1
|
Ryt-Hansen P, George S, Hjulsager CK, Trebbien R, Krog JS, Ciucani MM, Langerhuus SN, DeBeauchamp J, Crumpton JC, Hibler T, Webby RJ, Larsen LE. Rapid surge of reassortant A(H1N1) influenza viruses in Danish swine and their zoonotic potential. Emerg Microbes Infect 2025; 14:2466686. [PMID: 39945729 PMCID: PMC11849018 DOI: 10.1080/22221751.2025.2466686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
In 2018, a single detection of a novel reassortant swine influenza A virus (swIAV) was made in Denmark. The hemagglutinin (HA) of the virus was from the H1N1 pandemic 2009 (H1N1pdm09) lineage and the neuraminidase (NA) from the H1N1 Eurasian avian-like swine lineage (H1N1av). By 2022, the novel reassortant virus (H1pdm09N1av) constituted 27% of swIAVs identified through the Danish passive swIAV surveillance program. Sequencing detected two H1pdm09N1av genotypes; Genotype 1 contained an entire internal gene cassette of H1N1pdm09 origin, Genotype 2 differed by carrying an NS gene segment of H1N1av origin. The internal gene cassette of Genotype 2 became increasingly dominant, not only in the H1pdm09N1av population, but also in other Danish enzootic swIAV subtypes. Phylogenetic analysis of the HA genes from H1pdm09N1av viruses revealed a monophyletic source, a higher substitution rate compared to other H1N1pdm09 viruses and genetic differences with human seasonal and other swine adapted H1N1pdm09 viruses. Correspondingly, H1pdm09N1av viruses were antigenically distinct from human H1N1pdm09 vaccine viruses. Both H1pdm09N1av genotypes transmitted between ferrets by direct contact, but only Genotype 1 was capable of efficient aerosol transmission. The rapid spread of H1pdm09N1av viruses in Danish swine herds is concerning for swine and human health. Their zoonotic threat is highlighted by the limited pre-existing immunity observed in the human population, aerosol transmission in ferrets and the finding that the internal gene cassette of Genotype 2 was present in the first two zoonotic influenza infections ever detected in Denmark.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sophie George
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Ramona Trebbien
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Jesper Schak Krog
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Marta Maria Ciucani
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | | | - Jennifer DeBeauchamp
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jeri Carol Crumpton
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Taylor Hibler
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard J. Webby
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Osemeke OH, Machado I, Mil-Homens M, Allison G, Paustian M, Linhares DCL, Silva GS. Evaluating postmortem tongue fluids as a tool for monitoring PRRSV and IAV in the post-wean phases of swine production. Porcine Health Manag 2025; 11:18. [PMID: 40197296 PMCID: PMC11978129 DOI: 10.1186/s40813-025-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV) are swine pathogens that can significantly impact the performance of post-weaning pigs. While oral fluid (OF) samples are widely used for monitoring these viruses, postmortem tongue fluid (TF) samples present a cost-effective alternative with potential advantages in viral detection. This study aimed to compare the performance of TF and OF samples collected from nursery and finishing pig herds in detecting PRRSV and IAV using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A Bayesian latent class model was used to estimate diagnostic sensitivity and specificity for TF and OF under the assumption of conditional independence. The study also examined the relationship between mortality rates and RT-qPCR outcomes, the success rate of Sanger sequencing for the PRRSV ORF-5 region, and the effect of pooling daily aggregated TF samples on the probability of PRRSV detection. RESULTS IAV was detected in 34.9% of OF samples and 30.2% of TF samples, while PRRSV was identified in 67.4% of OF and 53.5% of TF samples. TF samples had a significantly lower mean Ct for PRRSV (29.1) compared to OF samples (32.8) but had a similar Ct (30.9) to OF (29.7) for IAV. The hierarchical latent class Bayesian model estimated the sensitivity and specificity values for OF as 37.3% and 61.7% for IAV, and 64.3% and 35.1% for PRRSV. The estimated sensitivity and specificity values for TF were 33.5% and 66.0% for IAV, and 53.0% and 47.0% for PRRSV. Among 22 matched TF and OF pairs submitted for PRRSV sequencing, 45.5% of OF samples and 63.6% of TF samples were successfully sequenced, with the higher success rate for TF attributed to having lower Ct values. Additionally, mortality rates were notably higher when PRRSV was detected, especially in cases with concurrent IAV detection. Regarding sample pooling, our results indicated that pooling TF samples significantly increased detection probabilities, with a 1/7 dilution achieving a 79% RT-qPCR detection rate, compared to a detection rate of 14.3% when testing a single day's TF sample from a week with only one positive day. CONCLUSION The findings support the use of TF samples as a viable complement or alternative to OF samples for PRRSV and IAV surveillance in post-weaning pigs when mortalities are available. The cost-efficiency of TF sampling can enhance monitoring compliance, improve early pathogen detection, and facilitate timely responses to emerging threats in swine production. This study advocates for the adoption of TF as a risk-based sampling strategy in nursery and grow-finish settings, complementing live animal samples such as OF, ultimately contributing to better herd health management.
Collapse
Affiliation(s)
- Onyekachukwu Henry Osemeke
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 2231 Lloyd, 1809 S Riverside Dr., Ames, IA, 50011-3619, USA
| | - Isadora Machado
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 2231 Lloyd, 1809 S Riverside Dr., Ames, IA, 50011-3619, USA
| | - Mafalda Mil-Homens
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 2231 Lloyd, 1809 S Riverside Dr., Ames, IA, 50011-3619, USA
| | | | | | - Daniel C L Linhares
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 2231 Lloyd, 1809 S Riverside Dr., Ames, IA, 50011-3619, USA
| | - Gustavo S Silva
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 2231 Lloyd, 1809 S Riverside Dr., Ames, IA, 50011-3619, USA.
| |
Collapse
|
3
|
Benito AA, Monteagudo LV, Lázaro-Gaspar S, Mazas-Cabetas L, Quílez J. Detection and subtyping of influenza A virus in porcine clinical samples from Spain in 2020. Virology 2024; 600:110223. [PMID: 39278103 DOI: 10.1016/j.virol.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
A total of 1019 samples collected on 726 Spanish swine farms suffering from outbreaks of respiratory disease were screened for influenza A viruses (IAVs) using a RT-qPCR method. A subset of positive samples was further analyzed using a subtype-specific RT-qPCR method (n: 142) and Sanger sequencing (n: 64). A total of 19.4% samples from 23% farms tested positive, with infection being most common in suckling (53.6%) and weaning pigs (30.2%). Viruses belonging to four HA subtypes (H1av, H1hu, H1pdm, H3) were detected, with subtypes H1avN2, H1huN2 and H1avN1 accounting for over half of the specimens. An optimized protocol with newly designed primers allowed the detection of H3 viruses in a significant number of samples (21%). A comparison of antigenic positions revealed that circulating strains exhibited mutations with vaccine strains in a significant percentage of amino acid residues, both in the NA protein (27.8-43.3%) and particularly in the HA protein (51-75.3%).
