1
|
Zhang D, Xie D, Qu Y, Mu D, Wang S. Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives. Gut Microbes 2025; 17:2451071. [PMID: 39826099 DOI: 10.1080/19490976.2025.2451071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential. We further critically examine dysbiotic alterations within the gut microbiota, with a particular focus on imbalances in bacterial and viral communities, which may contribute to the onset of NEC. The intricate interactions among toll-like receptor 4 (TLR4), microvascular integrity, immune activation, and the inflammatory milieu are meticulously summarized, offering a sophisticated understanding of NEC pathophysiology. This academic review aims to enhance the etiological comprehension of NEC, promote the development of targeted therapeutic interventions, and impart the significant impact of perinatal factors on the formulation of preventive and curative strategies for the disease.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongke Xie
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shaopu Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yin W, Chen J, Xu Y, Yu C, Zhou X, Zhang Y. Efficient disinfection of real toilet blackwater by ultraviolet/peracetic acid process: Selective intracellular biomolecular oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138099. [PMID: 40179780 DOI: 10.1016/j.jhazmat.2025.138099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Toilet blackwater (BW) disinfection is crucial for preventing microbial contamination but is hindered by its complex composition. This study explored the combined ultraviolet and peracetic acid (UV/PAA) process as a novel strategy for BW disinfection. The UV/PAA process effectively inactivated Fecal coliform (1.372 × 10-5 s-2) in real BW, despite presence of turbidity, suspended solids, and organic matter, which could hinder disinfection. The highly electrophilic PAA and acetoxy(peroxy) radicals were identified as crucial contributors to bacterial inactivation. Biochemical analysis and Density Functional Theory calculations revealed that the system primarily operates through selective intracellular biomolecular oxidation. Electrophilic species preferentially oxidized amino acids with highly local nucleophilicity index, particularly those containing sulfur or nitrogen moieties. This selective oxidation caused protein denaturation, inducing cells into a viable but non-culturable (VBNC) state. Meanwhile, the membrane integrity and metabolic activity was preserved, while oxidative stress and DNA disruption effectively limited bacterial regrowth, proving that this process selectively damages intracellular biomolecules, such as amino acids and DNA. Additionally, the process significantly reduced the abundance of gut microbiota and other pathogens in real BW, highlighting its broad-spectrum antimicrobial efficacy. The UV/PAA process represented a sustainable and eco-friendly advanced disinfection solution for BW treatment.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Yue Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chengzhi Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Ahmadi S, Alikamali M, Nezhadi J, Ghotaslou R. The relationship between gut microbiota and preterm premature rupture of membranes: Mechanisms of action and clinical applications. Microb Pathog 2025; 205:107673. [PMID: 40339623 DOI: 10.1016/j.micpath.2025.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Preterm Premature Rupture of Membrane (PPROM) constitutes a prevalent obstetric complication that markedly heightens the risk of neonatal mortality and low birth weight, while also potentially impacting the psychological well-being of the mother. Despite established associations between PPROM and various underlying medical conditions or lifestyle factor, a definitive treatment strategy continues to remain unattainable. Contemporary research indicates that dysbiosis of the gut microbiome may play a significant role in the pathogenesis of PPROM. Consequently, this study endeavors to gather recent findings related to the mechanisms underlying intestinal dysbiosis in relation to PPROM. It aims to offer novel insights into this critical issue. An increasing amount of evidence suggests that specific intestinal bacteria have the capacity to translocate into the vascular system and the amniotic cavity during pregnancy. This happens as a consequence of imbalances or dysbiosis within the gut microbiota. This translocation may be facilitated by the presence of bacteria within the amniotic cavity, modifications in the vaginal microbiota, and activation of the Hypothalamus-Pituitary-Adrenal (HPA) axis, which initiates a physiological cascade that accelerates the progression of PPROM. In light of these findings, the preservation of gut microbial homeostasis, particularly through the application of probiotics or dietary modifications, may serve to alleviate the detrimental effects of dysbiosis on PPROM.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Javad Nezhadi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Ghotaslou
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zhang Y, Yang X, Dong C, Zhang M, Guan Q, Chang H, Hang B, Mao JH, Snijders AM, Xia Y. Trace Element Exposure during Pregnancy Has a Persistent Influence on Perinatal Gut Microbiota in Mother-Infant Dyads. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7820-7834. [PMID: 40145873 DOI: 10.1021/acs.est.4c11640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Trace elements have been recognized as the modifiers of the gut microbiota. However, population-based evidence about their effects on maternal gut microbiota dynamics, as well as the intergenerational impacts on neonatal gut microbiota, has been lacking. We examined the longitudinal microbiota data from mother-infant dyads and demonstrated that maternal trace element exposure played a pivotal role in shaping the composition and similarity of the mother-infant gut microbiota. Specifically, serum levels of cobalt (Co), molybdenum (Mo), and rubidium (Rb) were identified to cause further fluctuation in the shift of the maternal gut microbiota. Antibiotic usage shortly before or on the delivery day, as well as maternal zinc (Zn) exposure, affected the gut microbiota similarity within mother-infant dyads. Rb demonstrated an intergenerational effect on meconium Bifidobacterium abundance by altering its abundance in the maternal gut. Notably, this effect was strengthened in the vaginal delivery group without antibiotic usage, while it was attenuated in the c-section delivery group. Our results suggest that maternal trace element exposure has a persistent influence on perinatal gut microbiota, which offers novel insights into promoting mother and infant health.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chao Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
5
|
Cao D, Chen J, Zhang Y, Rui H, Guang K, Zhang L, Wu R, Nian S, Song X. Application of Metabolomics and Microbiome Analysis for Revealing the Endogenous Mechanism of Baizhu Xiaozhong San in Postpartum Rats with Spleen-qi Deficiency. J Med Food 2025. [PMID: 40238668 DOI: 10.1089/jmf.2024.k.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Postpartum women are in a state of physical weakness and suffering from fatigue. Metabolic disturbances in the postpartum period may lead to an increased prevalence of postpartum depression, hemorrhage, and obesity, underscoring the importance of prioritizing maternal health. The combination (Baizhu Xiaozhong San, BZXZS) of charred Atractylodis macrocephalae Koidz. (Baizhu, BZ) and charred Fructus Aurantii Immaturus (Zhishi, ZS) has primary applications for invigorating the spleen and promoting diuresis. This study utilized serum/spleen metabolomics in conjunction with 16S rDNA sequencing analysis to investigate the endogenous metabolic alterations and intestinal homeostasis in postpartum rats exhibiting spleen-deficiency syndrome (SDS). The pathological symptoms of postpartum SDS rats in the administration groups were gradually restored, in particular, the symptoms of the BZXZS-H group rats improved significantly. As a result, 32 differential metabolites and 7 correlated metabolic pathways (impact value > 0.1) demonstrated the improvement effect of BZXZS on postpartum SDS rats mostly focusing on disorders of energy, carbohydrate, and lipid metabolism. 16S rDNA gene sequencing indicated that BZXZS had a significantly better regulatory effect on Lactobacillus faecis. The findings suggest that BZXZS exerts a positive impact on the intestinal health and the immune system of postpartum SDS rats through an intricate cascade of interactions with various targets.
Collapse
Affiliation(s)
- Di Cao
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Jie Chen
- School of Chinese Materia medica, Guangzhou University of Chinese Medicine, Guang Zhou, China
| | - Yanhua Zhang
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Hao Rui
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Ke Guang
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Le Zhang
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Ruyi Wu
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wu Hu, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wu Hu, China
| | - Xiaojun Song
- School of Pharmacy, Wannan Medical College, Wu Hu, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wu Hu, China
| |
Collapse
|
6
|
Lv W, Wang T, He S, Zhang W, Tong Y, Liu M, Wang Z, Chen R, Jin W, Ma Y, Huang J, Zhang Y, Zhu Y, Qu Q, Guo S. Microbiota regulated by Shenling Baizhu powder maintains intestinal homeostasis via the gut-breast axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156528. [PMID: 40024112 DOI: 10.1016/j.phymed.2025.156528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The response of the microbiota to weaning plays a crucial role in shaping long-term immunity and overall lifelong health. The gut and milk microbiota of mothers exert a profound influence on the microbiota and health of their offspring. Although Shenling Baizhu powder (SBP) has demonstrated efficacy in alleviating weaning stress-induced diarrhea in suckling piglets, the underlying mechanism of this effect remains unknown. METHODS One hundred sows were randomly assigned to two groups: the control (CON) group and the SBP group. Piglet body weights were recorded after birth and at weaning day. Colostrum was collected at 2-12 h after delivery for subsequent SIgA determination via ELISA. Sow feces, piglet feces and colostrum were collected for 16S rRNA gene sequence analysis. Sixteen SD rats were randomly assigned to four groups. Milk pills were collected from the stomach of newborn rats and EGF, TGFβ2 and SIgA were subsequently determined via ELISA. Maternal and neonatal rat feces and milk were collected on the weaning day for 16S rRNA gene sequence analysis. Ileum and colon tissues were collected for subsequent detection via RT‒qPCR. RESULTS We observed that supplementing with SBP during pregnancy and lactation enhanced the weaning weights of the piglets. This effect was associated with an improvement in the microbiota structure, particularly in the promotion of short-chain fatty acid (SCFA)-producing bacteria in the maternal gut, milk and neonatal gut. Furthermore, SBP treatment increased the similarity of the microbiota among these maternal and neonatal components. These findings were replicated in rats. Additionally, SBP led to an increase in SCFA production in the milk of maternal rats. Moreover, SBP upregulated G protein-coupled receptors (GPCRs) expression, resulting in enhanced expression of the tight junction proteins ZO-1 and Occludin. Also, SBP treatment significantly elevated the levels of transforming growth factor beta 2 (TGFβ2), epidermal growth factor (EGF), and secretory immunoglobulin A (SIgA) in the milk. CONCLUSIONS Our findings indicate that SBP mediates beneficial effects by facilitating the transmission of maternal microbiota to neonates through milk, thereby promoting intestinal health and alleviating weaning stress in neonates.
