1
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Day D, Ganju V, Chung K, Si L, Mao L, Aghmesheh M, Hoyer R, Brewin K, Zeng S, Zhang M, Lu Q, Jiang C, Ren F, Zhu Y, Guo J. First-in-human phase I study of EMB-02, a bispecific antibody targeting PD-1 and LAG-3 in patients with advanced solid tumors. Br J Cancer 2025; 132:905-912. [PMID: 40234667 DOI: 10.1038/s41416-025-02990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND EMB-02 is a symmetric bispecific antibody targeting programmed cell death protein-1 and lymphocyte-activation gene 3 simultaneously. Here, we present the first-in-human study results of EMB-02 in patients with advanced solid tumors. METHODS Patients were treated with intravenous infusions of EMB-02 at doses of 6-900 mg. The primary objective was to evaluate the safety and tolerability and to determine the maximum tolerated dose and/or recommended phase II dose(s). Secondary objectives included characterizing the pharmacokinetic (PK) profile, assessing preliminary antitumor activity and the immunogenicity. RESULTS A total of 47 patients were enrolled. All grade and grade 3/4 treatment-emergent and treatment related adverse events occurred in 97.9%, 48.9%, 68.1% and 12.8% patients, respectively. The objective response rate (ORR) was 6.4% and clinical benefit rate at 24 weeks (CBR-24) was 25.5% in overall population. The CBR-24 was 33.3% in checkpoint inhibitor (CPI)-naïve patients, and 15% in CPI-treated. No clear relationship was observed between the efficacy and PD-L1, LAG-3, or MHC II expression level. Doses 360 mg or higher resulted in sustained saturation of PD-1 receptors on circulating CD3 + T cells. CONCLUSIONS EMB-02 demonstrated a favorable safety profile and early efficacy signals in multiple solid tumors, warranting further development. (NCT04618393).
Collapse
Affiliation(s)
- Daphne Day
- Medical Oncology Department, Monash Health-Monash MedicalCentre, Clayton, VIC, Australia
| | - Vinod Ganju
- Oncology Department, Peninsula And Southeast Oncology, Frankston, VIC, Australia
| | - Ki Chung
- Department of Medicine, Prisma Health Cancer Institute, Greenville, SC, USA
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Collaborative Innovation Center for Cancer Medicine, Peking UniversityCancer Hospital and Institute, Beijing, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Collaborative Innovation Center for Cancer Medicine, Peking UniversityCancer Hospital and Institute, Beijing, China
| | - Morteza Aghmesheh
- Medical Oncology Department, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Robert Hoyer
- Medical Oncology Department, UCHealth Memorial Hospital Central, Colorado Springs, CO, USA
| | - Kim Brewin
- Medical Oncology Department, Monash Health-Monash MedicalCentre, Clayton, VIC, Australia
| | - Shuqi Zeng
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Mingfei Zhang
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Qiaoyang Lu
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Chengjun Jiang
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Fang Ren
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Yonghong Zhu
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Collaborative Innovation Center for Cancer Medicine, Peking UniversityCancer Hospital and Institute, Beijing, China.
| |
Collapse
|
3
|
Lara B, Snyder M, Fimbres J, Yang E, Song G, Duggineni VK, Wang Z, Sherr DH. The AhR regulates IFN-induced immune checkpoints in lung cancer cells through HNRNPH1, an RNA-binding protein, and INCR1, a novel long non-coding RNA. J Biol Chem 2025:110316. [PMID: 40449595 DOI: 10.1016/j.jbc.2025.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/28/2025] [Accepted: 05/17/2025] [Indexed: 06/03/2025] Open
Abstract
Although immune checkpoint inhibitors show great promise, not all patients respond and many do not achieve durable responses. Consequently, further investigations into potentially targetable molecules that regulate immune checkpoints are warranted. Previous studies in several cancers demonstrated that interferons produced by tumor-infiltrating leukocytes regulate immunosuppressive PD-L1, PD-L2 and IDO1 through JAK/STAT signaling. Here, we investigated a novel role for an immunosuppressive environmental chemical receptor, previously implicated in smoking-related cancers, in IFN signaling in human lung adenocarcinoma (LUAD) cells. Deletion of the aryl hydrocarbon receptor (AhR) from A549 LUAD cells significantly decreased baseline JAK2, STAT1, STAT3, IRF1 (a JAK/STAT target), PD-L1, PD-L2, and IDO1 expression. IFNγ and IFNα increased expression of JAK/STAT and immune checkpoint genes and proteins, but these increases were significantly diminished or absent in AhR-knockout cells. The AhR similarly controls IFN-induced, JAK/STAT-driven increases in multiple MHC class I- and class II-related genes. AhR control of type I and type II interferon signaling is mediated through up-regulation of a lncRNA, the IFN-stimulated non-coding RNA 1 (INCR1), and through repression of an RNA-binding protein, heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1), which sequesters JAK/STAT-related and immune checkpoint gene transcripts. The data suggest that the AhR is a key mediator of tumor immunosuppression through regulation of IFN-induced INCR1 and JAK/STAT signaling and, thereby, expression of immune checkpoints. However, that immunosuppression may be tempered by AhR control of MHC expression. Given the multiple roles of JAK/STAT signaling in the immune system, the results also suggest multiple levels on which the AhR may affect tumor immunity.
Collapse
Affiliation(s)
- Brian Lara
- Department of Environmental Health, Boston University School of Public Health
| | | | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health
| | - Eric Yang
- Department of Environmental Health, Boston University School of Public Health
| | - Gang Song
- Department of Environmental Health, Boston University School of Public Health
| | | | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health.
| |
Collapse
|
4
|
Chen Z, Zhang Y. Development of an immune-related gene signature applying Ridge method for improving immunotherapy responses and clinical outcomes in lung adenocarcinoma. PeerJ 2025; 13:e19121. [PMID: 40352269 PMCID: PMC12066106 DOI: 10.7717/peerj.19121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 05/14/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a major cause of cancer mortality. Considering the critical role of tumor infiltrating lymphocytes in effective immunotherapy, this study was designed to screen molecular markers related to tumor infiltrating cells in LUAD, aiming to improve immunotherapy response during LUAD therapy. Methods The ConsensusClusterPlus method was used for clustering immune molecular subtypes of LUAD. Immune cell infiltration and immunotherapeutic potential in each subtype was evaluated employing single-sample gene set enrichment analysis (ssGSEA), Tumor Immune Dysfunction and Exclusion (TIDE), and Immunophenoscore (IPS). Immune-related co-expression modules were classified by weighted gene co-expression network analysis (WGCNA) analysis. The sequencing data of immune-related genes were comprehensively analyzed by introducing a new computational framework and 10 machine learning algorithms (a total of 101 combinations) to determine the prognostic genes, which were further combined to develop an immune prognostic signature (IMMPS) using the stepCox and Ridge methods. The expression of the signature genes was validated by quantitative real-time PCR (qRT-PCR). Results Samples from The Cancer Genome Atlas dataset (TCGA-LUAD) were divided into two subtypes (immunosuppressive subgroup C1 and immune-activated subgroup C2); notably, the C2 subgroup was more likely to benefit from immunotherapy (p < 0.05). An IMMPS developed based on seven immune infiltrating cell-related genes (SEMA7A, EFHD2, CHST11, SLC24A4, MAL, JCHAIN, and SCARF1) could accurately predict the overall survival of LUAD in five LUAD cohorts, with an average C-index higher than 0.69. LUAD patients with a low IMMPS value had a higher immune cell infiltration (p < 0.05). In addition, the IMMPS exhibited better prediction performance in comparison to 154 published gene signatures, suggesting that the IMMPS was an independent prognostic risk factor for evaluating the overall survival of LUAD patients. Since BTNL9 was the most relevant immune checkpoint gene, in vitro experiment showed that the expression of the seven key genes (SEMA7A, EFHD2, CHST11, SLC24A4, MAL, JCHAIN, and SCARF1) in LUAD cell lines was consistent with that in normal lung epithelial cells after inhibiting BTNL9 expression (p < 0.05). Conclusions Our results contributed to a better understanding of immunological characteristics of LUAD. The IMMPS could serve as a promising tool for improving the clinical outcome of patients suffering from LUAD.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Cardiothoracic Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Yongjun Zhang
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Xiangyang, China
| |
Collapse
|
5
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
6
|
Kodama T, Sukhbaatar A. Development of an intranodal drug delivery system using a mouse model with lymphadenopathy: novel discoveries and clinical application. Expert Opin Drug Deliv 2025; 22:555-564. [PMID: 39995110 DOI: 10.1080/17425247.2025.2471982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION The low drug delivery rate of systemic chemotherapy to metastatic lymph nodes (LNs) may be due to tumor growth without tumor neovascularization in the LNs, loss of existing blood vessels and lymph sinuses due to the tumor growth, and increased intranodal pressure. The lymphatic drug delivery system (LDDS) is a method of injecting anticancer drugs directly into the LNs and can overcome these problems. The world's first specific clinical study using the LDDS for head and neck cancer started in 2024 in Japan. In this review, the background of the development of LDDS up to the present clinical trials is described. AREAS COVERED The MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) recombinant inbred model mouse, vascular and lymphatic flow through LNs, the clinical N0 (cN0) LN model, preclinical studies of the LDDS, and its clinical application to treat head and neck cancer. EXPERT OPINION Conventionally, hematogenous and lymphatic administration have been the focus of attention for drug delivery to LNs. The LDDS is a method for injecting drugs directly to LNs, so it is important to develop a solvent and injecting method that can increase the uniformity of drug distribution within LNs.
Collapse
Affiliation(s)
- Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Kazim M, Ganguly A, Malespini SM, Thang L, Patel NL, Kim C, Kalen JD, Difilippantonio S, Yoo E. Granzyme-targeting quenched activity-based probes for assessing tumor response to immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643086. [PMID: 40161750 PMCID: PMC11952571 DOI: 10.1101/2025.03.13.643086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Molecular imaging of immune activation holds tremendous potential for the development of novel immunotherapy. In particular, chemical probes capable of detecting immune responses before changes in tumor size occur can guide early therapeutic strategies. Here, we present quenched activity-based probes targeting granzymes as a biomarker of antitumor immunity. Through optimization of peptide recognition element and functional chemical warhead, we have developed an optical imaging probe Cy5-IEPCyaPhP-QSY21, which rapidly reacts with GzmB at substoichiometric concentrations and enables efficient, selective labeling of the active enzyme in a complex proteome. With high specificity and minimal background signal, this probe produces GzmB-induced near-infrared fluorescence signals in the tumors of living mice shortly after injection. Both in vivo and ex vivo fluorescence signals correlate with GzmB expression and activity, and the population of CD8+ cells in tumor tissues. Moreover, it demonstrates the potential to track tumor response to immunotherapy. Thus, this study offers a chemical tool for assessing immune-mediated anticancer activity using noninvasive optical imaging.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, United States
| | - Arghya Ganguly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, United States
| | - Sebastian M. Malespini
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, United States
| | - Lai Thang
- Animal Research Technical Support, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Nimit L. Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Caleb Kim
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Simone Difilippantonio
- Animal Research Technical Support, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, United States
| |
Collapse
|
8
|
Luo J, Yi T, Wang Y, Song W, Gao Z, Wang J, Li Y. ESM1 promote proliferation, invasion and angiogenesis via Akt/mTOR and Ras pathway in kidney renal clear cell carcinoma. Sci Rep 2025; 15:4902. [PMID: 39929852 PMCID: PMC11811180 DOI: 10.1038/s41598-024-82400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/05/2024] [Indexed: 02/13/2025] Open
Abstract
The most common types of renal carcinoma is kidney renal clear cell carcinoma (KIRC). ESM1 is a secreted protein, which involved in, lipids and glucose metabolism, but their role in angiogenesis is contradictory in different disease, especially in KIRC. Bioinformatic analysis confirmed the ESM1 expression and prognosis in KIRC. IHC staining revealed protein expression of ESM1 in KIRC samples. The role of ESM1 in KIRC proliferation and migration were tested by MTT, EdU, transwell analysis. The role of its paracrine function in KIRC angiogenesis was tested by functional experiments. The downstream molecular mechanism of ESM1 were further elucidated by WB and functional experiments. ESM1 was significantly increased in KIRC with prognostic significance. ESM1 knockdown inhibited the invasiveness capability and viability of KIRC cell. The paracrine of ESM1 enhanced HUVECs proliferation and migration to format tube in KIRC cell conditional medium. ESM1 knockdown induced the inactivation of Akt/mTOR and Ras pathway to attenuate proliferation, migration, invasion and angiogenesis in KIRC. ESM1 was a key role in the tumor microenvironment (TME) of KIRC, which promoted the proliferation, migration, invasion, and angiogenesis by activating Akt/mTOR and Ras pathway. It is a potential therapeutic target for KIRC patients.
