1
|
Li C, Li R, Wang Y, Jiang H. Inhibition of the TCF12/VSIG4 axis by palbociclib diminishes the proliferation and migration of glioma cells and decreases the M2 polarization of glioma-associated microglia. Drug Dev Res 2024; 85:e22230. [PMID: 38967729 DOI: 10.1002/ddr.22230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
The CDK4/CDK6 inhibitor palbociclib has shown the encouraging promise in the treatment of glioma. Here, we elucidated how palbociclib exerts suppressive functions in the M2 polarization of glioma-related microglia and the progression of glioma. Xenograft experiments were used to evaluate the function in vivo. The mRNA levels of transcription factor 12 (TCF12) and VSIG4 were detected by RT-qPCR, and their protein levels were assessed by immunoblotting. Cell migration was tested by wound-healing assay. Cell cycle distribution and M1/M2 microglia phenotype analysis were performed by flow cytometry. The levels of IFN-γ, TNF-α, IL-6,and TGF-β were measured by ELISA. The TCF12/VSIG4 association was verified by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. In U251 and LN229 glioma cells, TCF12 and VSIG4 were overexpressed, and palbociclib reduced their expression levels. TCF12 upregulation enhanced the proliferation and migration of glioma cells and the M2 polarization of glioma-associated microglia in vitro as well as the tumorigenicity of U251 glioma cells in vivo, which could be reversed by palbociclib. Mechanistically, TCF12 could enhance VSIG4 transcription and expression by binding to the VSIG4 promoter. TCF12 deficiency led to repression in glioma cell proliferation and migration as well as microglia M2 polarization, which could be abolished by increased VSIG4 expression. Our study reveals the novel TCF12/VSIG4 axis responsible for the efficacy of palbociclib in combating glioma, offering a rationale for the application of palbociclib in glioma treatment.
Collapse
Affiliation(s)
- Chuankun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haitao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Higuchi F, Uzuka T, Matsuda H, Sumi T, Iwata K, Namatame T, Shin M, Akutsu H, Ueki K. Rise of oligodendroglioma hypermutator phenotype from a subclone harboring TP53 mutation after TMZ treatment. Brain Tumor Pathol 2024; 41:80-84. [PMID: 38294664 DOI: 10.1007/s10014-024-00477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Oligodendrogliomas characterized and defined by 1p/19q co-deletion are slowly growing tumors showing better prognosis than astrocytomas. TP53 mutation is rare in oligodendrogliomas while the vast majority of astrocytomas harbor the mutation, making TP53 mutation mutually exclusive with 1p/19q codeletion in lower grade gliomas virtually. We report a case of 51-year-old woman with a left fronto-temporal oligodendroglioma that contained a small portion with a TP53 mutation, R248Q, at the initial surgery. On a first, slow-growing recurrence 29 months after radiation and nitrosourea-based chemotherapy, the patient underwent TMZ chemotherapy. The recurrent tumor responded well to TMZ but developed a rapid progression after 6 cycles as a malignant hypermutator tumor with a MSH6 mutation. Most of the recurrent tumor lacked typical oligodendroglioma morphology that was observed in the primary tumor, while it retained the IDH1 mutation and 1p/19q co-deletion. The identical TP53 mutation observed in the small portion of the primary tumor was universal in the recurrence. This case embodied the theoretically understandable clonal expansion of the TP53 mutation with additional mismatch repair gene dysfunction leading to hypermutator phenotype. It thus indicated that TP53 mutation in oligodendroglioma, although not common, may play a critical role in the development of hypermutator after TMZ treatment.
Collapse
Affiliation(s)
- Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan.
- Department of Neurosurgery, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi, Tokyo, 173-8606, Japan.
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| | - Hadzki Matsuda
- Department of Diagnostic Pathology, Dokkyo Medical University, Kitakobayashi880, Mibu, Tochigi, 321-0293, Japan
| | - Takuma Sumi
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| | - Kayoko Iwata
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| | - Takashi Namatame
- Clinical Research Center, Dokkyo Medical University, Kitakobayashi880, Mibu, Tochigi, 321-0293, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi, Tokyo, 173-8606, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University, Kitakobayashi880, Mibu , Tochigi, 321-0293, Japan
| |
Collapse
|
3
|
Buccilli B, Rodriguez Molina MA, Redrovan Palomeque DP, Herrera Sabán CA, C Caliwag FM, Contreras Flores CJS, Abeysiriwardana CWJ, Diarte E, Arruarana VS, Calderon Martinez E. Liquid Biopsies for Monitoring Medulloblastoma: Circulating Tumor DNA as a Biomarker for Disease Progression and Treatment Response. Cureus 2024; 16:e51712. [PMID: 38313884 PMCID: PMC10838584 DOI: 10.7759/cureus.51712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Pediatric brain tumors, including medulloblastoma (MB), represent a significant challenge in clinical oncology. Early diagnosis, accurate monitoring of therapeutic response, and the detection of minimal residual disease (MRD) are crucial for improving outcomes in these patients. This review aims to explore recent advancements in liquid biopsy techniques for monitoring pediatric brain tumors, with a specific focus on medulloblastoma. The primary research question is how liquid biopsy techniques can be effectively utilized for these purposes. Liquid biopsies, particularly the analysis of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF), are investigated as promising noninvasive tools. This comprehensive review examines the components of liquid biopsies, including ctDNA, cell-free DNA (cfDNA), and microRNA (miRNA). Their applications in diagnosis, prognosis, and MRD assessment are critically assessed. The review also discusses the role of liquid biopsies in categorizing medulloblastoma subgroups, risk stratification, and the identification of therapeutic targets. Liquid biopsies have shown promising applications in the pediatric brain tumor field, particularly in medulloblastoma. They offer noninvasive means of diagnosis, monitoring treatment response, and detecting MRD. These biopsies have played a pivotal role in subgroup classification and risk stratification of medulloblastoma patients, aiding in the identification of therapeutic targets. However, challenges related to sensitivity and specificity are noted. In conclusion, this review highlights the growing importance of liquid biopsies, specifically ctDNA analysis in CSF, in pediatric brain tumor management, with a primary focus on medulloblastoma. Liquid biopsies have the potential to revolutionize patient care by enabling early diagnosis, accurate monitoring, and MRD detection. Nevertheless, further research is essential to validate their clinical utility fully. The evolving landscape of liquid biopsy applications underscores their promise in improving outcomes for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
- Department of Neurosurgery, Mount Sinai Hospital, New York, USA
| | | | | | - Cindy A Herrera Sabán
- Department of General Practice, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, San Carlos, GTM
| | - Fides M C Caliwag
- Department of General Practice, Ateneo School of Medicine and Public Health, Pasig City, PHL
| | | | | | - Edna Diarte
- Department of Medicine, Universidad Autónoma de Sinaloa, Culiacán, MEX
| | - Victor S Arruarana
- Department of Internal Medicine, Brookdale University Hospital Medical Center, New York, USA
| | | |
Collapse
|
4
|
Nafe R, Porto L, Samp PF, You SJ, Hattingen E. Adult-type and Pediatric-type Diffuse Gliomas : What the Neuroradiologist Should Know. Clin Neuroradiol 2023; 33:611-624. [PMID: 36941392 PMCID: PMC10449995 DOI: 10.1007/s00062-023-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/22/2023]
Abstract
The classification of diffuse gliomas into the adult type and the pediatric type is the new basis for the diagnosis and clinical evaluation. The knowledge for the neuroradiologist should not remain limited to radiological aspects but should be based additionally on the current edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). This classification defines the 11 entities of diffuse gliomas, which are included in the 3 large groups of adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas, and pediatric-type diffuse high-grade gliomas. This article provides a detailed overview of important molecular, morphological, and clinical aspects for all 11 entities, such as typical genetic alterations, age distribution, variability of the tumor localization, variability of histopathological and radiological findings within each entity, as well as currently available statistical information on prognosis and outcome. Important differential diagnoses are also discussed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | - Luciana Porto
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Patrick-Felix Samp
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Se-Jong You
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Elke Hattingen