Collapse
Affiliation(s)
- Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Yaqi Tong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhihua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Sun Y, Huang S, Li M, Yang Y, Ma J, Xie R, Wang J, Zhao Q, Qin S, He L, Jiang J, Zhao Q, Jin G, Liu X, Huang H, Yang Y, Wei J, Liu W, Wang B, Yang R, Su X, Cao H. Maternal high-fat diet disrupts intestinal mucus barrier of offspring by regulating gut immune receptor LRRC19. Commun Biol 2025; 8:420. [PMID: 40075219 PMCID: PMC11903762 DOI: 10.1038/s42003-025-07836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Maternal high fat diet (MHFD) increased colitis susceptibility in adulthood. However, the mechanism remains unclear. We sought to explore whether novel gut immune receptor leucine-rich repeat C19 (LRRC19) contributed to the impaired mucus barrier of offspring exposed to MHFD via gut immune response and microbiota. The results showed that MHFD significantly impaired the intestinal mucus barrier of offspring, and up-regulated the expression of LRRC19. Lrrc19 deletion alleviated the mucus barrier disruption. Mechanistically, metagenome sequencing revealed that the MHFD-induced gut microbiota alteration was partly restored in Lrrc19-/- offspring. Muc2-associated bacteria were decreased in the MHFD group, such as Akkermansia_muciniphila_CAG_154, which increased in the Lrrc19-deficient offspring. Moreover, Lrrc19-/- offspring had a higher rate of indole-3-acetic acid (IAA)-producing bacterium, such as Lactobacillus reuteri. A targeted metabolomics analysis revealed that IAA emerged as the top candidate that might mediate the protective effects. IAA was found to improve the mucus barrier function by increasing the ratio of interleukin-22 (IL-22)+ ILC3 cells in an aryl hydrocarbon receptor (AhR)-dependent manner. These results suggest that MHFD disrupts the intestinal mucus barrier of offspring through regulating gut immune receptor LRRC19 and inducing an imbalance of gut microbiota and microbiota-derived metabolites.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
- Department of Endoscopy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shumin Huang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Yunwei Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Siqi Qin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Linlin He
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jiaying Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Huan Huang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Yazheng Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianmei Wei
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| |
Collapse
|
8
|
Tisseyre M, Collier M, Beeker N, Kaguelidou F, Treluyer JM, Chouchana L. Prenatal Exposure to Proton Pump Inhibitors and Risk of Serious Infections in Offspring During the First Year of Life: A Nationwide Cohort Study. Drug Saf 2025; 48:265-277. [PMID: 39630354 DOI: 10.1007/s40264-024-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 02/16/2025]
Abstract
INTRODUCTION AND OBJECTIVE Proton pump inhibitor (PPI) use in children increases the risk of infections, prompting inquiry into the impact of prenatal PPIs exposure on serious infections in offspring. As a research gap in this area exists, this study aimed to address it by assessing the association between prenatal PPIs exposure and serious infections in infants during their first year of life. METHODS Using the French health insurance data warehouse (SNDS) (2013-2018), we conducted a retrospective cohort study on singleton, full-term liveborn non-immunocompromised infants, stratified by PPI use during the first three months of life (early-life use). Proton pump inhibitor dispensing in ambulatory care settings during pregnancy defined exposure. Outcomes concerned any serious infections in offspring aged between 3 and 12 months. Adjusted odds ratios (aORs) were estimated using logistic regression with multivariable models to control for potential confounders. RESULTS Of the 2,485,545 infants included, 497,060 (23.3%) were prenatally exposed to PPIs and 97,767 (4.6%) had PPI use during the first three months of life. Prenatal PPI exposure was associated with serious infections in offspring (aOR, 1.09 [95% CI, 1.07-1.10]) in infants without early-life PPIs use. No association was found for infants with early-life PPI use (aOR, 1.05 [95% CI, 1.00-1.11]). Gastrointestinal infections were the sole site with persistent significance. CONCLUSION Prenatal PPI exposure is common and is not associated with a major risk of serious infections in infants during their first year. However, even after adjusting for several confounding factors, a weak association remains, especially in infants without early-life PPI use. While offering reassurance, adherence to clinical guidelines is still crucial.
Collapse
Affiliation(s)
- Mylène Tisseyre
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France.
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France.
| | - Mathis Collier
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
- Unité de Recherche clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Nathanaël Beeker
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
- Unité de Recherche clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Florentia Kaguelidou
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
- Centre d'Investigations Cliniques, INSERM CIC1426, Hôpital Robert Debré, APHP. Nord, Paris, France
| | - Jean-Marc Treluyer
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
- Unité de Recherche clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Laurent Chouchana
- Centre Régional de Pharmacovigilance, Service de Pharmacologie périnatale, pédiatrique et adulte, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP), 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- UMR7323 « Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte », INSERM, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Bendahmane I, Garrigues Q, Apper E, Mugnier A, Svilar L, Martin JC, Chastant S, Meynadier A, Mila H. Maternal oral supplementation with Saccharomyces boulardii I-1079 during gestation and early lactation impacts the early growth rate and metabolic profile of newborn puppies. Front Nutr 2025; 12:1500600. [PMID: 40083890 PMCID: PMC11903263 DOI: 10.3389/fnut.2025.1500600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Nutritional programming is a manipulation of fetal and neonatal development through maternal feeding. In humans and pigs, maternal yeast supplementation was demonstrated as a promising approach to positively to modulate newborns' health. This study aimed to investigate the effects of Saccharomyces cerevisiae var. boulardii CNCM I-1079 (SB) supplementation in pregnant and lactating bitches on the newborns' early growth rate (EGR, between birth and 2 days of life), metabolic profiles, and the association between both of them. A total of 17 female dogs and their 81 puppies were included. From day 28 of gestation until the end of the study, bitches were divided into two groups, one of which received orally 1.3 × 109 colony forming units of live yeast per day. Puppies from mothers receiving the live yeast were defined as the SB group (n = 40) and the others were defined as the placebo group (n = 4 1). For each puppy, EGR was calculated, and blood and urine samples were collected at D2 for metabolome analysis using liquid chromatography-mass spectrometry (LCMS). Puppies from the SB group presented higher EGR compared with the placebo group (12% vs. 7%; p = 0.049). According to the Sparse Partial Least Squares Discriminant Analysis (sPLS-DA), both urine and serum metabolome profiles were significantly different between the two groups with a total of 29 discriminating metabolites in urine and serum. Fourteen of them were implicated in the nitrogen metabolism pathway including, gamma-aminobutyrate, 3-methyl-l-histidine and xanthosine (less abundant in SB compared with placebo group, all p < 0.05), adenine, aspartate and proline (more abundant in SB compared with placebo group, all p < 0.05). Metabolic pathways pointed to proline synthesis, a crucial component in collagen synthesis and osteoarticular system development. Urinary proline abundance was positively correlated with EGR (r = 0.45; p < 0.001). These findings highlight the potential benefits of maternal supplementation with SB promoting early neonatal growth, essential for the neonatal survival, through nitrogen metabolism orientation.
Collapse
Affiliation(s)
- Ilyas Bendahmane
- NeoCare, Université de Toulouse, ENVT, Toulouse, France
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), École nationale vétérinaire de Toulouse (ENVT), Castanet Tolosan, France
| | | | | | | | | | | | | | - Annabelle Meynadier
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), École nationale vétérinaire de Toulouse (ENVT), Castanet Tolosan, France
| | - Hanna Mila
- NeoCare, Université de Toulouse, ENVT, Toulouse, France
| |
Collapse
|
10
|
Duman H, Karav S. Fiber and the gut microbiome and its impact on inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:51-76. [DOI: 10.1016/b978-0-443-18979-1.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Duan H, Liu G, Liu J, Wang Z, Bao S, Chang X, Yan W. Review: Application of Protein-Based Raw Materials in Health Foods in China. Foods 2024; 14:20. [PMID: 39796310 PMCID: PMC11720526 DOI: 10.3390/foods14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Raw protein materials are beneficial for human health, so they are being increasingly used in health foods. In recent years, there has been more and more research on and applications of raw protein materials, but few teams have conducted a detailed review of the application status of raw protein materials in China's health foods, the basis for their compliance and use, and the research on their health care functions. Therefore, this review evaluates the application of animal and plant proteins in China's health foods, the impact of animal and plant proteins on human health, and future research recommendations for animal and plant proteins. This review analyzes and discusses the data on approved health foods that have been verified to contain raw protein materials (mainly including the number of protein health foods approved over the years, the classification of raw protein materials and types of relevant regulations, the analysis of the frequency of use of raw protein materials, and the functions of approved health foods). Through this process, the application of raw protein materials in health foods in China is systematically reviewed. In short, through data analysis, this study found that in 1996~2024, a total of 1142 health foods containing raw protein materials were approved in China, which are mainly divided into animal proteins, vegetable proteins, microbial proteins, and peptide raw materials, and peptide raw materials comprise the majority. The compliance applications of these ingredients are mainly related to China's five categories of food regulations. The results show the following for health foods containing raw protein materials: in terms of the dosage form, they are mainly solid preparations; according to their functional claims, they mainly help to enhance immunity, help improve bone density, help improve skin moisture, and relieve physical fatigue; and in the application of raw materials, it is found that the use of raw materials such as casein phosphopeptide, soybean protein isolate, whey protein, collagen, spirulina, and other raw materials in products is relatively high. Finally, based on these studies, this paper discusses suggestions for raw protein materials in the future development of health food in China and also discusses the limitations of the current research in this review.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Gaigai Liu
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Jiaqi Liu
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Zhuoye Wang
- Xiangya School of Public Health, Central South University, Changsha 410083, China; (Z.W.); (S.B.)
| | - Shuyuan Bao
- Xiangya School of Public Health, Central South University, Changsha 410083, China; (Z.W.); (S.B.)
| | - Xinyue Chang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.); (J.L.); (X.C.)