Collapse
Affiliation(s)
- Jianjun Luo
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Ting Yi
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Department of Trauma Center, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yong Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Wei Song
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Zhiyong Gao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Jiansong Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
9
|
Nagarajan A, Varadhan V, Manikandan MS, Kaliaperumal K, Palaniyandi T, Kaliamoorthy S, Baskar G, Rab SO, Balaramnavar VM, Kumarasamy S. Signature of collagen alpha-1(x) gene expression in human cancers and their therapeutic implications. Pathol Res Pract 2025; 266:155811. [PMID: 39787688 DOI: 10.1016/j.prp.2025.155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Cancers are a class of disorders that entail uncontrollably unwanted cell development with dissemination. One in six fatalities globally is attributed to cancer, a global health issue. The analysis of the entire DNA sequence and how it expresses itself in tumor cells is known as cancer genomics. The development of novel cancer treatments has been facilitated because of the genomics method. COL10A1 gene, a short chain collagen, and an interstitial matrix component, acts as a predictive biomarker for cancer prognosis. Recognizing the fundamental consequences of mutations in the COL10A1 gene and its expression in cancer is crucial. Analyzing the COL10A1 gene expression with a data set and gene expression patterns shows the level of display of the tumor. Examining the therapeutic techniques of COL10A1 gene expression leads to early detection, screening, radiation therapy, and advanced developments. This review highlights the value of the COL10A1 gene in breast, gastric, pancreatic, lung, and colorectal cancers, emphasizing its role in gene expression patterns and therapeutic techniques.
Collapse
Affiliation(s)
- Akshaya Nagarajan
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Varsha Varadhan
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Monica Shri Manikandan
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Kumaravel Kaliaperumal
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Senthilkumar Kaliamoorthy
- Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Vishal M Balaramnavar
- School of Pharmacy and Research Centre, Sanskriti University, Chhata, Mathura, Uttar Pradesh 281401, India
| | - Saravanan Kumarasamy
- Department of Electric and Electronic Engineering, Dr. M.G.R Educational and Research Institute, Deemed to Be University, Chennai, Tamil Nadu 600 095, India
| |
Collapse
|
10
|
Lin Y, Li H, Ge Q, Hua D. Establishment and validation of a prognostic prediction model for glioma based on key genes and clinical factors. Transl Cancer Res 2025; 14:240-253. [PMID: 39974385 PMCID: PMC11833365 DOI: 10.21037/tcr-24-1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/26/2024] [Indexed: 02/21/2025]
Abstract
Background Glioma is a common brain tumour that is associated with poor prognosis. Immunotherapy has shown significant potential in the treatment of gliomas. Herein, we proposed a new prognostic risk model based on immune- and mitochondrial energy metabolism-related differentially expressed genes (IR&MEMRDEGs) to enhance the accuracy of prognostic assessment in patients with glioma. Methods Data from samples from 671 glioma patients and 5 normal controls with available follow-up data and prognostic outcomes were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. All data were downloaded on 13 November 2023. IR&MEMRDEGs were screened from the GeneCards website and published literature. Prognostic prediction models were constructed and analysed using Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression, Kaplan-Meier (KM) curve, and receiver operating characteristic (ROC) curve analyses. Single-sample gene set enrichment analysis (ssGSEA) was further performed to ascertain the percentage of immune cell infiltration in the glioma specimens. Results Bioinformatics analysis of the GEO and TCGA databases identified eleven MEMRDEGs with dysregulated expression in gliomas: EIF4EBP1, TP53, IDH1, PRKCZ, CD200, GPI, PGM2, PKLR, AK2, ATP4A, and ALDH3B1. Further analysis identified EIF4EBP1, TP53, IDH1, PRKCZ, CD200, GPI, PGM2, AK2, and ALDH3B1 as separate predictive factors for glioma, among which PGM2 and AK2 exhibited superior accuracy [area under the ROC curve (AUC) >0.9], while EIF4EBP1, TP53, IDH1, PRKCZ, GPI, and ALDH3B1 demonstrated slightly lower accuracy (0.7< AUC <0.9), and CD200 displayed poor accuracy (0.5< AUC <0.7). Among these genes, the levels of AK2, ALDH3B1, EIF4EBP1, GPI, IDH1, PGM2, and TP53 were significantly higher in the high-risk group (HRG) compared with the low-risk group (LRG) (P<0.001), indicating a negative association with patient prognosis. In contrast, CD200 and PRKCZ were significantly downregulated in the HRG compared to the LRG (P<0.05), indicating a potential correlation with patient outcomes. Subsequently, prognostic models were constructed based on IR&MEMRDEG and MEMRDEGs to anticipate the outcomes of glioma patients, while the predictive efficacy of the model was validated via KM and ROC curve analysis. The results revealed that EIF4EBP1, TP53, IDH1, PRKCZ, GPI, PGM2, ALDH3B1, and AK2 had superior accuracy in predicting glioma prognosis. The ssGSEA results showed that only IDH1 was negatively linked to the amount of immune cell infiltration in the LRG, while displaying a positive connection in the HRG (r value>0), indicating that the expression levels of IDH1 may have a distinct influence on the tumour immune microenvironment. Conclusions The present study confirmed the significant predictive value of IDH1 for glioma prognosis, which may guide immunotherapy for glioma treatment.
Collapse
Affiliation(s)
- Yu Lin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Huining Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Ge
- Department of Military Preventive Medicine, Faculty of Health Services, Logistic University of People’s Armed Police Force, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Yuzhakova DV, Sachkova DA, Izosimova AV, Yashin KS, Yusubalieva GM, Baklaushev VP, Mozherov AM, Shcheslavskiy VI, Shirmanova MV. Fluorescence Lifetime Imaging of NAD(P)H in Patients' Lymphocytes: Evaluation of Efficacy of Immunotherapy. Cells 2025; 14:97. [PMID: 39851525 PMCID: PMC11764258 DOI: 10.3390/cells14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions. Fluorescence lifetime imaging microscopy (FLIM) is a powerful, non-destructive tool that enables direct monitoring of cellular metabolism on a label-free basis with a potential to resolve metabolic rearrangements in immune cells associated with their reactivity. OBJECTIVE The aim of the study was to develop a patient-derived glioma explant model enriched by autologous peripheral lymphocytes and explore FLIM of the redox-cofactor NAD(P)H in living lymphocytes to measure the responses of the model to immune checkpoint inhibitors. METHODS The light microscopy, FLIM of NAD(P)H and flow cytometry were used. RESULTS The results demonstrate that the responsive models displayed a significant increase in the free NAD(P)H fraction α1 after treatment, associated with a shift towards glycolysis due to lymphocyte activation. The non-responsive models exhibited no alterations or a decrease in the NAD(P)H α1 after treatment. The FLIM data correlated well with the standard assays of immunotherapy drug response in vitro, including morphological changes, the T-cells activation marker CD69, and the tumor cell proliferation index Ki67. CONCLUSIONS The proposed platform that includes tumor explants co-cultured with lymphocytes and the NAD(P)H FLIM assay represents a promising solution for the patient-specific immunotherapeutic drug screening.
Collapse
Affiliation(s)
- Diana V. Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Daria A. Sachkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Anna V. Izosimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Konstantin S. Yashin
- Department of Neurosurgery, Privolzsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia;
| | - Gaukhar M. Yusubalieva
- Federal Research and Clinical Center, Federal Medical and Biological Agency, 28 Orekhovy Blvd., 115682 Moscow, Russia; (G.M.Y.); (V.P.B.)
- Laboratory of Molecular Mechanisms of Regeneration and Aging, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center, Federal Medical and Biological Agency, 28 Orekhovy Blvd., 115682 Moscow, Russia; (G.M.Y.); (V.P.B.)
- Laboratory of Molecular Mechanisms of Regeneration and Aging, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991 Moscow, Russia
| | - Artem M. Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Vladislav I. Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
- R&D Department, Becker&Hickl GmbH, 7-9 Nunsdorfer Ring, 12277 Berlin, Germany
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| |
Collapse
|
12
|
Su XZ, Xu F, Stadler RV, Teklemichael AA, Wu J. Malaria: Factors affecting disease severity, immune evasion mechanisms, and reversal of immune inhibition to enhance vaccine efficacy. PLoS Pathog 2025; 21:e1012853. [PMID: 39847577 PMCID: PMC11756774 DOI: 10.1371/journal.ppat.1012853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement. Some issues associated with the difficulties in developing a sterile vaccine include high antigenic diversity, switching expression of the immune targets, and inhibition of immune pathways. Current vaccine research focuses on identifying conserved and protective epitopes, developing multivalent vaccines (including the whole parasite), and using more powerful adjuvants. However, overcoming the systematic immune inhibition and immune cell dysfunction/exhaustion may be required before high titers of protective antibodies can be achieved. Increased expression of surface molecules such as CD86 and MHC II on antigen-presenting cells and blocking immune checkpoint pathways (interactions of PD-1 and PD-L1; CTLA-4 and CD80) using small molecules could be a promising approach for enhancing vaccine efficacy. This assay reviews the factors affecting the disease severity, the genetics of host-parasite interaction, immune evasion mechanisms, and approaches potentially to improve host immune response for vaccine development.
Collapse
Affiliation(s)
- Xin-zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rachel V. Stadler
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Awet Alem Teklemichael
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
13
|
Wang W, Mei Z, Chen Y, Jiang J, Qu Y, Saifuding K, Zhou N, Bulibu G, Tang Y, Zhai X, Jiang Z. Immune checkpoint inhibitors for patients with mismatch repair deficient or microsatellite instability-high advanced cancers: a meta-analysis of phase I-III clinical trials. Int J Surg 2025; 111:1357-1372. [PMID: 39166943 PMCID: PMC11745646 DOI: 10.1097/js9.0000000000002007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Mismatch repair deficient (dMMR) and microsatellite instability-high (MSI-H) cancers are associated with an increased number of somatic mutations, which can render tumors more susceptible to immune checkpoint blockade. However, a comprehensive evaluation of the efficacy profile of immune checkpoint inhibitors in this patient population across multiple cancer types is lacking. This study aims to address this knowledge gap by synthesizing data from phase I-III clinical trials. METHODS A systematic search was conducted in PubMed, Embase, the Cochrane Central Register of Controlled Trials, and Google Scholar from inception until June 2024. Eligible studies included randomized controlled trials (RCTs), nonrandomized comparative studies, and single-arm trials investigating immune checkpoint inhibitors in patients with dMMR/MSI-H advanced cancers. The primary outcome was objective response rate (ORR), and the secondary outcomes included disease control rate (DCR), 1-year, 2-year, and 3-year overall survival (OS) and progression-free survival (PFS) rates. Subgroup analyses were conducted for the primary outcome stratified by major study characteristics. RESULTS Of the 10 802 identified studies, 19 trials in 25 studies totaling 2052 participants met the inclusion criteria and were included in the meta-analysis. The pooled ORR was 41.7% (95% CI, 35.7-47.7%). The pooled DCR was 68.9% (95% CI, 62.2-75.7%). The pooled 12-month, 24-month, and 36-month OS rates were 29.1% (95% CI, 19.9-38.3%), 35.8% (95% CI, 23.6-48.0%), and 35.8% (95% CI, 23.6-48.0%), respectively. The pooled 12-month, 24-month, and 36-month PFS rates were 46.4% (95% CI, 39.1-53.8%), 67.0% (95% CI, 55.2-78.8%), and 63.1% (95% CI, 37.3-88.9%), respectively. CONCLUSIONS The study establishes the therapeutic potential of immune checkpoint inhibitors in dMMR/MSI-H advanced cancers, highlighting the importance of MSI status in this context. Further, head-to-head comparisons are needed to conclusively determine MSI's predictive power relative to proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors.
