1
|
Moore M, Whittington HD, Knickmeyer R, Azcarate-Peril MA, Bruno-Bárcena JM. Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers. Gut Microbes 2025; 17:2440120. [PMID: 39695352 DOI: 10.1080/19490976.2024.2440120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Diet is one of the main factors shaping the human microbiome, yet our understanding of how specific dietary components influence microbial consortia assembly and subsequent stability in response to press disturbances - such as increasing resource availability (feeding rate) - is still incomplete. This study explores the reproducible re-assembly, metabolic interplay, and compositional stability within microbial consortia derived from pooled stool samples of three healthy infants. Using a single-step packed-bed reactor (PBR) system, we assessed the reassembly and metabolic output of consortia exposed to lactose, glucose, galacto-oligosaccharides (GOS), and humanized GOS (hGOS). Our findings reveal that complex carbohydrates, especially those containing low inclusion (~1.25 gL-1) components present in human milk, such as N-acetyl-lactosamine (LacNAc), promote taxonomic, and metabolic stability under varying feeding rates, as shown by diversity metrics and network analysis. Targeted metabolomics highlighted distinct metabolic responses to different carbohydrates: GOS was linked to increased lactate, lactose to propionate, sucrose to butyrate, and CO2, and the introduction of bile salts with GOS or hGOS resulted in butyrate reduction and increased hydrogen production. This study validates the use of single-step PBRs for reliably studying microbial consortium stability and functionality in response to nutritional press disturbances, offering insights into the dietary modulation of microbial consortia and their ecological dynamics.
Collapse
Affiliation(s)
- Madison Moore
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Hunter D Whittington
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Rebecca Knickmeyer
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jose M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Kim SH, Kwak M, Hwang JK, Keum J, Jin HY, Lee CY, Tanpure RS, Kim YJ, Hoh JK, Park JY, Chung W, Jeon BH, Park HK. Altered heme metabolism and hemoglobin concentration due to empirical antibiotics-induced gut dysbiosis in preterm infants. Comput Struct Biotechnol J 2025; 27:937-945. [PMID: 40123796 PMCID: PMC11930222 DOI: 10.1016/j.csbj.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Background High-risk infants are usually treated with empirical antibiotics after birth, regardless of the evidence of infection; however, their gut microbiome and metabolome have seldom been studied. This study investigated the influence of antibiotic exposure on the gut microbiome and associated metabolic pathways in term and preterm infants. Methods Thirty-six infants within 10 days of birth who were admitted to a neonatal intensive care unit/newborn nursery unit were divided into four groups based on maturity (gestational age) and use of empirical antibiotics. Genomic DNA was extracted from the fecal samples and underwent high-throughput 16S rRNA amplicon sequencing using the Illumina platforms. Taxonomic classification, diversity analysis, and metagenomic function prediction were performed. Results Preterm infants with empirical antibiotics showed a significantly decreased population of Firmicutes (p = 0.003) and an increased population of Proteobacteria (p < 0.001) compared to other groups. At the genus level, the populations of Raoultella (p = 0.065) and Escherichia (p = 0.052) showed an increased trend. The change in microbial composition was correlated with increased heme biosynthesis and decreased hemoglobin levels. Conclusion Collectively, our finding suggested that empirical antibiotic exposure in preterm infants alters the gut microbiome, potentially leading to adverse health outcomes. This dysbiosis may affect heme metabolism, increasing the risk of anemia in these vulnerable infants. Therefore, antibiotic use should be carefully tailored to minimize potential harm.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, South Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Min‑Jin Kwak
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jae Kyoon Hwang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Jihyun Keum
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Hee Yeon Jin
- Division of Microbiome, Int-Gen Company, Seoul 04799, South Korea
| | - Chan-Yeong Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Rahul Sadashiv Tanpure
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Yong Joo Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Jae Yong Park
- Division of Microbiome, Int-Gen Company, Seoul 04799, South Korea
| | - Woojin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, South Korea
| |
Collapse
|
3
|
Arguelles-Lopez A, Aguayo-Patrón SV, Calderón de la Barca AM. Breastfeeding Shapes the Gut Microbiota and Its Structure Is Associated with Weight Gain Trajectories in Mexican Infants. Nutrients 2025; 17:826. [PMID: 40077696 PMCID: PMC11901506 DOI: 10.3390/nu17050826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Rapid weight gain in early infancy increases the risk of childhood obesity, while exclusive breastfeeding can protect against it, depending on breastmilk composition, maternal diet, and infant gut microbiota. Objective: The objective of this study was to analyze the association between maternal diet, breastmilk components, infant gut microbiota, and weight gain in the first year of life of Mexican breastfed infants. Methods: This longitudinal study included 27 mothers with exclusively breastfed infants (≥5 months of age). We evaluated maternal diet and breastmilk composition at 5 months postpartum (pp), the infant fecal microbiota at 5 and 12 months pp using 16S rRNA gene sequencing, and weight gain as normal, rapid or slow weight gain (NWG, RWG or SWG) in periods 1 (0-5.5 months) and 2 (5.5-12 months). Results: Infants with NWG in periods 1 and 2 made up 51% and 56%, respectively. In period 1, ingested breastmilk protein content was higher for NWG infants than for infants with SWG (p = 0.01), and the protein content was negatively correlated with maternal BMI (r = -0.42, p = 0.02). The genera Veillonella (19.5%), Bifidobacterium (19.5%), and Escherichia-Shigella (16.8%) dominated the microbiota at 5 months. At 12 months, Bacteroides predominated, and the first two genera remained. Breastmilk fat correlated with Veillonella abundance (r = -0.50, p = 0.02) and oligosaccharides with Lachnospiraceae (r = 0.73, p = 0.03) at 5 months. There was a trend of a higher abundance of Bifidobacterium in NWG infants than in other infants in period 1, while infants with RWG and SWG had a higher abundance of Ruminococcus gnavus (p = 0.03) in period 1 and Alistipes in period 2 (p = 0.01), respectively. Conclusions: Breastfeeding shaped the gut microbiota of exclusively breastfed infants, and its structure was associated with infant weight gain trajectories.
Collapse
Affiliation(s)
| | | | - Ana M. Calderón de la Barca
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico; (A.A.-L.); (S.V.A.-P.)
| |
Collapse
|
4
|
Zhang Y, Xu Y, Hu L, Wang X. Advancements related to probiotics for preventing and treating recurrent respiratory tract infections in children. Front Pediatr 2025; 13:1508613. [PMID: 39981209 PMCID: PMC11839809 DOI: 10.3389/fped.2025.1508613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Recurrent respiratory tract infections (RRTIs) are a common condition in pediatrics and significantly impact children's quality of life; however, their pathogenesis and contributing factors are not yet fully elucidated. Probiotics have recently emerged as promising agents for modulating intestinal microecology and have gained considerable attention in clinical research on preventing and treating RRTIs in children. This article provides an initial overview of the concept, classification, and mechanisms underlying probiotics. It emphasizes their beneficial effects on respiratory health by modulating intestinal microbial equilibrium, augmenting immune system functionality, and attenuating inflammatory responses. Subsequently, we examine existing research regarding the use of probiotics in pediatric RRTIs. Numerous clinical trials have unequivocally demonstrated that supplementing with probiotics can significantly reduce both the frequency and severity of RRTIs in children while also simultaneously decreasing antibiotic usage. However, there are ongoing controversies and challenges in current research concerning the influence of probiotic type, dosage, duration of use, and other factors on efficacy. Furthermore, variations have been observed across different studies. Additionally, it is crucial to further evaluate the safety and potential long-term side effects associated with probiotic use in children with RRTIs. In conclusion, we propose future research directions including conducting more high-quality randomized controlled trials to optimize application strategies for probiotics alongside other treatments while considering variations based on age and health conditions among pediatric populations. Finally, in summary although probiotics exhibit promising benefits in preventing and treating RRTIs in children; additional studies are necessary to refine their application strategies ensuring both safety and effectiveness.
Collapse
Affiliation(s)
- Yali Zhang
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yingying Xu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ling Hu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomei Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Flores Ventura E, Bernabeu M, Callejón-Leblic B, Cabrera-Rubio R, Yeruva L, Estañ-Capell J, Martínez-Costa C, García-Barrera T, Collado MC. Human milk metals and metalloids shape infant microbiota. Food Funct 2024; 15:12134-12145. [PMID: 39584920 DOI: 10.1039/d4fo01929f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Background: The profile of metal(loid)s in human milk is essential for infant growth and development, yet its impact on the development of the infant microbiota remains unclear. Elements, such as manganese, zinc, iron or copper, play crucial roles in influencing infant health. Aim: To investigate the metal(loid) content within human milk and its influence on the infant's gut microbiota within the first 2 months after birth. Methods: Human milk samples and infant stool samples from 77 mother-infant dyads in the MAMI cohort were collected at two time points: the early transitional stage and the mature stage. Metallomic profiling of human milk was conducted using inductively coupled plasma-mass spectrometry (ICP-MS). The infant gut microbiota was profiled through 16S rRNA amplicon sequencing and maternal-infant clinical data were available. Spearman's rank correlation coefficientsprovided insights into metal(loid)-microbiota relationships. Results: Independent cross-sectional analyses of mother-infant pairs at two time points, significant variations in metal concentrations and differences in microbial abundances and diversities were observed. Notably, Bifidobacterium genus abundance was higher during the mature lactation stage. During early lactation, we found a significant positive correlation between infant gut Corynebacterium and human milk nickel concentrations, and negative correlations between Veillonella spp. and antimony, and Enterobacter spp. and copper. Additionally, Simpson's diversity was negatively correlated with iron. In the mature lactation stage, we identified eleven significant correlations between metals and microbiota. Notably, Klebsiella genus showed multiple negative correlations with iron, antimony, and vanadium. Conclusion: Our study highlights the significance of metal(loid)-microbiota interactions in early infant development, indicating that infant gut Klebsiella genus may be particularly vulnerable to fluctuations in metal(loid) levels present in human milk, when compared to other genera. Future research should explore these interactions at a strain level and the implications on infant health and development. This trial was registered as NCT03552939.