| |
Collapse
|
12
|
Yang YCSH, Chou HC, Chen CM. Maternal Lactobacillus johnsonii supplementation attenuates hyperoxia-induced lung injury in neonatal mice through microbiota regulation. Pediatr Neonatol 2024:S1875-9572(24)00205-5. [PMID: 39721826 DOI: 10.1016/j.pedneo.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Supplemental oxygen impairs lung development in premature infants with respiratory distress. This study investigated the effects of maternal Lactobacillus johnsonii supplementation on hyperoxia-induced lung injury in neonatal mice. METHODS Pregnant C57BL/6 mice received L. johnsonii in normal saline (NS) from gestational days 16-21. Control pregnant mice received an equal volume of NS. After birth, the pups were exposed to hyperoxia (O2) or room air (RA) for 1 week. Four groups were studied: NS + RA, probiotic + RA, NS + O2, and probiotic + O2. On postnatal day 7, the lung and intestinal microbiota were sampled, and the right lung was analyzed. RESULTS Compared to the NS + RA, probiotic + RA, and probiotic + O2 groups, the NS + O2 group exhibited significantly lower body weight, lung vascular density, and more significant mean linear intercept, IL-6, and 8-OHdG. In the genus level of gut microbiota, the NS + O2 group showed considerably more Staphylococcus and less Lactobacillus than the other three groups. The outcomes showed that in neonatal mice exposed to hyperoxia, maternal L. johnsonii supplementation improved lung development, decreased IL-6 and 8-OHdG levels, and restored gut microbiota. CONCLUSIONS Maternal L. johnsonii supplementation reduced lung inflammation and improved lung development in hyperoxia-exposed neonatal mice. The mechanism may be related to the gut microbiota, as L. johnsonii improved gut microbiota communities and regulated dysregulated metabolic pathways.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taiwan.
| |
Collapse
|
13
|
Di Miceli M, Rossitto M, Martinat M, Marchaland F, Kharbouche S, Graland M, Younes F, Séré A, Aubert A, Khabbaz LR, Madore C, Delpech JC, Martín R, Layé S. Modified neuroimmune processes and emotional behaviour in weaned and late adolescent male and female mice born via caesarean section. Sci Rep 2024; 14:29807. [PMID: 39616177 PMCID: PMC11608364 DOI: 10.1038/s41598-024-80770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/21/2024] [Indexed: 02/07/2025] Open
Abstract
Elective and emergency Caesarean section (C-section) procedures are on the rise, exceeding the recommended guidelines by the World Health Organization. Higher morbidities and long-term health conditions are correlated to C-section deliveries, including neurodevelopmental disorders. During C-section delivery, newborns are not exposed to the vaginal commensal flora, which impedes the early establishment of the gut microbiota. The latter is essential for adequate neuro-immune processes to take place during infancy. In this study, we used a validated model of mice born by C-section (CSD), which mimics clinical observations of dysregulated gut microbiota. Animals were either born naturally or by CSD, before being adopted by dams who underwent delivery within the 12 preceding hours. Behavioural analyses were conducted at post-natal day (PND) 21 and 55. Our results indicate that animals born by C-section present significantly higher body weight in late (PND40-P53) but not early adolescence (PND21-P27), compared to animals born by vaginal delivery (VD). Male animals delivered by C-section presented significantly lower exploration time of the novel arm in the Y Maze test at PND55. However, at PND21, abnormal social interaction was witnessed in male and female animals born by CSD, with significantly decreased time spent interacting during the social interaction test. At both PND21 and PND55, animals from both sexes born by C-section presented significantly decreased time spent in the open arm of the Elevated Plus Maze test, compared to control animals. We then measured the expression of genes associated to neuroimmune interactions (microglia phenotype), inflammatory mediators and lipids in several brain structures of VD and CSD mice at PND21 and PND55. At weaning, animals born by CSD presented altered microglia, inflammatory and lipid metabolism signatures, with increased expression of Cd36, Csf1r and Tnfα in different brain regions of males, but not in females. At PND64, Csf1r, Tmem119 as well as C3ar1 were significantly increased in males born by C-section, but not in females. In males born by vaginal delivery, the expression of Cd36 at PND64 was correlated to anxiety at PND55, whilst a correlation between the expression of Clec7a and the number of head dippings in the elevated plus maze was also noted in males born by CSD. Altogether, our study shows altered emotional behaviour in animals delivered by CSD, which is likely explained by underlying neuro-inflammatory processes in different brain regions. Our work further supports the long-term consequences of CSD on brain health.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK.
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Moïra Rossitto
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Maud Martinat
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Flore Marchaland
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Sarah Kharbouche
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Marion Graland
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Farah Younes
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Alexandra Séré
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Agnès Aubert
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Lydia Rabbaa Khabbaz
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Charlotte Madore
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Rebeca Martín
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
14
|
Liu J, Chen Y, Laurent I, Yang P, Xiao X, Li X. Gestational diabetes exacerbates intrauterine microbial exposure induced intestinal microbiota change in offspring contributing to increased immune response. Nutr Diabetes 2024; 14:87. [PMID: 39424815 PMCID: PMC11489853 DOI: 10.1038/s41387-024-00346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND maternal health during pregnancy can affect the intestinal microbial community of offspring, but currently the impact of intrauterine environmental changes resulting from gestational diabetes mellitus (GDM) on the microbiota of offspring as well as its interaction with the immune system remains unclear. AIMS to explore the impact of intrauterine microbial exposure during pregnancy of gestational diabetes mellitus on the development of neonate's intestinal microbiota and activation of immune responses. METHODS Levels of lipopolysaccharides in cord blood from GDM and expression of microbial recognition-related proteins in the placenta were measured. To evaluate embryonic intestinal colonization, pregnant mice with GDM were administered with labeled Escherichia coli or Lactobacillus. The intestinal colonization of pups was analyzed through 16S rRNA gene sequencing and labeled microbial culture. Additionally, memory T lymphocyte and dendritic cell co-culture experiments were conducted to elucidate the immune memory of intestinal microbes during the embryonic stages. RESULT Gestational diabetes mellitus led to elevated umbilical cord blood LPS level and increased GFP labeled Escherichia coli in the offspring's intestine after gestational microbial exposure. The mouse model of GDM exhibited increased immune markers including TLR4, TLR5, IL-22 and IL-23 in the placenta and a recall response from memory T cells in offspring's intestines, with similar observations found in human experiments. Furthermore, reduced intestinal microbiome diversity and an increased ratio of Firmicutes/Bacteroidetes was found in GDM progeny, with the stability of bacterial colonization been interfered. CONCLUSIONS Our investigation has revealed a noteworthy correlation between gestational diabetes and intrauterine microbial exposure, as well as alterations in the neonatal microbiota and activation of immune responses. These findings highlight the gestational diabetes's role on offspring's gut microbiota and immune system interactions with early-life pathogen exposure.
Collapse
Affiliation(s)
- Juncheng Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yan Chen
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrinology and Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Irakoze Laurent
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Yongchuan Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Li
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Pharmacy, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Zhang L, Li Q, Huang J, Zou Q, Zou H, Zhang X, Su Y, Li C. Causal associations between gut microbiota and premature rupture of membranes: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1440232. [PMID: 39286243 PMCID: PMC11402717 DOI: 10.3389/fimmu.2024.1440232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Previous study has indicated a potential link between gut microbiota and maternal pregnancy outcomes. However, the causal relationship between gut microbiota and premature rupture of membranes (PROM) remains a topic of ongoing debate. Methods A two-sample Mendelian Randomization (MR) study was used to investigate the relationship between gut microbiota and PROM. Genetic data on gut microbiota was obtained from the MiBioGen consortium's largest genome-wide association study (GWAS) (n=14,306). Genetic data on PROM (3011 cases and 104247 controls) were sourced from publicly available GWAS data from the Finnish National Biobank FinnGen consortium. Various methods including Inverse variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode were utilized to assess the causal relationship by calculating the odd ratio (OR) value and confidence interval (CI). Sensitivity analyses for quality control were performed using MR-Egger intercept tests, Cochran's Q tests, and leave-one-out analyses. Results The IVW method revealed that class Mollicutes (IVW, OR=0.773, 95%CI: 0.61-0.981, pval = 0.034), genus Marvinbryantia (IVW, OR=00.736, 95%CI: 0.555-0.977, pval = 0.034), genus Ruminooccaceae UCG003 (IVW, OR=0.734, 95%CI: 0.568-0.947, pval = 0.017) and phylum Tenericutes (IVW, OR=0.773, 95%CI: 0.566-1.067, pval = 0.034) were associated with a reduced risk of PROM, while genus Collinsella (IVW, OR=1.444, 95%CI: 1.028-2.026, pval = 0.034), genus Intestinibacter (IVW, OR=1.304, 95%CI: 1.047-1.623, pval = 0.018) and genus Turicibacter (IVW, OR=1.282, 95%CI: 1.02-1.611, pval = 0.033) increased the risk of PROM. Based on the other four supplementary methods, six gut microbiota may have a potential effect on PROM. Due to the presence of pleiotropy (pval=0.045), genus Lachnoclostridium should be ruled out. No evidence of horizontal pleiotropy or heterogeneity was found in other microbiota (pval >0.05). Conclusions In this study, we have discovered a causal relationship between the presence of specific probiotics and pathogens in the host and the risk of PROM. The identification of specific gut microbiota associated with PROM through MR studies offers a novel approach to diagnosing and treating this condition, thereby providing a new strategy for clinically preventing PROM.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiafeng Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Amy Medical University), and The Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Qin Zou
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zou
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Zhang
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Su
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Duan H, Sun Q, Chen C, Wang R, Yan W. A Review: The Effect of Bovine Colostrum on Immunity in People of All Ages. Nutrients 2024; 16:2007. [PMID: 38999755 PMCID: PMC11242949 DOI: 10.3390/nu16132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Bovine colostrum provides newborn calves with strong passive immunity, which will further affect the immunity of their offspring. Compared with other commercial dairy products, bovine colostrum emphasizes the limit of aflatoxin M1, pathogenic bacteria, microorganisms, antibiotics, stimulants, and other items, so it is safe to use. There are many reports that the use of bovine colostrum as a breast milk fortifier for preterm infants provides necessary immune support for premature infants, but the selection of bovine colostrum products chosen must be free of Bacillus cereus because they are very dangerous for premature infants. This also emphasizes that for the bovine colostrum that is used in preterm infants, more clinical research support is needed. At the same time, it should also be emphasized that the composition of BC is different from that of human colostrum, in particular, the main protein of BC is casein, while the main protein in breast milk is whey protein, especially α-lactalbumin, which together with ovalbumin is still the reference protein with the best biological value, especially for muscles. Therefore, bovine colostrum is currently not a complete substitute for breast milk. In recent years, in addition to reports of bovine colostrum use in preterm infants, studies have also found that bovine colostrum has immunomodulatory and promoting effects in adolescents, adults, and the elderly. This suggests that bovine colostrum has the potential to provide appropriate immune support for people of all ages. Therefore, this study aimed to evaluate the quality of nutritional characteristics of bovine colostrum on three dimensions. The effects of bovine colostrum on people of all ages is a narrative review of the effects of bovine colostrum on immunity in people of all ages. This review identified several classes of immunoactive substances in bovine colostrum, including immunoglobulins, cytokines, and enzymes, and compared the nutritional composition of bovine colostrum with mature milk, colostrum and mature milk in full-term breast milk, and colostrum and mature milk in preterm breast milk, to demonstrate that bovine colostrum provides a rich range of immunoactive components. In addition, the influencing factors affecting the quality of bovine colostrum (immunoglobulin) were reviewed, and it was found that individual differences, environmental factors, and processing methods had a great impact on the quality of BC. More importantly, the immunomodulatory effects of bovine colostrum in people of all ages were reviewed in detail (with an emphasis on preterm infants and immunocompromised children in neonates) as evidence to support the immunity effects of colostrum in people of all ages. This review hopes to use the above evidence to make people understand the health role of bovine colostrum as having a human immunomodulatory effect, and at the same time, when seeing the potential value of bovine colostrum in the future, the limitations of its application should also be deeply re-explored, such as lactose intolerance, allergies, etc., to provide effective solutions for the wide application of bovine colostrum.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China;
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Qian Sun
- Native Nutrition and Medical Research Institute, Tianmeijian Biotechnology (Beijing) Co., Ltd., Beijing 100101, China
- Research and Development Center, Jiangsu Tianmeijian Nature Bioengineering Co., Ltd., Nanjing 210038, China
| | - Chao Chen
- Native Nutrition and Medical Research Institute, Tianmeijian Biotechnology (Beijing) Co., Ltd., Beijing 100101, China
| | - Rongchang Wang
- Research and Development Center, Jiangsu Tianmeijian Nature Bioengineering Co., Ltd., Nanjing 210038, China
- Research and Development Center, Nanjing Daily Nutrition Biotechnology Co., Ltd., Nanjing 211215, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China;
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| |
Collapse
|
17
|
Hick E, Suárez M, Rey A, Mantecón L, Fernández N, Solís G, Gueimonde M, Arboleya S. Personalized Nutrition with Banked Human Milk for Early Gut Microbiota Development: In Pursuit of the Perfect Match. Nutrients 2024; 16:1976. [PMID: 38999725 PMCID: PMC11243202 DOI: 10.3390/nu16131976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The correct initial colonization and establishment of the gut microbiota during the early stages of life is a key step, with long-lasting consequences throughout the entire lifespan of the individual. This process is affected by several perinatal factors; among them, feeding mode is known to have a critical role. Breastfeeding is the optimal nutrition for neonates; however, it is not always possible, especially in cases of prematurity or early pathology. In such cases, most commonly babies are fed with infant formulas in spite of the official nutritional and health international organizations' recommendation on the use of donated human milk through milk banks for these cases. However, donated human milk still does not totally match maternal milk in terms of infant growth and gut microbiota development. The present review summarizes the practices of milk banks and hospitals regarding donated human milk, its safety and quality, and the health outcomes in infants fed with donated human milk. Additionally, we explore different alternatives to customize pasteurized donated human milk with the aim of finding the perfect match between each baby and banked milk for promoting the establishment of a beneficial gut microbiota from the early stages of life.