Collapse
Affiliation(s)
- Wei Wang
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine
- Anorectal Disease Institute of Shuguang Hospital
| | - Yajie Chen
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Jian Jiang
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Yanli Qu
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Keyoumu Saifuding
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Ning Zhou
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Gilisihan Bulibu
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Yong Tang
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Xinyu Zhai
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine Shanghai
| | - Zhi Jiang
- Department of Perioperative Research Center of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Xu S, Kong J, Dai Y, Li H. Prevotellaceae Modulates Colorectal Cancer Immune Microenvironment to Assist Anti-PD-L1 Immunotherapy. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:909-921. [PMID: 39641253 PMCID: PMC11639609 DOI: 10.5152/tjg.2024.23683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/28/2024] [Indexed: 12/07/2024]
Abstract
Background/Aims Colorectal cancer (CRC) stands as the third most prevalent cancer on a global scale. In recent years, immunotherapy, such as anti-PD-L1 treatment, has demonstrated promising therapeutic outcomes in CRC. However, studies have suggested that intestinal microbiota may influence the efficacy of anti-PD-L1 immunotherapy. This study aimed to investigate the linkage between intestinal bacteria and anti-PD-L1 therapy. Materials and Methods Bioinformatics analysis was employed to study the correlation between the intestinal microbiota of CRC patients and immune infiltration. The study delved into the relationship between Prevotellaceae and immune-related genes in CRC. Mouse experiments were conducted to validate the association between Prevotellaceae abundance and the efficacy of anti-PD-L1 tumor treatment. Prevotellaceae abundance in mouse feces was assayed by 16S sequencing. Flow cytometry was utilized to assay immune cell infiltration in patient tumor tissues, while western blot and quantitative polymerase chain reaction (qPCR) assays measured IFN-γ, IL-2, and PD-L1 levels in tumor tissues. Results The high immune cell infiltration group demonstrated reduced tumor purity when compared with the group displaying low immune cell infiltration. Substantial variances were discerned in the Stromal Score, Immune Score, ESTIMATE Score, and Tumor Purity among the 3 distinct subtypes. The community evenness in the gut microbiota of CRC patients from cluster 2 and cluster 3 subtypes displayed significant differences. Members of the Prevotellaceae family were significantly enriched in the gut microbiota of cluster 3 subtype patients. In vivo experiments ascertained the supportive role of Prevotellaceae in anti-PD-L1 immunotherapy. Conclusion The facilitating effect of Prevotellaceae on anti-PD-L1 treatment was demonstrated in CRC. The findings suggest that elevating Prevotellaceae abundance may offer a new direction for assisting in CRC immunotherapy and provide a foundation for devising more effective CRC immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - Yang Dai
- Department of General Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hengping Li
- Department of General Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
15
|
Liu Y, Yang F, Li Z, Wang T, Mu Y, Fan Y, Xue H, Hu X, Guan X, Feng H. Concurrent immune checkpoint blockade for enhanced cancer immunotherapy utilizing engineered hybrid nanovesicles. Front Pharmacol 2024; 15:1487940. [PMID: 39588148 PMCID: PMC11586202 DOI: 10.3389/fphar.2024.1487940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, demonstrating unprecedented efficacy against advanced cancers. However, their clinical applications are significantly hampered by low overall response rates. Dual blockade of two immune checkpoints represents a promising strategy to enhance immunotherapeutic efficacy. In this study, we developed hybrid cell membrane nanovesicles adorned with PD-1 and SIRPα receptors for combination immunotherapy in melanoma. Our hybrid nanovesicles (PD-1/SIRPα NVs) demonstrated high specificity to PD-L1 and CD47 ligands, facilitating the phagocytosis of melanoma cells by macrophages. In a melanoma mouse model, PD-1/SIRPα NVs significantly suppressed 77% of tumor growth and elicited a robust antitumor immune response for immunotherapy. In conclusion, our findings highlight the promising potential of PD-1/SIRPα NVs as novel and effective ICIs for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuxuan Liu
- Department of Dermatology, The Affiliated Wenling Hospital of Taizhou University, Taizhou, China
- College of Medical Technology, Beihua University, Jilin, China
| | - Fuxu Yang
- College of Medical Technology, Beihua University, Jilin, China
| | - Zhimin Li
- College of Medical Technology, Beihua University, Jilin, China
| | - Ting Wang
- Medical School, Taizhou University, Taizhou, China
| | - Yeteng Mu
- College of Medical Technology, Beihua University, Jilin, China
| | - Yuxin Fan
- College of Medical Technology, Beihua University, Jilin, China
| | - Han Xue
- College of Medical Technology, Beihua University, Jilin, China
| | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| | - Xingang Guan
- Medical School, Taizhou University, Taizhou, China
| | - Hongxia Feng
- Department of Dermatology, The Affiliated Wenling Hospital of Taizhou University, Taizhou, China
| |
Collapse
|
16
|
Song D, Hou S, Ma N, Yan B, Gao J. Efficacy and safety of PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors in the treatment of advanced colorectal cancer: a systematic review and meta-analysis. Front Immunol 2024; 15:1485303. [PMID: 39555073 PMCID: PMC11563947 DOI: 10.3389/fimmu.2024.1485303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Background The efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors in the treatment of advanced colorectal cancer is controversial. This meta-analysis aimed to evaluate the efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors for advanced colorectal cancer. Methods PubMed, Embase, the Cochrane Library, and Web of Science databases were systematically searched for relevant studies. Outcomes including median progression-free survival (mPFS), median overall survival (mOS), overall response rate (ORR), disease control rate (DCR), treatment-related adverse events (TRAEs) and ≥grade 3 TRAEs were extracted for further analysis. The risk of bias was assessed by subgroup analysis. Results 12 articles with 566 patients were identified and subjected to meta-analysis. With regard to survival analysis, the pooled mOS and mPFS were 6.66 months (95%CI 4.85-9.16) and 2.92 months (95%CI 2.23-3.83), respectively. In terms of tumor response, the pooled ORR and DCR were 21% (95%CI 6%-41%) and 49% (95%CI 27%-71%), respectively. The pooled AEs rate and ≥ grade 3 AEs rate were 94% (95%CI 86%-99%) and 44% (95%CI 30%-58%). Conclusion PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors have shown promising clinical responses in the treatment of colorectal cancer (CRC). Although the incidence of adverse reactions is high, they are generally tolerable. Systematic review registration https://inplasy.com/, identifier INPLASY202480030.
Collapse
Affiliation(s)
- Dandan Song
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shufu Hou
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bing Yan
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Gao
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Zhang Q, Liang XY, Wang ZS, Sun A, Cao TB, Zhang YP, Li N, Yi TY, Qu KP. Efficacy of immune checkpoint inhibitors for NSCLC in patients with different age: A systematic review and meta-analysis. Asian J Surg 2024; 47:4691-4698. [PMID: 38641539 DOI: 10.1016/j.asjsur.2024.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE This article is a Meta-analysis aiming to systematically evaluate the difference in efficacy of immune checkpoint inhibitor in patients with non-small cell lung cancer (NSCLC) by age. METHODS We performed a Meta-analysis of published randomized controlled trials concerning for patients with NSCLC by age. We compared overall survival among three groups (age <65 years, age 65-75 years, age ≥75 years). Hazard ratios (HRs) and 95% confidence intervals (CIs) were collected and pooled. RESULTS A total of 10,291 patients from 17 RCTs were included. In the group under age 65 years, immune checkpoint inhibitor can significantly prolong the overall survival of patients with NSCLC (HR = 0.73, 95% CI: 0.66∼0.81, P < 0.00001). In the age 65-75 years group, immune checkpoint inhibitors prolonged overall survival in patients with NSCLC (HR = 0.78, 95% CI:0.71∼0.84, P < 0.00001). However, it has no significant effect on the overall survival of NSCLC patients (HR = 0.88, 95% CI:0.72∼1.08, P > 0.05) in the group older than 75 years. CONCLUSIONS Immune checkpoint inhibitors prolonged the overall survival of NSCLC patients in the age <65 years group and the age 65-75 years group, but in the age ≥75 years group, there was no significant effect on overall survival. This may be related to innate immune and adaptive immune dysregulation due to "immunosenescence" in older patients.
Collapse
Affiliation(s)
- Qi Zhang
- Gansu Provincial Central Hospital, Lanzhou, China
| | | | | | - An Sun
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Tin-Bao Cao
- Gansu Provincial Central Hospital, Lanzhou, China
| | | | - Nan Li
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Tong-Ying Yi
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Kun-Peng Qu
- Gansu Provincial Central Hospital, Lanzhou, China.