Collapse
Affiliation(s)
- Eduard Flores Ventura
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Manuel Bernabeu
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Belén Callejón-Leblic
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Javier Estañ-Capell
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Tamara García-Barrera
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
6
|
Chen K, Zhao X, Wu W, Jiang L, Yuan X, Bian C. The effect of benzylpenicillin prohylaxis after birth on length and weight of syphilis-exposed infants in eastern China. Ital J Pediatr 2024; 50:199. [PMID: 39334470 PMCID: PMC11438286 DOI: 10.1186/s13052-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND We conducted this study to assess the impact of an intervention to interrupt mother-to-child transmission on the height and weight of syphilis-exposed infants after receiving penicillin prophylaxis after birth and to provide a scientific basis for further elimination of mother-to-child transmission. METHODS We recruited 419 infants born to syphilis-infected mothers from 2015 to 2020 in Changzhou, and performed 1:1 matching to infants born to syphilis-free mothers during the same period. All infants were followed up to 18 months of age. We collected height and weight data and compared them. RESULTS At 18 months of age, the height and weight of the syphilis-exposed infants were almost greater than the WHO reference standards. However, when compared with local unexposed infants, there were almost no differences. The boys born to mothers who received two courses of treatment had longer body lengths at 18 months of age than did those born to mothers who did not receive two courses of treatment, and the girls born to mothers who did not receive treatment had lower body weights at 3 months of age than did both treated groups. CONCLUSION The growth trajectory of infants without congenital syphilis born to syphilis-infected mothers is virtually indistinguishable from that of the general local population. Syphilis-exposed newborns can receive preventive treatment as a public health intervention.
Collapse
Affiliation(s)
- Kejin Chen
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xiaoyan Zhao
- Medical Innovation Research Department, Chinese People's Liberation Army General Hospital, Beijing, 100000, China
| | - Wei Wu
- Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, 213018, Jiangsu, China
| | - Lihua Jiang
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xiaojie Yuan
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Chaorong Bian
- Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, 213018, Jiangsu, China.
| |
Collapse
|
7
|
Cruells A, Cabrera-Rubio R, Bustamante M, Pelegrí D, Cirach M, Jimenez-Arenas P, Samarra A, Martínez-Costa C, Collado MC, Gascon M. The influence of pre- and postnatal exposure to air pollution and green spaces on infant's gut microbiota: Results from the MAMI birth cohort study. ENVIRONMENTAL RESEARCH 2024; 257:119283. [PMID: 38830395 DOI: 10.1016/j.envres.2024.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Animal and human studies indicate that exposure to air pollution and natural environments might modulate the gut microbiota, but epidemiological evidence is very scarce. OBJECTIVES To assess the potential impact of pre- and postnatal exposure to air pollution and green spaces on infant gut microbiota assembly and trajectories during the first year of life. METHODS MAMI ("MAternal MIcrobes") birth cohort (Valencia, Spain, N = 162) was used to study the impact of environmental exposure (acute and chronic) on infant gut microbiota during the first year of life (amplicon-based 16S rRNA sequencing). At 7 days and at 1, 6 and 12 months, residential pre- and postnatal exposure to air pollutants (NO2, black carbon -BC-, PM2.5 and O3) and green spaces indicators (NDVI and area of green spaces at 300, 500 and 1000 m buffers) were obtained. For the association between exposures and alpha diversity indicators linear regression models (cross-sectional analyses) and mixed models, including individual as a random effect (longitudinal analyses), were applied. For the differential taxon analysis, the ANCOM-BC package with a log count transformation and multiple-testing corrections were used. RESULTS Acute exposure in the first week of life and chronic postnatal exposure to NO2 were associated with a reduction in microbial alpha diversity, while the effects of green space exposure were not evident. Acute and chronic (prenatal or postnatal) exposure to NO2 resulted in increased abundance of Haemophilus, Akkermansia, Alistipes, Eggerthella, and Tyzerella populations, while increasing green space exposure associated with increased Negativicoccus, Senegalimassilia and Anaerococcus and decreased Tyzzerella and Lachnoclostridium populations. DISCUSSION We observed a decrease in the diversity of the gut microbiota and signs of alteration in its composition among infants exposed to higher levels of NO2. Increasing green space exposure was also associated with changes in gut microbial composition. Further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Adrià Cruells
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Dolors Pelegrí
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marta Cirach
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Pol Jimenez-Arenas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
8
|
Samarra A, Cabrera-Rubio R, Martínez-Costa C, Collado MC. Unravelling the evolutionary dynamics of antibiotic resistance genes in the infant gut microbiota during the first four months of life. Ann Clin Microbiol Antimicrob 2024; 23:72. [PMID: 39138497 PMCID: PMC11323388 DOI: 10.1186/s12941-024-00725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Alongside microbiota development, the evolution of the resistome is crucial in understanding the early-life acquisition and persistence of Antibiotic Resistance Genes (ARGs). Therefore, the aim of this study is to provide a comprehensive view of the evolution and dynamics of the neonatal resistome from 7 days to 4 months of age using a high-throughput qPCR platform. METHODS In the initial phase, a massive screening of 384 ARGs using a high-throughput qPCR in pooled healthy mother-infant pairs feces from the MAMI cohort was carried out to identify the most abundant and prevalent ARGs in infants and in mothers. This pre-analysis allowed for later targeted profiling in a large number of infants in a longitudinal manner during the first 4 months of life. 16S rRNA V3-V4 amplicon sequencing was performed to asses microbial composition longitudinally. Potential factors influencing the microbiota and ARGs in this period were also considered, such as mode of birth and breastfeeding type. RESULTS Following the massive screening, the top 45 abundant ARGs and mobile genetic elements were identified and studied in 72 infants during their first months of life (7 days, 1, 2, and 4 months). These genes were associated with resistance to aminoglycosides, beta-lactams and tetracyclines, among others, as well as integrons, and other mobile genetic elements. Changes in both ARG composition and quantity were observed during the first 4 months of life: most ARGs abundance increased over time, but mobile genetic elements decreased significantly. Further exploration of modulating factors highlighted the effect on ARG composition of specific microbial genus, and the impact of mode of birth at 7 days and 4 months. The influence of infant formula feeding was observed at 4-month-old infants, who exhibited a distinctive resistome composition. CONCLUSIONS This study illustrates the ARG evolution and dynamics in the infant gut by use of a targeted, high-throughput, quantitative PCR-based method. An increase in antibiotic resistance over the first months of life were observed with a fundamental role of delivery mode in shaping resistance profiles. Further, we highlighted the influence of feeding methods on the resistome development. These findings offer pivotal insights into dynamics of and factors influencing early-life resistome, with potential avenues for intervention strategies.
Collapse
Affiliation(s)
- Anna Samarra
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Raúl Cabrera-Rubio
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, Valencia, Spain
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA, Valencia, Spain
| | - Maria Carmen Collado
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
9
|
Zhu B, Edwards DJ, Spaine KM, Edupuganti L, Matveyev A, Serrano MG, Buck GA. The association of maternal factors with the neonatal microbiota and health. Nat Commun 2024; 15:5260. [PMID: 38898021 PMCID: PMC11187136 DOI: 10.1038/s41467-024-49160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The human microbiome plays a crucial role in human health. However, the influence of maternal factors on the neonatal microbiota remains obscure. Herein, our observations suggest that the neonatal microbiotas, particularly the buccal microbiota, change rapidly within 24-48 h of birth but begin to stabilize by 48-72 h after parturition. Network analysis clustered over 200 maternal factors into thirteen distinct groups, and most associated factors were in the same group. Multiple maternal factor groups were associated with the neonatal buccal, rectal, and stool microbiotas. Particularly, a higher maternal inflammatory state and a lower maternal socioeconomic position were associated with a higher alpha diversity of the neonatal buccal microbiota and beta diversity of the neonatal stool microbiota was influenced by maternal diet and cesarean section by 24-72 h postpartum. The risk of admission of a neonate to the newborn intensive care unit was associated with preterm birth as well as higher cytokine levels and probably higher alpha diversity of the maternal buccal microbiota.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - David J Edwards
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Statistical Sciences and Operations Research, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Katherine M Spaine
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Laahirie Edupuganti
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Andrey Matveyev
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Myrna G Serrano
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Gregory A Buck
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Statistical Sciences and Operations Research, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, 23284, USA.
- Computer Science Department, College of Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Genomics Core, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
10
|
Selma-Royo M, Dubois L, Manara S, Armanini F, Cabrera-Rubio R, Valles-Colomer M, González S, Parra-Llorca A, Escuriet R, Bode L, Martínez-Costa C, Segata N, Collado MC. Birthmode and environment-dependent microbiota transmission dynamics are complemented by breastfeeding during the first year. Cell Host Microbe 2024; 32:996-1010.e4. [PMID: 38870906 PMCID: PMC11183301 DOI: 10.1016/j.chom.2024.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
The composition and maturation of the early-life microbiota are modulated by a number of perinatal factors, whose interplay in relation to microbial vertical transmission remains inadequately elucidated. Using recent strain-tracking methodologies, we analyzed mother-to-infant microbiota transmission in two different birth environments: hospital-born (vaginal/cesarean) and home-born (vaginal) infants and their mothers. While delivery mode primarily explains initial compositional differences, place of birth impacts transmission timing-being early in homebirths and delayed in cesarean deliveries. Transmission patterns vary greatly across species and birth groups, yet certain species, like Bifidobacterium longum, are consistently vertically transmitted regardless of delivery setting. Strain-level analysis of B. longum highlights relevant and consistent subspecies replacement patterns mainly explained by breastfeeding practices, which drive changes in human milk oligosaccharide (HMO) degrading capabilities. Our findings highlight how delivery setting, breastfeeding duration, and other lifestyle preferences collectively shape vertical transmission, impacting infant gut colonization during early life.