Collapse
Affiliation(s)
- Emilia Hick
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Marta Suárez
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandra Rey
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Laura Mantecón
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Fernández
- Pediatrics Service, University Hospital of Cabueñes (CAB-SESPA), 33394 Gijón, Spain
| | - Gonzalo Solís
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
18
|
Tochitani S, Tsukahara T, Inoue R. Perturbed maternal microbiota shapes offspring microbiota during early colonization period in mice. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:335-352. [PMID: 38692912 PMCID: PMC11377213 DOI: 10.2183/pjab.100.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Recent studies have highlighted the impact of disrupted maternal gut microbiota on the colonization of offspring gut microbiota, with implications for offspring developmental trajectories. The extent to which offspring inherit the characteristics of altered maternal gut microbiota remains elusive. In this study, we employed a mouse model where maternal gut microbiota disruption was induced using non-absorbable antibiotics. Systematic chronological analyses of dam fecal samples, offspring luminal content, and offspring gut tissue samples revealed a notable congruence between offspring gut microbiota profiles and those of the perturbed maternal gut microbiota, highlighting the profound influence of maternal microbiota on early-life colonization of offspring gut microbiota. Nonetheless, certain dominant bacterial genera in maternal microbiota did not transfer to the offspring, indicating a bacterial taxonomy-dependent mechanism in the inheritance of maternal gut microbiota. Our results embody the vertical transmission dynamics of disrupted maternal gut microbiota in an animal model, where the gut microbiota of an offspring closely mirrors the gut microbiota of its mother.
Collapse
Affiliation(s)
- Shiro Tochitani
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | | | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
19
|
Otaru N, Kourouma L, Pugin B, Constancias F, Braegger C, Mansuy IM, Lacroix C. Transgenerational effects of early life stress on the fecal microbiota in mice. Commun Biol 2024; 7:670. [PMID: 38822061 PMCID: PMC11143345 DOI: 10.1038/s42003-024-06279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined. Here we show that early postnatal stress in mice shifts the fecal microbial composition (binary Jaccard index) throughout life, including abundance of eight amplicon sequencing variants (ASVs). Further effects on fecal microbial composition, structure (weighted Jaccard index), and abundance of 16 ASVs are detected in the progeny across two generations. These effects are not accompanied by changes in bacterial metabolites in any generation. These results suggest that changes in the fecal microbial community induced by early life traumatic stress can be perpetuated from exposed parent to the offspring.
Collapse
Affiliation(s)
- Nize Otaru
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Lola Kourouma
- Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland
- Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland
| | - Benoit Pugin
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Florentin Constancias
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Christian Braegger
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
| | - Isabelle M Mansuy
- Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland.
- Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland.
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
20
|
Miao S, Yin J, Liu S, Zhu Q, Liao C, Jiang G. Maternal-Fetal Exposure to Antibiotics: Levels, Mother-to-Child Transmission, and Potential Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8117-8134. [PMID: 38701366 DOI: 10.1021/acs.est.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Due to its widespread applications in various fields, antibiotics are continuously released into the environment and ultimately enter the human body through diverse routes. Meanwhile, the unreasonable use of antibiotics can also lead to a series of adverse outcomes. Pregnant women and developing fetuses are more susceptible to the influence of external chemicals than adults. The evaluation of antibiotic exposure levels through questionnaire surveys or prescriptions in medical records and biomonitoring-based data shows that antibiotics are frequently prescribed and used by pregnant women around the world. Antibiotics may be transmitted from mothers to their offspring through different pathways, which then adversely affect the health of offspring. However, there has been no comprehensive review on antibiotic exposure and mother-to-child transmission in pregnant women so far. Herein, we summarized the exposure levels of antibiotics in pregnant women and fetuses, the exposure routes of antibiotics to pregnant women, and related influencing factors. In addition, we scrutinized the potential mechanisms and factors influencing the transfer of antibiotics from mother to fetus through placental transmission, and explored the adverse effects of maternal antibiotic exposure on fetal growth and development, neonatal gut microbiota, and subsequent childhood health. Given the widespread use of antibiotics and the health threats posed by their exposure, it is necessary to comprehensively track antibiotics in pregnant women and fetuses in the future, and more in-depth biological studies are needed to reveal and verify the mechanisms of mother-to-child transmission, which is crucial for accurately quantifying and evaluating fetal health status.
Collapse
Affiliation(s)
- Shiyu Miao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Fernandes KA, Lim AI. Maternal-driven immune education in offspring. Immunol Rev 2024; 323:288-302. [PMID: 38445769 DOI: 10.1111/imr.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.
Collapse
Affiliation(s)
| | - Ai Ing Lim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
22
|
Liu Z, Zhang D, Chen S. Unveiling the gastric microbiota: implications for gastric carcinogenesis, immune responses, and clinical prospects. J Exp Clin Cancer Res 2024; 43:118. [PMID: 38641815 PMCID: PMC11027554 DOI: 10.1186/s13046-024-03034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Dachuan Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
23
|
Bhatia Z, Kumar S, Seshadri S. Composition and interaction of maternal microbiota with immune mediators during pregnancy and their outcome: A narrative review. Life Sci 2024; 340:122440. [PMID: 38278350 DOI: 10.1016/j.lfs.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
The connection between maternal microbiota and infant health has been greatly garnered interest for therapeutic purposes. The early resident microbiota perpetually exhibits much more flexibility as compared to that of the adults, and therefore, constant need of understanding the infant as well as maternal microbiota and their implications however has increased. In this review, we focus mainly on the diversity of overall maternal microbiota including the gut, vaginal, colostrum microbiota and how inflammatory markers fluctuate throughout the normal pregnancy as well in pregnancy with complications. The maternal body undergoes a cascade of physiological changes including hormonal, immunological and metabolic events to support the fetal development. These changes at the time of pregnancy have been correlated with alteration in the composition and diversity of maternal microbiota. Along with alteration in microbiome, the levels of circulatory cytokines fluctuate by complex network of inflammation, in order to prevent the fetal allograft throughout the pregnancy. The dynamic relationship of gut microbiota with the host and its immune system allows one to have greater insights of their role in pregnancy and newborn's health. Emerging evidence suggests that the vertical transmission of bacterial community from mother to newborn may begin in-utero which contributes in developing the immune system and infant gut microbiota.
Collapse
Affiliation(s)
- Zeel Bhatia
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sunny Kumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
24
|
Li Z, Zhang Y, Wang L, Deng TK, Chiu WH, Ming WK, Xu C, Xiao X. Microbiota of pregnancy, placenta and newborns in the third trimester: A randomized controlled study. Heliyon 2024; 10:e24698. [PMID: 38314279 PMCID: PMC10837503 DOI: 10.1016/j.heliyon.2024.e24698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Microbiota in pregnant time is vital to healthy of pregnant women and their offspring. However, few study evaluate the composition of the microbiota of health pregnancy, placenta and their newborns at different stages and the origin of the placental microbiota. Samples were obtained from a total of 31 pregnant individuals and their offspring, analyzing by 16S rRNA amplicon sequencing of the V4 region to evaluate the composition and variation of them. We found that the microbiota of pregnant individuals changes in the third trimester. The placental microbiota has its own specific dominant microbiota. The placental microbiota is correlated with the pregnancy microbiota in the gut and vagina at 32-34 weeks but not at full term. The gut microbiota in newborns changes over the first 14 days.