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Jiang H, Zhu Q, Wang X, Li M, Shen S, Yang C, Zhao X, Li M, Ma G, Zhao X, Chen X, Yang J, Lin S. Characterization and clinical implications of different malignant transformation patterns in diffuse low-grade gliomas. Cancer Sci 2023; 114:3708-3718. [PMID: 37332121 PMCID: PMC10475770 DOI: 10.1111/cas.15889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Malignant transformation (MT) of low-grade gliomas (LGGs) to a higher-grade variant seems inevitable, yet it remains unclear which LGG patients will progress to grade 3 or even directly to grade 4 after receiving a long course of treatment. To elucidate this, we conducted a retrospective cohort study based on 229 adults with recurrent LGG. Our study aimed to disclose the characteristics of different MT patterns and to build predictive models for patients with LGG. Patients were allocated into group 2-2 (n = 81, 35.4%), group 2-3 (n = 91, 39.7%), and group 2-4 (n = 57, 24.9%), based on their MT patterns. Patients who underwent MT showed lower Karnofsky performance scale (KPS) scores, larger tumor sizes, smaller extents of resection (EOR), higher Ki-67 indices, lower rates of 1p/19q codeletion, but higher rates of subventricular involvement, radiotherapy, chemotherapy, astrocytoma, and post-progression enhancement (PPE) compared with those in group 2-2 (p < 0.01). On multivariate logistic regression, 1p/19q codeletion, Ki-67 index, radiotherapy, EOR, and KPS score were independently associated with MT (p < 0.05). Survival analyses demonstrated that patients in group 2-2 had the longest survival, followed by group 2-3 and then group 2-4 (p < 0.0001). Based on these independent parameters, we constructed a nomogram model that exhibited superior potential (sensitivity: 0.864, specificity: 0.814, and accuracy: 0.843) compared with PPE in early prediction of MT. Combining the factors of 1p/19q codeletion, Ki-67 index, radiotherapy, EOR, and KPS score that were presented at initial diagnosis could precisely forecast the subsequent MT patterns of patients with LGG.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xijie Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shaoping Shen
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanwei Yang
- Department of Neurosurgery, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Guofo Ma
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Xiaofang Zhao
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Xiaodong Chen
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Jun Yang
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Neurological Diseases, Center of Brain TumorBeijing Institute for Brain Disorders and Beijing Key Laboratory of Brain TumorBeijingChina
| |
Collapse
|
6
|
Liu G, Bu C, Guo G, Zhang Z, Sheng Z, Deng K, Wu S, Xu S, Bu Y, Gao Y, Wang M, Liu G, Kong L, Li T, Li M, Bu X. Genomic alterations of oligodendrogliomas at distant recurrence. Cancer Med 2023; 12:17171-17183. [PMID: 37533228 PMCID: PMC10501240 DOI: 10.1002/cam4.6327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Oligodendroglioma is known for its relatively better prognosis and responsiveness to radiotherapy and chemotherapy. However, little is known about the evolution of genetic changes as oligodendroglioma progresses. METHODS In this study, we evaluated gene evolution invivo during tumor progression based on deep whole-genome sequencing data (ctDNA). We analyzed longitudinal genomic data from six patients during tumor evolution, of which five patients developed distant recurrence. RESULTS Whole-exome sequencing demonstrated that the rate of shared mutations between the primary and recurrent samples was relatively low. In two cases, even well-known major driver mutations in CIC and FUBP1 that were detected in primary tumors were not detected in the relapse samples. Among these cases, two patients had a conversion from the IDH mutation in the originating state to the IDH1 wild state during the process of gene evolution under chemotherapy treatment, indicating that the cell phenotype and genetic characteristics of oligodendroglioma may change during tumor evolution. Two patients received long-term temozolomide (TMZ) treatment before the operation, and we found that recurrence tumors harbored mutations in the PI3K/AKT and Sonic hedgehog (SHh) signaling pathways. Hypermutation occurred with mutations in MMR genes in one patient, contributing to the rapid progression of the tumor. CONCLUSION Oligodendroglioma displayed great spatial and temporal heterogeneity during tumor evolution. The PI3K/AKT and SHh signaling pathways may play an important role in promoting treatment resistance and distant relapse during oligodendroglioma evolution. In addition, there was a tendency to increase the degree of tumor malignancy during evolution. Distant recurrence may be a later event duringoligodendroglioma progression. CLINICALTRIALS gov, Identifier: NCT05512325.
Collapse
Affiliation(s)
- Guanzheng Liu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Chaojie Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Guangzhong Guo
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Zhiyue Zhang
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Zhiyuan Sheng
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Kaiyuan Deng
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Shuang Wu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Sensen Xu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Yage Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Yushuai Gao
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Meiyun Wang
- Department of RadiologyHenan Provincial People's HospitalZhengzhouChina
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Department of Oncology, Clinical Research Center, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| | - Lingfei Kong
- Department of PathologyHenan Provincial People's HospitalZhengzhouChina
| | - Tianxiao Li
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Ming Li
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Xingyao Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
7
|
Navickas SM, Giles KA, Brettingham-Moore KH, Taberlay PC. The role of chromatin remodeler SMARCA4/BRG1 in brain cancers: a potential therapeutic target. Oncogene 2023:10.1038/s41388-023-02773-9. [PMID: 37433987 PMCID: PMC10374441 DOI: 10.1038/s41388-023-02773-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
The chromatin remodeler SMARCA4/BRG1 is a key epigenetic regulator with diverse roles in coordinating the molecular programs that underlie brain tumour development. BRG1 function in brain cancer is largely specific to the tumour type and varies further between tumour subtypes, highlighting its complexity. Altered SMARCA4 expression has been linked to medulloblastoma, low-grade gliomas such as oligodendroglioma, high-grade gliomas such as glioblastoma and atypical/teratoid rhabdoid tumours. SMARCA4 mutations in brain cancer predominantly occur in the crucial catalytic ATPase domain, which is associated with tumour suppressor activity. However, SMARCA4 is opposingly seen to promote tumourigenesis in the absence of mutation and through overexpression in other brain tumours. This review explores the multifaceted interaction between SMARCA4 and various brain cancer types, highlighting its roles in tumour pathogenesis, the pathways it regulates, and the advances that have been made in understanding the functional relevance of mutations. We discuss developments made in targeting SMARCA4 and the potential to translate these to adjuvant therapies able to enhance current methods of brain cancer treatment.
Collapse
Affiliation(s)
- Sophie M Navickas
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Katherine A Giles
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kate H Brettingham-Moore
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
8
|
The Role of Epigenetics in Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:119-136. [PMID: 36587385 DOI: 10.1007/978-3-031-14732-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Identification of distinct genetic and epigenetic profiles in various neuroepithelial tumors has improved the classification and uncovered novel diagnostic, prognostic, and predictive molecular biomarkers for improved prediction of treatment response and outcome. Especially, in pediatric high-grade brain tumors, such as diffuse midline glioma, H3K27M-altered and posterior fossa group A-ependymoma, epigenetic changes predominate, along with changes in expression of known oncogenes and tumor suppressor genes induced by histone modifications and DNA methylation. The precise role of epigenetic abnormalities is important for understanding tumorigenesis and the establishment of brain tumor treatment strategies. Using powerful epigenetic-based therapies for cancer cells, the aberrantly regulated epigenome can be restored to a more normal state through epigenetic reprogramming. Combinations of agents targeting DNA methylation and/or other epigenetic modifications may be a promising cancer treatment. Therefore, the integration of multi-omics data including epigenomics is now important for classifying primary brain tumors and predicting their biological behavior. Recent advances in molecular genetics and epigenetic integrated diagnostics of brain tumors influence new strategies for targeted therapy.