Collapse
Affiliation(s)
- Marta Selma-Royo
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Léonard Dubois
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Serena Manara
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Mireia Valles-Colomer
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sonia González
- Department of Functional Biology, University of Oviedo, Oviedo, Spain; Diet Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Anna Parra-Llorca
- Health Research Institute La Fe, Neonatal Research Group, Division of Neonatology, Valencia, Spain
| | - Ramon Escuriet
- Gerencia de Procesos Integrales de Salud. Area Asistencial, Servicio Catalan de la Salud, Generalitat de Catalunya, Centre for Research in Health and Economics, Universidad Pompeu Fabra, Barcelona, Spain
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MOMI CORE), Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Cecilia Martínez-Costa
- Department of Pediatrics, Hospital Clínico Universitario, University of Valencia, Spain; Nutrition Research Group of INCLIVA, Valencia, Spain
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
11
|
Nguyen Y, Rudd Zhong Manis J, Ronczkowski NM, Bui T, Oxenrider A, Jadeja RN, Thounaojam MC. Unveiling the gut-eye axis: how microbial metabolites influence ocular health and disease. Front Med (Lausanne) 2024; 11:1377186. [PMID: 38799150 PMCID: PMC11122920 DOI: 10.3389/fmed.2024.1377186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.
Collapse
Affiliation(s)
- Yvonne Nguyen
- Mercer University School of Medicine, Macon, GA, United States
| | | | | | - Tommy Bui
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Allston Oxenrider
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Ravirajsinh N. Jadeja
- Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Menaka C. Thounaojam
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| |
Collapse
|
12
|
Alaba TE, Holman JM, Ishaq SL, Li Y. Current Knowledge on the Preparation and Benefits of Cruciferous Vegetables as Relates to In Vitro, In Vivo, and Clinical Models of Inflammatory Bowel Disease. Curr Dev Nutr 2024; 8:102160. [PMID: 38779039 PMCID: PMC11108850 DOI: 10.1016/j.cdnut.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition with a significant economic and social burden. The disease is complex and challenging to treat because it involves several pathologies, such as inflammation, oxidative stress, dysbiosis, and intestinal damage. The search for an effective treatment has identified cruciferous vegetables and their phytochemicals as potential management options for inflammatory bowel disease because they contain prebiotics, probiotics, and anti-inflammatory and antioxidant metabolites essential for a healthy gut. This critical narrative style review provides a robust insight into the pharmacological effects and benefits of crucifers and their documented bioactive compounds in in vitro and in vivo models, as well as clinical inflammatory bowel disease. The review highlights the significant impact of crucifer preparation and the presence of glucosinolates, isothiocyanates, flavonoids, and polyphenolic compounds, which are essential for the anti-inflammatory and antioxidative benefits of cruciferous vegetables, as well as their ability to promote the healthy microbial community and maintain the intestinal barrier. This review may serve as a viable nutritional guide for future research on methods and features essential to developing experiments, preventions, and treatments for inflammatory bowel disease. There is limited clinical information and future research may utilize current innovative tools, such as metabolomics, for adequate knowledge and effective translation into clinical therapy.
Collapse
Affiliation(s)
- Tolu E Alaba
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Johanna M Holman
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, NY, United States
| |
Collapse
|
13
|
Li Y, Chen Y, Chen Z, Yang Y, Wu Z. Removal of leftover feed shapes environmental microbiota and limits houseflies-mediated dispersion of pathogenic bacteria in sow breeding farms. Anim Microbiome 2024; 6:10. [PMID: 38444038 PMCID: PMC10913660 DOI: 10.1186/s42523-024-00296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Intensive swine breeding industry generates a complex environment where several microbial interactions occur and which constitutes a challenge for biosafety. Ad libitum feeding strategies and low levels of management contribute to residual and wasted feed for lactating sows, which provides a source of nutrients and microbial source for houseflies in warm climates. Due to the absence of the all-in/all-out system, the coexistence of sows of two production stages including gestating and lactating sows in the farrowing barn may have potential negative impacts. In this research, we evaluated the effects of lactating sow leftover on the environmental microbiota of the farrowing barn and the contribution of microbial environments to the gestating sow fecal bacterial structure with a 30-day-long treatment of timely removing lactating residual feed. RESULTS Houseflies in the farrowing barn mediate the transmission of microorganisms from lactating sow leftover to multiple regions. Leuconostoc, Weissella, Lactobacillus and Pediococcus from the leftover which can produce exopolysaccharides, are more capable of environmental transmission than pathogenic microorganisms including Staphylococcus and Streptococcus and utilize houseflies to achieve spread in environmental regions of the farrowing barn. Leftover removal treatment blocked the microbial transmission chain mediated by houseflies, downregulated the relative abundance of pathogenic bacteria including Escherichia-Shigella and Streptococcus among houseflies, environmental regions and fecal bacteria of gestating sows in the farrowing barn and effectively attenuate the increment of Weissella and RF39 relative abundance in gestating sow feces due to the presence of lactating sows. CONCLUSIONS Lactating sow leftover is a non-negligible microbial contributor of environment in farrowing barn whose transmission is mediated by houseflies. A 30-day-long treatment of removing lactating sow residual feed cause significant changes in the microbial structure of multiple environmental regions within the farrowing barn via altering the microbiota carried by houseflies. Meanwhile, lactating sow leftover affect the fecal microbial structure of gestating sows in the same farrowing barn, while removal of lactating sow leftover alleviates the contribution of microbial transmission.
Collapse
Affiliation(s)
- Yunke Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
- Laboratory of Microbial Resources and Application in Animals, Beijing Jingwa Agricultural Science and Technology Innovation Center, Pinggu Beijing, Beijing, 101206, China.
| |
Collapse
|
14
|
Anumula S, Nalla K, Pandala P, Kotha R, Harsha N. Rural Versus Urban Mothers' Microbiome Difference and Its Effect on Neonates: A Systematic Review. Cureus 2024; 16:e55607. [PMID: 38586721 PMCID: PMC10995522 DOI: 10.7759/cureus.55607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The growth and development of microorganisms are stimulated by external stimuli. Urbanization has changed the macroenvironment and individual microenvironmental factors such as smoking, alcohol, and diet, which can alter the microbiota and influence disease in the mother and child. However, the microbiome difference between rural and urban mothers and its effect on neonates have received little attention, as per sources; we have not found any systematic review. This review determined the microbiome difference between rural and urban mothers and its effect on neonates. Five studies selected based on inclusion/exclusion criteria were retrieved from PubMed, Scopus, and Embase databases, and evidence-based comparisons were made to establish the microbiome difference in rural and urban mothers and its effect on neonates. The study findings indicate that microbiome development in newborns is hindered by urbanization. Infants born to urban mothers have reduced microbial diversity, thereby having decreased protective immunity.
Collapse
Affiliation(s)
- Soumya Anumula
- Pediatrics, Government Medical College Vikarabad, Vikarabad, IND
| | - Krishna Nalla
- Community Medicine, Government Medical College Jangaon, Jangaon, IND
| | | | - Rakesh Kotha
- Neonatology, Osmania Medical College, Hyderabad, IND
| | | |
Collapse
|
15
|
Lu X, Chen B, Xu D, Hu W, Wang X, Dai Y, Wang Q, Peng Y, Chen K, Zhao D, Wang H. Epigenetic programming mediates abnormal gut microbiota and disease susceptibility in offspring with prenatal dexamethasone exposure. Cell Rep Med 2024; 5:101398. [PMID: 38301654 PMCID: PMC10897547 DOI: 10.1016/j.xcrm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Prenatal dexamethasone exposure (PDE) can lead to increased susceptibility to various diseases in adult offspring, but its effect on gut microbiota composition and the relationship with disease susceptibility remains unclear. In this study, we find sex-differential changes in the gut microbiota of 6-month-old infants with prenatal dexamethasone therapy (PDT) that persisted in female infants up to 2.5 years of age with altered bile acid metabolism. PDE female offspring rats show abnormal colonization and composition of gut microbiota and increased susceptibility to cholestatic liver injury. The aberrant gut microbiota colonization in the PDE offspring can be attributed to the inhibited Muc2 expression caused by decreased CDX2 expression before and after birth. Integrating animal and cell experiments, we further confirm that dexamethasone could inhibit Muc2 expression by activating GR/HDAC11 signaling and regulating CDX2 epigenetic modification. This study interprets abnormal gut microbiota and disease susceptibility in PDT offspring from intrauterine intestinal dysplasia.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Xia Wang
- Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Qian Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dongchi Zhao
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
16
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Turroni F, van Sinderen D, Ventura M. The infant gut microbiota as the cornerstone for future gastrointestinal health. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:93-119. [PMID: 38637108 DOI: 10.1016/bs.aambs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
17
|
Ziętek M, Szczuko M, Machałowski T. Gastrointestinal Disorders and Atopic Dermatitis in Infants in the First Year of Life According to ROME IV Criteria-A Possible Association with the Mode of Delivery and Early Life Nutrition. J Clin Med 2024; 13:927. [PMID: 38398241 PMCID: PMC10889151 DOI: 10.3390/jcm13040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Functional gastrointestinal disorders are very common condition. The aim of this study is to evaluate the implications of the mode of pregnancy termination and early infant feeding on the incidence of gastrointestinal disorders and atopic dermatitis at birth and 3, 6, and 12 months of age. Methods: This study included 82 pregnant women and their newborns born at term. All newborns were examined at birth and 3, 6, and 12 months of age according to the ROME IV criteria. Results: In children born after cesarean section, the incidence of regurgitation was significantly higher. In children fed mostly or exclusively with formula, dry skin with allergic features was observed more often compared to breastfed children, but this relation was statistically significant only at the age of 12 months. The use of antibiotic therapy increased the risk of allergic skin lesions by almost seven times at 3 months of life. Gastrointestinal disorders in the form of regurgitation, colic, and constipation occur within the period of up to 12 months of the child's life and may be related to the mode of the termination of pregnancy via cesarean section and the use of artificial feeding or antibiotic therapy. The occurrence of atopic dermatitis in infants at 12 months of life is correlated with the mode of the termination of pregnancy after cesarean section. Conclusions: One of the risk factors for the occurrence of atopic dermatitis and gastrointestinal disorders in the period up to 12 months of the child's life may be a cesarean section and the use of formula feeding or antibiotic therapy.