Collapse
Affiliation(s)
- Zhe Li
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Wang
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tye Kian Deng
- Department of Obstetrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei-Hsiu Chiu
- Department of Obstetrics and Gynecology, Chung Shan Hospital, Taipei, Taiwan, China
| | - Wai-kit Ming
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Chengfang Xu
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology in the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Gan Y, Chen Y, Zhong H, Liu Z, Geng J, Wang H, Wang W. Gut microbes in central nervous system development and related disorders. Front Immunol 2024; 14:1288256. [PMID: 38343438 PMCID: PMC10854220 DOI: 10.3389/fimmu.2023.1288256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
The association between gut microbiota and central nervous system (CNS) development has garnered significant research attention in recent years. Evidence suggests bidirectional communication between the CNS and gut microbiota through the brain-gut axis. As a long and complex process, CNS development is highly susceptible to both endogenous and exogenous factors. The gut microbiota impacts the CNS by regulating neurogenesis, myelination, glial cell function, synaptic pruning, and blood-brain barrier permeability, with implication in various CNS disorders. This review outlines the relationship between gut microbiota and stages of CNS development (prenatal and postnatal), emphasizing the integral role of gut microbes. Furthermore, the review explores the implications of gut microbiota in neurodevelopmental disorders, such as autism spectrum disorder, Rett syndrome, and Angelman syndrome, offering insights into early detection, prompt intervention, and innovative treatments.
Collapse
Affiliation(s)
- Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yao Chen
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huijie Zhong
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhuo Liu
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
26
|
Rhoades NS, Cinco IR, Hendrickson SM, Prongay K, Haertel AJ, Flores GE, Slifka MK, Messaoudi I. Infant diarrheal disease in rhesus macaques impedes microbiome maturation and is linked to uncultured Campylobacter species. Commun Biol 2024; 7:37. [PMID: 38182754 PMCID: PMC10770169 DOI: 10.1038/s42003-023-05695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Diarrheal diseases remain one of the leading causes of death for children under 5 globally, disproportionately impacting those living in low- and middle-income countries (LMIC). Campylobacter spp., a zoonotic pathogen, is one of the leading causes of food-borne infection in humans. Yet to be cultured Campylobacter spp. contribute to the total burden in diarrheal disease in children living in LMIC thus hampering interventions. We performed microbiome profiling and metagenomic genome assembly on samples collected from over 100 infant rhesus macaques longitudinally and during cases of clinical diarrhea within the first year of life. Acute diarrhea was associated with long-lasting taxonomic and functional shifts of the infant gut microbiome indicative of microbiome immaturity. We constructed 36 Campylobacter metagenomic assembled genomes (MAGs), many of which fell within 4 yet to be cultured species. Finally, we compared the uncultured Campylobacter MAGs assembled from infant macaques with publicly available human metagenomes to show that these uncultured species are also found in human fecal samples from LMIC. These data highlight the importance of unculturable Campylobacter spp. as an important target for reducing disease burden in LMIC children.
Collapse
Affiliation(s)
- Nicholas S Rhoades
- Department of Molecular biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Isaac R Cinco
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Sara M Hendrickson
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Kamm Prongay
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Andrew J Haertel
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Gilberto E Flores
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
27
|
Abu YF, Singh S, Tao J, Chupikova I, Singh P, Meng J, Roy S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2024; 16:2292224. [PMID: 38108125 PMCID: PMC10730209 DOI: 10.1080/19490976.2023.2292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.
Collapse
Affiliation(s)
- Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Praveen Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
28
|
Nyangahu DD, Happel AU, Wendoh J, Kiravu A, Wang Y, Feng C, Plumlee C, Cohen S, Brown BP, Djukovic D, Ganief T, Gasper M, Raftery D, Blackburn JM, Allbritton NL, Gray CM, Paik J, Urdahl KB, Jaspan HB. Bifidobacterium infantis associates with T cell immunity in human infants and is sufficient to enhance antigen-specific T cells in mice. SCIENCE ADVANCES 2023; 9:eade1370. [PMID: 38064556 PMCID: PMC10708209 DOI: 10.1126/sciadv.ade1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Bacille Calmette-Guerin (BCG) vaccine can elicit good TH1 responses in neonates. We hypothesized that the pioneer gut microbiota affects vaccine T cell responses. Infants who are HIV exposed but uninfected (iHEU) display an altered immunity to vaccination. BCG-specific immune responses were analyzed at 7 weeks of age in iHEU, and responses were categorized as high or low. Bifidobacterium longum subsp. infantis was enriched in the stools of high responders, while Bacteroides thetaiotaomicron was enriched in low responders at time of BCG vaccination. Neonatal germ-free or SPF mice orally gavaged with live B. infantis exhibited significantly higher BCG-specific T cells compared with pups gavaged with B. thetaiotaomicron. B. infantis and B. thetaiotaomicron differentially affected stool metabolome and colonic transcriptome. Human colonic epithelial cells stimulated with B. infantis induced a unique gene expression profile versus B. thetaiotaomicron. We thus identified a causal role of B. infantis in early-life antigen-specific immunity.
Collapse
Affiliation(s)
- Donald D. Nyangahu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Anna-Ursula Happel
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jerome Wendoh
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Agano Kiravu
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Colin Feng
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Courtney Plumlee
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Sara Cohen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Bryan P. Brown
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Tariq Ganief
- Institute of Infectious Diseases and Molecular Medicine, Department of Integrative Biomedical Sciences, Division of Chemical and Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Melanie Gasper
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Jonathan M. Blackburn
- Institute of Infectious Diseases and Molecular Medicine, Department of Integrative Biomedical Sciences, Division of Chemical and Systems Biology, University of Cape Town, Cape Town, South Africa
| | | | - Clive M. Gray
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
- Biomedical Research Institute, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle WA, USA
| | - Heather B. Jaspan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
- Department of Pediatrics, School of Medicine, University of Washington, Seattle WA, USA
| |
Collapse
|
29
|
Jensen ET, Svane HM, Erichsen R, Kurt G, Heide-Jorgensen U, Sorensen HT, Dellon ES. Maternal and Infant Antibiotic and Acid Suppressant Use and Risk of Eosinophilic Esophagitis. JAMA Pediatr 2023; 177:1285-1293. [PMID: 37902735 PMCID: PMC10616763 DOI: 10.1001/jamapediatrics.2023.4609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 10/31/2023]
Abstract
Importance Eosinophilic esophagitis (EoE), a chronic disease with significant patient and health care burden, has increased rapidly in incidence across many countries. Elucidating risk factors for disease development is a priority for health care practitioners and patients. Objective To evaluate the association of maternal and infant use of antibiotics and acid suppressants with the development of EoE. Design, Setting, and Participants This was a population-based, case-control study of pediatric EoE (1996-2019) in Denmark using pathology, prescription, birth, inpatient, and outpatient health registry data and with complete ascertainment of all EoE cases among Danish residents born between 1997 and 2018. Study data were analyzed from September 2020 to August 2023. Exposures Maternal and infant use of antibiotics and acid suppressants, examining medication class, timing, and frequency of use. Main Outcome and Measure Development of EoE. Results Included in the study was a total of 392 cases and 3637 sex- and year of birth-matched controls with a median (IQR) age of 11.0 (6.0-15.0) years, 2772 male individuals (68.8%), and 1257 female individuals (31.2%). Compared with children with no antibiotic prescriptions filled during infancy, those with any use of an antibiotic had an associated 40% increase in risk of EoE (adjusted odds ratio [aOR], 1.4; 95% CI, 1.1-1.7). Those with 3 or more prescriptions had an associated 80% increase in risk of EoE (aOR, 1.8; 95% CI, 1.3-2.5). Frequency of maternal antibiotic use was associated with an increased risk (1 prescription: aOR, 1.4; 95% CI, 1.0-1.8; 3≤ prescriptions: aOR, 2.1; 95% CI, 1.4-3.2). Risk was highest for use in the third trimester and in the first 6 months from birth. Any acid suppressant use in infancy was associated with increased risk of EoE (aOR, 15.9; 95% CI, 9.1-27.7). Restriction of cases to those diagnosed at 5 years or older yielded similar results (aOR, 11.6; 95% CI, 5.5-24.8). For maternal use, 3 or more prescriptions were associated with an increased risk of EoE for her offspring (aOR, 5.1; 95% CI, 1.8-14.8). Conclusions and Relevance Maternal and infant antibiotic use were associated with increased risk of developing EoE, in a dose-response manner, and the magnitude of association was highest for exposure near the time of delivery. Increased risk was also observed with maternal and infant acid suppressant use. Exposure during early life, a period of known developmental susceptibility, may confer the greatest risk and opportunity for risk mitigation.
Collapse
Affiliation(s)
- Elizabeth T. Jensen
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Gastroenterology Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina
| | - Helene M. Svane
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Rune Erichsen
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Gencer Kurt
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | | | - Henrik T. Sorensen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Evan S. Dellon
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Zhou H, Yu B, Sun J, Chen H, Liu Z, Ge L, Chen D. Comparison of maternal and neonatal gut microbial community and function in a porcine model. Anim Biotechnol 2023; 34:2972-2978. [PMID: 36165762 DOI: 10.1080/10495398.2022.2126367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Our knowledge of the difference in maternal and neonatal gut microbiota composition is not fully understood. Using the Bama miniature pig model, the bacterial community in the feces from sows and piglets was analyzed on an IonS5TMXL platform targeting the single-end reads strategy. Results revealed that the maternal and neonatal bacteria profile in the pig model was distinct. Compared with the piglets, sows had higher proportions of bacteria in Spirochetes, Clostridiales, and Spirochaetales (p < 0.10) and had a lower abundance of bacteria in Tyzzerella (p < 0.05) and Alistipes (p < 0.10). Meanwhile, the proportions of bacteria in Oscillibacter and the index of Chao1, Shannon, and observed_species increased in the sows compared with those in the piglets (p < 0.05). Moreover, the abundance of bacteria associated with the human disease was higher (p < 0.05) and the population of bacteria associated with cellular processes was lower (p < 0.05) in the piglets compared with those in the sows. Collectively, the diversity and beneficial bacteria populations in the sow fecal microbiota exhibit more than those in the piglets. This study indicates that maternal fecal microbiota may be a beneficial source of transplanted bacteria to promote healthy function in neonates.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Buthgamuwa I, Fenelon JC, Roser A, Meer H, Johnston SD, Dungan AM. Gut microbiota in the short-beaked echidna (Tachyglossus Aculeatus) shows stability across gestation. Microbiologyopen 2023; 12:e1392. [PMID: 38129978 PMCID: PMC10721944 DOI: 10.1002/mbo3.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Indigenous gut microbial communities (microbiota) play critical roles in health and may be especially important for the mother and fetus during pregnancy. Monotremes, such as the short-beaked echidna, have evolved to lay and incubate an egg, which hatches in their pouch where the young feeds. Since both feces and eggs pass through the cloaca, the fecal microbiota of female echidnas provides an opportunity for vertical transmission of microbes to their offspring. Here, we characterize the gut/fecal microbiome of female short-beaked echidnas and gain a better understanding of the changes that may occur in their microbiome as they go through pregnancy. Fecal samples from four female and five male echidnas were obtained from the Currumbin Wildlife Sanctuary in Queensland and sequenced to evaluate bacterial community structure. We identified 25 core bacteria, most of which were present in male and female samples. Genera such as Fusobacterium, Bacteroides, Escherichia-Shigella, and Lactobacillus were consistently abundant, regardless of sex or gestation stage, accounting for 58.00% and 56.14% of reads in male and female samples, respectively. The echidna microbiome remained stable across the different gestation stages, though there was a significant difference in microbiota composition between male and female echidnas. This study is the first to describe the microbiome composition of short-beaked echidnas across reproductive phases and allows the opportunity for this novel information to be used as a metric of health to aid in the detection of diseases triggered by microbiota dysbiosis.