Collapse
Affiliation(s)
- Alfredo A Benito
- Exopol S.L., Pol Río Gállego D/14, San Mateo de Gállego, 50840, Zaragoza, Spain
| | - Luis V Monteagudo
- Department of Anatomy, Embriology and Genetics, Faculty of Veterinary Sciences, University of Zaragoza, 50013, Zaragoza, Spain; Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013, Zaragoza, Spain
| | - Sofía Lázaro-Gaspar
- Exopol S.L., Pol Río Gállego D/14, San Mateo de Gállego, 50840, Zaragoza, Spain
| | - Luna Mazas-Cabetas
- Exopol S.L., Pol Río Gállego D/14, San Mateo de Gállego, 50840, Zaragoza, Spain
| | - Joaquín Quílez
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013, Zaragoza, Spain; Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013, Zaragoza, Spain.
| |
Collapse
|
4
|
Storms SM, Leonardi-Cattolica A, Prezioso T, Varga C, Wang L, Lowe J. Influenza A virus shedding and reinfection during the post-weaning period in swine: longitudinal study of two nurseries. Front Vet Sci 2024; 11:1482225. [PMID: 39606665 PMCID: PMC11601151 DOI: 10.3389/fvets.2024.1482225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Influenza A virus in swine (IAV-S) is common in the United States commercial swine population and has the potential for zoonotic transmission. OBJECTIVE To elucidate influenza shedding the domestic pig population, we evaluated two commercial swine farms in Illinois, United States, for 7 weeks. Farm 1 had a recent IAV-S outbreak. Farm 2 has had IAV-S circulating for several years. METHODS Forty post-weaning pigs on Farm 1 and 51 pigs from Farm 2 were individually monitored and sampled by nasal swabs for 7 weeks. RESULTS RT-PCR results over time showed most piglets shed in the first 2 weeks post weaning, with 91.2% shedding in week one, and 36.3% in week two. No difference in the number of pigs shedding was found between the two nurseries. Reinfection events did differ between the farms, with 30% of piglets on Farm 1 becoming reinfected, compared to 7.8% on Farm 2. In addition, whole genome sequencing of nasal swab samples from each farm showed identical viruses circulating between the initial infection and the reinfection periods. Sequencing also allowed for nucleic and amino acid mutation analysis in the circulating viruses, as well the identification of a potential reverse zoonosis event. We saw antigenic site mutations arising in some pigs and MxA resistance genes in almost all samples. CONCLUSION This study provided information on IAV-S circulation in nurseries to aid producers and veterinarians to screen appropriately for IAV-S, determine the duration of IAV-S shedding, and predict the occurrence of reinfection in the nursery period.
Collapse
Affiliation(s)
- Suzanna M. Storms
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | | - Tara Prezioso
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Csaba Varga
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - James Lowe
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
5
|
Domingo-Carreño I, Serena MS, Martín-Valls GE, Clilverd H, Aguirre L, Cortey M, Mateu E. The introduction of a highly virulent PRRSV strain in pig farms is associated with a change in the pattern of influenza A virus infection in nurseries. Vet Res 2024; 55:147. [PMID: 39522027 PMCID: PMC11549838 DOI: 10.1186/s13567-024-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
The present study aimed to determine the dynamics of influenza A virus (IAV) infection in two endemically infected farms (F1 and F2), where a longitudinal follow-up of piglets was performed from birth to 8-12 weeks of age. During the study, a highly virulent isolate of porcine reproductive and respiratory syndrome virus (PRRSV) was introduced on both farms. This allowed us to examine the impact of such introduction on the patterns of infection, disease, and the antibody response of pigs to IAV infection. The introduction of the new PRRSV strain coincided with a change in the dynamics of IAV infection on both farms. In F1, the cumulative incidence of IAV increased from 20% before the outbreak to 67.5%, together with the existence of animals that tested positive for IAV (RT‒qPCR) in nasal swabs for two or more consecutive samples. In F2, the cumulative incidence of IAV increased from 50% before the PRRSV outbreak to 70%, and the proportion of prolonged IAV shedders increased sharply. Additionally, some animals were infected with the same IAV twice during the observation period. In contrast to previous reports, our study revealed that prolonged shedding was not related to the titres of maternally derived antibodies at the time of infection but was significantly (p < 0.05) related to PRRSV infection status. Notably, both before and after the PRRSV outbreak, a high proportion of IAV-infected piglets did not seroconvert, which was significantly (p < 0.05) related to the hemagglutination inhibition titres against IAV when infected.
Collapse
Affiliation(s)
- Ivan Domingo-Carreño
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Maria Soledad Serena
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Gerard Eduard Martín-Valls
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Hepzibar Clilverd
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Laia Aguirre
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Martí Cortey
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera Dels Turons S/N, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
6
|
Klivleyeva N, Saktaganov N, Glebova T, Lukmanova G, Ongarbayeva N, Webby R. Influenza A Viruses in the Swine Population: Ecology and Geographical Distribution. Viruses 2024; 16:1728. [PMID: 39599843 PMCID: PMC11598916 DOI: 10.3390/v16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the efforts of practical medicine and virology, influenza viruses remain the most important pathogens affecting human and animal health. Swine are exposed to infection with all types of influenza A, B, C, and D viruses. Influenza viruses have low pathogenicity for swine, but in the case of co-infection with other pathogens, the outcome can be much more serious, even fatal. Having a high zoonotic potential, swine play an important role in the ecology and spread of influenza to humans. In this study, we review the state of the scientific literature on the zoonotic spread of swine influenza A viruses among humans, their circulation in swine populations worldwide, reverse zoonosis from humans to swine, and their role in interspecies transmission. The analysis covers a long period to trace the ecology and evolutionary history of influenza A viruses in swine. The following databases were used to search the literature: Scopus, Web of Science, Google Scholar, and PubMed. In this review, 314 papers are considered: n = 107 from Asia, n = 93 from the U.S., n = 86 from Europe, n = 20 from Africa, and n = 8 from Australia. According to the date of publication, they are conditionally divided into three groups: contemporary, released from 2011 to the present (n = 121); 2000-2010 (n = 108); and 1919-1999 (n = 85).
Collapse
Affiliation(s)
- Nailya Klivleyeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nurbol Saktaganov
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Tatyana Glebova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Galina Lukmanova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nuray Ongarbayeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| |
Collapse
|
7
|
Schmies K, Hennig C, Rose N, Fablet C, Harder T, Grosse Beilage E, Graaf-Rau A. Dynamic of swine influenza virus infection in weaned piglets in five enzootically infected herds in Germany, a cohort study. Porcine Health Manag 2024; 10:36. [PMID: 39354563 PMCID: PMC11446054 DOI: 10.1186/s40813-024-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Within the last decades industrial swine herds in Europe grown significantly, creating an optimized reservoir for swine influenza A viruses (swIAV) to become enzootic, particularly in piglet producing herds among newborn, partly immunologically naïve piglets. To date, the only specific control measure to protect piglets from swIAV is the vaccination of sows, which provides passive immunity through maternally derived antibodies in colostrum of vaccinated sows. Interruption of infection chains through management practices have had limited success. This study focused on weaned piglets in five enzootically swIAV infected swine herds in North-West and North-East Germany and aimed to better understand swIAV infection patterns to improve piglet protection and reduce zoonotic risks. Participating farms fulfilled the following inclusion criteria: sow herd with ≥ 400 sows (actual size 600-1850 sows), piglets not vaccinated against influenza A virus and a history of recurrent respiratory problems associated with continuing influenza A virus infection. Influenza vaccination was performed in all sow herds, except for one, which discontinued vaccination during the study. RESULTS First swIAV detections in weaned piglets occurred at 4 weeks of age in the nursery and continued to be detected in piglets up to 10 weeks of age showing enzootic swIAV infections in all herds over the entire nursery period. This included simultaneous circulation of two subtypes in a herd and co-infection with two subtypes in individual animals. Evidence for prolonged (at least 13 days) shedding was obtained in one piglet based on two consecutive swIAV positive samplings. Possible re-infection was suspected in twelve piglets based on three samplings, the second of which was swIAV negative in contrast to the first and third sampling which were swIAV positive. However, swIAV was not detected in nasal swabs from either suckling piglets or sows in the first week after farrowing. CONCLUSIONS Predominantly, weaned piglets were infected. There was no evidence of transmission from sow to piglet based on swIAV negative nasal swabs from sows and suckling piglets. Prolonged virus shedding by individual piglets as well as the co-circulation of different swIAV subtypes in a group or even individuals emphasize the potential of swIAV to increase genetic (and potentially phenotypic) variation and the need to continue close monitoring. Understanding the dynamics of swIAV infections in enzootically infected herds has the overall goal of improving protection to reduce economic losses due to swIAV-related disease and consequently to advance animal health and well-being.