| |
Collapse
|
18
|
Li H, Zhao W, Li C, Shen H, Li M, Wang C, Han C, Yi C, Wang J, Meng X, Liu L, Yu S, Li J. The efficacy and safety of a novel PD-1/CTLA-4 bispecific antibody cadonilimab (AK104) in advanced non-small cell lung cancer: A multicenter retrospective observational study. Thorac Cancer 2024; 15:2327-2338. [PMID: 39390972 PMCID: PMC11554550 DOI: 10.1111/1759-7714.15455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/10/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND For patients with advanced non-small cell lung cancer (NSCLC) who have received frontline immunochemotherapy, subsequent treatment options are limited. As the first dual programmed cell death-1 (PD-1)/cytotoxic T lymphocyte-associated antigen-4 bispecific antibody approved globally, cadonilimab demonstrated potential antitumor activity in advanced NSCLC patients resistant to anti-PD-1/PD-L1 antibodies. METHODS We retrospectively collected efficacy and safety data from advanced NSCLC patients treated with cadonilimab-based regimens in later therapy lines. RESULTS A total of 41 advanced NSCLC patients refractory to anti-PD-1/PD-L1 therapy were enrolled. More than half of the patients received cadonilimab-based regimen as a fourth or later line of treatment. At the data cutoff date, treatment efficacy could be evaluated in 23 patients. One patient (4.3%) achieved partial response, eight patients (34.8%) experienced stable disease, and 14 patients (60.9%) progressed. The objective response rate and disease control rate were 4.3% and 39.1%, respectively. The median progression-free survival for all evaluated patients was 108.0 days. Due to the short follow-up period, the median overall survival has not yet been reached. Treatment-related adverse events (TRAEs) and immune-related AEs occurred in 63.4% and 22% patients, respectively. The most common TRAEs included gamma-glutamyl transferase elevation (17.1%), coughing (14.6%), and fatigue (12.2%). Five patients (12.2%) experienced grade ≥3 TRAEs. CONCLUSIONS In this heavily pretreated cohort of advanced NSCLC patients, cadonilimab-based regimens showed moderate antitumor efficacy with a generally tolerable and manageable safety profile. However, more evidence is needed to support the administration of cadonilimab in NSCLC patients refractory to previous anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Hongxin Li
- School of Pharmaceutical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wen Zhao
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Chengming Li
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Hongchang Shen
- Department of OncologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Meiying Li
- Clinical Trial CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Chengjun Wang
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Chunyan Han
- Department of OncologyShandong Provincial Third Hospital, Shandong UniversityJinanChina
- Department of RadiotherapyThe Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences)JinanChina
| | - Cuihua Yi
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Jun Wang
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Lung Cancer InstituteJinanChina
| | - Xue Meng
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Lian Liu
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Shuwen Yu
- Department of PharmacyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Clinical Trial CenterNMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong UniversityJinanChina
| | - Jisheng Li
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| |
Collapse
|
19
|
Ye W, Fang Y, Wei Z. Construction and validation of a comprehensive metabolism-associated prognostic model for predicting survival and immunotherapy benefits in ovarian cancer. J Cancer 2024; 15:5986-6001. [PMID: 39440060 PMCID: PMC11492998 DOI: 10.7150/jca.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Ovarian cancer (OV) is a prevalent malignancy among gynecological tumors. Numerous metabolic pathways play a significant role in various human diseases, including malignant tumors. Our study aimed to develop a prognostic signature for OV based on a comprehensive set of metabolism-related genes (MRGs). Method: To achieve this, a bioinformatics analysis was performed on the expression profiles of 51 MRGs. The OV individuals were subsequently categorized into two molecular clusters based on the expression levels of MRGs. Following this, differentially expressed genes (DEGs) were identified among these clusters. The DEGs aided in the classification of two gene clusters, with a total of 390 DEGs being identified between them. A prognostic signature, constructed using the DEGs, enabled the calculation of risk scores for OV patients. Results: This study revealed that patients classified as low-risk demonstrated a more favorable prognosis, increased immune cell infiltration, and superior response to chemotherapy in comparison to high-risk patients. Four signature genes, GDF6, KIF26A, P2RY14, and ALDH1A2, were identified as significant contributors to the prognostic signature. The expression levels of these signature genes were different between OV and normal ovary tissues through in vitro experiments. Additionally, P2RY14 protein was found to potentially influence the growth of OV cell lines. Conclusion: We have constructed a prognostic signature associated with MRGs that demonstrates exceptional efficacy in prognosis survival outcomes and therapeutic responses in patients diagnosed with OV. Downregulation of P2RY14 may contribute to an unfavorable prognosis in OV.
Collapse
Affiliation(s)
- Wei Ye
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yuanyuan Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
20
|
Deng Q, Chen L, Zhang G, Liu L, Luo SM, Gao X. TRIAL-based combination therapies in cancers. Int Immunopharmacol 2024; 138:112570. [PMID: 38971105 DOI: 10.1016/j.intimp.2024.112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.
Collapse
Affiliation(s)
- Qiumin Deng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Luxuan Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gui Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shi-Ming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Shen L, Schaefer AM, Tiruthani K, Wolf W, Lai SK. Siglec15/TGF-β bispecific antibody mediates synergistic anti-tumor response against 4T1 triple negative breast cancer in mice. Bioeng Transl Med 2024; 9:e10651. [PMID: 39553435 PMCID: PMC11561775 DOI: 10.1002/btm2.10651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 11/19/2024] Open
Abstract
An ideal tumor-specific immunomodulatory therapy should both preferentially target the tumor, while simultaneously reduce the immunosuppressive environment within the tumor. This guiding principle led us to explore engineering Siglec-15 (S15) targeted bispecific antibody (bsAb) to enhance therapy against triple negative breast cancer (TNBC). S15 appears to be exclusively expressed on macrophages and diverse tumor cells, including human and mouse 4T1 TNBC. TGF-β is a growth hormone frequently associated with increased tumor invasiveness, including in TNBC. Here, to overcome the immune-suppressive environment within TNBC tumors to enable more effective cancer therapy, we engineered a bispecific antibody (bsAb) targeting both Siglec15 and TGF-β. In mice engrafted with orthotopic 4T1 tumors, S15/TGF-β bsAb treatment was highly effective in suppressing tumor growth, not only compared to control monoclonal antibody (mAb) but also markedly more effective than mAbs against S15 alone, against TGF-β alone, as well as a cocktail of both anti-S15 and anti-TGF-β mAbs. We did not detect liver and lung metastasis in mice treated with S15/TGF-β bsAb, unlike all other treatment groups at the end of the study. The enhanced anti-tumor response observed with S15/TGF-β bsAb correlated with a less immunosuppressive environment in the tumor. These results underscore S15-targeted bsAb as a promising therapeutic strategy for TNBC, and possibly other S15 positive solid tumors.
Collapse
Affiliation(s)
- Limei Shen
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Alison M. Schaefer
- Department of Biomedical EngineeringUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
- Department of Biomedical EngineeringUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of Immunology and MicrobiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
22
|
Yang X, Liao Y, Fan L, Lin B, Li J, Wu D, Liao D, Yuan L, Liu J, Gao F, Feng G, Du X. High-intensity focused ultrasound ablation combined with immunotherapy for treating liver metastases: A prospective non-randomized trial. PLoS One 2024; 19:e0306595. [PMID: 38968190 PMCID: PMC11226133 DOI: 10.1371/journal.pone.0306595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
PURPOSE Given the unique features of the liver, it is necessary to combine immunotherapy with other therapies to improve its efficacy in patients of advanced cancer with liver metastases (LM). High-intensity focused ultrasound (HIFU) ablation is now widely used in clinical practice and can enhanced immune benefits. The study is intended to prospectively evaluate the safety and clinical feasibility of HIFU ablation in combination with systemic immunotherapy for patients with liver metastases. METHODS The study enrolled 14 patients with LM who received ultrasound-guided HIFU ablation combined with immune checkpoint inhibitors (ICIs) such as anti-programmed cell death protein 1 (anti-PD-1 agents manufactured in China) at Mianyang Central Hospital. Patients were followed up for adverse events (AEs) during the trial, using the CommonTerminology Criteria for Adverse Events v5.0(CTCAE v5.0) as the standard. Tumour response after treatment was assessed using computerized tomography. RESULTS The 14 patients (age range, 35-84 years) underwent HIFU ablation at 19 metastatic sites and systemic immunotherapy. The mean lesion volume was 179.9 cm3 (maximum: 733.1 cm3). Median follow-up for this trial was 9 months (range: 3-21) months. The study is clinically feasible and acceptable to patients. CONCLUSION This prospective study confirmed that HIFU combined with immunotherapy is clinically feasible and safe for treating liver metastases.
Collapse
Affiliation(s)
- Xiyue Yang
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Yao Liao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Lingli Fan
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Binwei Lin
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Jie Li
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Danfeng Wu
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Dongbiao Liao
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Li Yuan
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Jihui Liu
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Feng Gao
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Gang Feng
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
| | - Xiaobo Du
- Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Chae YJ, Lee KG, Oh D, Lee SK, Park Y, Kim J. Antibody-Conjugated Nanogel with Two Immune Checkpoint Inhibitors for Enhanced Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2400235. [PMID: 38569198 DOI: 10.1002/adhm.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Cancer immunotherapy by immune checkpoint inhibitors (ICIs) acts on antitumor responses by stimulating the immune system to attack cancer cells. However, this powerful therapy is hampered by its high treatment cost and limited efficacy. Here, it is shown that the development of an antibody-conjugated nanogel (ANGel), consisting of N-isopropylacrylamide-co-acrylic acid and antibody-binding protein (protein A), potentiates the efficacy of two ICI monoclonal antibodies (mAbs) (cytotoxic-T-lymphocyte-associated antigen 4 and programmed death ligand-1 mAbs). Compared with mAb treatment alone, treatment with a bispecific ANGel surface-conjugated with the mAbs significantly decreases both the survival of Michigan Cancer Foundation-7 (MCF-7) and M D Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cells in vitro and the burden of 4T1-luciferase-2-derived orthotopic syngeneic tumors in vivo. The bispecific ANGel is also more potent than the conventional treatment at prolonging survival in animals with triple-negative breast cancer. The advantage of the bispecific ANGel over other engineered bispecific antibodies arises not only from the adaptability to link multiple antibodies quickly and easily, but also from the capability to maintain the anticancer effect steadily at subcutaneously delivered tumor site. This finding has an important implication for cancer immunotherapy, opening a new paradigm to treat solid tumors.
Collapse
Affiliation(s)
- Yun Jin Chae
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Doogie Oh
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Su-Kyoung Lee
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jongseong Kim
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
24
|
Rajpoot A, Yadav K, Yadav A, Mishra RK. Shilajit mitigates chemotherapeutic drug-induced testicular toxicity: Study on testicular germ cell dynamics, steroidogenesis modulation, and Nrf-2/Keap-1 signaling. J Ayurveda Integr Med 2024; 15:100930. [PMID: 39121783 PMCID: PMC11362644 DOI: 10.1016/j.jaim.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Medications, including chemotherapeutic drugs, contribute to male infertility as external factors by inducing oxidative stress in testicular cells. Shilajit is a naturally occurring bioactive antioxidant used in Ayurvedic medicine to treat a variety of ailments. OBJECTIVE This study examines the potential of Shilajit to counteract the negative effects of the chemotherapeutic drug cyclophosphamide (CPA) on testicular germ cell dynamics. MATERIAL AND METHODS Male Parkes mice received single intraperitoneal CPA injection (200 mg/kg BW) on day one, followed by daily supplementation of Shilajit (100 and 200 mg/kg BW) for one spermatogenic cycle. RESULTS CPA adversely affected testicular germ cell dynamics by inhibiting the conversion of spermatogonia-to-spermatids, altering testicular histoarchitecture, impairing Sertoli cell function and testicular steroidogenesis, and disturbing the testicular oxido-apoptotic balance. Shilajit supplementation restores testicular germ cell dynamics in CPA-exposed mice, as evidenced by improved histoarchitecture of the testis. Shilajit improves testicular daily production and sperm quality by promoting the conversion of spermatogonia (2C) into spermatids (1C), stimulating germ cell proliferation (PCNA), improving Sertoli cell function (N-Cadherin and β-Catenin), and maintaining the Bax/Bcl2 ratio. Additionally, Shilajit enhances testosterone biosynthesis by activating enzymes like 3β-HSD, and 17β-HSD. Shilajit also reduces testicular oxidative stress by increasing antioxidant enzyme activity (SOD) and decreasing lipid peroxidation (LPO). These effects are mediated by upregulation of the antioxidant protein Nrf-2 and downregulation of Keap-1. CONCLUSION The findings underscore the potent androgenic and antioxidant characteristics of Shilajit, as well as its ability to enhance fertility in cases of testicular damage caused by chemotherapeutic drugs.
Collapse
Affiliation(s)
- Arti Rajpoot
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kiran Yadav
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anupam Yadav
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
25
|
Li P, Cui P, Yue Q, Xu Z, Liu Z. Exploring the potential biological significance of KDELR family genes in lung adenocarcinoma. Sci Rep 2024; 14:14820. [PMID: 38937522 PMCID: PMC11211404 DOI: 10.1038/s41598-024-65425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The Lys-Asp-Glu-Leu receptor (KDELR) family genes play critical roles in a variety of biological processes in different tumors. Our study aimed to provide a comprehensive analysis of the potential roles of KDELRs in lung adenocarcinoma (LUAD). Utilizing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, as well as clinical samples, we conducted a series of analyses and validations using R software tools and various online resources. The results showed that KDELR family genes and proteins were highly expressed and associated with a poor prognosis of LUAD. Promoter hypomethylation and the competing endogenous RNA (ceRNA) network of PCAT6/hsa-miR-326/KDELR1 might be potential causes of aberrant KDELR1 overexpression in LUAD. Three key Transcription factors (TFs) (SPI1, EP300, and MAZ) and a TFs-miRNAs-KDELRs network (involving 11 TFs) might be involved in modulating KDELRs expression abnormalities. Gene Set Enrichment Analysis (GSEA) indicated enrichment of genes highly expressing KDELR1, KDELR2, and KDELR3 in MTORC1_SIGNALING, P53_PATHWAY, and ANGIOGENESIS. Negative correlations between KDELRs expression and CD8 + T cell infiltration, as well as CTLA-4 expression. Our multiple analyses suggested that the KDELRs are important signaling molecules in LUAD. These results provided novel insights for developing prognostic markers and novel therapies of LUAD.