Collapse
Affiliation(s)
- Isini Buthgamuwa
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jane C. Fenelon
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Colossal Laboratories and BiosciencesDallasTexasUSA
| | - Alice Roser
- Currumbin Wildlife SanctuaryCurrumbinQueenslandAustralia
| | - Haley Meer
- Currumbin Wildlife SanctuaryCurrumbinQueenslandAustralia
| | - Stephen D. Johnston
- School of EnvironmentThe University of QueenslandGattonQueenslandAustralia
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | - Ashley M. Dungan
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
32
|
Happel AU, Rametse L, Perumaul B, Diener C, Gibbons SM, Nyangahu DD, Donald KA, Gray C, Jaspan HB. Bifidobacterium infantis supplementation versus placebo in early life to improve immunity in infants exposed to HIV: a protocol for a randomized trial. BMC Complement Med Ther 2023; 23:367. [PMID: 37853370 PMCID: PMC10583347 DOI: 10.1186/s12906-023-04208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION Infants who are born from mothers with HIV (infants who are HIV exposed but uninfected; iHEU) are at higher risk of morbidity and display multiple immune alterations compared to infants who are HIV-unexposed (iHU). Easily implementable strategies to improve immunity of iHEU, and possibly subsequent clinical health outcomes, are needed. iHEU have altered gut microbiome composition and bifidobacterial depletion, and relative abundance of Bifidobacterium infantis has been associated with immune ontogeny, including humoral and cellular vaccine responses. Therefore, we will assess microbiological and immunological phenotypes and clinical outcomes in a randomized, double-blinded trial of B. infantis Rosell®-33 versus placebo given during the first month of life in South African iHEU. METHODS This is a parallel, randomised, controlled trial. Two-hundred breastfed iHEU will be enrolled from the Khayelitsha Site B Midwife Obstetric Unit in Cape Town, South Africa and 1:1 randomised to receive 8 × 109 CFU B. infantis Rosell®-33 daily or placebo for the first 4 weeks of life, starting on day 1-3 of life. Infants will be followed over 36 weeks with extensive collection of meta-data and samples. Primary outcomes include gut microbiome composition and diversity, intestinal inflammation and microbial translocation and cellular vaccine responses. Additional outcomes include biological (e.g. gut metabolome and T cell phenotypes) and clinical (e.g. growth and morbidity) outcome measures. DISCUSSION The results of this trial will provide evidence whether B. infantis supplementation during early life could improve health outcomes for iHEU. ETHICS AND DISSEMINATION Approval for this study has been obtained from the ethics committees at the University of Cape Town (HREC Ref 697/2022) and Seattle Children's Research Institute (STUDY00003679). TRIAL REGISTRATION Pan African Clinical Trials Registry Identifier: PACTR202301748714019. CLINICAL TRIALS gov: NCT05923333. PROTOCOL VERSION Version 1.8, dated 18 July 2023.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Lerato Rametse
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Brandon Perumaul
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Donald D Nyangahu
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road Rondebosch, Cape Town, 7700, South Africa
- The Neuroscience Institute, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Clive Gray
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Francie Van Zijl Drive, Tygerberg, 7505, South Africa
| | - Heather B Jaspan
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA, 98195, USA
| |
Collapse
|
33
|
Harder HJ, Dauriat CJ, Chassaing B, Murphy AZ. Perinatal Morphine Exposure Induces Long-Term Changes in the Intestinal Microbiota of Male and Female Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558694. [PMID: 37790483 PMCID: PMC10542512 DOI: 10.1101/2023.09.20.558694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The increased use of opioids by women of reproductive age has resulted in a dramatic rise in number of infants exposed to opioids in utero. Although perinatal opioid exposure (POE) has been associated with an elevated risk of infection and hospitalization later in life, the mechanism(s) by which opioids influence immune development and maturation is not fully elucidated. Alterations in the intestinal microbiota composition, which leads to changes in immune training and maturation, could be at play. Chronic opioid use in adults is associated with a proinflammatory and pathogenic microbiota composition; therefore, we hypothesized here that in utero morphine exposure could negatively affect intestinal microbiota composition, leading to alterations in immune system function. We report that a clinically-relevant model of perinatal opioid exposure, in rats, induces profound intestinal microbiota dysbiosis that is maintained into adulthood. Furthermore, microbial maturity was reduced in morphine-exposed offspring. This suggests that increased risk of infection observed in children exposed to opioids during gestation may be a consequence of microbiota alterations with downstream impact on immune system development. Further investigation of how perinatal morphine induces dysbiosis will be critical to the development of early life interventions designed to ameliorate the increased risk of infection observed in these children.
Collapse
Affiliation(s)
- Hannah J. Harder
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Charlène J.G. Dauriat
- INSERM U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, CNRS UMR 8104, Université de Paris, Paris, France
| | - Benoit Chassaing
- INSERM U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, CNRS UMR 8104, Université de Paris, Paris, France
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| |
Collapse
|
34
|
Sajdel-Sulkowska EM. The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut-Brain Axis Development and Life-Long Health Outcomes. Microorganisms 2023; 11:2199. [PMID: 37764043 PMCID: PMC10538154 DOI: 10.3390/microorganisms11092199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota plays a critical role in physiological regulation throughout life and is specifically modified to meet the demands of individual life stages and during pregnancy. Maternal gut microbiota is uniquely adapted to the pregnancy demands of the mother and the developing fetus. Both animal studies in pregnant germ-free rodents and human studies have supported a critical association between the composition of maternal microbiota during pregnancy and fetal development. Gut microbiota may also contribute to the development of the fetal gut-brain axis (GBA), which is increasingly recognized for its critical role in health and disease. Most studies consider birth as the time of GBA activation and focus on postnatal GBA development. This review focuses on GBA development during the prenatal period and the impact of maternal gut microbiota on fetal GBA development. It is hypothesized that adaptation of maternal gut microbiota to pregnancy is critical for the GBA prenatal development and maturation of GBA postnatally. Consequently, factors affecting maternal gut microbiota during pregnancy, such as maternal obesity, diet, stress and depression, infection, and medication, also affect fetal GBA development and are critical for GBA activity postnatally. Altered maternal gut microbiota during gestation has been shown to have long-term impact postnatally and multigenerational effects. Thus, understanding the impact of maternal gut microbiota during pregnancy on fetal GBA development is crucial for managing fetal, neonatal, and adult health, and should be included among public health priorities.
Collapse
|
35
|
Cui J, Wang J, Wang Y. The role of short-chain fatty acids produced by gut microbiota in the regulation of pre-eclampsia onset. Front Cell Infect Microbiol 2023; 13:1177768. [PMID: 37600950 PMCID: PMC10432828 DOI: 10.3389/fcimb.2023.1177768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Preeclampsia (PE) is a common pregnancy-related disorder characterized by disrupted maternal-fetal immune tolerance, involving diffuse inflammatory responses and vascular endothelial damage. Alterations in the gut microbiota (GM) during pregnancy can affect intestinal barrier function and immune balance. Aims and purpose This comprehensive review aims to investigate the potential role of short-chain fatty acids (SCFAs), essential metabolites produced by the GM, in the development of PE. The purpose is to examine their impact on colonic peripheral regulatory T (Treg) cells, the pathogenic potential of antigen-specific helper T (Th) cells, and the inflammatory pathways associated with immune homeostasis. Key insights An increasing body of evidence suggests that dysbiosis in the GM can lead to alterations in SCFA levels, which may significantly contribute to the development of PE. SCFAs enhance the number and function of colonic Treg cells, mitigate the pathogenic potential of GM-specific Th cells, and inhibit inflammatory progression, thereby maintaining immune homeostasis. These insights highlight the potential significance of GM dysregulation and SCFAs produced by GM in the pathogenesis of PE. While the exact causes of PE remain elusive, and definitive clinical treatments are lacking, the GM and SCFAs present promising avenues for future clinical applications related to PE, offering a novel approach for prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
37
|
Salia S, Martin Y, Burke FF, Myles LA, Jackman L, Halievski K, Bambico FR, Swift-Gallant A. Antibiotic-induced socio-sexual behavioral deficits are reversed via cecal microbiota transplantation but not androgen treatment. Brain Behav Immun Health 2023; 30:100637. [PMID: 37256194 PMCID: PMC10225889 DOI: 10.1016/j.bbih.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Recent evidence has demonstrated a sex-specific role of the gut microbiome on social behavior such as anxiety, possibly driven by a reciprocal relationship between the gut microbiome and gonadal hormones. For instance, gonadal hormones drive sex differences in gut microbiota composition, and certain gut bacteria can produce androgens from glucocorticoids. We thus asked whether the gut microbiome can influence androgen-dependent socio-sexual behaviors. We first treated C57BL/6 mice with broad-spectrum antibiotics (ABX) in drinking water to deplete the gut microbiota either transiently during early development (embryonic day 16-postnatal day [PND] 21) or in adulthood (PND 60-85). We hypothesized that if ABX interferes with androgens, then early ABX would interfere with critical periods for sexual differentiation of brain and thus lead to long-term decreases in males' socio-sexual behavior, while adult ABX would interfere with androgens' activational effects on behavior. We found that in males but not females, early and adult ABX treatment decreased territorial aggression, and adult ABX also decreased sexual odor preference. We then assessed whether testosterone and/or cecal microbiota transplantation (CMT) via oral gavage could prevent ABX-induced socio-sexual behavioral deficits in adult ABX-treated males. Mice were treated with same- or other-sex control cecum contents or with testosterone for two weeks. While testosterone was not effective in rescuing any behavior, we found that male CMT restored both olfactory preference and aggression in adult ABX male mice, while female CMT restored olfactory preference but not aggression. These results suggest sex-specific effects of the gut microbiome on socio-sexual behaviors, independent of androgens.