Collapse
Affiliation(s)
- Kathrin Schmies
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Christin Hennig
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nicolas Rose
- Epidemiology, Health and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France
| | - Christelle Fablet
- Epidemiology, Health and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Annika Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
- Department of Pathogen Evolution, Helmholtz Institute for One Health, Greifswald, Germany.
| |
Collapse
|
8
|
Lagan P, Hamil M, Cull S, Hanrahan A, Wregor RM, Lemon K. Swine influenza A virus infection dynamics and evolution in intensive pig production systems. Virus Evol 2024; 10:veae017. [PMID: 38476866 PMCID: PMC10930190 DOI: 10.1093/ve/veae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Swine influenza A virus (swIAV) is one of the main viral pathogens responsible for respiratory disease in farmed pigs. While outbreaks are often epidemic in nature, increasing reports suggest that continuous, endemic infection of herds is now common. The move towards larger herd sizes and increased intensification in the commercial pig industry may promote endemic infection; however, the impact that intensification has on swIAV infection dynamics and evolution is unclear. We carried out a longitudinal surveillance study for over 18 months on two enzootically infected, intensive, indoor, and multi-site pig production flows. Frequent sampling of all production stages using individual and group sampling methods was performed, followed by virological and immunological testing and whole-genome sequencing. We identified weaned pigs between 4 and 12-weeks old as the main reservoir of swIAV in the production flows, with continuous, year-round infection. Despite the continuous nature of viral circulation, infection levels were not uniform, with increasing exposure at the herd level associated with reduced viral prevalence followed by subsequent rebound infection. A single virus subtype was maintained on each farm for the entire duration of the study. Viral evolution was characterised by long periods of stasis punctuated by periods of rapid change coinciding with increasing exposure within the herd. An accumulation of mutations in the surface glycoproteins consistent with antigenic drift was observed, in addition to amino acid substitutions in the internal gene products as well as reassortment exchange of internal gene segments from newly introduced strains. These data demonstrate that long-term, continuous infection of herds with a single subtype is possible and document the evolutionary mechanisms utilised to achieve this.
Collapse
Affiliation(s)
- Paula Lagan
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, 12 Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Michael Hamil
- JMW Farms Ltd., 50 Hamiltonsbawn Road, Armagh BT60 1HW, Northern Ireland
| | - Susan Cull
- Craigavon Area Hospital, 68 Lurgan Road, Craigavon BT63 5QQ, Northern Ireland
| | - Anthony Hanrahan
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland
| | - Rosanna M Wregor
- JMW Farms Ltd., 50 Hamiltonsbawn Road, Armagh BT60 1HW, Northern Ireland
| | - Ken Lemon
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, 12 Stoney Road, Belfast BT4 3SD, Northern Ireland
| |
Collapse
|
9
|
Kristensen C, Jensen HE, Trebbien R, Ryt-Hansen P, Larsen LE. Co-localization of influenza A virus and voltage-dependent calcium channels provides new perspectives on the internalization process in pigs. NPJ VIRUSES 2023; 1:8. [PMID: 40295661 PMCID: PMC11721136 DOI: 10.1038/s44298-023-00009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 04/30/2025]
Abstract
Influenza A virus (IAV) is an RNA virus that causes respiratory disease in a wide range of mammals including humans and pigs. Cav1.2 is a specific voltage-dependent calcium channel (VDCC) important for the internalization of IAV and VDCC inhibitors can decrease IAV disease severity in mice. In this paper, the distribution pattern of a range of VDCCs by immunohistochemistry and Cav1.2 by in situ hybridization in the porcine respiratory tract is documented for the first time. Furthermore, we showed co-localization of VDCC-positive and IAV-positive cells in experimentally infected pigs. These findings provide new perspectives on the IAV internalization process and pave the way for further research investigating the effect of VDDC inhibitors on the IAV infection dynamics in pigs, which could have relevance to humans too.
Collapse
Affiliation(s)
- Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
10
|
Vereecke N, Zwickl S, Gumbert S, Graaf A, Harder T, Ritzmann M, Lillie-Jaschniski K, Theuns S, Stadler J. Viral and Bacterial Profiles in Endemic Influenza A Virus Infected Swine Herds Using Nanopore Metagenomic Sequencing on Tracheobronchial Swabs. Microbiol Spectr 2023; 11:e0009823. [PMID: 36853049 PMCID: PMC10100764 DOI: 10.1128/spectrum.00098-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Swine influenza A virus (swIAV) plays an important role in porcine respiratory infections. In addition to its ability to cause severe disease by itself, it is important in the multietiological porcine respiratory disease complex. Still, to date, no comprehensive diagnostics with which to study polymicrobial infections in detail have been offered. Hence, veterinary practitioners rely on monospecific and costly diagnostics, such as Reverse Transcription quantitative PCR (RT-qPCR), antigen detection, and serology. This prevents the proper understanding of the entire disease context, thereby hampering effective preventive and therapeutic actions. A new, nanopore-based, metagenomic diagnostic platform was applied to study viral and bacterial profiles across 4 age groups on 25 endemic swIAV-infected German farms with respiratory distress in the nursery. Farms were screened for swIAV using RT-qPCR on nasal and tracheobronchial swabs (TBS). TBS samples were pooled per age, prior to metagenomic characterization. The resulting data showed a correlation between the swIAV loads and the normalized reads, supporting a (semi-)quantitative interpretation of the metagenomic data. Interestingly, an in-depth characterization using beta diversity and PERMANOVA analyses allowed for the observation of an age-dependent interplay of known microbial agents. Also, lesser-known microbes, such as porcine polyoma, parainfluenza, and hemagglutinating encephalomyelitis viruses, were observed. Analyses of swIAV incidence and clinical signs showed differing microbial communities, highlighting age-specific observations of various microbes in porcine respiratory disease. In conclusion, nanopore metagenomics were shown to enable a panoramic view on viral and bacterial profiles as well as putative pathogen dynamics in endemic swIAV-infected herds. The results also highlighted the need for better insights into lesser studied agents that are potentially associated with porcine respiratory disease. IMPORTANCE To date, no comprehensive diagnostics for the study of polymicrobial infections that are associated with porcine respiratory disease have been offered. This precludes the proper understanding of the entire disease landscape, thereby hampering effective preventive and therapeutic actions. Compared to the often-costly diagnostic procedures that are applied for the diagnostics of porcine respiratory disease nowadays, a third-generation nanopore sequencing diagnostics workflow presents a cost-efficient and informative tool. This approach offers a panoramic view of microbial agents and contributes to the in-depth observation and characterization of viral and bacterial profiles within the respiratory disease context. While these data allow for the study of age-associated, swIAV-associated, and clinical symptom-associated observations, it also suggests that more effort should be put toward the investigation of coinfections and lesser-known pathogens (e.g., PHEV and PPIV), along with their potential roles in porcine respiratory disease. Overall, this approach will allow veterinary practitioners to tailor treatment and/or management changes on farms in a quicker, more complete, and cost-efficient way.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Sophia Zwickl
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Sophie Gumbert
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | | | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| |
Collapse
|
11
|
Lopez-Moreno G, Schmitt C, Spronk T, Culhane M, Torremorell M. Evaluation of internal farm biosecurity measures combined with sow vaccination to prevent influenza A virus infection in groups of due-to-wean pigs. BMC Vet Res 2022; 18:393. [DOI: 10.1186/s12917-022-03494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Influenza A virus (IAV) is an important respiratory pathogen of pigs that affects pig health, well-being and productivity, has zoonotic potential, and has significant economic impact for producers. The ultimate goal is to maintain herds free from IAV. Due to the probability of IAV introduction into the herds, it is also desirable for herds to have some immunity to the virus. In this study, we evaluated a protocol that combined sow vaccination with the implementation of internal biosecurity practices during the pre-weaning period with the goal to wean IAV negative pigs.
Five IAV positive breeding herds were vaccinated twice, 3 weeks apart with a herd-specific autogenous vaccine. For the subsequent 8 weeks, a biosecurity protocol was maintained, consisting of no pig movements after 3 days of age, no use of nurse sows, workers changing disposable gloves between litters, workers not stepping into farrowing crates, and daily disinfection of tools and materials used to handle pigs.
Results
Following these interventions, four of the five treatment farms had significant reductions in IAV detection (p value < 0.05). Three of the farms tested negative at all sampling points post-intervention and one farm had a 21% reduction in IAV positivity.