Collapse
Affiliation(s)
- Peitong Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Pengfei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Qing Yue
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zijun Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
26
|
Xu J, Jin XL, Shen H, Chen XW, Chen J, Huang H, Xu B, Xu J. NOTCH3 as a prognostic biomarker and its correlation with immune infiltration in gastrointestinal cancers. Sci Rep 2024; 14:14327. [PMID: 38906903 PMCID: PMC11192884 DOI: 10.1038/s41598-024-65036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
NOTCH receptor 3 (NOTCH3) is known to regulate the transcription of oncogenes or tumor suppressor genes, thereby playing a crucial role in tumor development, invasion, maintenance, and chemotherapy resistance. However, the specific mechanism of how NOTCH3 drives immune infiltration in gastrointestinal cancer remains uncertain. The expression of NOTCH3 was analyzed through Western blot, PCR, Oncomine database, and the Tumor Immune Estimation Resource (TIMER) site. Kaplan-Meier plotter, PrognoScan database, and gene expression profile interactive analysis (GEPIA) were used to assess the impact of NOTCH3 on clinical prognosis. The correlation between NOTCH3 expression and immune infiltration gene markers was investigated using TIMER and GEPIA. NOTCH3 was found to be commonly overexpressed in various types of gastrointestinal tumors and was significantly associated with poor prognosis. Furthermore, the expression level of NOTCH3 showed a significant correlation with the tumor purity of gastrointestinal tumors and the extent of immune infiltration by different immune cells. Our findings suggest that NOTCH3 may act as a crucial regulator of tumor immune cell infiltration and can serve as a valuable prognostic biomarker in gastrointestinal cancers.
Collapse
Affiliation(s)
- Jia Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xiao-Li Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Hao Shen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xuan-Wei Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jin Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Hui Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, People's Republic of China.
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
27
|
Abdel-Rahman S, Ovchinnikov V, Gabr MT. Structure-Based Rational Design of Constrained Peptides as TIM-3 Inhibitors. ACS Med Chem Lett 2024; 15:806-813. [PMID: 38894912 PMCID: PMC11181482 DOI: 10.1021/acsmedchemlett.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Blocking the immunosuppressive function of T-cell immunoglobulin mucin-3 (TIM-3) is an established therapeutic strategy to maximize the efficacy of immune checkpoint inhibitors for cancer immunotherapy. Currently, effective inhibition of TIM-3 interactions relies on monoclonal antibodies (mAbs), which come with drawbacks such as immunogenicity risk, limited tumor penetration, and high manufacturing costs. Guided by the X-ray cocrystal structures of TIM-3 with mAbs, we report an in silico structure-based rational design of constrained peptides as potent TIM-3 inhibitors. The top cyclic peptide from our study (P2) binds TIM-3 with a K D value of 166.3 ± 12.1 nM as determined by surface plasmon resonance (SPR) screening. Remarkably, P2 efficiently inhibits key TIM-3 interactions with natural TIM-3 ligands at submicromolar concentrations in a panel of cell-free and cell-based assays. The capacity of P2 to reverse immunosuppression in T-cell/cancer cell cocultures, coupled with favorable in vitro pharmacokinetic properties, highlights the potential of P2 for further evaluation in preclinical models of immuno-oncology.
Collapse
Affiliation(s)
- Somaya
A. Abdel-Rahman
- Department
of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, New York 10065, United States
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Victor Ovchinnikov
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Moustafa T. Gabr
- Department
of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
28
|
Ricciuti B, Garassino MC. Precision Immunotherapy for STK11/KEAP1-Mutant NSCLC. J Thorac Oncol 2024; 19:877-882. [PMID: 38849167 DOI: 10.1016/j.jtho.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 06/09/2024]
Affiliation(s)
- Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| | | |
Collapse
|
29
|
De Zuani M, Xue H, Park JS, Dentro SC, Seferbekova Z, Tessier J, Curras-Alonso S, Hadjipanayis A, Athanasiadis EI, Gerstung M, Bayraktar O, Cvejic A. Single-cell and spatial transcriptomics analysis of non-small cell lung cancer. Nat Commun 2024; 15:4388. [PMID: 38782901 PMCID: PMC11116453 DOI: 10.1038/s41467-024-48700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer is the second most frequently diagnosed cancer and the leading cause of cancer-related mortality worldwide. Tumour ecosystems feature diverse immune cell types. Myeloid cells, in particular, are prevalent and have a well-established role in promoting the disease. In our study, we profile approximately 900,000 cells from 25 treatment-naive patients with adenocarcinoma and squamous-cell carcinoma by single-cell and spatial transcriptomics. We note an inverse relationship between anti-inflammatory macrophages and NK cells/T cells, and with reduced NK cell cytotoxicity within the tumour. While we observe a similar cell type composition in both adenocarcinoma and squamous-cell carcinoma, we detect significant differences in the co-expression of various immune checkpoint inhibitors. Moreover, we reveal evidence of a transcriptional "reprogramming" of macrophages in tumours, shifting them towards cholesterol export and adopting a foetal-like transcriptional signature which promotes iron efflux. Our multi-omic resource offers a high-resolution molecular map of tumour-associated macrophages, enhancing our understanding of their role within the tumour microenvironment.
Collapse
Affiliation(s)
- Marco De Zuani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Haoliang Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Jun Sung Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Stefan C Dentro
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- Division of Artificial Intelligence in Oncology, DKFZ, Heidelberg, Germany
| | - Zaira Seferbekova
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Julien Tessier
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, USA
| | | | | | - Emmanouil I Athanasiadis
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- Medical Image and Signal Processing Laboratory (MEDISP), Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | - Moritz Gerstung
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- Division of Artificial Intelligence in Oncology, DKFZ, Heidelberg, Germany
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
| | - Ana Cvejic
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- OpenTargets, Wellcome Genome Campus, Hinxton, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
You M, Fu M, Shen Z, Feng Y, Zhang L, Zhu X, Zhuang Z, Mao Y, Hua W. HIF2A mediates lineage transition to aggressive phenotype of cancer-associated fibroblasts in lung cancer brain metastasis. Oncoimmunology 2024; 13:2356942. [PMID: 38778816 PMCID: PMC11110709 DOI: 10.1080/2162402x.2024.2356942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.
Collapse
Affiliation(s)
- Muyuan You
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhewei Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Yuan Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
31
|
Satapathy BP, Sheoran P, Yadav R, Chettri D, Sonowal D, Dash CP, Dhaka P, Uttam V, Yadav R, Jain M, Jain A. The synergistic immunotherapeutic impact of engineered CAR-T cells with PD-1 blockade in lymphomas and solid tumors: a systematic review. Front Immunol 2024; 15:1389971. [PMID: 38799440 PMCID: PMC11116574 DOI: 10.3389/fimmu.2024.1389971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapies such as chimeric antigen receptor-T Cell (CAR-T) and immune checkpoint inhibitors like programmed cell death protein-1 (PD-1) blockers are showing promising results for numerous cancer patients. However, significant advancements are required before CAR-T therapies become readily available as off-the-shelf treatments, particularly for solid tumors and lymphomas. In this review, we have systematically analyzed the combination therapy involving engineered CAR-T cells and anti PD-1 agents. This approach aims at overcoming the limitations of current treatments and offers potential advantages such as enhanced tumor inhibition, alleviated T-cell exhaustion, heightened T-cell activation, and minimized toxicity. The integration of CAR-T therapy, which targets tumor-associated antigens, with PD-1 blockade augments T-cell function and mitigates immune suppression within the tumor microenvironment. To assess the impact of combination therapy on various tumors and lymphomas, we categorized them based on six major tumor-associated antigens: mesothelin, disialoganglioside GD-2, CD-19, CD-22, CD-133, and CD-30, which are present in different tumor types. We evaluated the efficacy, complete and partial responses, and progression-free survival in both pre-clinical and clinical models. Additionally, we discussed potential implications, including the feasibility of combination immunotherapies, emphasizing the importance of ongoing research to optimize treatment strategies and improve outcomes for cancer patients. Overall, we believe combining CAR-T therapy with PD-1 blockade holds promise for the next generation of cancer immunotherapy.
Collapse
Affiliation(s)
- Bibhu Prasad Satapathy
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Sheoran
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Rohit Yadav
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Dewan Chettri
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Dhruba Sonowal
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Chinmayee Priyadarsini Dash
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Prachi Dhaka
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Ritu Yadav
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Aklank Jain
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
32
|
Fang M, Yin W, Qiu C, Song T, Lin B, Wang Y, Xiong H, Wu S. Stromal B Lymphocytes Affecting Prognosis in Triple-Negative Breast Cancer by Opal/TSA Multiplexed Immunofluorescence. Int J Womens Health 2024; 16:755-767. [PMID: 38706691 PMCID: PMC11067943 DOI: 10.2147/ijwh.s444202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/28/2023] [Indexed: 05/07/2024] Open
Abstract
Objective Immune cells play a key role in tumor microenvironment. The purpose of this study was to investigate the infiltration and clinical indication of immune cells including their combined prognostic value in microenvironment of triple negative breast cancer. Methods We investigated 100 patients with triple negative breast cancer by Opal/Tyramide Signal Amplification multispectral immunofluorescence between 2003 and 2017 at Zhejiang Provincial people's Hospital. Intratumoral and stromal immune cells of triple negative breast cancer were classified and quantitatively analyzed. Survival outcomes were compared using the Kaplan-Meier method and further analyzed with multivariate analysis. Results Infiltration level of stromal B lymphocytes, stromal and intratumoral CD8+ T cells, stromal CD4+ T cells, stromal PD-L1 and intratumoral tumor associated macrophages 2 cells were shown as independent factors affecting disease-free survival and overall survival in univariate analysis. Stromal B lymphocytes, T stage, N stage and pathological type were independent predictive factors for both DFS and OS in multivariate analysis. We firstly found that patients with B lymphocytes-enriched subtypes have a better prognosis than those with T lymphocytes-enriched subtypes and tumor-associated macrophage-enriched subtypes. Conclusion The present study identified a bunch of immune targets and subtypes, which could be exploited in future combined immunotherapy/chemotherapy strategies for triple negative breast cancer patients.
Collapse
Affiliation(s)
- Min Fang
- Department of Radiation Oncology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Yin
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Chunyan Qiu
- National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, People’s Republic of China
| | - Tao Song
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Baihua Lin
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Ying Wang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shixiu Wu
- Department of Radiation Oncology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
33
|
Wan Y, Mu X, Zhao J, Li L, Xu W, Zhang M. Myeloid‑derived suppressor cell accumulation induces Treg expansion and modulates lung malignancy progression. Biomed Rep 2024; 20:68. [PMID: 38533389 PMCID: PMC10963946 DOI: 10.3892/br.2024.1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/01/2023] [Indexed: 03/28/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous family of myeloid cells that suppress T cell immunity in tumor-bearing hosts. The present study aimed to examine roles of T and MDSC subsets in lung malignancy. The study analyzed 102 cases with lung malignancy and 34 healthy individuals. Flow cytometry was performed for identification of T cell and MDSC subsets and their phenotypic characteristics in peripheral blood. The lung malignancy cases exhibited lower frequencies of granulocyte-like MDSCs (G-MDSCs) expressing PD-L2 and PD-L1 than healthy controls (P=0.013 and P<0.001, respectively). Additionally, there was a higher frequency of monocyte-like MDSCs (M-MDSCs) expressing PD-L1 in the peripheral blood of patients with lung malignancy than healthy controls (P<0.001). The frequencies of G-MDSCs and M-MDSCs were positively correlated with proportions of PD-1+ and CTLA-4+ regulatory T cells (Tregs). In vitro co-culture assay demonstrated M-MDSCs of lung malignancy enhanced naive T cell apoptosis and promoted Treg subset differentiation compared with M-MDSCs of healthy controls. The findings suggested accumulation of MDSC subsets in lung malignancy and MDSCs expressing PD-L2 and PD-L1 induced Treg expansion by binding to PD-1 on the surface of Tregs.