Collapse
|
9
|
Wu F, Yin YY, Fan WH, Zhai Y, Yu MC, Wang D, Pan CQ, Zhao Z, Li GZ, Zhang W. Immunological profiles of human oligodendrogliomas define two distinct molecular subtypes. EBioMedicine 2022; 87:104410. [PMID: 36525723 PMCID: PMC9772571 DOI: 10.1016/j.ebiom.2022.104410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human oligodendroglioma presents as a heterogeneous disease, primarily characterized by the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion. Therapy development for this tumor is hindered by incomplete knowledge of somatic driving alterations and suboptimal disease classification. We herein aim to identify intrinsic molecular subtypes through integrated analysis of transcriptome, genome and methylome. METHODS 137 oligodendroglioma patients from the Cancer Genome Atlas (TCGA) dataset were collected for unsupervised clustering analysis of immune gene expression profiles and comparative analysis of genome and methylome. Two independent datasets containing 218 patients were used for validation. FINDINGS We identified and independently validated two reproducible subtypes associated with distinct molecular characteristics and clinical outcomes. The proliferative subtype, named Oligo1, was characterized by more tumors of CNS WHO grade 3, as well as worse prognosis compared to the Oligo2 subtype. Besides the clinicopathologic features, Oligo1 exhibited enrichment of cell proliferation, regulation of cell cycle and Wnt signaling pathways, and significantly altered genes, such as EGFR, NOTCH1 and MET. In contrast, Oligo2, with favorable outcome, presented increased activation of immune response and metabolic process. Higher T cell/APC co-inhibition and inhibitory checkpoint levels were observed in Oligo2 tumors. Finally, multivariable analysis revealed our classification was an independent prognostic factor in oligodendrogliomas, and the robustness of these molecular subgroups was verified in the validation cohorts. INTERPRETATION This study provides further insights into patient stratification as well as presents opportunities for therapeutic development in human oligodendrogliomas. FUNDING The funders are listed in the Acknowledgement.
Collapse
Affiliation(s)
- Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China,Corresponding author. Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China.
| | - Yi-Yun Yin
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - Wen-Hua Fan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - Ming-Chen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - Di Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - Chang-Qing Pan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - Guan-Zhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China,Corresponding author. Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China.
| |
Collapse
|
10
|
Nejo T, Takayanagi S, Tanaka S, Shinozaki-Ushiku A, Kohsaka S, Nagata K, Yokoyama M, Sora S, Ushiku T, Mukasa A, Aburatani H, Mano H, Saito N. Primary Intracranial Spindle Cell Sarcoma, DICER1-Mutant, with MDM2 Amplification Diagnosed on the Basis of Extensive Molecular Profiling. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2022; 15:11795476221131189. [PMID: 36277904 PMCID: PMC9580084 DOI: 10.1177/11795476221131189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Primary intracranial spindle cell sarcoma is an extremely rare mesenchymal tumor, the molecular pathogenesis of which is poorly understood. Because of the lack of specific markers, diagnosis sometimes relies on ruling out all possible differential diagnoses, often making it difficult to reach a definitive diagnosis. In this case study, we report a 69 year-old female patient for whom the integration of multi-layered molecular analyses contributed to making the diagnosis. The disease exhibited aggressive clinical behavior, requiring two sequential surgeries because of rapid regrowth within a short period. Primary and recurrent tumors exhibited similar histological features, in which spindle-shaped cells arranged in interlacing fascicles without any specific architectures, implicating sarcomatous tumors. In immunohistochemistry testing, tumor cells were immunopositive for vimentin but lacked any specific findings that contribute to narrowing down the differential diagnoses. Seeking further diagnostic clues, we performed DNA methylation-based analysis. The copy number analysis revealed MDM2 gene amplification and loss of heterozygosity of 22q. Moreover, dimension reduction clustering analysis implicated a methylation pattern comparable to aggressive types of sarcomas. In addition, an in-house next-generation sequencing panel ("Todai-OncoPanel") analysis identified somatic mutations in DICER1, NF2, and ATRX genes. Taken all together, we finally made the diagnosis of primary intracranial spindle cell sarcoma, DICER1-mutant, with MDM2 gene amplification. This case report suggests that even for the tumors with insufficient morphological and immuno-histological diagnostic clues, integration of multi-layered molecular analyses can contribute to making the diagnoses as well as to understanding the rare tumors by elucidating unexpected genetic and epigenetic features.
Collapse
Affiliation(s)
- Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Shunsaku Takayanagi, Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Keisuke Nagata
- Department of Neurosurgery, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Munehiro Yokoyama
- Department of Diagnostic Pathology, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Shigeo Sora
- Department of Neurosurgery, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Nakasu S, Nakasu Y. Malignant Progression of Diffuse Low-grade Gliomas: A Systematic Review and Meta-analysis on Incidence and Related Factors. Neurol Med Chir (Tokyo) 2022; 62:177-185. [PMID: 35197400 PMCID: PMC9093671 DOI: 10.2176/jns-nmc.2021-0313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malignant progression of diffuse low-grade glioma (LGG) is a critical event affecting patient survival; however, the incidence and related factors have been inconsistent in literature. According to the PRISMA guidelines, we systematically reviewed articles from 2009, meta-analyzed the incidence of malignant progression, and clarified factors related to the transformation. Forty-one articles were included in this study (n = 7,122; n, number of patients). We identified two definitions of malignant progression: histologically proven (Htrans) and clinically defined (Ctrans). The malignant progression rate curves of Htrans and Ctrans were almost in parallel when constructed from the results of meta-regression by the mean follow-up time. The true transformation rate was supposed to lie between the two curves, approximately 40% at the 10-year mean follow-up. Risk of malignant progression was evaluated using hazard ratio (HR). Pooled HRs were significantly higher in tumors with a larger pre- and postoperative tumor volume, lower degree of resection, and notable preoperative contrast enhancement on magnetic resonance imaging than in others. Oligodendroglial histology and IDH mutation (IDHm) with 1p/19q codeletion (Codel) also significantly reduced the HRs. Using Kaplan-Meier curves from eight studies with molecular data, we extracted data and calculated the 10-year malignant progression-free survival (10yMPFS). The 10yMPFS in patients with IDHm without Codel was 30.4% (95% confidence interval [95% CI]: 22.2-39.0) in Htrans and 38.3% (95% CI: 32.3-44.3) in Ctrans, and that with IDHm with Codel was 71.7% (95% CI: 61.7-79.5) in Htrans and 62.5% (95% CI: 55.9-68.5) in Ctrans. The effect of adjuvant radiotherapy or chemotherapy could not be determined.