Collapse
Affiliation(s)
- Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Tomasz Machałowski
- Department of Perinatology, Obstetrics and Gynecology Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| |
Collapse
|
18
|
Huang H, Jiang J, Wang X, Jiang K, Cao H. Exposure to prescribed medication in early life and impacts on gut microbiota and disease development. EClinicalMedicine 2024; 68:102428. [PMID: 38312240 PMCID: PMC10835216 DOI: 10.1016/j.eclinm.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The gut microbiota during early life plays a crucial role in infant development. This microbial-host interaction is also essential for metabolism, immunity, and overall human health in later life. Early-life pharmaceutical exposure, mainly referring to exposure during pregnancy, childbirth, and infancy, may change the structure and function of gut microbiota and affect later human health. In this Review, we describe how healthy gut microbiota is established in early life. We summarise the commonly prescribed medications during early life, including antibiotics, acid suppressant medications and other medications such as antidepressants, analgesics and steroid hormones, and discuss how these medication-induced changes in gut microbiota are involved in the pathological process of diseases, including infections, inflammatory bowel disease, metabolic diseases, allergic diseases and neurodevelopmental disorders. Finally, we review some critical methods such as dietary therapy, probiotics, prebiotics, faecal microbiota transplantation, genetically engineered phages, and vagus nerve stimulation in early life, aiming to provide a new strategy for the prevention of adverse health outcomes caused by prescribed medications exposure in early life.
Collapse
Affiliation(s)
- Huan Huang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology, the Affiliated Jinyang Hospital of Guizhou Medical University, the Second People's Hospital of Guiyang, Guiyang, China
| | - Jiayin Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xinyu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
19
|
Samarra A, Cabrera-Rubio R, Martínez-Costa C, Collado MC. The role of Bifidobacterium genus in modulating the neonate microbiota: implications for antibiotic resistance acquisition in early life. Gut Microbes 2024; 16:2357176. [PMID: 38798019 PMCID: PMC11135851 DOI: 10.1080/19490976.2024.2357176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Resistance to antibiotics in newborns is a huge concern as their immune system is still developing, and infections and resistance acquisition in early life have short- and long-term consequences for their health. Bifidobacterium species are important commensals capable of dominating the infant gut microbiome and are known to be less prone to possess antimicrobial resistance genes than other taxa that may colonize infants. We aimed to study the association between Bifidobacterium-dominated infant gut microbiota and the antibiotic resistant gene load in neonates, and to ascertain the perinatal factors that may contribute to the antibiotic resistance acquisition. Two hundred infant fecal samples at 7 days and 1 month of age from the MAMI birth cohort were included in the study and for whom maternal-neonatal clinical records were available. Microbiota profiling was carried out by 16S rRNA amplicon sequencing, and targeted antibiotic resistance genes (ARGs) including tetM, tetW, tetO, blaTEM, blaSHV and ermB were quantified by qPCR. Infant microbiota clustered into two distinct groups according to their Bifidobacterium genus abundance: high and low. The main separation of groups or clusters at each time point was performed with an unsupervised non-linear algorithm of k-means partitioning to cluster data by time points based on Bifidobacterium genus relative abundance. Microbiota composition differed significantly between both groups, and specific bifidobacterial species were enriched in each cluster. Lower abundance of Bifidobacterium in the infant gut was associated with a higher load of antibiotic resistance genes. Our results highlight the relevance of Bifidobacterium genus in the early acquisition and establishment of antibiotic resistance in the gut. Further studies are needed to develop strategies to promote a healthy early colonization and fight against the spread of antibiotic resistances.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Raúl Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, Valencia, Spain
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| |
Collapse
|
20
|
Montoya-Ciriaco N, Hereira-Pacheco S, Estrada-Torres A, Dendooven L, Méndez de la Cruz FR, Gómez-Acata ES, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Maternal transmission of bacterial microbiota during embryonic development in a viviparous lizard. Microbiol Spectr 2023; 11:e0178023. [PMID: 37847033 PMCID: PMC10714757 DOI: 10.1128/spectrum.01780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE We investigated the presence and diversity of bacteria in the embryos of the viviparous lizard Sceloporus grammicus and their amniotic environment. We compared this diversity to that found in the maternal intestine, mouth, and cloaca. We detected bacterial DNA in the embryos, albeit with a lower bacterial species diversity than found in maternal tissues. Most of the bacterial species detected in the embryos were also found in the mother, although not all of them. Interestingly, we detected a high similarity in the composition of bacterial species among embryos from different mothers. These findings suggest that there may be a mechanism controlling the transmission of bacteria from the mother to the embryo. Our results highlight the possibility that the interaction between maternal bacteria and the embryo may affect the development of the lizards.
Collapse
Affiliation(s)
- Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Stephanie Hereira-Pacheco
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Arturo Estrada-Torres
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Mexico City, Mexico
| | - Fausto R. Méndez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H. Díaz de la Vega-Pérez
- Consejo Nacional de Ciencia, Humanidades y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala., Tlaxcala, Mexico
| | - Yendi E. Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
21
|
Cheddadi R, Yeramilli V, Martin C. From Mother to Infant, from Placenta to Gut: Understanding Varied Microbiome Profiles in Neonates. Metabolites 2023; 13:1184. [PMID: 38132866 PMCID: PMC10745069 DOI: 10.3390/metabo13121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The field of human microbiome and gut microbial diversity research has witnessed a profound transformation, driven by advances in omics technologies. These advancements have unveiled essential connections between microbiome alterations and severe conditions, prompting the development of new frameworks through epidemiological studies. Traditionally, it was believed that each individual harbored unique microbial communities acquired early in life, evolving over the course of their lifetime, with little acknowledgment of any prenatal microbial development, but recent research challenges this belief. The neonatal microbiome's onset, influenced by factors like delivery mode and maternal health, remains a subject of intense debate, hinting at potential intrauterine microbial processes. In-depth research reveals associations between microbiome profiles and specific health outcomes, ranging from obesity to neurodevelopmental disorders. Understanding these diverse microbiome profiles is essential for unraveling the intricate relationships between the microbiome and health outcomes.
Collapse
Affiliation(s)
- Riadh Cheddadi
- Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA (C.M.)
| | | | | |
Collapse
|
22
|
Yeruva L, Mulakala BK, Rajasundaram D, Gonzalez S, Cabrera-Rubio R, Martínez-Costa C, Collado MC. Human milk miRNAs associate to maternal dietary nutrients, milk microbiota, infant gut microbiota and growth. Clin Nutr 2023; 42:2528-2539. [PMID: 37931372 DOI: 10.1016/j.clnu.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Maternal diet influences the milk composition, yet little information is available on the impact of maternal diet on milk miRNAs expression. Further, the association of human milk miRNAs to maternal diet and milk microbiota is not explored. In addition, the role of milk miRNAs on the infant gut microbiota, infant growth and development has not been investigated. METHODS Milk samples were collected from 60 healthy lactating women at ≤15d post-partum, HTG transcriptome assay was performed to examine milk miRNA profile. Maternal clinical and dietary clusters information were available and infant anthropometric measures were followed up to one year of age. Milk and infant microbiota were analyzed by 16S rRNA gene sequencing and integrative multi-omics data analysis was performed to identify potential association between microRNA, maternal dietary nutrients and microbiota. RESULTS Discriminant analysis revealed that the milk miRNAs were clustered into groups according to the maternal protein source. Interestingly, 31 miRNAs were differentially expressed (P adj < 0.05) between maternal dietary clusters (Cluster 1: enriched in plant protein and fibers and Cluster 2: enriched in animal protein), with 30 miRNAs downregulated in the plant protein group relative to animal protein group. Pathway analysis revealed that the top enriched pathways (P adj < 0.01) were involved in cell growth and proliferation processes. Furthermore, significant features contributing to the clustering were associated with maternal dietary nutrients and milk microbiota (r > 0.70). Further, miR-378 and 320 family miRNAs involved in adipogenesis were positively correlated to the infant BMI-z-scores, weight, and weight for length-z-scores at 6 months of age. CONCLUSIONS Maternal dietary source impacts the milk miRNA expression profile. Further, miRNAs were associated with maternal dietary nutrients, milk microbiota and to the infant gut microbiota and infant growth and development. CLINICAL TRIAL The study is registered in ClinicalTrials.gov. The identification number is NCT03552939.
Collapse
Affiliation(s)
- Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Little Rock, AR, USA; Arkansas Children's Nutrition Center, Little Rock, AR, USA.
| | - Bharat Kumar Mulakala
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Little Rock, AR, USA; Arkansas Children's Nutrition Center, Little Rock, AR, USA; Texas A&M AgriLife Institute for Advancing Health Through Agriculture, TX, USA
| | | | - Sonia Gonzalez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA, ISPA), Oviedo, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
23
|
Heston SM, Lim CSE, Ong C, Chua MC, Kelly MS, Yeo KT. Strain-resolved metagenomic analysis of the gut as a reservoir for bloodstream infection pathogens among premature infants in Singapore. Gut Pathog 2023; 15:55. [PMID: 37974294 PMCID: PMC10652614 DOI: 10.1186/s13099-023-00583-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Gut dysbiosis contributes to the high risk of bloodstream infection (BSI) among premature infants. Most prior studies of the premature infant gut microbiota were conducted in Western countries and prior to development of current tools for strain-resolved analysis. METHODS We performed metagenomic sequencing of weekly fecal samples from 75 premature infants at a single hospital in Singapore. We evaluated associations between clinical factors and gut microbiota composition using PERMANOVA and mixed effects linear regression. We used inStrain to perform strain-level analyses evaluating for gut colonization by BSI-causing strains. RESULTS Median (interquartile range) gestation was 27 (25, 29) weeks, and 63% of infants were born via Cesarean section. Antibiotic exposures (PERMANOVA; R2 = 0.017, p = 0.001) and postnatal age (R2 = 0.015, p = 0.001) accounted for the largest amount of variability in gut microbiota composition. Increasing postnatal age was associated with higher relative abundances of several common pathogens (Enterococcus faecalis: p < 0.0001; Escherichia coli: p < 0.0001; Klebsiella aerogenes: p < 0.0001; Klebsiella pneumoniae: p < 0.0001). Antibiotic exposures were generally associated with lower relative abundances of both frequently beneficial bacteria (e.g., Bifidobacterium species) and common enteric pathogens (e.g., Enterobacter, Klebsiella species). We identified strains identical to the blood culture isolate in fecal samples from 12 of 16 (75%) infants who developed BSI, including all infections caused by typical enteric bacteria. CONCLUSIONS Antibiotic exposures were the dominant modifiable factor affecting gut microbiota composition in a large cohort of premature infants from South-East Asia. Strain-resolved analyses indicate that the gut is an important reservoir for organisms causing BSI among premature infants.