Conclusions
This study indicates that a protocol that combines sow vaccination and enhanced biosecurity practices may limit IAV transmission among piglets and enable the weaning of groups of pigs free from the virus.
Collapse
|
12
|
Lillie-Jaschniski K, Lisgara M, Pileri E, Jardin A, Velazquez E, Köchling M, Albin M, Casanovas C, Skampardonis V, Stadler J. A New Sampling Approach for the Detection of Swine Influenza a Virus on European Sow Farms. Vet Sci 2022; 9:vetsci9070338. [PMID: 35878355 PMCID: PMC9324471 DOI: 10.3390/vetsci9070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Due to concerns in public health and its negative impact on the pig industry the need for Influenza A virus (IAV) surveillance is rising. The gold standard procedure for detecting IAV is to sample acutely diseased pigs. Endemic infections with unspecific clinical signs and low disease prevalence need new approaches. Our study aimed to evaluate a standardized sampling procedure for the detection of IAV in epidemically and endemically infected farms. We performed a cross-sectional study in 131 farms investigating three different age groups per farm in 12 European countries. The results of our investigation indicate that 10 nasal swabs each in suckling piglets, weaners and middle of nursery is a valuable tool for influenza detection and identification of subtypes. However, for farms with a lower prevalence than 15% it is advisable to either increase the number of nasal swabs in each age group or to use group sampling methods. Interestingly, different subtypes were found in different age groups. Thus, our study underlines that sampling of different age groups is mandatory to obtain a comprehensive overview on all circulating variants on farm. In addition, our results highlight that sampling strategies should also consider piglets without obvious clinical signs for IAV infection. Abstract Swine influenza A virus (swIAV), which plays a major role in the porcine respiratory disease complex (PRDC), is eliminated from the respiratory tract within 7–9 days after infection. Therefore, diagnosis is complicated in endemically infected swine herds presenting no obvious clinical signs. This study aimed to investigate the right time point for sampling to detect swIAV. A cross-sectional study was performed in 131 farms from 12 European countries. The sampling protocol included suckling piglets, weaners, and nursery pigs. In each age group, 10 nasal swabs were collected and further examined in pools of 5 for swIAV by Matrix rRT-PCR, followed by a multiplex RT-PCR to determine the influenza subtype. SwIAV was detected in 284 (37.9%) of the samples and on 103 (78.6%) farms. Despite the highest number of animals with clinical signs being found in the nursery, the weaners were significantly more often virus-positive compared to nursery pigs (p = 0.048). Overall, the swIAV detection rate did not significantly differ between diseased or non-diseased suckling and nursery piglets, respectively; however, diseased weaners had significantly more positive pools than the non-diseased animals. Interestingly, in 9 farms, different subtypes were detected in different age groups. Our findings indicate that to detect all circulating swIAV subtypes on a farm, different age groups should be sampled. Additionally, the sampling strategy should also aim to include non-diseased animals, especially in the suckling period.
Collapse
Affiliation(s)
- Kathrin Lillie-Jaschniski
- Ceva Tiergesundheit, Kanzlerstraße 4, 40472 Düsseldorf, Germany;
- Correspondence: ; Tel.: +49-1733680459
| | | | | | - Agnes Jardin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33501 Libourne, France;
| | | | - Monika Köchling
- Ceva Tiergesundheit, Kanzlerstraße 4, 40472 Düsseldorf, Germany;
| | - Michael Albin
- Ceva Animal Health Ltd., Ladegaardsvej 2, 7100 Vejle, Denmark;
| | | | - Vassilis Skampardonis
- Department of Epidemiology, Biostatistics and Economics of Animal Production, School of Veterinary Medicine, University of Thessaly, 43132 Karditsa, Greece;
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilian University, 75000 Munich, Germany;
| |
Collapse
|
13
|
Ryt-Hansen P, Nielsen HG, Sørensen SS, Larsen I, Kristensen CS, Larsen LE. The role of gilts in transmission dynamics of swine influenza virus and impacts of vaccination strategies and quarantine management. Porcine Health Manag 2022; 8:19. [PMID: 35513878 PMCID: PMC9069814 DOI: 10.1186/s40813-022-00261-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Along with an expanding global swine production, the commercial housing and management of swine herds, provide an optimal environment for constant circulation of swine influenza virus (swIAV), thereby challenging farmers and veterinarian in determining optimal control measures. The aim of this study was to investigate the role of gilts in the swIAV transmission dynamics, and to evaluate the impact of different control measures such as quarantine and gilt vaccination. METHODS The study was conducted as a cross-sectional study in ten Danish sow herds, including five swIAV vaccinated and five unvaccinated herds. Blood- and nasal swab samples of gilts, first parity sows and their piglets were collected at different stages in the production system (quarantine in/out, mating, gestation and farrowing) and analyzed for the presence of swIAV and swIAV antibodies. Associations between the detection of swIAV, seroprevalence, antibody levels, sow and gilt vaccination strategy and quarantine biosecurity were thereafter investigated to identify possible risk factors for swIAV introductions and persistence within the herds. RESULTS Nine of the ten herds of the study had swIAV circulation and swIAV was detected in the quarantine, mating- and farrowing unit. The prevalence of seropositive gilts and first parity sows was significantly higher in the vaccinated herds, but swIAV was still present in nasal swabs from both gilts, first parity sows and piglets in these herds. Quarantine gilt vaccination and all-in/all-out management resulted in a significant reduction of swIAV positive gilts at the end of the quarantine period. CONCLUSION The results underline that herd vaccination and/or quarantine facilities are crucial to avoid swIAV introductions into sow herds.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | - Henriette Guldberg Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | - Simon Smed Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | - Inge Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | | | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| |
Collapse
|
14
|
Unterweger C, Debeerst S, Klingler E, Auer A, Redlberger-Fritz M, Stadler J, Pesch S, Lillie-Jaschniski K, Ladinig A. [Challenges in Influenza diagnostics in a swine herd - a case report]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:425-431. [PMID: 34861735 DOI: 10.1055/a-1580-6938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In a gilt producing farm in Lower Austria, respiratory diseases occurred over the previous years in self-reared gilts after being introduced into the sow herd. In addition, fertility disorders in terms of late abortions and re-breeders were observed in the fall of 2019. Nasal swabs of 3 gilts with respiratory signs and fever were tested positive for influenza A virus (IAV) subtype H1avN1 by PCR. However, examination of serum samples from these animals at 2 different time points did not detect antibodies using the standard hemagglutination inhibition (HI) test of the laboratory. Examination of additional age groups likewise failed to detect H1avN1 antibody titers. In consequence to the extension of the diagnostic panel of the HI test by 7 additional H1avN1 test antigens, a clear seroconversion of the PCR positive sows against 2 different H1avN1 isolates could be measured. In addition, high antibody titers against these 2 H1avN1 strains were also detectable in the majority of the remaining age groups tested. Following the administration of the trivalent influenza vaccine, which has been approved throughout Europe, a significant improvement of the clinical presentation in the herd was achieved. The present case report illustrates that direct and indirect pathogen detection should be used in combination for targeted influenza diagnostics. In addition, it was shown that the continuous adaptation of test antigens to the isolates circulating in the field would be extremely crucial for the significance of the HI test.
Collapse
Affiliation(s)
- Christine Unterweger
- Universitätsklinik für Schweine, Department für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin, Veterinärmedizinische Universität Wien
| | | | | | - Angelika Auer
- Institut für Virologie, Department für Pathobiologie, Veterinärmedizinische Universität Wien
| | | | - Julia Stadler
- Klinik für Schweine, Ludwig-Maximilians-Universität München
| | | | | | - Andrea Ladinig
- Universitätsklinik für Schweine, Department für Nutztiere und öffentliches Gesundheitswesen in der Veterinärmedizin, Veterinärmedizinische Universität Wien
| |
Collapse
|
15
|
de Lara AC, Garrido-Mantilla J, Lopez-Moreno G, Yang M, Barcellos DESN, Torremorell M. Effect of pooling udder skin wipes on the detection of influenza A virus in preweaning pigs. J Vet Diagn Invest 2021; 34:133-135. [PMID: 34404296 DOI: 10.1177/10406387211039462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) active surveillance in pigs prior to weaning is commonly conducted by collecting individual samples, mostly nasal swabs. Recently, the use of udder skin wipes collected from lactating sows was identified as an effective sampling method to indicate IAV status of suckling piglets prior to weaning. However, there is limited information on the effect of pooling multiple udder wipes on the ability to detect IAV. We evaluated the effect of pooling 3, 5, or 10 udder wipes on the sensitivity of detecting IAV and compared the results with testing the wipes individually. The likelihood of detecting positive udder wipes decreased with pooling when the initial positive cycle threshold value was ≥31.5; pooling of up to 3 samples could be performed without affecting sensitivity significantly. Our results support pooling of udder skin wipes to conduct surveillance of IAV in pigs prior to weaning.