Collapse
Affiliation(s)
- Yinghua Wan
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Jingquan Zhao
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Wenshuai Xu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
34
|
Hopson MB, Rashdan S. A review of perioperative treatment strategies with immunotherapy and tyrosine kinase inhibitors in resectable and stage IIIA-N2 non-small cell lung cancer. Front Oncol 2024; 14:1373388. [PMID: 38601764 PMCID: PMC11004363 DOI: 10.3389/fonc.2024.1373388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Stage IIIA-N2 non-small cell lung cancer (NSCLC) is a heterogeneous group with different potential therapeutic approaches. Treatment is typically multimodal with either surgical resection after neoadjuvant chemotherapy and/or radiation or concurrent chemotherapy and radiation if unresectable. Despite the multimodal treatment and early stage, cure rates have traditionally been low. The introduction of immunotherapy changed the treatment landscape for NSCLC in all stages, and the introduction of immunotherapy in early-stage lung cancer has improved event free survival and overall survival. Tyrosine Kinase inhibitors (TKIs) have also improved outcomes in early-stage mutation-driven NSCLC. Optimal treatment choice and sequence is increasingly becoming based upon personalized factors including clinical characteristics, comorbidities, programmed death-ligand 1 (PD-L1) score, and the presence of targetable mutations. Despite encouraging data from multiple trials, the optimal multimodal sequence of stage IIIA-N2 NSCLC treatment remains unresolved and warrants further investigation. This review article summarizes recent major clinical trials of neoadjuvant and adjuvant treatment including stage IIIA-N2 NSCLC with a focus on immunotherapy and TKIs.
Collapse
Affiliation(s)
- Madeleine B. Hopson
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sawsan Rashdan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
35
|
Pipitone RM, Lupo G, Zito R, Javed A, Petta S, Pennisi G, Grimaudo S. The PD-1/PD-L1 Axis in the Biology of MASLD. Int J Mol Sci 2024; 25:3671. [PMID: 38612483 PMCID: PMC11011676 DOI: 10.3390/ijms25073671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the progression of MASL to Metabolic Dysfunction-Associated Steatohepatitis and the development of hepatocellular carcinoma. In the liver, several parenchymal, nonparenchymal, and immune cells maintain immunological homeostasis, and different regulatory pathways balance the activation of the innate and adaptative immune system. PD-1/PD-L1 signaling acts, in the maintenance of the balance between the immune responses and the tissue immune homeostasis, promoting self-tolerance through the modulation of activated T cells. Recently, PD-1 has received much attention for its roles in inducing an exhausted T cells phenotype, promoting the tumor escape from immune responses. Indeed, in MASLD, the excessive fat accumulation dysregulates the immune system, increasing cytotoxic lymphocytes and decreasing their cytolytic activity. In this context, T cells exacerbate liver damage and promote tumor progression. The aim of this review is to illustrate the main pathogenetic mechanisms by which the immune system promotes the progression of MASLD and the transition to HCC, as well as to discuss the possible therapeutic applications of PD-1/PD-L1 target therapy to activate T cells and reinvigorate immune surveillance against cancer.
Collapse
|
36
|
Awadasseid A, Wang R, Sun S, Zhang F, Wu Y, Zhang W. Small molecule and PROTAC molecule experiments in vitro and in vivo, focusing on mouse PD-L1 and human PD-L1 differences as targets. Biomed Pharmacother 2024; 172:116257. [PMID: 38350367 DOI: 10.1016/j.biopha.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
In recent years, several monoclonal antibodies (mAbs) targeting PD-L1 have been licensed by the FDA for use in the treatment of cancer, demonstrating the effectiveness of blocking immune checkpoints, particularly the PD-1/PD-L1 pathway. Although mAb-based therapies have made great strides, they still have their limitations, and new small-molecule or PROTAC-molecule inhibitors that can block the PD-1/PD-L1 axis are desperately needed. Therefore, it is crucial to translate initial in vitro discoveries into appropriate in vivo animal models when creating PD-L1-blocking therapies. Due to their widespread availability and low experimental expenses, classical immunocompetent mice are appealing for research purposes. However, it is yet unclear whether the mouse (m) PD-L1 interaction with human (h) PD-1 in vivo would produce a functional immunological checkpoint. In this review, we summarize the in vitro and in vivo experimental studies of small molecules and PROTAC molecules, particularly the distinctions between mPD-L1 as a target and hPD-L1 as a target.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Deqing 313202, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Rui Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shishi Sun
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
37
|
Kim R, Kin T, Beck WT. Impact of Complex Apoptotic Signaling Pathways on Cancer Cell Sensitivity to Therapy. Cancers (Basel) 2024; 16:984. [PMID: 38473345 DOI: 10.3390/cancers16050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Anticancer drugs induce apoptotic and non-apoptotic cell death in various cancer types. The signaling pathways for anticancer drug-induced apoptotic cell death have been shown to differ between drug-sensitive and drug-resistant cells. In atypical multidrug-resistant leukemia cells, the c-Jun/activator protein 1 (AP-1)/p53 signaling pathway leading to apoptotic death is altered. Cancer cells treated with anticancer drugs undergo c-Jun/AP-1-mediated apoptotic death and are involved in c-Jun N-terminal kinase activation and growth arrest- and DNA damage-inducible gene 153 (Gadd153)/CCAAT/enhancer-binding protein homologous protein pathway induction, regardless of the p53 genotype. Gadd153 induction is associated with mitochondrial membrane permeabilization after anticancer drug treatment and involves a coupled endoplasmic reticulum stress response. The induction of apoptosis by anticancer drugs is mediated by the intrinsic pathway (cytochrome c, Cyt c) and subsequent activation of the caspase cascade via proapoptotic genes (e.g., Bax and Bcl-xS) and their interactions. Anticancer drug-induced apoptosis involves caspase-dependent and caspase-independent pathways and occurs via intrinsic and extrinsic pathways. The targeting of antiapoptotic genes such as Bcl-2 enhances anticancer drug efficacy. The modulation of apoptotic signaling by Bcl-xS transduction increases the sensitivity of multidrug resistance-related protein-overexpressing epidermoid carcinoma cells to anticancer drugs. The significance of autophagy in cancer therapy remains to be elucidated. In this review, we summarize current knowledge of cancer cell death-related signaling pathways and their alterations during anticancer drug treatment and discuss potential strategies to enhance treatment efficacy.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
| | - Takanori Kin
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - William T Beck
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
38
|
Liang Y, Zhong D, Yang Q, Tang Y, Qin Y, Su Y, Huang X, Shang J. Single-Cell RNA Sequencing Revealed That the Enrichment of TPI1 + Malignant Hepatocytes Was Linked to HCC Metastasis and Immunosuppressive Microenvironment. J Hepatocell Carcinoma 2024; 11:373-383. [PMID: 38410699 PMCID: PMC10896104 DOI: 10.2147/jhc.s453249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
Background Tumor metastasis is the leading cause of high mortality in hepatocellular carcinoma (HCC). The metastasis-related HCC microenvironment is characterized by high heterogeneity. Single-cell RNA sequencing (scRNA-seq) may aid in determining specific cell clusters involved in regulating the immune microenvironment of HCC. Methods The scRNA-seq data of 10 HCC samples were collected from the Gene Expression Omnibus (GEO) database GSE124395. Correlations between key gene expression and clinicopathological data were determined using public databases. HCC tissues and matched tumor-adjacent and normal tissue samples were obtained by surgical resection at Sichuan Cancer Hospital. Immune cell infiltration analysis was performed and verified by immunohistochemistry and immunofluorescent staining. Results Nine malignant hepatocyte clusters with different marker genes and biological functions were identified. C3_Hepatocyte-SERF2 and C6_Hepatocyte-IL13RA2 were mainly involved in the regulation of the immune microenvironment, which was also a significant pathway in regulating HCC metastasis. Key genes in malignant hepatocyte clusters that associated with HCC metastasis were further screened by LASSO regression analysis. TPI1, a key gene in C6_Hepatocyte-IL13RA2 and HCC metastasis, could participate in regulating the HCC immune microenvironment in The Cancer Genome Atlas (TCGA) and Tumor Immune Estimation Resource (TIMER) databases. Moreover, immunohistochemistry analysis demonstrated that TPI1 expression was positively correlated with HCC metastasis and poor prognosis, while negatively correlated with CD8+ T cell infiltration. The negative correlation between TPI1 expression and CD8+ T cell infiltration was further confirmed by immunofluorescence staining. Conclusion In summary, a cluster of TPI1+ malignant hepatocytes was associated with the suppression of CD8+ T cell infiltration and HCC metastasis, providing novel insights into potential biomarkers for immunotherapy in HCC.
Collapse
Affiliation(s)
- Yuxin Liang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Deyuan Zhong
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qinyan Yang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yuan Tang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yingying Qin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, SAR, People's Republic of China
| | - Yuhao Su
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaolun Huang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jin Shang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
39
|
Albu DI, Wolf BJ, Qin Y, Wang X, Daniel Ulumben A, Su M, Li V, Ding E, Angel Gonzalo J, Kong J, Jadhav R, Kuklin N, Visintin A, Gong B, Schuetz TJ. A bispecific anti-PD-1 and PD-L1 antibody induces PD-1 cleavage and provides enhanced anti-tumor activity. Oncoimmunology 2024; 13:2316945. [PMID: 38379869 PMCID: PMC10877993 DOI: 10.1080/2162402x.2024.2316945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Combinatorial strategies, such as targeting different immune checkpoint receptors, hold promise to increase the breadth and duration of the response to cancer therapy. Here we describe the preclinical evaluation of CTX-8371, a protein construct which combines PD-1 and PD-L1 targeting in one bispecific, tetravalent antibody. CTX-8371 matched or surpassed the activity of anti-PD-1 and PD-L1 benchmark antibodies in several in vitro T cell activation assays and outperformed clinically approved benchmarks in the subcutaneous MC38 colon and the B16F10 lung metastasis mouse tumor models. Investigation into the mechanism of action revealed that CTX-8371 co-engagement of PD-1 and PD-L1 induced the proteolytic cleavage and loss of cell surface PD-1, which is a novel and non-redundant mechanism that adds to the PD-1/PD-L1 signaling axis blockade. The combination of CTX-8371 and an agonistic anti-CD137 antibody further increased the anti-tumor efficacy with long-lasting curative therapeutic effect. In summary, CTX-8371 is a novel checkpoint inhibitor that might provide greater clinical benefit compared to current anti-PD-1 and PD-L1 antibodies, especially when combined with agents with orthogonal mechanisms of action, such as agonistic anti-CD137 antibodies.