Collapse
Affiliation(s)
- Sarah M Heston
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Charis Shu En Lim
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Chengsi Ong
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Nutrition and Dietetics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mei Chien Chua
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Kee Thai Yeo
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
24
|
Elizalde-Torrent A, Borgognone A, Casadellà M, Romero-Martin L, Escribà T, Parera M, Rosales-Salgado Y, Díaz-Pedroza J, Català-Moll F, Noguera-Julian M, Brander C, Paredes R, Olvera A. Vaccination with an HIV T-Cell Immunogen (HTI) Using DNA Primes Followed by a ChAdOx1-MVA Boost Is Immunogenic in Gut Microbiota-Depleted Mice despite Low IL-22 Serum Levels. Vaccines (Basel) 2023; 11:1663. [PMID: 38005995 PMCID: PMC10675013 DOI: 10.3390/vaccines11111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the important role of gut microbiota in the maturation of the immune system, little is known about its impact on the development of T-cell responses to vaccination. Here, we immunized C57BL/6 mice with a prime-boost regimen using DNA plasmid, the Chimpanzee Adenovirus, and the modified Vaccinia Ankara virus expressing a candidate HIV T-cell immunogen and compared the T-cell responses between individuals with an intact or antibiotic-depleted microbiota. Overall, the depletion of the gut microbiota did not result in significant differences in the magnitude or breadth of the immunogen-specific IFNγ T-cell response after vaccination. However, we observed marked changes in the serum levels of four cytokines after vaccinating microbiota-depleted animals, particularly a significant reduction in IL-22 levels. Interestingly, the level of IL-22 in serum correlated with the abundance of Roseburia in the large intestine of mice in the mock and vaccinated groups with intact microbiota. This short-chain fatty acid (SCFA)-producing bacterium was significantly reduced in the vaccinated, microbiota-depleted group. Therefore, our results indicate that, although microbiota depletion reduces serum levels of IL-22, the powerful vaccine regime used could have overcome the impact of microbiota depletion on IFNγ-producing T-cell responses.
Collapse
Affiliation(s)
- Aleix Elizalde-Torrent
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Alessandra Borgognone
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Maria Casadellà
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Luis Romero-Martin
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona (UAB), 08193 Cerdanyola del Valles, Spain
| | - Tuixent Escribà
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Mariona Parera
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Yaiza Rosales-Salgado
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (Y.R.-S.); (J.D.-P.)
| | - Jorge Díaz-Pedroza
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (Y.R.-S.); (J.D.-P.)
| | - Francesc Català-Moll
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Marc Noguera-Julian
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
| | - Christian Brander
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Aelix Therapeutics, 08028 Barcelona, Spain
| | - Roger Paredes
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Fight AIDS Foundation, Infectious Diseases Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Alex Olvera
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| |
Collapse
|
25
|
Kwak MJ, Kim SH, Kim HH, Tanpure R, Kim JI, Jeon BH, Park HK. Psychobiotics and fecal microbial transplantation for autism and attention-deficit/hyperactivity disorder: microbiome modulation and therapeutic mechanisms. Front Cell Infect Microbiol 2023; 13:1238005. [PMID: 37554355 PMCID: PMC10405178 DOI: 10.3389/fcimb.2023.1238005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 08/10/2023] Open
Abstract
Dysbiosis of the gut microbiome is thought to be the developmental origins of the host's health and disease through the microbiota-gut-brain (MGB) axis: such as immune-mediated, metabolic, neurodegenerative, and neurodevelopmental diseases. Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are common neurodevelopmental disorders, and growing evidence indicates the contribution of the gut microbiome changes and imbalances to these conditions, pointing to the importance of considering the MGB axis in their treatment. This review summarizes the general knowledge of gut microbial colonization and development in early life and its role in the pathogenesis of ASD/ADHD, highlighting a promising therapeutic approach for ASD/ADHD through modulation of the gut microbiome using psychobiotics (probiotics that positively affect neurological function and can be applied for the treatment of psychiatric diseases) and fecal microbial transplantation (FMT).
Collapse
Affiliation(s)
- Min-jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Rahul Tanpure
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
26
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
27
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
28
|
Cao Y, Nguyen LH, Tica S, Otegbeye E, Zong X, Roelstraete B, Chan AT, Warner BB, Stephansson O, Ludvigsson JF. Evaluation of Birth by Cesarean Delivery and Development of Early-Onset Colorectal Cancer. JAMA Netw Open 2023; 6:e2310316. [PMID: 37103933 PMCID: PMC10140807 DOI: 10.1001/jamanetworkopen.2023.10316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 04/28/2023] Open
Abstract
IMPORTANCE The incidence of early-onset colorectal cancer (CRC), diagnosed younger than 50 years of age, has increased worldwide. Gut dysbiosis throughout the life course is hypothesized as a leading mechanism, yet epidemiologic data are limited. OBJECTIVE To prospectively examine the association between birth by cesarean delivery and early-onset CRC among offspring. DESIGN, SETTING, AND PARTICIPANTS In this population-based, nationwide case-control study in Sweden, adults diagnosed with CRC between 18 and 49 years of age from 1991 to 2017 were identified through the Epidemiology Strengthened by Histopathology Reports in Sweden (ESPRESSO) cohort. Up to 5 general population control individuals without CRC were matched with each case on age, sex, calendar year, and county of residence. Pathology-confirmed end points were linked with the Swedish Medical Birth Register and other national registers. Analyses were conducted from March 2022 through March 2023. EXPOSURE Birth by cesarean delivery. MAIN OUTCOMES AND MEASURES The primary outcome was development of early-onset CRC in the overall population and by sex. RESULTS We identified 564 case patients with incident early-onset CRC (mean [SD] age, 32.9 [6.2] years; 284 [50.4%] male) and 2180 matched controls (mean [SD] age, 32.7 [6.3] years; 1104 [50.6%] male). Compared with vaginal delivery, birth by cesarean delivery was not associated with early-onset CRC in the overall population (adjusted odds ratio [aOR], 1.28; 95% CI, 0.91-1.79) after multivariable adjustment for matching and maternal and pregnancy-related factors. A positive association was found for females (aOR, 1.62; 95% CI, 1.01-2.60), but there was no association for males (aOR, 1.05; 95% CI, 0.64-1.72). CONCLUSIONS AND RELEVANCE In this nationwide, population-based case-control study, birth by cesarean delivery was not associated with early-onset CRC compared with birth by vaginal delivery in the overall population in Sweden. However, females born by cesarean delivery had greater odds of early-onset CRC compared with individuals born through vaginal delivery. This finding suggests that early-life gut dysbiosis may contribute to early-onset CRC in females.
Collapse
Affiliation(s)
- Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Long H. Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Stefani Tica
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Ebunoluwa Otegbeye
- Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Xiaoyu Zong
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Bjorn Roelstraete
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Barbara B. Warner
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Olof Stephansson
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Women’s Health, Department of Obstetrics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Örebro University Hospital, Örebro, Sweden
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
29
|
Zhu B, Serrano M, Buck G. The influence of maternal factors on the neonatal microbiome and health. RESEARCH SQUARE 2023:rs.3.rs-2485214. [PMID: 36778490 PMCID: PMC9915805 DOI: 10.21203/rs.3.rs-2485214/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human microbiome plays an essential role in human health. However, the influence of maternal factors on the neonatal microbiome remains obscure. Herein, our observations suggest that the neonatal buccal microbiome is similar to the maternal buccal microbiome, but the neonatal gastrointestinal microbiome develops a unique composition at an early stage. The low complexity of the neonatal buccal microbiome is a hallmark of maternal and neonatal health, but that of the neonatal gastrointestinal microbiome is associated with maternal inflammation-related metabolites. Microbial infections in the maternal reproductive tract universally impact the complexity of the neonatal microbiomes, and the body site is most important in modulating the composition of the neonatal microbiomes. Additionally, maternal lipids attenuated the adverse influence of several maternal factors on the neonatal microbiomes. Finally, admission of neonates to the newborn intensive care unit is associated with sub-optimal states of the maternal buccal and rectal microbiomes and maternal health.
Collapse
Affiliation(s)
- Bin Zhu
- Virginia Commonwealth University
| | | | | |
Collapse
|
30
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
31
|
The Local Activation of Toll-like Receptor 7 (TLR7) Modulates Colonic Epithelial Barrier Function in Rats. Int J Mol Sci 2023; 24:ijms24021254. [PMID: 36674770 PMCID: PMC9865626 DOI: 10.3390/ijms24021254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptors (TLRs)-mediated host-bacterial interactions participate in the microbial regulation of gastrointestinal functions, including the epithelial barrier function (EBF). We evaluated the effects of TLR7 stimulation on the colonic EBF in rats. TLR7 was stimulated with the selective agonist imiquimod (100/300 µg/rat, intracolonic), with or without the intracolonic administration of dimethyl sulfoxide (DMSO). Colonic EBF was assessed in vitro (electrophysiology and permeability to macromolecules, Ussing chamber) and in vivo (passage of macromolecules to blood and urine). Changes in the expression (RT-qPCR) and distribution (immunohistochemistry) of tight junction-related proteins were determined. Expression of proglucagon, precursor of the barrier-enhancer factor glucagon-like peptide 2 (GLP-2) was also assessed (RT-qPCR). Intracolonic imiquimod enhanced the EBF in vitro, reducing the epithelial conductance and the passage of macromolecules, thus indicating a pro-barrier effect of TLR7. However, the combination of TLR7 stimulation and DMSO had a detrimental effect on the EBF, which manifested as an increased passage of macromolecules. DMSO alone had no effect. The modulation of the EBF (imiquimod alone or with DMSO) was not associated with changes in gene expression or the epithelial distribution of the main tight junction-related proteins (occludin, tricellulin, claudin-2, claudin-3, junctional adhesion molecule 1 and Zonula occludens-1). No changes in the proglucagon expression were observed. These results show that TLR7 stimulation leads to the modulation of the colonic EBF, having beneficial or detrimental effects depending upon the state of the epithelium. The underlying mechanisms remain elusive, but seem independent of the modulation of the main tight junction-related proteins or the barrier-enhancer factor GLP-2.