Collapse
Affiliation(s)
- Anne C de Lara
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Porto Alegre, RS, Brazil
| | | | - Gustavo Lopez-Moreno
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - My Yang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - David E S N Barcellos
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Porto Alegre, RS, Brazil
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
16
|
Ryt-Hansen P, Krog JS, Breum SØ, Hjulsager CK, Pedersen AG, Trebbien R, Larsen LE. Co-circulation of multiple influenza A reassortants in swine harboring genes from seasonal human and swine influenza viruses. eLife 2021; 10:60940. [PMID: 34313225 PMCID: PMC8397370 DOI: 10.7554/elife.60940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Since the influenza pandemic in 2009, there has been an increased focus on swine influenza A virus (swIAV) surveillance. This paper describes the results of the surveillance of swIAV in Danish swine from 2011 to 2018. In total, 3800 submissions were received with a steady increase in swIAV-positive submissions, reaching 56% in 2018. Full-genome sequences were obtained from 129 swIAV-positive samples. Altogether, 17 different circulating genotypes were identified including six novel reassortants harboring human seasonal IAV gene segments. The phylogenetic analysis revealed substantial genetic drift and also evidence of positive selection occurring mainly in antigenic sites of the hemagglutinin protein and confirmed the presence of a swine divergent cluster among the H1pdm09Nx (clade 1A.3.3.2) viruses. The results provide essential data for the control of swIAV in pigs and emphasize the importance of contemporary surveillance for discovering novel swIAV strains posing a potential threat to the human population.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.,University of Copenhagen, Department of Health Sciences, Institute for Animal and Veterinary Sciences, Frederiksberg, Denmark
| | | | | | | | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lars Erik Larsen
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.,University of Copenhagen, Department of Health Sciences, Institute for Animal and Veterinary Sciences, Frederiksberg, Denmark
| |
Collapse
|
17
|
A universal RT-qPCR assay for "One Health" detection of influenza A viruses. PLoS One 2021; 16:e0244669. [PMID: 33471840 PMCID: PMC7817021 DOI: 10.1371/journal.pone.0244669] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022] Open
Abstract
The mutual dependence of human and animal health is central to the One Health initiative as an integrated strategy for infectious disease control and management. A crucial element of the One Health includes preparation and response to influenza A virus (IAV) threats at the human-animal interface. The IAVs are characterized by extensive genetic variability, they circulate among different hosts and can establish host-specific lineages. The four main hosts are: avian, swine, human and equine, with occasional transmission to other mammalian species. The host diversity is mirrored in the range of the RT-qPCR assays for IAV detection. Different assays are recommended by the responsible health authorities for generic IAV detection in birds, swine or humans. In order to unify IAV monitoring in different hosts and apply the One Health approach, we developed a single RT-qPCR assay for universal detection of all IAVs of all subtypes, species origin and global distribution. The assay design was centred on a highly conserved region of the IAV matrix protein (MP)-segment identified by a comprehensive analysis of 99,353 sequences. The reaction parameters were effectively optimised with efficiency of 93–97% and LOD95% of approximately ten IAV templates per reaction. The assay showed high repeatability, reproducibility and robustness. The extensive in silico evaluation demonstrated high inclusivity, i.e. perfect sequence match in the primers and probe binding regions, established as 94.6% for swine, 98.2% for avian and 100% for human H3N2, pandemic H1N1, as well as other IAV strains, resulting in an overall predicted detection rate of 99% on the analysed dataset. The theoretical predictions were confirmed and extensively validated by collaboration between six veterinary or human diagnostic laboratories on a total of 1970 specimens, of which 1455 were clinical and included a diverse panel of IAV strains.
Collapse
|
18
|
Impact of nurse sows on influenza A virus transmission in pigs under field conditions. Prev Vet Med 2021; 188:105257. [PMID: 33472145 DOI: 10.1016/j.prevetmed.2021.105257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022]
Abstract
Piglets prior to weaning play a central role in maintaining influenza infections in breeding herds and the use of nurse sows is a common practice to adopt piglets that fall behind and that otherwise would die. Transmission of influenza A virus (IAV) from nurse sows to adopted pigs has been reported experimentally, however, the importance of this route of transmission under field conditions has not yet been elucidated. A cohort study to assess the IAV status in nurse and control sows and their respective litters was carried out in three influenza positive breed-to-wean farms. A total of 94 control and 90 nurse sows were sampled by collecting udder skin wipes and oral swabs at enrollment (∼ 5-7 days after farrowing) and at weaning. Six piglets per litter were sampled randomly at enrollment, 2 days post-enrollment (DPE), 4 DPE, at day 14 of lactation (14DL) and at weaning. At enrollment, 76 % (69/91) of udder wipes and 3 % (3/89) of oral swabs from nurse sows were positive by rRT-PCR compared with 23 % (21/92) of udder wipes and 0 % (0/85) of oral swabs from control sows. Of the 94 control litters sampled, 11.7 %, 14.9 %, 22.9 %, 46.8 % and 63.9 % tested rRT-PCR IAV positive at enrollment, 2DPE, 4DPE, 14 DL and weaning, respectively. Corresponding prevalence for nurse sow litters were 12.2 %, 30.2 %, 37.0 %, 59.4 % and 56.4 %. The odds of IAV positivity were significantly higher (p < 0.05) for litters from nurse sows 2 DPE (odd ratio (OR) = 6.13, 95 % CI = 1.8-21.2), 4 DPE (OR = 5.5, 95 % CI = 1.7-17.8) and 14 DL (OR = 3.7, 95 % CI = 1.1-12.3). However, there were no differences in the proportion of positive samples at weaning. Moreover, approximately 18 % of the control sows and 11 % of nurse sows that tested IAV negative in oral swabs at enrollment, tested IAV positive at weaning. This study indicates that nurse sows can contribute to the transmission and perpetuation of IAV infections in pigs prior to weaning, particularly during the first week after adoption.
Collapse
|
19
|
Pessoa J, Rodrigues da Costa M, García Manzanilla E, Norton T, McAloon C, Boyle L. Managing respiratory disease in finisher pigs: Combining quantitative assessments of clinical signs and the prevalence of lung lesions at slaughter. Prev Vet Med 2020; 186:105208. [PMID: 33310195 DOI: 10.1016/j.prevetmed.2020.105208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to assess the relationship between quantitative assessments of clinical signs of respiratory disease (recorded manually and automatically) and the prevalence of lung lesions at slaughter to validate the use of both in the management of respiratory disease on farm. This was an observational study where pigs (n = 1573) were monitored from 25 ± 5.3 kg (week 12) to slaughter at 114 ± 15.4 kg (week 24). Pigs were housed in eight rooms divided into six pens on a wean-to-finish farm. A manual pen-based coughing (CF) and sneezing (SF) frequency was recorded weekly, for ten consecutive weeks, and a SOMO box (SoundTalks®) was installed in each room, issuing a daily respiratory distress index (RDI) for 13 weeks. Lungs were individually scored for pneumonia, scarring and dorsocaudal (DC) and cranial (CP) pleurisy lesions at slaughter. Relationship between prevalence of lung lesions and weekly RDI and CF and SF was assessed using Spearman's rank correlations and multivariable linear and logit-normal models. Both coughing and lung lesions were largely pen-specific, which fit the disease presentation of Mycoplasma hyopneumoniae. Results showed agreement between RDI and CF (rs = 0.5, P < 0.001), measuring higher levels of coughing at the beginning (weeks 13-14) and end (weeks 21-24, and weeks 21-22, respectively) of the finisher period. Positive associations were found between the prevalence of pneumonia and CF on week 21 and 22 (P < 0.001 and P = 0.011, respectively) and RDI on week 21-24 (rs > 0.70; P < 0.050); the prevalence of DC and CP, and CF on week 22 (P < 0.001); and prevalence of scar lesions and CF on week 17 and 21 (P = 0.013 and P = 0.004, respectively), and RDI on week 21-24 (rs > 0.70; P < 0.050). In the earlier weeks of the finisher stage, coughing was recorded but was not reflected in a higher prevalence of lung lesions at slaughter. These findings highlight the benefit of including measurements of coughing frequency to complement post mortem findings, to improve the management of respiratory disease on farm.