Collapse
Affiliation(s)
| | | | - Yan Qin
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | - Mei Su
- Compass Therapeutics Inc, Boston, MA, USA
| | - Vivian Li
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | - Jason Kong
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | | | - Bing Gong
- Compass Therapeutics Inc, Boston, MA, USA
| | | |
Collapse
|
40
|
Lin Z, Ji X, Tian N, Gan Y, Ke L. APOB is a potential prognostic biomarker in hepatocellular carcinoma. Discov Oncol 2024; 15:28. [PMID: 38310202 PMCID: PMC10838261 DOI: 10.1007/s12672-024-00877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is significantly associated with adverse prognostic outcomes. The development and progression of different types of human tumors are significantly influenced by APOB. Nevertheless, the significance and pathomechanisms of APOB in HCC have not been conclusively determined. We assessed APOB expression levels in HCC using three publicly available databases of TIMER2.0, UALCAN and Human Protein Atlas. To identify the biological function of APOB, we conducted enrichment analysis via LinkedOmics. Moreover, UALCAN was employed to assess the relationship between APOB expression and clinicopathological features among HCC patients. Additionally, the Kaplan-Meier plotter was utilized to investigate the prognostic relevance of APOB in HCC. To explore potential regulatory ncRNAs that could bind to APOB, we utilized StarBase and GEPIA. Furthermore, the correlation between APOB expression and immune cell infiltration, as well as immune checkpoint genes, was investigated using Spearman's correlation analysis in TISIDB, GEPIA, and TIMER2.0. The findings of our investigation showed a notable decrease in the expression levels of APOB among individuals diagnosed with HCC. Moreover, a noteworthy correlation was observed between the expression of APOB and immune checkpoint genes, alongside the occurrence of immune cell infiltration. The levels of APOB expression in HCC tissues also showed correlations with various clinicopathological features. According to Cox regression analysis, decreased APOB expression emerged as a potential autonomous predictor for OS, RFS, DSS, and PFS among HCC patients. Furthermore, we identified six potential pathways associated with non-coding RNA (ncRNA) as the most promising pathway for APOB in HCC. Our results illuminate the possible involvement of APOB in HCC and offer understanding into its governing mechanisms and medical importance.
Collapse
Affiliation(s)
- Zhifeng Lin
- Department of Medical Record; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ke
- Department of Medical Record; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
41
|
Zheng J, Tang H, Yang Y, Yang K. Comprehensive analysis of the prognosis and biological significance of ROR β in head and neck squamous cell carcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:487-508. [PMID: 37278231 DOI: 10.1002/tox.23859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Recent studies have shown that abnormal expression of the core circadian clock gene, retinoic acid-related orphan receptor β (RORβ ), is closely associated with the occurrence and progression of various malignant tumors. However, the expression and function of RORβ in head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, we comprehensively investigated the altered expression, clinical significance, prognostic value, and biological functions of RORβ in HNSC, as well as its correlation with changes in the tumor immune microenvironment. We found that RORβ expression was decreased in HNSC and 19 other cancers. Low RORβ expression was significantly associated with tumor size, clinical stage, and survival time in HNSC patients, indicating that it may have diagnostic and prognostic value in HNSCC. Epigenetic analysis showed that the promoter methylation level of RORβ was significantly higher in HNSCC compared to adjacent noncancerous tissues. Furthermore, RORβ hypermethylation was significantly associated with low expression levels of RORβ and poor prognosis in HNSCC patients (p < 0.05). Enrichment analysis found that RORβ was involved in immune system regulation and T-cell activation, as well as the PI3K/AKT and ECM receptors interaction pathways. In vitro assays revealed that RORβ regulated the proliferation, migration and invasion ability of HNSCC cells. Additionally, we found that RORβ expression was significantly correlated with changes in the tumor immune microenvironment, suggesting it may affect prognosis by regulating immune infiltration in HNSC patients. Therefore, RORβ may serve as a potential prognostic biomarker and therapeutic target for HNSCC patients.
Collapse
Affiliation(s)
- Jiawen Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Yang
- Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Wang Q, Xiao F, Zeng Y, Zhu Q, Zhang H. PD-1/PD-L1 inhibitors-associated cardiac adverse events: a retrospective and real-world study based on the FDA Adverse Event Reporting System (FAERS). Expert Opin Drug Saf 2024; 23:257-267. [PMID: 37070426 DOI: 10.1080/14740338.2023.2203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/18/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) inhibitors have reformed the treatment landscape for various malignancies and improved prognosis of patients. However, they also lead to events that although rare may prove to be fatal. RESEARCH DESIGN AND METHODS Data from July 2014 to June 2022 based on FDA Adverse Event Reporting System (FAERS) were analyzed. The signal index reporting odds ratio (ROR) was used to evaluate the correlation between cardiac AEs and given medications. The indications and the median time to onset (TTO) of different PD-1/PD-L1 inhibitors were compared. RESULTS Cardiac AEs are rare but may be fatal with particular profiles in primary tumor, onset time, and especially gender. We identified 11,538 reports that were related to cardiotoxicity of PD-1/PD-L1 inhibitors, in which 178 different preferred terms (PTs) were distinguished, and nivolumab reported the most PTs with signal. All targeted medications showed signals in myocardial disorders and pericardial disorders, which tend to occur in the first 1-2 months. Non-small cell neoplasm was the top and common indication during anti-PD-1 or anti-PD-L1 therapy with cardiotoxicity. CONCLUSIONS This study could help early diagnosis and surveillance of ICIs-related cardiotoxicity.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Fengjiao Xiao
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yanbin Zeng
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Qiaoling Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, China
| | - Haixia Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, China
| |
Collapse
|
43
|
Abdelrahman DI, Elhasadi I, Anbaig A, Bakry A, Mandour D, Wasefy T, Yehia AM, Alorini M, Shalaby AM, Yahia AIO, Alabiad MA. Immunohistochemical Expression of Immune Checkpoints; CTLA-4, LAG3, and TIM-3 in Cancer Cells and Tumor-infiltrating Lymphocytes (TILs) in Colorectal Carcinoma. Appl Immunohistochem Mol Morphol 2024; 32:71-83. [PMID: 38108390 DOI: 10.1097/pai.0000000000001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Colorectal cancer is considered the third most prevalent cancer in both sexes. Immune checkpoint receptors that regulate T-cell response, stimulation, and development include lymphocyte activating gene 3 (LAG-3), cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and T-cell immunoglobulin and mucin domain 3 (Tim-3). In addition, they are crucial for the advancement of cancer and tumor immune escape. OBJECTIVE This work's aim was to assess the immunohistochemistry expression of Tim-3, CTLA-4, and LAG-3 in cancer cells and tumor-infiltrating lymphocytes (TILs) in colorectal cancer (CRC) and the correlation between these markers and clinicopathological variables and survival data. METHODS This study involved 206 CRC specimens processed for CTLA-4, LAG3, and TIM-3 immunohistochemistry and correlated with the clinicopathological and survival parameters of the patients. RESULTS High CTLA-4 epithelial expression was highly related to the old age group, large tumor size, low tumor-stroma ratio (TSR), high grade, advanced stage, the presence of distant metastasis (DM), perineural invasion (PNI), necrosis, lymphovascular invasion (LVI), relapse, mortality, overall survival (OS), and disease-free survival (DFS), while negative CTLA-4 TILs expression was highly linked with the presence of gross perforation, low TSR, high tumor budding (TB) score, high grade, advanced stage, the existence of lymph node (LN) metastasis, DM, necrosis, LVI, PNI, DFS, mortality, and OS. Positive LAG-3 TILs expression was highly correlated with large tumor size, gross perforation, low TSR, high TB score, high grade, advanced phase, the presence of LN, necrosis, LVI, PNI, relapse DFS, mortality, and OS. High Tim-3 epithelial expression was extremely linked with low TSR, advanced phase, the presence of LN, LVI, PNI, relapse, DFS, mortality, and OS, while positive Tim-3 TILs expression was related to gross perforation, low TSR, high TB score, advanced stage, the presence of LN, DM, necrosis, relapse, DFS, mortality, and OS. CONCLUSIONS The patients' poor prognosis may be related to the immunohistochemistry expression of LAG-3, Tim-3, and CTLA-4 in CRC cancer tissue and TILs. Poor patient consequences can result from the CTLA-4, Tim-3, and LAG-3 co-expression, but CTLA-4 TILs' expression of these proteins may inhibit the growth of tumors.
Collapse
Affiliation(s)
| | - Ibtesam Elhasadi
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Amal Anbaig
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | | | | | - Tamer Wasefy
- General Surgery, Faculty of Medicine, Zagazig University, Zagazig
| | - Ahmed M Yehia
- General Surgery, Faculty of Medicine, Zagazig University, Zagazig
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah
| | - Amany M Shalaby
- Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amar Ibrahim Omer Yahia
- Department of Pathology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
- Department of Pathology, Faculty of Medicine and Health Sciences, University of Kordofan, Elobeid, Sudan
| | | |
Collapse
|
44
|
Liu J, Wang M, Wang M, Wang F, Zhang B. LncRNAs-Regulated High Expression of LAMC2 Reveals a Prognostic and Immunological Value in Pancreatic Adenocarcinoma. Biochem Genet 2024; 62:485-503. [PMID: 37382751 DOI: 10.1007/s10528-023-10435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most hazardous cancers in digestive system, and the prognosis is notoriously bad. Increasing evidences indicate that Laminin Subunit Gamma 2 (LAMC2) is critical for the initiation and the growth of various sorts of human cancers. However, the involved molecular pathways of LAMC2 in PAAD are still poorly understood. In this study, prediction programs and databases were employed to conduct pan-cancer analysis. Multiple variations of human malignancies showed increased LAMC2 expression, which was positively correlated to a poor prognosis in PAAD. Moreover, LAMC2 was positively correlated with the biomarkers of immune cells including CD19, CD163, and NOS2 in PAAD. The lncRNA C5orf66 /PTPRG-AS1- miR-128-3p -LAMC2 axis was identified to be a potential upstream regulatory pathway of LAMC2 in PAAD. Furthermore, LAMC2 upregulation in PAAD was associated with PD-L1 expression, indicating promoting carcinoma immune cell infiltration. Our study elucidated prognostic and immunological values of LAMC2 in PAAD, providing a promise target for PAAD treatment.
Collapse
Affiliation(s)
- Jingyun Liu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mengyue Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Miaowen Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Fu Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xianyang, 712046, China.
| | - Beilei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
45
|
Singh R, Srivastava P, Manna PP. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition. Med Oncol 2024; 41:59. [PMID: 38238513 DOI: 10.1007/s12032-023-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The evolution of the complex immune system is equipped to defend against perilous intruders and concurrently negatively regulate the deleterious effect of immune-mediated inflammation caused by self and nonself antigens. Regulatory T-cells (Tregs) are specialized cells that minimize immune-mediated inflammation, but in malignancies, this feature has been exploited toward cancer progression by keeping the antitumor immune response in check. The modulation of Treg cell infiltration and their induction in the TME (tumor microenvironment) alongside associated inhibitory molecules, both soluble or membranes tethered in the TME, have proven clinically beneficial in boosting the tumoricidal activity of the immune system. Moreover, Treg-associated immune checkpoints pose a greater obstruction in cancer immunotherapy. Inhibiting or blocking active immune checkpoint signaling in combination with other therapies has proven clinically beneficial. This review summarizes the ontogeny of Treg cells and their migration, stability, and function in the TME. We also elucidate the Treg-associated checkpoint moieties that impede effective antitumor activity and harness these molecules for effective and targeted immunotherapy against cancer nuisance.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
46
|
Sprooten J, Vanmeerbeek I, Datsi A, Govaerts J, Naulaerts S, Laureano RS, Borràs DM, Calvet A, Malviya V, Kuballa M, Felsberg J, Sabel MC, Rapp M, Knobbe-Thomsen C, Liu P, Zhao L, Kepp O, Boon L, Tejpar S, Borst J, Kroemer G, Schlenner S, De Vleeschouwer S, Sorg RV, Garg AD. Lymph node and tumor-associated PD-L1 + macrophages antagonize dendritic cell vaccines by suppressing CD8 + T cells. Cell Rep Med 2024; 5:101377. [PMID: 38232703 PMCID: PMC10829875 DOI: 10.1016/j.xcrm.2023.101377] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/23/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Current immunotherapies provide limited benefits against T cell-depleted tumors, calling for therapeutic innovation. Using multi-omics integration of cancer patient data, we predict a type I interferon (IFN) responseHIGH state of dendritic cell (DC) vaccines, with efficacious clinical impact. However, preclinical DC vaccines recapitulating this state by combining immunogenic cancer cell death with induction of type I IFN responses fail to regress mouse tumors lacking T cell infiltrates. Here, in lymph nodes (LNs), instead of activating CD4+/CD8+ T cells, DCs stimulate immunosuppressive programmed death-ligand 1-positive (PD-L1+) LN-associated macrophages (LAMs). Moreover, DC vaccines also stimulate PD-L1+ tumor-associated macrophages (TAMs). This creates two anatomically distinct niches of PD-L1+ macrophages that suppress CD8+ T cells. Accordingly, a combination of PD-L1 blockade with DC vaccines achieves significant tumor regression by depleting PD-L1+ macrophages, suppressing myeloid inflammation, and de-inhibiting effector/stem-like memory T cells. Importantly, clinical DC vaccines also potentiate T cell-suppressive PD-L1+ TAMs in glioblastoma patients. We propose that a multimodal immunotherapy and vaccination regimen is mandatory to overcome T cell-depleted tumors.