Collapse
|
32
|
Cortés-Macías E, Selma-Royo M, Rio-Aige K, Bäuerl C, Rodríguez-Lagunas MJ, Martínez-Costa C, Pérez-Cano FJ, Collado MC. Distinct breast milk microbiota, cytokine, and adipokine profiles are associated with infant growth at 12 months: an in vitro host-microbe interaction mechanistic approach. Food Funct 2023; 14:148-159. [PMID: 36472137 DOI: 10.1039/d2fo02060b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast milk (BM) is important for adequate infant development, and it contains bioactive compounds, such as bacteria, cytokines and some adipokines which play a role in infant microbial, metabolic, and immunological maturation. However, little is known about its impact on growth and development in early life. The objective of this study was to evaluate the impact of milk microbiota, cytokine, and adipokine profiles on the risk of overweight at 12 months of life to find the possible mechanisms of host-microbe interactions. In this study, BM samples from 100 healthy women collected during 15 d after birth were included. BM microbiota was analysed by 16S rRNA gene sequencing, and cytokine and adipokine levels were measured by the Luminex approach. In addition, infant weight and length were recorded during the first 12 months and z-scores were obtained according to the WHO databases. Infants were classified as risk of overweight (ROW) and no-risk of overweight (NOROW) based on their body mass index z-score (BMIZ) and infant weight-for-length z-score (WLZ) at 12 months. In order to study host-microbe interactions, epithelial intestinal and mammary cell lines were exposed to milk microbes to assess the host response by interleukin (IL)-6 production as a potential inflammatory marker. BM was dominated by Staphylococcus and Streptococcus genera, and the most abundant cytokines were IL-6 and IL-18. Leptin levels were positively correlated with the pregestational body mass index (BMI). Higher relative abundance of the Streptococcus genus was associated with higher IL-10 and higher relative abundance of the Bifidobacterium genus was associated with lower IL-6 concentrations in milk. Infant WLZ at 12 months could be partially predicted by Streptococcus genus proportions and IL-10 and IL-18 levels in BM. BM microbiota significantly induced cytokine responses in mammary epithelial cells. Higher levels of IL-6 production were observed in mammary cells exposed to BM microbiota from mothers with ROW offspring compared to mothers with NOROW offspring. In conclusion, BM microbiota is related to the cytokine profile. IL-10 and IL-18 levels and the abundance of the Streptococcus genus could affect early infant development. Further research is needed to clarify the specific impact of BM microbiota and cytokines on infant growth and the risk of overweight.
Collapse
Affiliation(s)
- Erika Cortés-Macías
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Karla Rio-Aige
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-, National Research Council (IATA-CSIC), Valencia, Spain.
| | - María José Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, Valencia, Spain.,Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA, Valencia, Spain
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-, National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
33
|
Saralegui C, García-Durán C, Romeu E, Hernáez-Sánchez ML, Maruri A, Bastón-Paz N, Lamas A, Vicente S, Pérez-Ruiz E, Delgado I, Luna-Paredes C, Caballero JDD, Zamora J, Monteoliva L, Gil C, del Campo R. Statistical Evaluation of Metaproteomics and 16S rRNA Amplicon Sequencing Techniques for Study of Gut Microbiota Establishment in Infants with Cystic Fibrosis. Microbiol Spectr 2022; 10:e0146622. [PMID: 36255300 PMCID: PMC9784762 DOI: 10.1128/spectrum.01466-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
Newborn screening for cystic fibrosis (CF) can identify affected but asymptomatic infants. The selection of omic technique for gut microbiota study is crucial due to both the small amount of feces available and the low microorganism load. Our aims were to compare the agreement between 16S rRNA amplicon sequencing and metaproteomics by a robust statistical analysis, including both presence and abundance of taxa, to describe the sequential establishment of the gut microbiota during the first year of life in a small size sample (8 infants and 28 fecal samples). The taxonomic assignations by the two techniques were similar, whereas certain discrepancies were observed in the abundance detection, mostly the lower predicted relative abundance of Bifidobacterium and the higher predicted relative abundance of certain Firmicutes and Proteobacteria by amplicon sequencing. During the first months of life, the CF gut microbiota is characterized by a significant enrichment of Ruminococcus gnavus, the expression of certain virulent bacterial traits, and the detection of human inflammation-related proteins. Metaproteomics provides information on composition and functionality, as well as data on host-microbiome interactions. Its strength is the identification and quantification of Actinobacteria and certain classes of Firmicutes, but alpha diversity indices are not comparable to those of amplicon sequencing. Both techniques detected an aberrant microbiota in our small cohort of infants with CF during their first year of life, dominated by the enrichment of R. gnavus within a human inflammatory environment. IMPORTANCE In recent years, some techniques have been incorporated for the study of microbial ecosystems, being 16S rRNA gene sequencing being the most widely used. Metaproteomics provides the advantage of identifying the interaction between microorganisms and human cells, but the available databases are less extensive as well as imprecise. Few studies compare the statistical differences between the two techniques to define the composition of an ecosystem. Our work shows that the two methods are comparable in terms of microorganism identification but provide different results in alpha diversity analysis. On the other hand, we have studied newborns with cystic fibrosis, for whom we have described the establishment of an intestinal ecosystem marked by the inflammatory response of the host and the enrichment of Ruminococcus gnavus.
Collapse
Affiliation(s)
- Claudia Saralegui
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- CIBERINFEC, Madrid, Spain
- Unidad de Fibrosis Quística, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Carmen García-Durán
- Departamento de Microbiología y Parasitología, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eduardo Romeu
- Unidad de Proteómica, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Ainhize Maruri
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- CIBERINFEC, Madrid, Spain
- Unidad de Fibrosis Quística, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Natalia Bastón-Paz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- CIBERINFEC, Madrid, Spain
- Unidad de Fibrosis Quística, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Adelaida Lamas
- Unidad de Fibrosis Quística, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Servicio de Pediatría, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Saioa Vicente
- Unidad de Fibrosis Quística, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Servicio de Pediatría, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Estela Pérez-Ruiz
- Unidad de Fibrosis Quística, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Isabel Delgado
- Unidad de Fibrosis Quística, Hospital Virgen del Rocío, Seville, Spain
| | - Carmen Luna-Paredes
- Sección de Neumología y Alergia Infantil, Unidad Multidisciplinar Fibrosis Quística, Hospital Doce de Octubre, Madrid, Spain
| | - Juan de Dios Caballero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- CIBERINFEC, Madrid, Spain
- Unidad de Fibrosis Quística, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Zamora
- Unidad de Bioestadística, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria and CIBERESP, Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Unidad de Proteómica, Universidad Complutense de Madrid, Madrid, Spain
| | - Concepción Gil
- Departamento de Microbiología y Parasitología, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Unidad de Proteómica, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- CIBERINFEC, Madrid, Spain
- Unidad de Fibrosis Quística, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Universidad Alfonso X El Sabio, Madrid, Spain
| |
Collapse
|
34
|
Jokela R, Korpela K, Jian C, Dikareva E, Nikkonen A, Saisto T, Skogberg K, de Vos WM, Kolho KL, Salonen A. Quantitative insights into effects of intrapartum antibiotics and birth mode on infant gut microbiota in relation to well-being during the first year of life. Gut Microbes 2022; 14:2095775. [PMID: 36174236 PMCID: PMC9542534 DOI: 10.1080/19490976.2022.2095775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Birth mode and maternal intrapartum (IP) antibiotics affect infants' gut microbiota development, but their relative contribution to absolute bacterial abundances and infant health has not been studied. We compared the effects of Cesarean section (CS) delivery and IP antibiotics on infant gut microbiota development and well-being over the first year. We focused on 92 healthy infants born between gestational weeks 37-42 vaginally without antibiotics (N = 26), with IP penicillin (N = 13) or cephalosporin (N = 7) or by CS with IP cephalosporin (N = 33) or other antibiotics (N = 13). Composition and temporal development analysis of the gut microbiota concentrated on 5 time points during the first year of life using 16S rRNA gene amplicon sequencing, integrated with qPCR to obtain absolute abundance estimates. A mediation analysis was carried out to identify taxa linked to gastrointestinal function and discomfort (crying, defecation frequency, and signs of gastrointestinal symptoms), and birth interventions. Based on absolute abundance estimates, the depletion of Bacteroides spp. was found specifically in CS birth, while decreased bifidobacteria and increased Bacilli were common in CS birth and exposure to IP antibiotics in vaginal delivery. The abundances of numerous taxa differed between the birth modes among cephalosporin-exposed infants. Penicillin had a milder impact on the infant gut microbiota than cephalosporin. CS birth and maternal IP antibiotics had both specific and overlapping effects on infants' gut microbiota development. The resulting deviations in the gut microbiota are associated with increased defecation rate, flatulence, perceived stomach pain, and intensity of crying in infancy.