Collapse
Affiliation(s)
- Satoshi Nakasu
- Division of Neurosurgery, Omi Medical Center.,Department of Neurosurgery, Shiga University of Medical Science
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science.,Division of Neurosurgery, Shizuoka Cancer Center
| |
Collapse
|
12
|
Barresi V, Mafficini A, Calicchia M, Piredda ML, Musumeci A, Ghimenton C, Scarpa A. Recurrent oligodendroglioma with changed 1p/19q status. Neuropathology 2022; 42:160-166. [PMID: 35144313 PMCID: PMC9546156 DOI: 10.1111/neup.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
We report a case of oligodendroglioma that had consistent histopathological features as well as a distinct change in 1p/19q status in the second recurrence, after temozolomide chemotherapy and radiotherapy. The first tumor recurrence had oligodendroglial morphology, IDH1 R132H and TERT promoter mutations, and 1p/19q codeletion detected by fluorescent in situ hybridization (FISH). Copy number analysis, assessed by next‐generation sequencing, confirmed 1p/19q codeletion, and disclosed loss of heterozygosity (LOH) of chromosomes 4 and 9 and chromosome 11 gain. The second recurrence featured not only oligodendroglial morphology but also the appearance of admixed multinucleated giant cells or neoplastic cells having oval nuclei and mitoses and showing microvascular proliferation; it maintained IDH1 R132H and TERT promoter mutations, acquired TP53 mutation, and showed 19q LOH, but disomic 1p, detected by FISH. Copy number analysis depicted LOH of chromosomes 3p, 13, and 19q, 1p partial deletion (1p chr1p34.2‐p11), and gain of chromosomes 2p25.3‐p24.1, 8q12.2‐q24.3, and 11q13.3‐q25. B‐allele frequency analysis of polymorphic sites disclosed copy‐neutral LOH at 1p36.33‐p34.2, supporting the initial deletion of 1p, followed by reduplication of 1p36.33‐p34.2 alone. These findings suggest that the two tumor recurrences might have originated from an initial neoplastic clone, featuring 1p/19q codeletion and IDH1 and TERT promoter mutations, and have independently acquired other copy number alterations. The reduplication of chromosome 1p might be the result of temozolomide treatment, and gave rise to false negative 1p deletion detected by FISH. The possibility of 1p copy‐neutral LOH should be considered in recurrent oligodendrogliomas with altered 1p/19q status detected by FISH.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy.,ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Martina Calicchia
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Maria Liliana Piredda
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Angelo Musumeci
- Department of Neurosciences, Unit of Neurosurgery, Hospital Trust of Verona, Verona, Italy
| | - Claudio Ghimenton
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy.,ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
13
|
Suwala AK, Felix M, Friedel D, Stichel D, Schrimpf D, Hinz F, Hewer E, Schweizer L, Dohmen H, Pohl U, Staszewski O, Korshunov A, Stein M, Wongsurawat T, Cheunsuacchon P, Sathornsumetee S, Koelsche C, Turner C, Le Rhun E, Mühlebner A, Schucht P, Özduman K, Ono T, Shimizu H, Prinz M, Acker T, Herold-Mende C, Kessler T, Wick W, Capper D, Wesseling P, Sahm F, von Deimling A, Hartmann C, Reuss DE. Oligosarcomas, IDH-mutant are distinct and aggressive. Acta Neuropathol 2022; 143:263-281. [PMID: 34967922 PMCID: PMC8742817 DOI: 10.1007/s00401-021-02395-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 01/21/2023]
Abstract
Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile.
Collapse
|
14
|
Daniel P, Meehan B, Sabri S, Jamali F, Sarkaria JN, Choi D, Garnier D, Kitange G, Glennon KI, Paccard A, Karamchandani J, Riazalhosseini Y, Rak J, Abdulkarim B. Detection of temozolomide-induced hypermutation and response to PD-1 checkpoint inhibitor in recurrent glioblastoma. Neurooncol Adv 2022; 4:vdac076. [PMID: 35795471 PMCID: PMC9252128 DOI: 10.1093/noajnl/vdac076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Despite aggressive upfront treatment in glioblastoma (GBM), recurrence remains inevitable for most patients. Accumulating evidence has identified hypermutation induced by temozolomide (TMZ) as an emerging subtype of recurrent GBM. However, its biological and therapeutic significance has yet to be described. Methods We combined GBM patient and derive GBM stem cells (GSCs) from tumors following TMZ to explore response of hypermutant and non-hypermutant emergent phenotypes and explore the immune relevance of hypermutant and non-hypermutant states in vivo. Results Hypermutation emerges as one of two possible mutational subtypes following TMZ treatment in vivo and demonstrates distinct phenotypic features compared to non-hypermutant recurrent GBM. Hypermutant tumors elicited robust immune rejection in subcutaneous contexts which was accompanied by increased immune cell infiltration. In contrast, immune rejection of hypermutant tumors were stunted in orthotopic settings where we observe limited immune infiltration. Use of anti-PD-1 immunotherapy showed that immunosuppression in orthotopic contexts was independent from the PD-1/PD-L1 axis. Finally, we demonstrate that mutational burden can be estimated from DNA contained in extracellular vesicles (EVs). Conclusion Hypermutation post-TMZ are phenotypically distinct from non-hypermutant GBM and requires personalization for appropriate treatment. The brain microenvironment may be immunosuppressive and exploration of the mechanisms behind this may be key to improving immunotherapy response in this subtype of recurrent GBM.
Collapse
Affiliation(s)
- Paul Daniel
- Department of Oncology, McGill University, Research Institute of the McGill University Health Centre (Research Institute-MUHC), Montreal, Canada
| | - Brian Meehan
- McGill University, Research Institute of the McGill University Health Centre (Research Institute-MUHC), Montreal, Canada
| | - Siham Sabri
- Research Institute, Cancer Research Program, McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Fatemeh Jamali
- McGill University, Research Institute of the McGill University Health Centre (Research Institute-MUHC), Montreal, Canada
| | | | - Dongsic Choi
- McGill University, Research Institute of the McGill University Health Centre (Research Institute-MUHC), Montreal, Canada
| | - Delphine Garnier
- McGill University, Research Institute of the McGill University Health Centre (Research Institute-MUHC), Montreal, Canada
| | | | | | | | | | | | - Janusz Rak
- Department of Pediatrics, McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Bassam Abdulkarim
- Department of Oncology, McGill University, Research Institute of the McGill University Health Centre (Research Institute-MUHC), Montreal, Canada
| |
Collapse
|
15
|
Ishi Y, Okada H, Okamoto M, Motegi H, Tanaka S, Mitsuhashi T, Yamaguchi S. Distinct TERT promoter C228T and C250T mutations in a patient with an oligodendroglioma: A case report. Neuropathology 2021; 41:236-242. [PMID: 33899270 DOI: 10.1111/neup.12727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/01/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
The majority of oligodendroglial tumors harbor mutations in the telomerase reverse transcriptase (TERT) gene (TERT) promoter and the isocitrate dehydrogenase 1/2 (IDH1/2) gene (IDH1/2), as well as 1p/19q codeletion. Generally, TERT promoter mutations, C250T and C228T, are mutually exclusive. We present a case of oligodendroglioma harboring both C250T and C228T mutations in TERT promoter. A 38-year-old man presented with grand mal seizures and underwent a resection surgery for a left frontal lobe tumor. He was pathologically diagnosed as having oligodendroglioma and was carefully observed. At 48 years of age, he underwent another resection surgery due to tumor regrowth, with the pathological diagnosis of anaplastic oligodendroglioma. Genetic analysis of the initial tumor specimen revealed IDH1 R132H mutation and both C250T and C228T mutations in TERT promoter. Using mutation-specific primers, two mutations were considered to be distributed in different alleles. In the tumor specimen obtained during the second surgery, IDH1 R132H mutation was detected to be similar to that of the initial specimen; however, only C228T mutation was detected in TERT promoter. The 1p/19q codeletion was detected in both the initial and recurrent tumor specimens. According to the sequencing data from the two tumor specimens, although TERT promoter mutation has been considered to be an early genetic event in the tumorigenesis of oligodendroglial tumors, it is likely that the C250T and C228T mutations in TERT promoter are subclonally distributed in the same tumor specimen of the present case.
Collapse
Affiliation(s)
- Yukitomo Ishi
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Hiromi Okada
- Department of Cancer Pathology, Hokkaido University School of Medicine, Sapporo, Japan.,Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Michinari Okamoto
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Exploring genetic alterations in circulating tumor DNA from cerebrospinal fluid of pediatric medulloblastoma. Sci Rep 2021; 11:5638. [PMID: 33707557 PMCID: PMC7952732 DOI: 10.1038/s41598-021-85178-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Medulloblastoma (MB) is the most common type of brain malignancy in children. Molecular profiling has become an important component to select patients for therapeutic approaches, allowing for personalized therapy. In this study, we successfully identified detectable levels of tumor-derived cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) samples of patients with MB. Furthermore, cfDNA from CSF can interrogate for tumor-associated molecular clues. MB-associated alterations from CSF, tumor, and post-chemotherapy plasma were compared by deep sequencing on next-generation sequencing platform. Shared alterations exist between CSF and matched tumor tissues. More alternations were detected in circulating tumor DNA from CSF than those in genomic DNA from primary tumor. It was feasible to detect MB-associated mutations in plasma of patients treated with chemotherapy. Collectively, CSF supernatant can be used to monitor genomic alterations, as a superior technique as long as tumor-derived cfDNA can be isolated from CSF successfully.
