
- Fisheries & Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| | - Nellie Gagné
- Fisheries & Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| |
Collapse
|
19
|
Burbank DR, Fehringer TR, Chiaramonte LV. Comparison of Selected Nonlethal Samples from Adult Steelhead for Detection of Infectious Hematopoietic Necrosis Virus Using Cell Culture. JOURNAL OF AQUATIC ANIMAL HEALTH 2017; 29:67-73. [PMID: 28324676 DOI: 10.1080/08997659.2016.1274690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nonlethal sampling techniques have previously been evaluated for detection of a variety of viral salmonid pathogens. However, many of these studies have used molecular assays in lieu of widely accepted cell culture techniques to evaluate the sampled tissues. Samples were collected from female steelhead Oncorhynchus mykiss broodstock using three potential nonlethal sampling methods (mucus/skin scrape, pectoral fin clip, and gill tissue biopsy) and evaluated for the presence of infectious hematopoietic necrosis virus (IHNV) via cell culture techniques. The results were compared with those from samples collected using a standard lethal sampling method (pooled anterior kidney and spleen tissues) applied to the same fish. Of the three nonlethal sampling techniques that were evaluated, fin clipping was the easiest and least invasive method. Furthermore, fin tissue was as sensitive as or more sensitive than kidney/spleen tissue for detecting IHNV in this population of fish. However, with the exception of gill tissue, the nonlethal samples did not appear to be appropriate surrogates for lethally collected tissues with regard to identifying an active infection in a particular fish. Nevertheless, nonlethal sampling coupled with cell culture appears to be suitable for helping to define the IHNV status of a steelhead population. Received July 27, 2016; accepted December 11, 2016.
Collapse
Affiliation(s)
- David R Burbank
- a Pacific States Marine Fisheries Commission, Eagle Fish Health Laboratory , 1800 Trout Road, Eagle , Idaho 83616 , USA
| | - Tyson R Fehringer
- b Idaho Department of Fish and Game , Eagle Fish Health Laboratory , 1800 Trout Road, Eagle , Idaho 83616 , USA
| | - Luciano V Chiaramonte
- b Idaho Department of Fish and Game , Eagle Fish Health Laboratory , 1800 Trout Road, Eagle , Idaho 83616 , USA
| |
Collapse
|
20
|
Localised Infection of Atlantic Salmon Epithelial Cells by HPR0 Infectious Salmon Anaemia Virus. PLoS One 2016; 11:e0151723. [PMID: 26999815 PMCID: PMC4801213 DOI: 10.1371/journal.pone.0151723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
Infectious salmon anaemia (ISA) is an important, systemic viral disease of farmed Atlantic salmon, Salmo salar L. Endothelial cells are the main target cells for highly virulent HPR-deleted ISA virus (ISAV) types. Here we examine the pathogenesis of non-virulent ISAV HPR0 infections, presenting evidence of an epithelial tropism for this virus type, including actual infection and replication in the epithelial cells. Whereas all HPR0 RT-qPCR positive gills prepared for cryosection tested positive by immunohistochemistry (IHC) and immunofluorescent labelling, only 21% of HPR0 RT-qPCR positive formalin-fixed paraffin-embedded gills were IHC positive, suggesting different methodological sensitivities. Only specific epithelial cell staining was observed and no staining was observed in endothelial cells of positive gills. Furthermore, using an ISAV segment 7 RT-PCR assay, we demonstrated splicing of HPR0, suggesting initial activation of the replication machinery in the epithelial gill cells. Immunological responses were investigated by the expression of interferon-related genes (e.g. Mx and γIP) and by ELISA for presence of anti-ISAV antibodies on samples taken sequentially over several months during an episode of transient HPR0 infection. All fish revealed a variable, but increased expression of the immunological markers in comparison to normal healthy fish. Taken together, we conclude that HPR0 causes a localized epithelial infection of Atlantic salmon.
Collapse
|
21
|
Susceptibility of goldsinny wrasse, Ctenolabrus rupestris L. (Labridae), to viral haemorrhagic septicaemia virus (VHSV) genotype III: Experimental challenge and pathology. Vet Microbiol 2016; 186:164-73. [PMID: 27016771 DOI: 10.1016/j.vetmic.2016.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 11/24/2022]
Abstract
Cleaner fish, such as wrasse, are being increasingly used to combat the sea lice infestation of Atlantic salmon (Salmo salar L.) in many European countries. To determine susceptibility of the goldsinny wrasse (Ctenolabrus rupestris L.) and pathogenesis of the viral haemorrhagic septicaemia virus (VHSV) genotype III isolate 12-654, previously associated with VHSV infection in the Shetland Islands in 2012, fish were experimentally challenged by intraperitoneal injection (IP), bath immersion and cohabitation routes. Cumulative proportion of moribund wrasse reached 17% following the virus immersion challenge while by the IP-route moribunds exceeded 50% within 14days post-challenge. Typical signs of VHS as reported in rainbow trout (Oncorhynchus mykiss), were not observed in moribund goldsinny wrasse. The most pronounced histopathological changes, consistent regardless of the route of infection, were observed within the heart and included atrium myofibril degeneration, focal infiltration and multifocal necrosis, with prominent swelling of the endocardium and occasional detachment. Pathological changes in the atrium were associated with presence of the viral antigen as confirmed by a positive immunohistochemical staining. Virus clearance and heart tissue recovery were noted although further experiments are required to confirm these observations. The results of a cohabitation experiment confirmed that goldsinny wrasse shed viable virus and therefore represent a risk of virus transmission to other VHSV susceptible species. Similarities between the pathology in goldsinny wrasse induced through the controlled experimental challenges and that of wrasse spp. from an infection occurrence in Shetland are discussed.
Collapse
|