Collapse
Affiliation(s)
- Roosa Jokela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Evgenia Dikareva
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Nikkonen
- Children’s Hospital, Pediatric Research Center, University of Helsinki, Helsinki, Finland
| | - Terhi Saisto
- Department of Obstetrics and Gynecology, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Skogberg
- Clinic of Infectious Diseases, Jorvi and Helsinki University Hospital, Helsinki, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Kaija-Leena Kolho
- Children’s Hospital, Pediatric Research Center, University of Helsinki, Helsinki, Finland,Tampere University, Tampere, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,CONTACT Anne Salonen Haartmaninkatu 3, PO Box 21, FI-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Li B, Yang B, Liu X, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell Mol Life Sci 2022; 79:470. [PMID: 35932328 PMCID: PMC11072763 DOI: 10.1007/s00018-022-04498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.
| |
Collapse
|
36
|
Yang Z, Liu X, Wu Y, Peng J, Wei H. Effect of the Microbiome on Intestinal Innate Immune Development in Early Life and the Potential Strategy of Early Intervention. Front Immunol 2022; 13:936300. [PMID: 35928828 PMCID: PMC9344006 DOI: 10.3389/fimmu.2022.936300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Early life is a vital period for mammals to be colonized with the microbiome, which profoundly influences the development of the intestinal immune function. For neonates to resist pathogen infection and avoid gastrointestinal illness, the intestinal innate immune system is critical. Thus, this review summarizes the development of the intestinal microbiome and the intestinal innate immune barrier, including the intestinal epithelium and immune cells from the fetal to the weaning period. Moreover, the impact of the intestinal microbiome on innate immune development and the two main way of early-life intervention including probiotics and fecal microbiota transplantation (FMT) also are discussed in this review. We hope to highlight the crosstalk between early microbial colonization and intestinal innate immunity development and offer some information for early intervention.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
37
|
Popescu C. Whole exome sequencing in a juvenile idiopathic arthritis large family with SERPINA1 gene mutations. BMC Rheumatol 2022; 6:39. [PMID: 35786784 PMCID: PMC9251928 DOI: 10.1186/s41927-022-00269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Although the underlying mechanisms and mediators of arthritis in juvenile idiopathic arthritis are not well understood, accumulated evidence supports the mixt role of genetic and environmental factors. Few reports of multiplex families with JIA were published until now. The aim of this study was to describe the subjects affected by juvenile idiopathic arthritis and psoriatic features (JIAPs) in a large family. METHODS Here, we characterized an extended multiplex family of 5 patients with juvenile idiopathic arthritis and psoriatic features (PsA) at the clinical and genetic level, using whole exome sequencing. RESULTS We did not confirm in our family the linkage with the genetic factors already described that might be associated with increase susceptibility to JIA. We found a carrier status of siblings who inherited a pathogenic allele of the SERPINA1 gene from their mother who herself has two heterozygous pathogenic variants in the SERPINA1 gene. CONCLUSIONS This study didn't identify genetic contributive factors but highlights potentially environmental associations concerning the siblings of a family with juvenile idiopathic arthritis and psoriatic features (JIAPs). It is difficult to establish that SERPINA1 gene mutation has an etiological role as the levels of AAT are only slightly decreased and all the children harbor heterozygous variants.
Collapse
|
38
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
39
|
Horne RG, Freedman SB, Johnson-Henry KC, Pang XL, Lee BE, Farion KJ, Gouin S, Schuh S, Poonai N, Hurley KF, Finkelstein Y, Xie J, Williamson-Urquhart S, Chui L, Rossi L, Surette MG, Sherman PM. Intestinal Microbial Composition of Children in a Randomized Controlled Trial of Probiotics to Treat Acute Gastroenteritis. Front Cell Infect Microbiol 2022; 12:883163. [PMID: 35774405 PMCID: PMC9238408 DOI: 10.3389/fcimb.2022.883163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Compositional analysis of the intestinal microbiome in pre-schoolers is understudied. Effects of probiotics on the gut microbiota were evaluated in children under 4-years-old presenting to an emergency department with acute gastroenteritis. Included were 70 study participants (n=32 placebo, n=38 probiotics) with stool specimens at baseline (day 0), day 5, and after a washout period (day 28). Microbiota composition and deduced functions were profiled using 16S ribosomal RNA sequencing and predictive metagenomics, respectively. Probiotics were detected at day 5 of administration but otherwise had no discernable effects, whereas detection of bacterial infection (P<0.001) and participant age (P<0.001) had the largest effects on microbiota composition, microbial diversity, and deduced bacterial functions. Participants under 1 year had lower bacterial diversity than older aged pre-schoolers; compositional changes of individual bacterial taxa were associated with maturation of the gut microbiota. Advances in age were associated with differences in gut microbiota composition and deduced microbial functions, which have the potential to impact health later in life.
Collapse
Affiliation(s)
- Rachael G. Horne
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen B. Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Department of Pediatrics, Alberta Children’s Hospital, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Xiao-Li Pang
- Alberta Precision Laboratories – Public Health Laboratory (ProvLab), Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Bonita E. Lee
- Women and Children’s Research Institute, Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| | - Ken J. Farion
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Serge Gouin
- Departments of Emergency Medicine and Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Suzanne Schuh
- Division of Emergency Medicine, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Naveen Poonai
- Division of Pediatric Emergency Medicine, London Children’s Hospital Health Science Centre, Department of Pediatrics, Western University, London, ON, Canada
| | - Katrina F. Hurley
- Pediatric Emergency Medicine, Izaak Walton Killam (IWK) Children’s Hospital, Dalhousie University, Halifax, NS, Canada
| | - Yaron Finkelstein
- Division of Emergency Medicine, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jianling Xie
- Pediatric Emergency Medicine, Izaak Walton Killam (IWK) Children’s Hospital, Dalhousie University, Halifax, NS, Canada
| | - Sarah Williamson-Urquhart
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Alberta Children’s Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Linda Chui
- Alberta Precision Laboratories – Public Health Laboratory (ProvLab), Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Laura Rossi
- Department of Biochemistry and Biomedical Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Michael G. Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Philip M. Sherman
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- *Correspondence: Philip M. Sherman,
| |
Collapse
|
40
|
Deng F, Lin ZB, Sun QS, Min Y, Zhang Y, Chen Y, Chen WT, Hu JJ, Liu KX. The role of intestinal microbiota and its metabolites in intestinal and extraintestinal organ injury induced by intestinal ischemia reperfusion injury. Int J Biol Sci 2022; 18:3981-3992. [PMID: 35844797 PMCID: PMC9274501 DOI: 10.7150/ijbs.71491] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) is a common pathophysiological process in clinical severe patients, and the effect of intestinal I/R injury on the patient's systemic pathophysiological state is far greater than that of primary intestinal injury. In recent years, more and more evidence has shown that intestinal microbiota and its metabolites play an important role in the occurrence, development, diagnosis and treatment of intestinal I/R injury. Intestinal microbiota is regulated by host genes, immune response, diet, drugs and other factors. The metabolism and immune potential of intestinal microbiota determine its important significance in host health and diseases. Therefore, targeting the intestinal microbiota and its metabolites may be an effective therapy for the treatment of intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury. This review focuses on the role of intestinal microbiota and its metabolites in intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury, and summarizes the latest progress in regulating intestinal microbiota to treat intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Zeng Z, Zhang J, Li Y, Li K, Gong S, Li F, Wang P, Iqbal M, Kulyar MFEA, Li J. Probiotic Potential of Bacillus licheniformis and Bacillus pumilus Isolated from Tibetan Yaks, China. Probiotics Antimicrob Proteins 2022; 14:579-594. [PMID: 35445290 DOI: 10.1007/s12602-022-09939-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 01/02/2023]
Abstract
Yak (Bos grunniens) inhabit an oxygen-deficient environment at the altitude of 3000 m on the Tibetan Plateau, with a distinctive gut micro-ecosystem. This study evaluated the probiotic potential and physiological property of Bacillus licheniformis and Bacillus pumilus isolated from the gut of yaks. Four strains, two Bacillus licheniformis (named D1 and D2) and two Bacillus pumilus (named X1 and X2), were isolated and identified by 16S rRNA sequencing. All strains had potential antibacterial ability against three indicator pathogens: Escherichia coli C83902, Staphylococcus aureus BNCC186335, and Salmonella enteritidis NTNC13349. The antioxidant activity test showed that D2 sample showed the highest antioxidant activity. Furthermore, all four strains had a higher hydrophobicity, auto-aggregation, acid tolerance, bile tolerance, and antibiotic sensitivity, which all contribute to their survival in the gastrointestinal tract and clinical utility. The animal experimentation (40 KM mice, equally divided into five groups of eight mice each) showed that the strain supplementation not only increased daily weight gain and reduced feed conversion ratio, but also increased the length of the jejunum villi and the value of the V/C (Villi/Crypt). In conclusion, this is the first study demonstrated the probiotic potential of Bacillus licheniformis and Bacillus pumilus isolated from yaks, providing a theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feiran Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengpeng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| |
Collapse
|
42
|
Naspolini NF, Meyer A, Moreira JC, Sun H, Froes-Asmus CIR, Dominguez-Bello MG. Environmental pollutant exposure associated with altered early-life gut microbiome: Results from a birth cohort study. ENVIRONMENTAL RESEARCH 2022; 205:112545. [PMID: 34896087 DOI: 10.1016/j.envres.2021.112545] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Emerging evidence shows that the gut microbiota interacts with environmental pollutants, but the effect of early exposure on the neonatal microbiome remains unknown. We investigated the association between maternal exposure to environmental pollutants and changes in early-life gut microbiome development. We surveyed 16S rRNA gene on meconium and fecal samples (at 1, 3, and 6 months) from the Brazilian birth cohort, and associated with levels of metals, perfluoroalkyl chemicals (PFAS), and pesticides in maternal and umbilical cord blood. The results indicate that the magnitude of the microbiome changes associated with increasing pollutant exposure was bigger in cesarean-section (CS) born and CS-born-preterm babies, in relation to vaginally (VG) delivered infants. Breastfeeding was associated with a stronger pollutant-associated effect on the infant feces, suggesting that the exposure source could be maternal milk. Differences in microbiome effects associated with maternal or cord blood pollutant concentrations suggest that fetal exposure time - intrauterine or perinatal - may matter. Finally, despite the high developmental microbiota variability, specific microbionts were consistently affected across all pollutants, with taxa clusters found in samples from infants exposed to the highest toxicant exposure. The results evidence that perinatal exposure to environmental pollutants is associated with alterations in gut microbiome development which may have health significance.