Collapse
|
17
|
Miyake Y, Fujii K, Nakamaura T, Ikegaya N, Matsushita Y, Gobayashi Y, Iwashita H, Udaka N, Kumagai J, Murata H, Takemoto Y, Yamanaka S, Ichimura K, Tateishi K, Yamamoto T. IDH-Mutant Astrocytoma With Chromosome 19q13 Deletion Manifesting as an Oligodendroglioma-Like Morphology. J Neuropathol Exp Neurol 2021; 80:247-253. [PMID: 33432322 DOI: 10.1093/jnen/nlaa161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Partial deletions in chromosomes 1p and 19q are found in a subset of astrocytic tumors; however, it remains unclear how these alterations affect their histological features and prognosis. Herein, we present 3 cases of isocitrate dehydrogenase (IDH)-mutant astrocytoma with chromosome 19q13 deletion. In the first case, the primary tumor harbored an IDH1 mutation with chromosome 1p/19q partial deletions, which covered 19q13 and exhibited a durable initial response to radiotherapy and temozolomide (TMZ) treatment. However, the tumor lost the chromosome 1p/19q partial deletions at recurrence and became resistant to TMZ. Histologically, an oligodendroglioma-like feature was found in the primary tumor but not in the recurrent tumor. Capicua transcriptional repressor (CIC), located on 19q13, was less expressed in the primary tumor but was highly expressed in the recurrent tumor. Similar histological findings were observed in 2 other astrocytic tumors with IDH1 or IDH2 mutations. These tumors also had chromosome 19q13 deletion, including the CIC gene, weakly expressed CIC, and oligodendroglioma-like morphology. These tumors recurred at 6 and 32 months, respectively. These findings suggest that IDH-mutant astrocytoma with chromosome 19q13 partial deletion, including the CIC gene, may induce an oligodendroglioma-like phenotype, but the clinical prognosis may not be similar to that of genetically defined oligodendroglioma.
Collapse
Affiliation(s)
- Yohei Miyake
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Keita Fujii
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Taishi Nakamaura
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naoki Ikegaya
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuko Matsushita
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Jiro Kumagai
- Department of Pathology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Hidetoshi Murata
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasunori Takemoto
- Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kensuke Tateishi
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tetsuya Yamamoto
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
18
|
Geben LC, Mobley BC, Brockman AA, Pastakia D, Naftel R, Ihrie RA, Esbenshade AJ. Sustained response to erlotinib and rapamycin in a patient with pediatric anaplastic oligodendroglioma. Pediatr Blood Cancer 2021; 68:e28750. [PMID: 33001573 PMCID: PMC9153653 DOI: 10.1002/pbc.28750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
One goal of precision medicine is to identify mutations within individual tumors to design targeted treatment approaches. This report details the use of genomic testing to select a targeted therapy regimen of erlotinib and rapamycin for a pediatric anaplastic oligodendroglioma refractory to standard treatment, achieving a 33-month sustained response. Immunohistochemical analysis of total and phosphorylated protein isoforms showed abnormal signaling consistent with detected mutations, while revealing heterogeneity in per-cell activation of signaling pathways in multiple subpopulations of tumor cells throughout the course of disease. This case highlights molecular features that may be relevant to designing future targeted treatments.
Collapse
Affiliation(s)
- Laura C. Geben
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Programin Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bret C. Mobley
- Departments of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Asa A. Brockman
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Devang Pastakia
- Monroe Carell Jr. Children’s Hospital at Vanderbilt, Division of Pediatric Hematology-Oncology, Nashville, Tennessee,Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Rob Naftel
- Monroe Carell Jr. Children’s Hospital at Vanderbilt, Division of Pediatric Hematology-Oncology, Nashville, Tennessee,Departments of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Rebecca A. Ihrie
- Departments of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Ingram Cancer Center, Nashville, Tennessee,Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Adam J. Esbenshade
- Monroe Carell Jr. Children’s Hospital at Vanderbilt, Division of Pediatric Hematology-Oncology, Nashville, Tennessee,Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee,Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
19
|
Ono T, Reinhardt A, Takahashi M, Nanjo H, Kamataki A, von Deimling A, Shimizu H. Comparative molecular analysis of primary and recurrent oligodendroglioma that acquired imbalanced 1p/19q codeletion and TP53 mutation: a case report. Acta Neurochir (Wien) 2020; 162:3019-3024. [PMID: 32785787 DOI: 10.1007/s00701-020-04514-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Oligodendroglioma is defined by IDH mutation and 1p/19q codeletion. Normal TP53 status is also its molecular feature. We report a case of oligodendroglioma that acquired imbalanced 1p/19q codeletion and TP53 mutation at recurrence after temozolomide therapy. The primary and recurrent tumors shared IDH1 and TERT promoter mutations. Although 1p/19q was codeleted in the primary tumor, it was imbalanced in the recurrent tumor harboring TP53 mutation. The copy-neutral loss of heterozygosity might have imbalanced the 1p/19q codeletion, while temozolomide therapy possibly caused the TP53 mutation. Such phenomena, although rare, should be noted during the clinical treatment of oligodendrogliomas.
Collapse
|
20
|
Arita H, Matsushita Y, Machida R, Yamasaki K, Hata N, Ohno M, Yamaguchi S, Sasayama T, Tanaka S, Higuchi F, Iuchi T, Saito K, Kanamori M, Matsuda KI, Miyake Y, Tamura K, Tamai S, Nakamura T, Uda T, Okita Y, Fukai J, Sakamoto D, Hattori Y, Pareira ES, Hatae R, Ishi Y, Miyakita Y, Tanaka K, Takayanagi S, Otani R, Sakaida T, Kobayashi K, Saito R, Kurozumi K, Shofuda T, Nonaka M, Suzuki H, Shibuya M, Komori T, Sasaki H, Mizoguchi M, Kishima H, Nakada M, Sonoda Y, Tominaga T, Nagane M, Nishikawa R, Kanemura Y, Kuchiba A, Narita Y, Ichimura K. TERT promoter mutation confers favorable prognosis regardless of 1p/19q status in adult diffuse gliomas with IDH1/2 mutations. Acta Neuropathol Commun 2020; 8:201. [PMID: 33228806 PMCID: PMC7685625 DOI: 10.1186/s40478-020-01078-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
TERT promoter mutations are commonly associated with 1p/19q codeletion in IDH-mutated gliomas. However, whether these mutations have an impact on patient survival independent of 1p/19q codeletion is unknown. In this study, we investigated the impact of TERT promoter mutations on survival in IDH-mutated glioma cases. Detailed clinical information and molecular status data were collected for a cohort of 560 adult patients with IDH-mutated gliomas. Among these patients, 279 had both TERT promoter mutation and 1p/19q codeletion, while 30 had either TERT promoter mutation (n = 24) or 1p/19q codeletion (n = 6) alone. A univariable Cox proportional hazard analysis for survival using clinical and genetic factors indicated that a Karnofsky performance status score (KPS) of 90 or 100, WHO grade II or III, TERT promoter mutation, 1p/19q codeletion, radiation therapy, and extent of resection (90-100%) were associated with favorable prognosis (p < 0.05). A multivariable Cox regression model revealed that TERT promoter mutation had a significantly favorable prognostic impact (hazard ratio = 0.421, p = 0.049), while 1p/19q codeletion did not have a significant impact (hazard ratio = 0.648, p = 0.349). Analyses incorporating patient clinical and genetic information were further conducted to identify subgroups showing the favorable prognostic impact of TERT promoter mutation. Among the grade II-III glioma patients with a KPS score of 90 or 100, those with IDH-TERT co-mutation and intact 1p/19q (n = 17) showed significantly longer survival than those with IDH mutation, wild-type TERT, and intact 1p/19q (n = 185) (5-year overall survival, 94% and 77%, respectively; p = 0.032). Our results demonstrate that TERT promoter mutation predicts favorable prognosis independent of 1p/19q codeletion in IDH-mutated gliomas. Combined with its adverse effect on survival among IDH-wild glioma cases, the bivalent prognostic impact of TERT promoter mutation may help further refine the molecular diagnosis and prognostication of diffuse gliomas.