Collapse
Affiliation(s)
- Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borràs
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Anna Calvet
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marc Kuballa
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Jörg Felsberg
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Michael C Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Christiane Knobbe-Thomsen
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Liwei Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | | | - Sabine Tejpar
- Laboratory for Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium; Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Gurbatri C, Danino T. Engineering Probiotic E. coli Nissle 1917 for Release of Therapeutic Nanobodies. Methods Mol Biol 2024; 2748:289-305. [PMID: 38070121 DOI: 10.1007/978-1-0716-3593-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Bioengineered probiotics enable new opportunities to improve cancer treatment strategies due to their tumor-colonizing capabilities. Here, we will describe the development of a probiotic E. coli Nissle 1917 platform encoding a synchronized lysis mechanism for the localized and sustained release of blocking nanobodies against immune checkpoint molecules like programmed cell death protein-ligand 1 and cytotoxic T lymphocyte-associated protein-4. Specifically, we will detail the experimental protocols needed to (1) encode and validate binding of recombinantly produced checkpoint blockade nanobodies, (2) evaluate the therapeutic efficacy and safety of the probiotic platform in syngeneic tumor-bearing mice, and (3) analyze the immunophenotype of the tumor microenvironment.
Collapse
Affiliation(s)
- Candice Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
48
|
Wu Z, You C, Zhu Z, Wu W, Cao J, Xie Q, Deng C, Huang X, Hu S. SLA2 is a prognostic marker in HNSCC and correlates with immune cell infiltration in the tumor microenvironment. Eur Arch Otorhinolaryngol 2024; 281:427-440. [PMID: 37688682 PMCID: PMC10764518 DOI: 10.1007/s00405-023-08213-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE To investigate Src-like adaptor 2 gene (SLA2) expression in head and neck squamous cell carcinoma (HNSCC), its potential prognostic value, and its effect on immune cell infiltration. METHODS Through a variety of bioinformatics analyses, we extracted and analyzed data sets from the Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), and Gene Expression Profile Interaction Analysis (GEPIA) to analyze the correlation between SLA2 and the prognosis, immune checkpoint, tumor microenvironment (TME) and immune cell infiltration of HNSCC, and to explore its potential oncogenic mechanism. To further explore the potential role of SLA2 in HNSCC by Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS SLA2 messenger ribonucleic acid (mRNA) levels were increased in HNSCC tumor tissues compared with normal tissues. In addition, we found that SLA2 may be an independent prognostic factor for HNSCC, and high SLA2 expression is associated with favorable prognosis in HNSCC. SLA2 expression was positively correlated with B cells, cluster of differentiation 8-positive T cells (CD8 + T cells), cluster of differentiation 4-positive T cells (CD4 + T cells), macrophages, neutrophil and dendritic cells infiltration. SLA2 has also been shown to co-express immune-related genes and immune checkpoints. Significant GO term analysis by Gene Set Enrichment Analysis (GSEA) indicated that genes correlated with SLA2 were located mainly in the side of membrane, receptor complex, secretory granule membrane, endocytic vesicle, membrane region, and endosome membrane, where they were involved in leukocyte cell-cell adhesion, response to interferon-gamma, and regulation of immune effector process. These related genes also served as antigen binding, cytokine receptor activity, phosphatidylinositol 3-kinase activity, peptide receptor activity, Src homology domain 3 (SH3) domain binding, and cytokine receptor binding. KEGG pathway analysis demonstrated that these genes related to SLA2 were mainly enriched in signal pathways, such as hematopoietic cell lineage, cell adhesion molecules (CAMs), natural killer cell mediated cytotoxicity, measles, and chemokine signaling pathway. CONCLUSIONS SLA2 is increased in HNSCC, and high SLA2 expression is associated with favorable prognosis. SLA2 may affect tumor development by regulating tumor infiltrating cells in TME. SLA2 may be a potential target for immunotherapy.
Collapse
Affiliation(s)
- Zhongbiao Wu
- Department of Otolaryngology, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, 90 Bayi Avenue, Xihu District, Nanchang, 330003, Jiangxi, China
| | - Chengkun You
- Department of Neurology, Pinghu Hospital of Traditional Chinese Medicine, Jiaxing, 314200, China
| | - Zhongyan Zhu
- Department of Rehabilitation, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, 330003, China
| | - Weikun Wu
- Department of Otolaryngology, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, 90 Bayi Avenue, Xihu District, Nanchang, 330003, Jiangxi, China
| | - Jian Cao
- Department of Otolaryngology, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, 90 Bayi Avenue, Xihu District, Nanchang, 330003, Jiangxi, China
| | - Qiang Xie
- Department of Otolaryngology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330019, China
| | - Chengcheng Deng
- Department of Otolaryngology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330019, China
| | - Xinmei Huang
- Department of Otolaryngology, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Shiping Hu
- Department of Otolaryngology, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, 90 Bayi Avenue, Xihu District, Nanchang, 330003, Jiangxi, China.
| |
Collapse
|
49
|
Kus F, Can Guven D, Yildirim HC, Akagunduz B, Karakaya S, Sutcuoglu O, Chalabiyev E, Akyildiz A, Koksal B, Sahin YB, Karaca E, Kavruk OA, Zor NT, Sirvan F, Yazici O, Yalcin S. The Use of Herbal Medicine and Dietary Supplements in Cancer Patients Receiving Immune Checkpoint Inhibitors: A Multicenter Cross-Sectional Study. Integr Cancer Ther 2024; 23:15347354241280273. [PMID: 39367737 PMCID: PMC11526273 DOI: 10.1177/15347354241280273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 10/06/2024] Open
Abstract
AIMS This study aimed to assess the habits and knowledge of cancer patients regarding the use of herbal medicines and dietary supplements in cancer patients receiving immune checkpoint inhibitors (ICI). METHODS The data of 181 cancer patients who were over 18 years old and received ICIs were collected. The usage patterns, anticipated benefits and harms, and sources of supply were evaluated by filling researcher-prepared forms. RESULTS Most patients did not use any kind of herbal medicine (91.2%) or dietary supplements (75.9%) during their immunotherapy. Boosting the immune system is the primary motivation for use among users. Multivitamins are the most frequently used supplements. Family members and TV advertisements were the main sources of information, in addition to limited advice from healthcare professionals. A minority of participants reported gastrointestinal side effects. Herbal medicine and dietary supplement use were more prevalent among patients with stage IV cancer and renal cell carcinoma (RCC). DISCUSSION This study revealed that the limited uptake of herbal medicines and dietary supplements alongside ICI treatment among cancer patients. The lack of adequate information from healthcare professionals poses potential risks to patients. Improved communication with patients, education regarding herbal medicine and dietary supplement use, potential interactions, and associated risks during ICI treatment are essential. Further research is needed to identify the specific needs of patients, anticipated benefits, and potential harms of herbal medicine and dietary supplement use, together with ICIs.
Collapse
Affiliation(s)
- Fatih Kus
- Hacettepe University, Medical oncology, Ankara, Turkey
| | | | | | - Baran Akagunduz
- Erzincan Mengucek Gazi Education and Research Hospital, Turkey
| | - Serdar Karakaya
- Ataturk Chest Diseases and Chest Surgery Education and Research Hospital, Ankara,Turkey
| | | | | | - Arif Akyildiz
- Hacettepe University, Medical oncology, Ankara, Turkey
| | - Baris Koksal
- Hacettepe University, Medical oncology, Ankara, Turkey
| | - Yigit Berk Sahin
- Hacettepe University, Department of Internal Medicine, Ankara, Turkey
| | - Ece Karaca
- Hacettepe University, Department of Internal Medicine, Ankara, Turkey
| | - Oguz Alp Kavruk
- Hacettepe University, Department of Internal Medicine, Ankara, Turkey
| | - Nefise Tugce Zor
- Hacettepe University, Department of Internal Medicine, Ankara, Turkey
| | - Firat Sirvan
- Hacettepe University, Department of Internal Medicine, Ankara, Turkey
| | - Ozan Yazici
- Gazi University, Medical oncology, Ankara, Turkey
| | - Suayib Yalcin
- Hacettepe University, Medical oncology, Ankara, Turkey
| |
Collapse
|
50
|
Yuan X, Wang X. An In Situ Chemotherapy Drug Combined with Immune Checkpoint Inhibitor for Chemoimmunotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3144. [PMID: 38133040 PMCID: PMC10746032 DOI: 10.3390/nano13243144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Clinically, cancer chemotherapy still faces unsatisfactory efficacy due to drug resistance and severe side effects, including tiredness, hair loss, feeling sick, etc. The clinical benefits of checkpoint inhibitors have revived hope for cancer immunotherapy, but the objective response rate of immune checkpoint inhibitors remains around 10-40%. Herein, two types of copper-doped mesoporous silica nanoparticles (MS-Cu-1 with a diameter of about 30 nm and MS-Cu-2 with a diameter of about 200 nm) were synthesized using a one-pot method. Both MS-Cu-1 and MS-Cu-2 nanoparticles showed excellent tumor microenvironment regulation properties with elevated extracellular and intracellular ROS generation, extracellular and intracellular oxygenation, and intracellular GSH depletion. In particular, MS-Cu-2 nanoparticles demonstrated a better microenvironment modulation effect than MS-Cu-1 nanoparticles. The DSF/MS-Cu composites with disulfiram (DSF) and copper co-delivery characteristics were prepared by a straightforward method using chloroform as the solvent. Cell survival rate and live/dead staining results showed that DSF and MS-Cu alone were not toxic to LLC cells, while a low dose of DSF/MS-Cu (1-10 μg/mL) showed a strong cell-killing effect. In addition, MS-Cu-2 nanoparticles released more Cu2+ in a weakly acidic environment (pH = 5) than in a physiological environment (pH = 7.4), and the Cu2+ released was 41.72 ± 0.96 mg/L in 1 h under weakly acidic conditions. UV-visible absorption spectrometry confirmed the production of tumor-killing drugs (CuETs). The intratumoral injection of DSF/MS-Cu significantly inhibited tumor growth in vivo by converting nontoxic DSF/MS-Cu into toxic CuETs. The combination of DSF/MS-Cu and anti-CTLA-4 antibody further inhibited tumor growth, showing the synergistic effect of DSF/MS-Cu and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xinyuan Yuan
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, and National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510641, China
| | - Xiupeng Wang
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| |
Collapse
|