Collapse
Affiliation(s)
- Nathalia F Naspolini
- National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Armando Meyer
- Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josino C Moreira
- Center for the Studies on Workers' Health and Human Ecology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Haipeng Sun
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Carmen I R Froes-Asmus
- School Maternity Hospital, School of Medicine, Federal University of Rio de Janeiro, Laranjeiras Street, 180, Rio de Janeiro, 22240-000, Brazil
| | | |
Collapse
|
43
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
44
|
Linehan K, Dempsey EM, Ryan CA, Ross RP, Stanton C. First encounters of the microbial kind: perinatal factors direct infant gut microbiome establishment. MICROBIOME RESEARCH REPORTS 2022; 1:10. [PMID: 38045649 PMCID: PMC10688792 DOI: 10.20517/mrr.2021.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2023]
Abstract
The human gut microbiome harbors a diverse range of microbes that play a fundamental role in the health and well-being of their host. The early-life microbiome has a major influence on human development and long-term health. Perinatal factors such as maternal nutrition, antibiotic use, gestational age and mode of delivery influence the initial colonization, development, and function of the neonatal gut microbiome. The perturbed early-life gut microbiome predisposes infants to diseases in early and later life. Understanding how perinatal factors guide and shape the composition of the early-life microbiome is essential to improving infant health. The following review provides a synopsis of perinatal factors with the most decisive influences on initial microbial colonization of the infant gut.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
| |
Collapse
|
45
|
Cheng Y, Selma-Royo M, Cao X, Calatayud M, Qi Q, Zhou J, Zeng L, Garcia-Mantrana I, Collado MC, Han B. Influence of Geographical Location on Maternal-Infant Microbiota: Study in Two Populations From Asia and Europe. Front Cell Infect Microbiol 2022; 11:663513. [PMID: 35186776 PMCID: PMC8855098 DOI: 10.3389/fcimb.2021.663513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Early gut microbial colonization is driven by many factors, including mode of birth, breastfeeding, and other environmental conditions. Characters of maternal-neonatal microbiota were analyzed from two distinct populations in similar latitude but different continents (Oriental Asia and Europe). A total number of 120 healthy families from China (n=60) and Spain (n=60) were included. Maternal and neonatal microbiota profiles were obtained at birth by 16S rRNA gene profiling. Clinical records were collected. Geographical location influenced maternal-neonatal microbiota. Indeed, neonatal and maternal cores composed by nine genera each one were found independently of location. Geographical location was the most important variable that impact the overall structure of maternal and neoantal microbiota. For neonates, delivery mode effect on neonatal microbial community could modulate how the other perinatal factors, as geographical location or maternal BMI, impact the neoantal initial seeding. Furthermore, lower maternal pre-pregnancy BMI was associated with higher abundance of Faecalibacterium in maternal microbiota and members from Lachnospiraceae family in both mothers and infants. At genus-level, Chinese maternal-neonate dyads possessed higher number of phylogenetic shared microbiota than that of Spanish dyads. Bifidobacterium and Escherichia/Shigella were the genera most shared between dyads in the two groups highlighting their importance in neonatal colonization and mother-infant transmission. Our data showed that early gut microbiota establishment and development is affected by interaction of complex variables, where environment would be a critical factor.
Collapse
Affiliation(s)
- Yue Cheng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Xin Cao
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Marta Calatayud
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Qi Qi
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lingxia Zeng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Izaskun Garcia-Mantrana
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
46
|
Guzzardi MA, Ederveen THA, Rizzo F, Weisz A, Collado MC, Muratori F, Gross G, Alkema W, Iozzo P. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain Behav Immun 2022; 100:311-320. [PMID: 34920092 DOI: 10.1016/j.bbi.2021.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal gestational obesity is a risk factor for offspring's neurodevelopment and later neuro-cognitive disorders. Altered gut microbiota composition has been found in patients with neurocognitive disorders, and in relation to maternal metabolic health. We explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity. In groups of children from the Pisa birth Cohort (PISAC), we analysed faecal microbiota composition by 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development, as measured from 6 to 60 months of age by the Griffith's Mental Development Scales. Gut microbiota composition in the first phases of life is dominated by Bifidobacteria (Actinobacteria phylum), with contribution of Escherichia/Shigella and Klebsiella genera (Proteobacteria phylum), whereas Firmicutes become more dominant at 36 months of age. Maternal overweight leads to lower abundance of Bifidobacterium, Blautia and Ruminococcus, and lower practical reasoning scores in the offspring at the age of 36 months. In the whole population, microbiota in the first-pass meconium samples shows much higher alpha diversity compared to later samples, and its composition, particularly Bifidobacterium and Veillonella abundances, correlates with practical reasoning scores at 60 months of age. Maternal overweight correlates with bacterial colonization and with the development of reasoning skills at pre-school age. Associations between neonatal gut colonization and later cognitive function provide new perspectives of primary (antenatal) prevention of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.
| | | | - Gabriele Gross
- Medical and Scientific Affairs, Nutrition, RB Mead Johnson Nutrition Institute, Nijmegen, the Netherlands.
| | - Wynand Alkema
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
47
|
Moya-Alvarez V, Sansonetti PJ. Understanding the pathways leading to gut dysbiosis and enteric environmental dysfunction in infants: the influence of maternal dysbiosis and other microbiota determinants during early life. FEMS Microbiol Rev 2022; 46:6516326. [PMID: 35088084 DOI: 10.1093/femsre/fuac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal environmental enteric dysfunction (EED) encompasses undernutrition with an inflammatory gut profile, a variable degree of dysbiosis and increased translocation of pathogens in the gut mucosa. Even though recent research findings have shed light on the pathological pathways underlying the establishment of the infant gut dysbiosis, evidence on how maternal EED influences the development of gut dysbiosis and EED in the offspring remains elusive. This review summarizes the current knowledge on the effect of maternal dysbiosis and EED on infant health, and explores recent progress in unraveling the mechanisms of acquisition of a dysbiotic gut microbiota in the offspring. In Western communities, maternal inoculum, delivery mode, perinatal antibiotics, feeding practices, and infections are the major drivers of the infant gut microbiota during the first two years of life. In other latitudes, the infectious burden and maternal malnutrition might introduce further risk factors for infant gut dysbiosis. Novel tools, such as transcriptomics and metabolomics, have become indispensable to analyze the metabolic environment of the infant in utero and post-partum. Human-milk oligosaccharides have essential prebiotic, antimicrobial, and anti-biofilm properties that might offer additional therapeutic opportunities.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- Molecular Microbial Pathogenesis - INSERM U1202, Department of Cell Biology and Infection, 28 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France.,Epidemiology of Emergent Diseases Unit, Global Health Department, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France
| | - Philippe J Sansonetti
- Molecular Microbial Pathogenesis - INSERM U1202, Department of Cell Biology and Infection, 28 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France.,The Center for Microbes, Development and Health, Institut Pasteur de Shanghai, China
| |
Collapse
|
48
|
Zhong X, Du G, Wang X, Ou Y, Wang H, Zhu Y, Hao X, Xie Z, Zhang Y, Gong T, Zhang Z, Sun X. Nanovaccines Mediated Subcutis-to-Intestine Cascade for Improved Protection against Intestinal Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105530. [PMID: 34825482 DOI: 10.1002/smll.202105530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Parenteral vaccines typically can prime systemic humoral immune response, but with limited effects on cellular and mucosal immunity. Here, a subcutis-to-intestine cascade for navigating nanovaccines to address this limitation is proposed. This five-step cascade includes lymph nodes targeting, uptaken by dendritic cells (DCs), cross-presentation of antigens, increasing CCR9 expression on DCs, and driving CD103+ DCs to mesenteric lymph nodes, in short, the LUCID cascade. Specifically, mesoporous silica nanoparticles are encapsulated with antigen and adjuvant toll-like receptor 9 agonist cytosine-phosphate-guanine oligodeoxynucleotides, and further coated by a lipid bilayer containing all-trans retinoic acid. The fabricated nanovaccines efficiently process the LUCID cascade to dramatically augment cellular and mucosal immune responses. Importantly, after being vaccinated with Salmonella enterica serovar Typhimurium antigen-loaded nanovaccine, the mice generate protective immunity against challenge of S. Typhimurium. These findings reveal the efficacy of nanovaccines mediated subcutis-to-intestine cascade in simultaneously activating cellular and mucosal immune responses against mucosal infections.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Guangsheng Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xuanyu Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yangsen Ou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Hairui Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yining Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xinyan Hao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuandong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
49
|
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int J Mol Sci 2021; 22:11365. [PMID: 34768795 PMCID: PMC8584103 DOI: 10.3390/ijms222111365] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn's disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.
Collapse
Affiliation(s)
- Jelena Popov
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Valentina Caputi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nandini Nandeesha
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | | | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
50
|
Ríos-Covian D, Langella P, Martín R. From Short- to Long-Term Effects of C-Section Delivery on Microbiome Establishment and Host Health. Microorganisms 2021; 9:microorganisms9102122. [PMID: 34683443 PMCID: PMC8537978 DOI: 10.3390/microorganisms9102122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/02/2022] Open
Abstract
The establishment of gut microbiota has been proven to be impacted by several factors during pregnancy, delivery, and neonate periods. The body of evidence describing C-section delivery (CSD) as one of the most disruptive events during early life has expanded in recent years, concluding that CSD results in a drastic change in microbiota establishment patterns. When comparing the gut microbiota composition of CSD babies with vaginally delivered (VD) babies, the former show a microbiome that closely resembles that found in the environment and the mother’s skin, while VD babies show a microbiome more similar to the vaginal microbiome. Although these alterations of normal gut microbiota establishment tend to disappear during the first months of life, they still affect host health in the mid–long term since CSD has been correlated with a higher risk of early life infections and non-transmissible diseases, such as inflammatory diseases, allergies, and metabolic diseases. In recent years, this phenomenon has also been studied in other mammals, shedding light on the mechanisms involved in the effects of a CSD on host health. In addition, strategies to revert the disruptions in gut microbiomes caused by a CSD are currently in the process of development and evaluation. In this review, we discuss the recent advances in CSD research, from the alteration of gut microbiota establishment to the possible effects on host health during early life and development.
Collapse
|