Collapse
Affiliation(s)
- Joana Pessoa
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; M3-BIORES-Measure, Model & Manage Bioresponses, KU Leuven, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium.
| | - Maria Rodrigues da Costa
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tomas Norton
- M3-BIORES-Measure, Model & Manage Bioresponses, KU Leuven, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium
| | - Conor McAloon
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Boyle
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
20
|
Bakre AA, Jones LP, Kyriakis CS, Hanson JM, Bobbitt DE, Bennett HK, Todd KV, Orr-Burks N, Murray J, Zhang M, Steinhauer DA, Byrd-Leotis L, Cummings RD, Fent J, Coffey T, Tripp RA. Molecular epidemiology and glycomics of swine influenza viruses circulating in commercial swine farms in the southeastern and midwest United States. Vet Microbiol 2020; 251:108914. [PMID: 33181438 DOI: 10.1016/j.vetmic.2020.108914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Tracking the genetic diversity and spread of swine influenza viruses (SIVs) in commercial swine farms is central for control and to reduce the potential emergence of SIV reassortants. We analyzed the diversity of SIVs in nasal washes or oral fluids from commercial swine farms in North Carolina using influenza M qRT-PCR and hemagglutinin (HA) and neuraminidase (NA) subtyping. We found a predominance of H1 HAs and N2 NAs in the samples examined. The majority of the H1 HAs could be further classified into gamma and delta subclusters. We also identified HAs of the H1 alpha cluster, and those of human novel pandemic origin. Glycan binding profiles from a representative subset of these viruses revealed broad α2,6 sialylated glycan recognition, though some strains exhibited the ability to bind to α2,3 sialic acid. These data show that SIV surveillance can aid our understanding of viral transmission dynamics and help uncover the diversity at the human-swine interface.
Collapse
Affiliation(s)
| | - Les P Jones
- Department of Infectious Diseases, Athens, GA, United States
| | | | - Jarod M Hanson
- Department of Infectious Diseases, Athens, GA, United States
| | - Davis E Bobbitt
- Department of Infectious Diseases, Athens, GA, United States
| | | | - Kyle V Todd
- Department of Infectious Diseases, Athens, GA, United States
| | | | - Jackelyn Murray
- Department of Infectious Diseases, Athens, GA, United States
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | | | | | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, United States
| | - Joseph Fent
- Smithfield Foods, Rose Hill, NC, United States
| | | | - Ralph A Tripp
- Department of Infectious Diseases, Athens, GA, United States.
| |
Collapse
|
21
|
Bhatta TR, Ryt-Hansen P, Nielsen JP, Larsen LE, Larsen I, Chamings A, Goecke NB, Alexandersen S. Infection Dynamics of Swine Influenza Virus in a Danish Pig Herd Reveals Recurrent Infections with Different Variants of the H1N2 Swine Influenza A Virus Subtype. Viruses 2020; 12:v12091013. [PMID: 32927910 PMCID: PMC7551734 DOI: 10.3390/v12091013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza A virus (IAV) in swine, so-called swine influenza A virus (swIAV), causes respiratory illness in pigs around the globe. In Danish pig herds, a H1N2 subtype named H1N2dk is one of the main circulating swIAV. In this cohort study, the infection dynamic of swIAV was evaluated in a Danish pig herd by sampling and PCR testing of pigs from two weeks of age until slaughter at 22 weeks of age. In addition, next generation sequencing (NGS) was used to identify and characterize the complete genome of swIAV circulating in the herd, and to examine the antigenic variability in the antigenic sites of the virus hemagglutinin (HA) and neuraminidase (NA) proteins. Overall, 76.6% of the pigs became PCR positive for swIAV during the study, with the highest prevalence at four weeks of age. Detailed analysis of the virus sequences obtained showed that the majority of mutations occurred at antigenic sites in the HA and NA proteins of the virus. At least two different H1N2 variants were found to be circulating in the herd; one H1N2 variant was circulating at the sow and nursery sites, while another H1N2 variant was circulating at the finisher site. Furthermore, it was demonstrated that individual pigs had recurrent swIAV infections with the two different H1N2 variants, but re-infection with the same H1N2 variant was also observed. Better understandings of the epidemiology, genetic and antigenic diversity of swIAV may help to design better health interventions for the prevention and control of swIAV infections in the herds.
Collapse
Affiliation(s)
- Tarka Raj Bhatta
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
- Correspondence: (T.R.B.); (S.A.); Tel.: +61-0-452199095 (T.R.B.); +61-0-342159635 (S.A.)
| | - Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
| | - Jens Peter Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
| | - Inge Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
| | - Anthony Chamings
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Nicole B. Goecke
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
- Correspondence: (T.R.B.); (S.A.); Tel.: +61-0-452199095 (T.R.B.); +61-0-342159635 (S.A.)
| |
Collapse
|
22
|
Goecke NB, Kobberø M, Kusk TK, Hjulsager CK, Pedersen KS, Kristensen CS, Larsen LE. Objective pathogen monitoring in nursery and finisher pigs by monthly laboratory diagnostic testing. Porcine Health Manag 2020; 6:23. [PMID: 32922832 PMCID: PMC7476771 DOI: 10.1186/s40813-020-00161-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Infectious diseases are of great economic importance in commercial pig production, causing both clinical and subclinical disease, with influence on welfare, productivity, and antibiotic use. The causes of these diseases are often multifactorial and laboratory diagnostics are seldom routinely performed. The aim of the present study was to explore the benefits of monthly pathogen monitoring in nursery and finisher herds and to examine association between laboratory results and observed clinical signs, including coughing and diarrhoea. Three monthly samplings were conducted in three different age groups in six nursery and four finisher production units. For each unit, two pens were randomly selected in each age group and evaluated for coughing and diarrhoea events. Furthermore, faecal sock and oral fluid samples were collected in the selected pens and analysed for 18 respiratory and enteric viral and bacterial pathogens using the high-throughput real-time PCR BioMark HD platform (Fluidigm, South San Francisco, USA). Results In total, 174 pens were sampled in which eight coughing events and 77 diarrhoeic events were observed. The overall findings showed that swine influenza A virus, porcine circovirus 2, porcine cytomegalovirus, Brachyspira pilosicoli, Lawsonia intracellularis, Escherichia coli fimbria types F4 and F18 were found to be prevalent in several of the herds. Association between coughing events and the presence of swine influenza A virus, porcine cytomegalovirus (Cq ≤ 20) or a combination of these were found. Furthermore, an association between diarrhoeic events and the presence of L. intracellularis (Cq ≤ 24) or B. pilosicoli (Cq ≤ 26) was found. Conclusions The use of high-throughput real-time PCR analysis for continuous monitoring of pathogens and thereby dynamics of infections in a pig herd, provided the veterinarian and farmer with an objective knowledge on the distribution of pathogens in the herd. In addition, the use of a high-throughput method in combination with information about clinical signs, productivity, health status and antibiotic consumption, presents a new and innovative way of diagnosing and monitoring pig herds and even to a lower cost than the traditional method.