Collapse
Affiliation(s)
- Hideyuki Arita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka 565-0871 Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Ryunosuke Machida
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Kai Yamasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, 2-13-22, Miyakojima-hondori, Miyakojima-ku, Osaka-City, Osaka 534-0021 Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-City, Fukuoka 812-8582 Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo-City, Hokkaido 060-8638 Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe-City, Hyogo 650-0017 Japan
| | - Shota Tanaka
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, 880, Kitakobayashi, Mibu-City, Tochigi 321-0293 Japan
| | - Toshihiko Iuchi
- Division of Neurological Surgery, Chiba Cancer Center, 666-2 Nitonacho, Chuo-ku, Chiba-City, Chiba 260-8717 Japan
| | - Kuniaki Saito
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-City, Tokyo 181-8611 Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai-City, Miyagi 980-8574 Japan
| | - Ken-ichiro Matsuda
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, 2-2, Iida-Nishi, Yamagata-City, Yamagata 990-9585 Japan
| | - Yohei Miyake
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka-City, Saitama 350-1298 Japan
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama-City, Kanagawa 236-0004 Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Sho Tamai
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa-City, Ishikawa 920-8641 Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama-City, Kanagawa 236-0004 Japan
| | - Takehiro Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-5-7, Asahi-machi, Abeno-ku, Osaka-City, Osaka 545-8586 Japan
| | - Yoshiko Okita
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka-City, Osaka 540-0006 Japan
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka-City, Osaka 541-8567 Japan
| | - Junya Fukai
- Department of Neurological Surgery, Wakayama Medical University, 811-1, Kimiidera, Wakayama-City, Wakayama 641-0012 Japan
| | - Daisuke Sakamoto
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya-City, Hyogo 663-8501 Japan
| | - Yasuhiko Hattori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-City, Okayama 700-8558 Japan
| | - Eriel Sandika Pareira
- Department of Neurosurgery, Keio University School of Medicine, 35, Shinano-machi, Tokyo, Shinjuku-ku 160-8582 Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-City, Fukuoka 812-8582 Japan
| | - Yukitomo Ishi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo-City, Hokkaido 060-8638 Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe-City, Hyogo 650-0017 Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Ryohei Otani
- Department of Neurosurgery, Dokkyo Medical University, 880, Kitakobayashi, Mibu-City, Tochigi 321-0293 Japan
- Department of Neurosurgery, Tokyo Metropolitan Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8677 Japan
| | - Tsukasa Sakaida
- Division of Neurological Surgery, Chiba Cancer Center, 666-2 Nitonacho, Chuo-ku, Chiba-City, Chiba 260-8717 Japan
| | - Keiichi Kobayashi
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-City, Tokyo 181-8611 Japan
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai-City, Miyagi 980-8574 Japan
| | - Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-City, Okayama 700-8558 Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation Research, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14, Hoenzaka, Chuo-ku, Osaka-City, Osaka 540-0006 Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka-City, Osaka 540-0006 Japan
- Department of Neurosurgery, Kansai Medical University, 3-1, Shinmachi 2 Chome, Hirakata-City, Osaka 573-1191 Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization, Sendai Medical Center, 2-11-12, Miyagino, Miyagino-ku, Sendai-City, Miyagi 983-8520 Japan
| | - Makoto Shibuya
- Central Clinical Laboratory, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji-City, Tokyo 193-0998 Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042 Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, 35, Shinano-machi, Tokyo, Shinjuku-ku 160-8582 Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-City, Fukuoka 812-8582 Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka 565-0871 Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa-City, Ishikawa 920-8641 Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, 2-2, Iida-Nishi, Yamagata-City, Yamagata 990-9585 Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai-City, Miyagi 980-8574 Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-City, Tokyo 181-8611 Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka-City, Saitama 350-1298 Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka-City, Osaka 540-0006 Japan
- Department of Biomedical Research and Innovation Research, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14, Hoenzaka, Chuo-ku, Osaka-City, Osaka 540-0006 Japan
| | - Aya Kuchiba
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| |
Collapse
|
21
|
Is chemotherapy alone an option as initial treatment for low-grade oligodendrogliomas? Curr Opin Neurol 2020; 33:707-715. [DOI: 10.1097/wco.0000000000000866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Kitahama K, Iijima S, Sumiishi A, Hayashi A, Nagahama K, Saito K, Sasaki N, Kobayashi K, Shimizu S, Nagane M, Shibahara J. Reduced H3K27me3 levels in diffuse gliomas: association with 1p/19q codeletion and difference from H3K27me3 loss in malignant peripheral nerve sheath tumors. Brain Tumor Pathol 2020; 38:23-29. [PMID: 32989606 DOI: 10.1007/s10014-020-00382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
Trimethylation of histone H3 at lysine 27 (H3K27me3) acts as a transcriptional repressor of target genes. Recent immunohistochemical studies have reported a loss of H3K27me3 modification in diffuse (especially 1p/19q-codeleted) gliomas. However, we did not observe H3K27me3 loss in diffuse gliomas using routine immunostaining conditions for the detection of H3K27me3 loss in malignant peripheral nerve sheath tumors (MPNSTs). Therefore, we conducted immunohistochemical analysis of surgically resected specimens to understand the differences in the H3K27me3 status in MPNSTs and diffuse gliomas and evaluate the diagnostic utility of H3K27me3 immunohistochemistry. Staining with a standard 1:200 dilution of the C36B11 antibody showed a complete loss of H3K27me3 in 5 out of 11 MPNSTs, whereas most diffuse gliomas (149/151, 98.7%) showed diffuse immunoreactivity. At a 1:2000 antibody dilution, 12.6% (19/151) of the diffuse gliomas showed H3K27me3 loss, which was significantly associated with 1p/19q codeletion (P < 0.001). H3K27me3 loss predicted 1p/19q codeletion in IDH-mutant gliomas with lower sensitivity (56.2%) and higher specificity (100%) than ATRX retention or p53 negative result. In conclusion, reduction in H3K27me3 levels was associated with 1p/19q codeletion in diffuse gliomas; however, the extent of reduction differed from that in MPNSTs, and the results depended on the immunostaining conditions.