Collapse
|
38
|
Luecke SM, Holman DB, Schmidt KN, Gzyl KE, Hurlbert JL, Menezes ACB, Bochantin KA, Kirsch JD, Baumgaertner F, Sedivec KK, Swanson KC, Dahlen CR, Amat S. Whole-body microbiota of newborn calves and their response to prenatal vitamin and mineral supplementation. Front Microbiol 2023; 14:1207601. [PMID: 37434710 PMCID: PMC10331429 DOI: 10.3389/fmicb.2023.1207601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Early life microbial colonization and factors affecting colonization patterns are gaining interest due to recent developments suggesting that early life microbiome may play a role in Developmental Origins of Health and Disease. In cattle, limited information exists on the early microbial colonization of anatomical sites involved in bovine health beyond the gastrointestinal tract. Here, we investigated 1) the initial microbial colonization of seven different anatomical locations in newborn calves and 2) whether these early life microbial communities and 3) serum cytokine profiles are influenced by prenatal vitamin and mineral (VTM) supplementation. Samples were collected from the hoof, liver, lung, nasal cavity, eye, rumen (tissue and fluid), and vagina of beef calves that were born from dams that either received or did not receive VTM supplementation throughout gestation (n = 7/group). Calves were separated from dams immediately after birth and fed commercial colostrum and milk replacer until euthanasia at 30 h post-initial colostrum feeding. The microbiota of all samples was assessed using 16S rRNA gene sequencing and qPCR. Calf serum was subjected to multiplex quantification of 15 bovine cytokines and chemokines. Our results indicated that the hoof, eye, liver, lung, nasal cavity, and vagina of newborn calves were colonized by site-specific microbiota, whose community structure differed from the ruminal-associated communities (0.64 ≥ R2 ≥ 0.12, p ≤ 0.003). The ruminal fluid microbial community was the only one that differed by treatment (p < 0.01). However, differences (p < 0.05) by treatment were detected in microbial richness (vagina); diversity (ruminal tissue, fluid, and eye); composition at the phylum and genus level (ruminal tissue, fluid, and vagina); and in total bacterial abundance (eye and vagina). From serum cytokines evaluated, concentration of chemokine IP-10 was greater (p = 0.02) in VTM calves compared to control calves. Overall, our results suggest that upon birth, the whole-body of newborn calves are colonized by relatively rich, diverse, and site-specific bacterial communities. Noticeable differences were observed in ruminal, vaginal, and ocular microbiota of newborn calves in response to prenatal VTM supplementation. These findings can derive future hypotheses regarding the initial microbial colonization of different body sites, and on maternal micronutrient consumption as a factor that may influence early life microbial colonization.
Collapse
Affiliation(s)
- Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Katherine E. Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Jennifer L. Hurlbert
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Ana Clara B. Menezes
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kerri A. Bochantin
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - James D. Kirsch
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Friederike Baumgaertner
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, United States
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
39
|
Pandey U, Tambat S, Aich P. Postnatal 14D is the Key Window for Mice Intestinal Development- An Insight from Age-Dependent Antibiotic-Mediated Gut Microbial Dysbiosis Study. Adv Biol (Weinh) 2023:e2300089. [PMID: 37178322 DOI: 10.1002/adbi.202300089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Indexed: 05/15/2023]
Abstract
The postnatal period is one of the critical windows for the structure-function development of the gastrointestinal tract and associated mucosal immunity. Along with other constituent members, recent studies suggest the contribution of gut microbiota in maintaining host health, immunity, and development. Although the gut microbiota's role in maintaining barrier integrity is known, its function in early life development still needs to be better understood. To understand the details of gut microbiota's effects on intestinal integrity, epithelium development, and immune profile, the route of antibiotic-mediated perturbation is taken. Mice on days 7(P7D), 14(P14D), 21(P21D) and 28(P28D) are sacrificed and 16S rRNA metagenomic analysis is performed. The barrier integrity, tight junction proteins (TJPs) expression, intestinal epithelial cell (IEC) markers, and inflammatory cytokines are analyzed. Results reveal a postnatal age-related impact of gut microbiota perturbation, with a gradual increase in the relative abundance of Proteobacteria and a reduction in Bacteroidetes and Firmicutes. Significant barrier integrity disruption, reduced TJPs and IECs marker expression, and increased systemic inflammation at P14D of AVNM-treated mice are found. Moreover, the microbiota transplantation shows recolonization of Verrucomicrobia, proving a causal role in barrier functions. The investigation reveals P14D as a critical period for neonatal intestinal development, regulated by specific microbiota composition.
Collapse
Affiliation(s)
- Uday Pandey
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Subodh Tambat
- Department of Life Sciences and Healthcare, Persistent Systems Limited, Pune, Maharashtra, 411004, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
40
|
Huang C, Tan H, Song M, Liu K, Liu H, Wang J, Shi Y, Hou F, Zhou Q, Huang R, Shen B, Lin X, Qin X, Zhi F. Maternal Western diet mediates susceptibility of offspring to Crohn's-like colitis by deoxycholate generation. MICROBIOME 2023; 11:96. [PMID: 37131223 PMCID: PMC10155335 DOI: 10.1186/s40168-023-01546-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/07/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The Western dietary pattern, characterized by high consumption of fats and sugars, has been strongly associated with an increased risk of developing Crohn's disease (CD). However, the potential impact of maternal obesity or prenatal exposure to a Western diet on offspring's susceptibility to CD remains unclear. Herein, we investigated the effects and underlying mechanisms of a maternal high-fat/high-sugar Western-style diet (WD) on offspring's susceptibility to 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced Crohn's-like colitis. METHODS Maternal dams were fed either a WD or a normal control diet (ND) for eight weeks prior to mating and continued throughout gestation and lactation. Post-weaning, the offspring were subjected to WD and ND to create four groups: ND-born offspring fed a normal diet (N-N) or Western diet (N-W), and WD-born offspring fed a normal (W-N) or Western diet (W-W). At eight weeks of age, they were administered TNBS to induce a CD model. RESULTS Our findings revealed that the W-N group exhibited more severe intestinal inflammation than the N-N group, as demonstrated by a lower survival rate, increased weight loss, and a shorter colon length. The W-N group displayed a significant increase in Bacteroidetes, which was accompanied by an accumulation of deoxycholic acid (DCA). Further experimentation confirmed an increased generation of DCA in mice colonized with gut microbes from the W-N group. Moreover, DCA administration aggravated TNBS-induced colitis by promoting Gasdermin D (GSDMD)-mediated pyroptosis and IL-1beta (IL-1β) production in macrophages. Importantly, the deletion of GSDMD effectively restrains the effect of DCA on TNBS-induced colitis. CONCLUSIONS Our study demonstrates that a maternal Western-style diet can alter gut microbiota composition and bile acid metabolism in mouse offspring, leading to an increased susceptibility to CD-like colitis. These findings highlight the importance of understanding the long-term consequences of maternal diet on offspring health and may have implications for the prevention and management of Crohn's disease. Video Abstract.
Collapse
Affiliation(s)
- Chongyang Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Song
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanqiang Shi
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Fengyi Hou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binghai Shen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinlong Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
41
|
Mady EA, Doghish AS, El-Dakroury WA, Elkhawaga SY, Ismail A, El-Mahdy HA, Elsakka EGE, El-Husseiny HM. Impact of the mother's gut microbiota on infant microbiome and brain development. Neurosci Biobehav Rev 2023; 150:105195. [PMID: 37100161 DOI: 10.1016/j.neubiorev.2023.105195] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
The link between the gut microbiome and health has recently garnered considerable interest in its employment for medicinal purposes. Since the early microbiota exhibits more flexibility compared to that of adults, there is a considerable possibility that altering it will have significant consequences on human development. Like genetics, the human microbiota can be passed from mother to child. This provides information on early microbiota acquisition, future development, and prospective chances for intervention. The succession and acquisition of early-life microbiota, modifications of the maternal microbiota during pregnancy, delivery, and infancy, and new efforts to understand maternal-infant microbiota transmission are discussed in this article. We also examine the shaping of mother-to-infant microbial transmission, and we then explore possible paths for future research to advance our knowledge in this area.
Collapse
Affiliation(s)
- Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya,13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and industrial pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
42
|
Zaki BM, Hussein AH, Hakim TA, Fayez MS, El-Shibiny A. Phages for treatment of Klebsiella pneumoniae infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:207-239. [PMID: 37739556 DOI: 10.1016/bs.pmbts.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen involved in both hospital- and community-acquired infections. K. pneumoniae is associated with various infections, including pneumonia, septicemia, meningitis, urinary tract infection, and surgical wound infection. K. pneumoniae possesses serious virulence, biofilm formation ability, and severe resistance to many antibiotics especially hospital-acquired strains, due to excessive use in healthcare systems. This limits the available effective antibiotics that can be used for patients suffering from K. pneumoniae infections; therefore, alternative treatments are urgently needed. Bacteriophages (for short, phages) are prokaryotic viruses capable of infecting, replicating, and then lysing (lytic phages) the bacterial host. Phage therapy exhibited great potential for treating multidrug-resistant bacterial infections comprising K. pneumoniae. Hence, this chapter emphasizes and summarizes the research articles in the PubMed database from 1948 until the 15th of December 2022, addressing phage therapy against K. pneumoniae. The chapter provides an overview of K. pneumoniae phages covering different aspects, including phage isolation, different morphotypes of isolated phages, in vitro characterization, anti-biofilm activity, various therapeutic forms, in vivo research and clinical studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
43
|
Cowardin CA, Syed S, Iqbal N, Jamil Z, Sadiq K, Iqbal J, Ali SA, Moore SR. Environmental enteric dysfunction: gut and microbiota adaptation in pregnancy and infancy. Nat Rev Gastroenterol Hepatol 2023; 20:223-237. [PMID: 36526906 PMCID: PMC10065936 DOI: 10.1038/s41575-022-00714-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 03/31/2023]
Abstract
Environmental enteric dysfunction (EED) is a subclinical syndrome of intestinal inflammation, malabsorption and barrier disruption that is highly prevalent in low- and middle-income countries in which poverty, food insecurity and frequent exposure to enteric pathogens impair growth, immunity and neurodevelopment in children. In this Review, we discuss advances in our understanding of EED, intestinal adaptation and the gut microbiome over the 'first 1,000 days' of life, spanning pregnancy and early childhood. Data on maternal EED are emerging, and they mirror earlier findings of increased risks for preterm birth and fetal growth restriction in mothers with either active inflammatory bowel disease or coeliac disease. The intense metabolic demands of pregnancy and lactation drive gut adaptation, including dramatic changes in the composition, function and mother-to-child transmission of the gut microbiota. We urgently need to elucidate the mechanisms by which EED undermines these critical processes so that we can improve global strategies to prevent and reverse intergenerational cycles of undernutrition.