Collapse
Affiliation(s)
- Nicole B Goecke
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.,Present address: University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Maja Kobberø
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Thomas K Kusk
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Charlotte K Hjulsager
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.,Present address: Statens Serum Institut, 2300 Copenhagen S, Denmark
| | | | | | - Lars E Larsen
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.,Present address: University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
23
|
Zell R, Groth M, Krumbholz A, Lange J, Philipps A, Dürrwald R. Novel reassortant swine H3N2 influenza A viruses in Germany. Sci Rep 2020; 10:14296. [PMID: 32868846 PMCID: PMC7458913 DOI: 10.1038/s41598-020-71275-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/16/2020] [Indexed: 11/09/2022] Open
Abstract
Analysis of 228 H3N2 swine influenza A virus isolates collected between 2003 and 2015 in Germany revealed important changes in molecular epidemiology. The data indicate that a novel reassortant, Rietberg/2014-like swine H3N2, emerged in February 2014 in Northern Germany. It is comprised of a hemagglutinin gene of seasonal H3N2 (A/Denmark/129/2005-like), a neuraminidase gene of Emmelsbuell/2009-like swine H1N2 and the internal gene cassette of pandemic H1N1 viruses. Together with Danish swine H3N2 strains of 2013-2015 with identical genome layout, the Rietberg/2014-like viruses represent a second swine H3N2 lineage which cocirculates with a variant of the Gent/1984-like swine H3N2 lineage. This variant, named Gent1984/Diepholz-like swine H3N2, has a Gent/1984-like HA and a Diepholz/2008-like NA; the origin of the internal gene cassette likely derived from avian-like swine H1N1. The first isolate of the Gent1984/Diepholz reassortant emerged in Northern Germany in September 2011 whereas the last German Gent/1984-like isolate was collected in October 2011.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.
| | - Marco Groth
- CF DNA Sequencing, Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Andi Krumbholz
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Institute of Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Jeannette Lange
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Anja Philipps
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Thermo Fisher Scientific GENEART GmbH, 93059, Regensburg, Germany
| | - Ralf Dürrwald
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Robert Koch Institute, 13353, Berlin, Germany
| |
Collapse
|
24
|
Cocirculation of Swine H1N1 Influenza A Virus Lineages in Germany. Viruses 2020; 12:v12070762. [PMID: 32679903 PMCID: PMC7411773 DOI: 10.3390/v12070762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
The genome analysis of 328 H1N1 swine influenza virus isolates collected in a 13-year long-term swine influenza surveillance in Germany is reported. Viral genomes were sequenced with the Illumina next-generation sequencing technique and conventional Sanger methods. Phylogenetic analyses were conducted with Bayesian tree inference. The results indicate continued prevalence of Eurasian avian swine H1N1 but also emergence of a novel H1N1 reassortant, named Schneiderkrug/2013-like swine H1N1, with human-like hemagglutinin and avian-like neuraminidase and internal genes. Additionally, the evolution of an antigenic drift variant of A (H1N1) pdm09 was observed, named Wachtum/2014-like swine H1N1. Both variants were first isolated in northwest Germany, spread to neighboring German states and reached greater proportions of the H1N1 isolates of 2014 and 2015. The upsurge of Wachtum/2014-like swine H1N1 is of interest as this is the first documented persistent swine-to-swine spread of A (H1N1) pdm09 in Germany associated with antigenic variation. Present enzootic swine influenza viruses in Germany now include two or more co-circulating, antigenically variant viruses of each of the subtypes, H1N1 and H1N2.
Collapse
|
25
|
Sosa Portugal S, Cortey M, Tello M, Casanovas C, Mesonero-Escuredo S, Barrabés S, Pineda P, Wacheck S, Martín-Valls G, Mateu E. Diversity of influenza A viruses retrieved from respiratory disease outbreaks and subclinically infected herds in Spain (2017-2019). Transbound Emerg Dis 2020; 68:519-530. [PMID: 32619306 PMCID: PMC8246522 DOI: 10.1111/tbed.13709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
Abstract
The present study was aimed to assess the diversity of influenza A viruses (IAV) circulating in pig farms in the Iberian Peninsula. The study included two different situations: farms suffering respiratory disease outbreaks compatible with IAV (n = 211) and randomly selected farms without overt respiratory disease (n = 19). Initially, the presence of IAV and lineage determination was assessed by qRT‐PCR using nasal swabs. IAV was confirmed in 145 outbreaks (68.7%), mostly in nurseries (53/145; 36.5%). Subtyping by RT‐qPCR was possible in 94 of those cases being H1avN2hu (33.6%), H1avN1av (24.3%) and H1huN2hu (18.7%), the most common lineages. H3huN2hu and H1pdmN1pdm represented 7.5% and 6.5% of the cases, respectively. As for the randomly selected farms, 15/19 (78.9%) were positive for IAV. Again, the virus was mostly found in nurseries and H1avN2hu was the predominant lineage. Virus isolation in MDCK cells was attempted from positive cases. Sixty of the isolates were fully sequenced with Illumina MiSeq®. Within those 60 isolates, the most frequent genotypes had internal genes of avian origin, and these were D (19/60; 31.7%) and A (11/60; 18.3%), H1avN2hu and H1avN1av, respectively. In addition, seven previously unreported genotypes were identified. In two samples, more than one H or N were found and it was not possible to precisely establish their genotypes. A great diversity was observed in the phylogenetic analysis. Notably, four H3 sequences clustered with human isolates from 2004–05 (Malaysia and Denmark) that were considered uncommon in pigs. Overall, this study indicates that IAV is a very common agent in respiratory disease outbreaks in Spanish pig farms. The genetic diversity of this virus is continuously expanding with clear changes in the predominant subtypes and lineages in relatively short periods of time. The current genotyping scheme has to be enlarged to include the new genotypes that could be found in the future.
Collapse
Affiliation(s)
- Silvana Sosa Portugal
- Department Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, campus UAB, Cerdanyola del Vallès, Spain
| | - Martí Cortey
- Department Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, campus UAB, Cerdanyola del Vallès, Spain
| | - Montserrat Tello
- Department Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, campus UAB, Cerdanyola del Vallès, Spain
| | | | | | | | - Pilar Pineda
- Department Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, campus UAB, Cerdanyola del Vallès, Spain
| | | | - Gerard Martín-Valls
- Department Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, campus UAB, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Department Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, campus UAB, Cerdanyola del Vallès, Spain.,IRTA-CReSA-UAB, edifici CReSA, campus UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
26
|
Chamba Pardo FO, W Allerson M, R Culhane M, B Morrison R, R Davies P, Perez A, Torremorell M. Effect of influenza A virus sow vaccination on infection in pigs at weaning: A prospective longitudinal study. Transbound Emerg Dis 2020; 68:183-193. [PMID: 32652870 DOI: 10.1111/tbed.13688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/12/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Although vaccination is the main measure to control influenza A virus (IAV) in swine, there is limited information on the efficacy of sow vaccination on reducing IAV infections in pigs at weaning. We assessed the effect of sow vaccination on IAV infection in pigs at weaning in a cohort of 52 breeding herds studied prospectively. Herds were voluntarily enrolled according to their IAV history, sow vaccination protocol and monitored during six months (prospective longitudinal study). On each herd, nasal swabs were collected monthly from 30 pigs at weaning and tested for IAV by RT-PCR. IAV was detected in 25% (75/305) of sampling events. Of 9,150 nasal swab pools (3 individual nasal swabs/pool), 15% (458/3050) of pools tested IAV positive. IAV infections in pigs at weaning were lower in vaccinated herds compared to non-vaccinated ones. Moreover, no significant differences were seen between prefarrow and whole herd protocols, or the use of commercial versus autogenous IAV vaccines. Prefarrow and whole herd vaccination protocols reduced the odds of groups testing IAV positive at weaning in comparison with no vaccination. Our results are relevant when considering implementation of sow vaccination to control influenza infections in pigs at weaning and, hence, minimize transmission to growing pigs and other farms.