Collapse
Affiliation(s)
- Keiichiro Kitahama
- Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Shohei Iijima
- Department of Neurosurgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Ayumi Sumiishi
- Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Akimasa Hayashi
- Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Kuniaki Saito
- Department of Neurosurgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Nobuyoshi Sasaki
- Department of Neurosurgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Keiichi Kobayashi
- Department of Neurosurgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Saki Shimizu
- Department of Neurosurgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
23
|
Zaccagna F, Riemer F, Priest AN, McLean MA, Allinson K, Grist JT, Dragos C, Matys T, Gillard JH, Watts C, Price SJ, Graves MJ, Gallagher FA. Non-invasive assessment of glioma microstructure using VERDICT MRI: correlation with histology. Eur Radiol 2019; 29:5559-5566. [PMID: 30888488 PMCID: PMC6719328 DOI: 10.1007/s00330-019-6011-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE This prospective study evaluated the use of vascular, extracellular and restricted diffusion for cytometry in tumours (VERDICT) MRI to investigate the tissue microstructure in glioma. VERDICT-derived parameters were correlated with both histological features and tumour subtype and were also used to explore the peritumoural region. METHODS Fourteen consecutive treatment-naïve patients (43.5 years ± 15.1 years, six males, eight females) with suspected glioma underwent diffusion-weighted imaging including VERDICT modelling. Tumour cell radius and intracellular and combined extracellular/vascular volumes were estimated using a framework based on linearisation and convex optimisation. An experienced neuroradiologist outlined the peritumoural oedema, enhancing tumour and necrosis on T2-weighted imaging and contrast-enhanced T1-weighted imaging. The same regions of interest were applied to the co-registered VERDICT maps to calculate the microstructure parameters. Pathology sections were analysed with semi-automated software to measure cellularity and cell size. RESULTS VERDICT parameters were successfully calculated in all patients. The imaging-derived results showed a larger intracellular volume fraction in high-grade glioma compared to low-grade glioma (0.13 ± 0.07 vs. 0.08 ± 0.02, respectively; p = 0.05) and a trend towards a smaller extracellular/vascular volume fraction (0.88 ± 0.07 vs. 0.92 ± 0.04, respectively; p = 0.10). The conventional apparent diffusion coefficient was higher in low-grade gliomas compared to high-grade gliomas, but this difference was not statistically significant (1.22 ± 0.13 × 10-3 mm2/s vs. 0.98 ± 0.38 × 10-3 mm2/s, respectively; p = 0.18). CONCLUSION This feasibility study demonstrated that VERDICT MRI can be used to explore the tissue microstructure of glioma using an abbreviated protocol. The VERDICT parameters of tissue structure correlated with those derived on histology. The method shows promise as a potential test for diagnostic stratification and treatment response monitoring in the future. KEY POINTS • VERDICT MRI is an advanced diffusion technique which has been correlated with histopathological findings obtained at surgery from patients with glioma in this study. • The intracellular volume fraction measured with VERDICT was larger in high-grade tumours compared to that in low-grade tumours. • The results were complementary to measurements from conventional diffusion-weighted imaging, and the technique could be performed in a clinically feasible timescale.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Frank Riemer
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Andrew N Priest
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James T Grist
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Carmen Dragos
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jonathan H Gillard
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, Birmingham Brain Cancer Program, University of Birmingham, Birmingham, UK
| | - Stephen J Price
- Neurosurgery Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ferdia A Gallagher
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
24
|
Simón-Carrasco L, Jiménez G, Barbacid M, Drosten M. The Capicua tumor suppressor: a gatekeeper of Ras signaling in development and cancer. Cell Cycle 2019; 17:702-711. [PMID: 29578365 DOI: 10.1080/15384101.2018.1450029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The transcriptional repressor Capicua (CIC) has emerged as an important rheostat of cell growth regulated by RAS/MAPK signaling. Cic was originally discovered in Drosophila, where it was shown to be inactivated by MAPK signaling downstream of the RTKs Torso and EGFR, which results in signal-dependent responses that are required for normal cell fate specification, proliferation and survival of developing and adult tissues. CIC is highly conserved in mammals, where it is also negatively regulated by MAPK signaling. Here, we review the roles of CIC during mammalian development, tissue homeostasis, tumor formation and therapy resistance. Available data indicate that CIC is involved in multiple biological processes, including lung development, liver homeostasis, autoimmunity and neurobehavioral processes. Moreover, CIC has been shown to be involved in tumor development as a tumor suppressor, both in human as well as in mouse models. Finally, several lines of evidence implicate CIC as a determinant of sensitivity to EGFR and MAPK pathway inhibitors, suggesting that CIC may play a broader role in human cancer than originally anticipated.
Collapse
Affiliation(s)
- Lucía Simón-Carrasco
- a Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Melchor Fernández Almagro 3, Madrid , Spain
| | - Gerardo Jiménez
- b Institut de Biologia Molecular de Barcelona-CSIC , Parc Científic de Barcelona, Barcelona , Spain.,c ICREA , Pg. Lluís Companys 23, Barcelona , Spain
| | - Mariano Barbacid
- a Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Melchor Fernández Almagro 3, Madrid , Spain
| | - Matthias Drosten
- a Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Melchor Fernández Almagro 3, Madrid , Spain
| |
Collapse
|
25
|
Kim JH, Jang WY, Jung TY, Jung S, Kim KK, Kim HS, Kim EH, Lee MC, Moon KS, Lee KH. Recurrent Glioma With Lineage Conversion From Oligodendroglioma to Astrocytoma in Two Cases. Front Oncol 2019; 9:828. [PMID: 31508376 PMCID: PMC6719522 DOI: 10.3389/fonc.2019.00828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022] Open
Abstract
Following the introduction of the molecular classification of gliomas by the WHO in 2016, molecularly-proven lineage conversion during glioma recurrence has never been reported. The reported two cases were initially diagnosed as oligodendroglioma with 1p/19q-codeletion and mutation of isocitrate dehydrogenase 1 (IDH1)-R132H. The recurrent tumors showed loss of alpha-thalassemia/mental retardation X-linked (ATRX) expression, strong P53 positivity, and 1p/19q-nondeletion. Next generation sequencing analysis performed on the first case confirmed the transition of molecular traits from oligodendroglioma to astrocytoma. An IDH mutation of R132H was preserved in the episodes of recurrence, but ATRX and TP53 mutations were newly acquired and TERT promoter mutation C228T was lost at the most recent recurrence. The issue in question for the presented cases is whether the original tumors were pure oligodendrogliomas that then transdifferentiated into astrocytomas, or whether the original tumor was an oligoastrocytoma having oligodendroglioma cells that outnumbered the astrocytoma cells and where the astrocytoma cells becoming more dominant over the episodes of recurrence. With the recognition of the possibility of lineage conversion, our study suggests that molecular examination should be performed to adjust therapeutic strategies in recurrent gliomas. Indeed, our observation of lineage conversion in glioma recurrence calls into question the current distinction drawn between oligodendroglioma, astrocytoma and oligoastrocytoma, rather than simply bidding “farewell to oligoastrocytoma.”
Collapse
Affiliation(s)
- Jo-Heon Kim
- Department of Pathology, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun, South Korea
| | - Woo-Youl Jang
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun, South Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun, South Korea
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun, South Korea
| | - Kyung-Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun-Hee Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun, South Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Hwasun, South Korea
| |
Collapse
|
26
|
Nejo T, Matsushita H, Karasaki T, Nomura M, Saito K, Tanaka S, Takayanagi S, Hana T, Takahashi S, Kitagawa Y, Koike T, Kobayashi Y, Nagae G, Yamamoto S, Ueda H, Tatsuno K, Narita Y, Nagane M, Ueki K, Nishikawa R, Aburatani H, Mukasa A, Saito N, Kakimi K. Reduced Neoantigen Expression Revealed by Longitudinal Multiomics as a Possible Immune Evasion Mechanism in Glioma. Cancer Immunol Res 2019; 7:1148-1161. [PMID: 31088845 DOI: 10.1158/2326-6066.cir-18-0599] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Immune-based therapies have shown limited efficacy in glioma thus far. This might be at least in part due to insufficient numbers of neoantigens, thought to be targets of immune attack. In addition, we hypothesized that dynamic genetic and epigenetic tumor evolution in gliomas might also affect the mutation/neoantigen landscape and contribute to treatment resistance through immune evasion. Here, we investigated changes in the neoantigen landscape and immunologic features during glioma progression using exome and RNA-seq of paired primary and recurrent tumor samples obtained from 25 WHO grade II-IV glioma patients (glioblastoma, IDH-wild-type, n = 8; grade II-III astrocytoma, IDH-mutant, n = 9; and grade II-III oligodendroglioma, IDH-mutant, 1p/19q-codeleted, n = 8). The number of missense mutations, predicted neoantigens, or expressed neoantigens was not significantly different between primary and recurrent tumors. However, we found that in individual patients the ratio of expressed neoantigens to predicted neoantigens, designated the "neoantigen expression ratio," decreased significantly at recurrence (P = 0.003). This phenomenon was particularly pronounced for "high-affinity," "clonal," and "passenger gene-derived" neoantigens. Gene expression and IHC analyses suggested that the decreased neoantigen expression ratio was associated with intact antigen presentation machinery, increased tumor-infiltrating immune cells, and ongoing immune responses. Our findings imply that decreased expression of highly immunogenic neoantigens, possibly due to persistent immune selection pressure, might be one of the immune evasion mechanisms along with tumor clonal evolution in some gliomas.