Collapse
Affiliation(s)
- Carrie A Cowardin
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Sana Syed
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zehra Jamil
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Syed Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
44
|
Strachan E, Clemente-Casares X, Tsai S. Maternal provisions in type 1 diabetes: Evidence for both protective & pathogenic potential. Front Immunol 2023; 14:1146082. [PMID: 37033940 PMCID: PMC10073710 DOI: 10.3389/fimmu.2023.1146082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Maternal influences on the immune health and development of an infant begin in utero and continue well into the postnatal period, shaping and educating the child's maturing immune system. Two maternal provisions include early microbial colonizers to initiate microbiota establishment and the transfer of antibodies from mother to baby. Maternal antibodies are a result of a lifetime of antigenic experience, reflecting the infection history, health and environmental exposure of the mother. These same factors are strong influencers of the microbiota, inexorably linking the two. Together, these provisions help to educate the developing neonatal immune system and shape lymphocyte repertoires, establishing a role for external environmental influences even before birth. In the context of autoimmunity, the transfer of maternal autoantibodies has the potential to be harmful for the child, sometimes targeting tissues and cells with devastating consequences. Curiously, this does not seem to apply to maternal autoantibody transfer in type 1 diabetes (T1D). Moreover, despite the rising prevalence of the disease, little research has been conducted on the effects of maternal dysbiosis or antibody transfer from an affected mother to her offspring and thus their relevance to disease development in the offspring remains unclear. This review seeks to provide a thorough evaluation of the role of maternal microorganisms and antibodies within the context of T1D, exploring both their pathogenic and protective potential. Although a definitive understanding of their significance in infant T1D development remains elusive at present, we endeavor to present what has been learned with the goal of spurring further interest in this important and intriguing question.
Collapse
Affiliation(s)
| | | | - Sue Tsai
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy. Nat Commun 2023; 14:1305. [PMID: 36894566 PMCID: PMC9998625 DOI: 10.1038/s41467-023-36981-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a female pregnancy-specific disorder that is characterized by increased serum bile acid and adverse fetal outcomes. The aetiology and mechanism of ICP are poorly understood; thus, existing therapies have been largely empiric. Here we show that the gut microbiome differed significantly between individuals with ICP and healthy pregnant women, and that colonization with gut microbiome from ICP patients was sufficient to induce cholestasis in mice. The gut microbiomes of ICP patients were primarily characterized by Bacteroides fragilis (B. fragilis), and B. fragilis was able to promote ICP by inhibiting FXR signaling via its BSH activity to modulate bile acid metabolism. B. fragilis-mediated FXR signaling inhibition was responsible for excessive bile acid synthesis and interrupted hepatic bile excretion to ultimately promote the initiation of ICP. We propose that modulation of the gut microbiota-bile acid-FXR axis may be of value for ICP treatment.
Collapse
|
46
|
Prevention of food allergy in infancy: the role of maternal interventions and exposures during pregnancy and lactation. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:358-366. [PMID: 36871575 DOI: 10.1016/s2352-4642(22)00349-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 03/06/2023]
Abstract
There is increased focus on the role of maternal interventions in the prevention of food allergy in infancy. There is no role for maternal dietary modifications during pregnancy or lactation, such as allergen avoidance, as a means of infant allergy prevention. Although exclusive breastfeeding is the recommended infant nutrition source globally, the effect of breastfeeding on infant allergy prevention remains unclear. There is emerging evidence that irregular cow's milk exposure (ie, infrequent formula supplementation) might increase the risk of cow's milk allergy. Although further studies are required, there is also emerging evidence that maternal peanut ingestion during breastfeeding along with early peanut introduction in infancy might have a preventive role. The effect of maternal dietary supplementation with vitamin D, omega-3, and prebiotics or probiotics remains unclear.
Collapse
|
47
|
Gut Microbial Succession Patterns and Metabolic Profiling during Pregnancy and Lactation in a Goat Model. Microbiol Spectr 2023; 11:e0295522. [PMID: 36700635 PMCID: PMC9927511 DOI: 10.1128/spectrum.02955-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The maternal gut microbiome affects the duration of pregnancy, delivery, and lactation. It also coordinates the stability of maternal metabolism by regulating and modulating inflammatory cytokines and reproductive hormones. This has been shown in several species; however, the situation in ruminants remains a black box. Here, we aimed to elucidate the relationship between the hindgut microbiota, metabolism, and reproductive hormones in domestic goats (Capra hircus) during nonpregnancy, pregnancy, and lactation stages. The hindgut microbiota was altered during these three stages, with a drastic decrease in the abundance of Family_XIII_AD3011_group in the second and third trimesters of pregnancy. Additionally, a decline in the abundance of Christensenellaceae_R-7_group and Turicibacter was observed from the nonpregnancy stage to late gestation. Family_XIII_AD3011_group and Paeniclostridium were strongly correlated with decreased fecal estradiol and progesterone. Furthermore, we generated a metabolome atlas of the gut and serum from nonpregnancy to lactation to reveal the specific metabolic fingerprints of each physiological stage. Several specific gut metabolites, including carnitine C8:1, γ-aminobutyric acid, and indole-3-carboxylic acid, were negatively correlated with the fecal and serum estradiol concentrations. In contrast, 2'-deoxyinosine, deoxyadenosine, and 5'-deoxyadenosine were positively correlated with the fecal and serum estradiol concentrations. The levels of 2'-deoxyinosine, deoxyadenosine, and 5'-deoxyadenosine in fecal samples were positively correlated with Family_XIII_AD3011_group. Other serum metabolites, such as (±)12-HEPE (hydroxy eicosapentaenoic acid), (±)15-HEPE, (±)18-HEPE, cytidine, uracil, and 5-hydroxyindole-3-acetic acid, were negatively correlated with the serum concentrations of estradiol and progesterone. Finally, Corynebacterium and Clostridium_sensu_stricto_1 in the fecal samples were positively correlated with the abundance of 11,12-EET (epoxy-eicosatrienoic acid), (±)18-HEPE, (±)15-HEPE, and (±)12-HEPE in the serum. IMPORTANCE Our findings revealed that the activity of Family_XIII_AD3011_group and Corynebacterium is strongly correlated with the beneficial regulation of physiological hormones and metabolic changes during pregnancy and lactation. These findings are key for guiding targeted microbial therapeutic approaches to modulate microbiomes in gestating and lactating mammals.
Collapse
|
48
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
49
|
Tian M, Li Q, Zheng T, Yang S, Chen F, Guan W, Zhang S. Maternal microbe-specific modulation of the offspring microbiome and development during pregnancy and lactation. Gut Microbes 2023; 15:2206505. [PMID: 37184203 DOI: 10.1080/19490976.2023.2206505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The maternal microbiome is essential for the healthy growth and development of offspring and has long-term effects later in life. Recent advances indicate that the maternal microbiome begins to regulate fetal health and development during pregnancy. Furthermore, the maternal microbiome continues to affect early microbial colonization via birth and breastfeeding. Compelling evidence indicates that the maternal microbiome is involved in the regulation of immune and brain development and affects the risk of related diseases. Modulating offspring development by maternal diet and probiotic intervention during pregnancy and breastfeeding could be a promising therapy in the future. In this review, we summarize and discuss the current understanding of maternal microbiota development, perinatal microbial metabolite transfer, mother-to-infant microbial transmission during/after birth and its association with immune and brain development as well as corresponding diseases.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
50
|
Antibiotic Treatment during Gestation Enhances Susceptibility to Mycobacterium tuberculosis in Offspring. Microbiol Spectr 2022; 10:e0249122. [PMID: 36314979 PMCID: PMC9769670 DOI: 10.1128/spectrum.02491-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whether antibiotic treatment during gestation impacts T cell immunity to vaccination in offspring is unexplored. Dams treated with polymyxin B (PMB) during gestation (Mg) displayed altered microbial communities prior to delivery compared to control dams (Mc). Differences in microbiota were also evident in pups born to polymyxin B-treated dams (Pg) compared to control pups (Pc). When pups were immunized with Bacille Calmette-Guerin (BCG), we observed no difference in TB10.4-specific T cells between Pc and Pg 4 weeks postimmunization. Significantly fewer splenic CD4 T cells from BCG-vaccinated Pg produced interleukin-2 (IL-2) upon stimulation, suggesting a possible functional deficiency. There was no difference in purified protein derivative (PPD)-specific IgG between Pc and Pg at this time point. However, when infected with Mycobacterium tuberculosis, Pg displayed significantly higher bacterial burden in the lung than Pc. Our results show that maternal PMB treatment during gestation may not impact splenic antigen-specific T cell responses following BCG vaccination but alters susceptibility to M. tuberculosis in offspring. IMPORTANCE The composition of the pioneer microbiota that colonize the infant gut are determined by the mother. Polymyxin B-induced changes in the maternal microbiota during pregnancy impact the offspring gut microbiota but not vaccine-specific CD4 T cell response. However, when infected with Mycobacterium tuberculosis, offspring born to mothers with an altered gut microbiota are susceptible to infection compared to those born to mothers not exposed to antibiotics.
Collapse
|