Collapse
Affiliation(s)
- Fabian O Chamba Pardo
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | | - Marie R Culhane
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Robert B Morrison
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Peter R Davies
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
27
|
Chauhan RP, Gordon ML. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020; 9:pathogens9050355. [PMID: 32397138 PMCID: PMC7281378 DOI: 10.3390/pathogens9050355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
The global anxiety and a significant threat to public health due to the current COVID-19 pandemic reiterate the need for active surveillance for the zoonotic virus diseases of pandemic potential. Influenza virus due to its wide host range and zoonotic potential poses such a significant threat to public health. Swine serve as a “mixing vessel” for influenza virus reassortment and evolution which as a result may facilitate the emergence of new strains or subtypes of zoonotic potential. In this context, the currently available scientific data hold a high significance to unravel influenza virus epidemiology and evolution. With this objective, the current systematic review summarizes the original research articles and case reports of all the four types of influenza viruses reported in swine populations worldwide. A total of 281 articles were found eligible through screening of PubMed and Google Scholar databases and hence were included in this systematic review. The highest number of research articles (n = 107) were reported from Asia, followed by Americas (n = 97), Europe (n = 55), Africa (n = 18), and Australia (n = 4). The H1N1, H1N2, H3N2, and A(H1N1)pdm09 viruses were the most common influenza A virus subtypes reported in swine in most countries across the globe, however, few strains of influenza B, C, and D viruses were also reported in certain countries. Multiple reports of the avian influenza virus strains documented in the last two decades in swine in China, the United States, Canada, South Korea, Nigeria, and Egypt provided the evidence of interspecies transmission of influenza viruses from birds to swine. Inter-species transmission of equine influenza virus H3N8 from horse to swine in China expanded the genetic diversity of swine influenza viruses. Additionally, numerous reports of the double and triple-reassortant strains which emerged due to reassortments among avian, human, and swine strains within swine further increased the genetic diversity of swine influenza viruses. These findings are alarming hence active surveillance should be in place to prevent future influenza pandemics.
Collapse
|
28
|
Ryt-Hansen P, Pedersen AG, Larsen I, Kristensen CS, Krog JS, Wacheck S, Larsen LE. Substantial Antigenic Drift in the Hemagglutinin Protein of Swine Influenza A Viruses. Viruses 2020; 12:E248. [PMID: 32102230 PMCID: PMC7077184 DOI: 10.3390/v12020248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
The degree of antigenic drift in swine influenza A viruses (swIAV) has historically been regarded as minimal compared to that of human influenza A virus strains. However, as surveillance activities on swIAV have increased, more isolates have been characterized, revealing a high level of genetic and antigenic differences even within the same swIAV lineage. The objective of this study was to investigate the level of genetic drift in one enzootically infected swine herd over one year. Nasal swabs were collected monthly from sows (n = 4) and piglets (n = 40) in the farrowing unit, and from weaners (n = 20) in the nursery. Virus from 1-4 animals were sequenced per month. Analyses of the sequences revealed that the hemagglutinin (HA) gene was the main target for genetic drift with a substitution rate of 7.6 × 10-3 substitutions/site/year and evidence of positive selection. The majority of the mutations occurred in the globular head of the HA protein and in antigenic sites. The phylogenetic tree of the HA sequences displayed a pectinate typology, where only a single lineage persists and forms the ancestor for subsequent lineages. This was most likely caused by repeated selection of a single immune-escape variant, which subsequently became the founder of the next wave of infections.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kongens Lyngby, Denmark
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark; (I.L.); (L.E.L.)
| | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kemitorvet Building 208, DK-2800 Kongens Lyngby, Denmark;
| | - Inge Larsen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark; (I.L.); (L.E.L.)
| | | | - Jesper Schak Krog
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark;
| | - Silke Wacheck
- Ceva Santé Animale 10 Avenue de la Ballastière, 33500 Libourne, France;
| | - Lars Erik Larsen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark; (I.L.); (L.E.L.)
| |
Collapse
|
29
|
Ryt-Hansen P, Pedersen AG, Larsen I, Krog JS, Kristensen CS, Larsen LE. Acute Influenza A virus outbreak in an enzootic infected sow herd: Impact on viral dynamics, genetic and antigenic variability and effect of maternally derived antibodies and vaccination. PLoS One 2019; 14:e0224854. [PMID: 31725751 PMCID: PMC6855628 DOI: 10.1371/journal.pone.0224854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen in pigs. Swine IAV (swIAV) infection causes respiratory disease and is thereby a challenge for animal health, animal welfare and the production economy. In Europe, the most widespread strategy for controlling swIAV is implementation of sow vaccination programs, to secure delivery of protective maternally derived antibodies (MDAs) to the newborn piglets. In this study we report a unique case, where a persistently swIAV (A/sw/Denmark/P5U4/2016(H1N1)) infected herd experienced an acute outbreak with a new swIAV subtype (A/sw/Denmark/HB4280U1/2017(H1N2)) and subsequently decided to implement a mass sow vaccination program. Clinical registrations, nasal swabs and blood samples were collected from four different batches of pigs before and after vaccination. Virus isolation, sequencing of the virus strain and hemagglutinin inhibition (HI) tests were performed on samples collected before and during the outbreak and after implementation of mass sow vaccination. After implementation of the sow mass vaccination, the time of infection was delayed and the viral load significantly decreased. An increased number of pigs, however, tested positive at two consecutive sampling times indicating prolonged shedding. In addition, a significantly smaller proportion of the 10–12 weeks old pigs were seropositive by the end of the study, indicating an impaired induction of antibodies against swIAV in the presence of MDAs. Sequencing of the herd strains revealed major differences in the hemagglutinin gene of the strain isolated before- and during the acute outbreak despite that, the two strains belonged to the same HA lineage. The HI tests confirmed a limited degree of cross-reaction between the two strains. Furthermore, the sequencing results of the hemagglutinin gene obtained before and after implementation of mass sow vaccination revealed an increased substitution rate and an increase in positively selected sites in the globular head of the hemagglutinin after vaccination.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Inge Larsen
- University of Copenhagen, Dpt. of Veterinary and Animal Sciences, Frederiksberg C, Denmark
| | - Jesper Schak Krog
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lars Erik Larsen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- University of Copenhagen, Dpt. of Veterinary and Animal Sciences, Frederiksberg C, Denmark
| |
Collapse
|
30
|
Ryt-Hansen P, Larsen I, Kristensen CS, Krog JS, Larsen LE. Limited impact of influenza A virus vaccination of piglets in an enzootic infected sow herd. Res Vet Sci 2019; 127:47-56. [PMID: 31677416 DOI: 10.1016/j.rvsc.2019.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023]
Abstract
Recent studies have questioned the effect of maternal derived antibodies (MDAs) to protect piglets against infection with influenza A virus (IAV). The lack of protection against IAV infections provided by MDAs has encouraged alternative vaccination strategies targeting young piglets in an attempt to stimulate an early antibody response. There is a lack of studies documenting the efficacy of piglet vaccination. In the present study, we monitored a group of vaccinated and non-vaccinated piglets in a Danish sow herd that initiated piglet vaccination with ¼ dose of an inactivated swine influenza vaccine at the time of castration (day 3-4). A total of 160 piglets from 11 sows were included and either vaccinated with 0.5 mL inactivated swine influenza vaccine or sham-vaccinated. From week 0 until week 6, all included piglets were clinically examined and nasal swapped once per week and weighed at weeks 0, 3 and 6. Blood samples were collected from sows at week 0 and from piglets at week 3. Vaccination of piglets had limited effect on clinical signs, body weight, antibody development and viral shedding, within the first 6 weeks of life. At least 50% of all pigs of each treatment group tested positive for IAV at week 2, and very early onset of IAV shedding was observed. In total, 18 pigs were IAV positive in nasal swabs for more than one consecutive sampling time indicating prolonged shedding and 14 pigs were IAV positive with negative samplings in between indicating re-infection with the same IAV strain.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kongens Lyngby, Denmark.
| | - Inge Larsen
- Dpt. of Veterinary and Animal Sciences Grønnegårdsvej 2, University of Copenhagen, DK-1870 Frederiksberg C, Denmark.
| | | | - Jesper Schak Krog
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kongens Lyngby, Denmark.
| | - Lars Erik Larsen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kongens Lyngby, Denmark; Dpt. of Veterinary and Animal Sciences Grønnegårdsvej 2, University of Copenhagen, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|