Collapse
Affiliation(s)
- Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.,Cancer Immunology Data Multi-level Integration Unit, Medical Science Innovation Hub Program, RIKEN, Tokyo, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.,Cancer Immunology Data Multi-level Integration Unit, Medical Science Innovation Hub Program, RIKEN, Tokyo, Japan
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Kuniaki Saito
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Kitagawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Hiroki Ueda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan.
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan. .,Cancer Immunology Data Multi-level Integration Unit, Medical Science Innovation Hub Program, RIKEN, Tokyo, Japan
| |
Collapse
|
27
|
Tateishi K, Nakamura T, Juratli TA, Williams EA, Matsushita Y, Miyake S, Nishi M, Miller JJ, Tummala SS, Fink AL, Lelic N, Koerner MVA, Miyake Y, Sasame J, Fujimoto K, Tanaka T, Minamimoto R, Matsunaga S, Mukaihara S, Shuto T, Taguchi H, Udaka N, Murata H, Ryo A, Yamanaka S, Curry WT, Dias-Santagata D, Yamamoto T, Ichimura K, Batchelor TT, Chi AS, Iafrate AJ, Wakimoto H, Cahill DP. PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors. Clin Cancer Res 2019; 25:4375-4387. [PMID: 30975663 DOI: 10.1158/1078-0432.ccr-18-4144] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Oligodendroglioma has a relatively favorable prognosis, however, often undergoes malignant progression. We hypothesized that preclinical models of oligodendroglioma could facilitate identification of therapeutic targets in progressive oligodendroglioma. We established multiple oligodendroglioma xenografts to determine if the PI3K/AKT/mTOR signaling pathway drives tumor progression. EXPERIMENTAL DESIGN Two anatomically distinct tumor samples from a patient who developed progressive anaplastic oligodendroglioma (AOD) were collected for orthotopic transplantation in mice. We additionally implanted 13 tumors to investigate the relationship between PI3K/AKT/mTOR pathway alterations and oligodendroglioma xenograft formation. Pharmacologic vulnerabilities were tested in newly developed AOD models in vitro and in vivo. RESULTS A specimen from the tumor site that subsequently manifested rapid clinical progression contained a PIK3CA mutation E542K, and yielded propagating xenografts that retained the OD/AOD-defining genomic alterations (IDH1 R132H and 1p/19q codeletion) and PIK3CA E542K, and displayed characteristic sensitivity to alkylating chemotherapeutic agents. In contrast, a xenograft did not engraft from the region that was clinically stable and had wild-type PIK3CA. In our panel of OD/AOD xenografts, the presence of activating mutations in the PI3K/AKT/mTOR pathway was consistently associated with xenograft establishment (6/6, 100%). OD/AOD that failed to generate xenografts did not have activating PI3K/AKT/mTOR alterations (0/9, P < 0.0001). Importantly, mutant PIK3CA oligodendroglioma xenografts were vulnerable to PI3K/AKT/mTOR pathway inhibitors in vitro and in vivo-evidence that mutant PIK3CA is a tumorigenic driver in oligodendroglioma. CONCLUSIONS Activation of the PI3K/AKT/mTOR pathway is an oncogenic driver and is associated with xenograft formation in oligodendrogliomas. These findings have implications for therapeutic targeting of PI3K/AKT/mTOR pathway activation in progressive oligodendrogliomas.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan.,Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erik A Williams
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Shigeta Miyake
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University Hospital, Yokohama, Japan
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Shilpa S Tummala
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandria L Fink
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nina Lelic
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mara V A Koerner
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yohei Miyake
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kenji Fujimoto
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Takahiro Tanaka
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryogo Minamimoto
- Department of Radiology, Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigeo Matsunaga
- Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Japan
| | - Shigeo Mukaihara
- Department of Neurosurgery, Fujisawa Municipal Hospital, Fujisawa, Japan
| | - Takashi Shuto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Japan
| | - Hiroki Taguchi
- Department of Neurosurgery, Taguchi Neurosurgery Clinic, Yokohama, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Hospital, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Tracy T Batchelor
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Andrew S Chi
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York
| | - A John Iafrate
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Harat M, Blok M, Harat A, Soszyńska K. The impact of adjuvant radiotherapy on molecular prognostic markers in gliomas. Onco Targets Ther 2019; 12:2215-2224. [PMID: 30988626 PMCID: PMC6441459 DOI: 10.2147/ott.s200818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Changes in MGMT promoter methylation, IDH1 and IDH2 mutation, and 1p/19q co-deletion status in gliomas between first and subsequent resections and their associated clinical factors are poorly described. In this study, we assayed these biomarkers in the clinical setting. Patients and methods We used multiplex ligation-dependent probe amplification to measure MGMT promoter methylation, IDH mutation status, and 1p/19q co-deletion in 45 paired tumor samples from patients undergoing resection and subsequent re-resections for gliomas. Results Molecular changes were present in 20 patients (44%). At least one molecular characteristic changed over time in 89% of patients with primary grade III tumors. Gliomas with IDH wild-type and/or non-co-deleted were stable, but IDH1/2 mutation and/or co-deletion were sometimes lost at the time of recurrence. In a multivariate analysis, adjuvant radiotherapy alone was independently associated (P=0.02) with changes in molecular profile. Conclusion Molecular biomarkers change in gliomas during the course of the disease, most often MGMT methylation status. These changes in genetic profiles are related to adjuvant treatment with radiotherapy alone, which might be important for individualized treatment planning over the disease course.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland, .,Unit of Radiosurgery and Radiotherapy of CNS, Department of Radiotherapy, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland,
| | - Maciej Blok
- Unit of Radiosurgery and Radiotherapy of CNS, Department of Radiotherapy, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland,
| | - Aleksandra Harat
- Department of Public Health, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Krystyna Soszyńska
- Department of Pathology, Laboratory of Clinical Genetics and Molecular Pathology, 10th Military Hospital, Bydgoszcz, Poland
| |
Collapse
|
29
|
DNA demethylation is associated with malignant progression of lower-grade gliomas. Sci Rep 2019; 9:1903. [PMID: 30760837 PMCID: PMC6374451 DOI: 10.1038/s41598-019-38510-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022] Open
Abstract
To elucidate the mechanisms of malignant progression of lower-grade glioma, molecular profiling using methylation array, whole-exome sequencing, and RNA sequencing was performed for 122, 36 and 31 gliomas, respectively. This cohort included 24 matched pairs of initial lower-grade gliomas and recurrent tumors, most of which showed malignant progression. Nearly half of IDH-mutant glioblastomas that had progressed from lower-grade gliomas exhibited characteristic partial DNA demethylation in previously methylated genomic regions of their corresponding initial tumors, which had the glioma CpG island methylator phenotype (G-CIMP). In these glioblastomas, cell cycle-related genes, RB and PI3K-AKT pathway genes were frequently altered. Notably, late-replicating domain was significantly enriched in the demethylated regions that were mostly located in non-regulatory regions, suggesting that the loss of DNA methylation during malignant transformation may involve mainly passive demethylation due to a delay in maintenance of methylation during accelerated cell division. Nonetheless, a limited number of genes including IGF2BP3, which potentially drives cell proliferation, were presumed to be upregulated due to demethylation of their promoter. Our data indicated that demethylation of the G-CIMP profile found in a subset of recurrent gliomas reflects accelerated cell divisions accompanied by malignant transformation. Oncogenic genes activated by such epigenetic change represent potential therapeutic targets.
Collapse
|
30
|
Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 2019; 565:654-658. [PMID: 30675060 PMCID: PMC6457907 DOI: 10.1038/s41586-019-0882-3] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
Diffuse gliomas are the most common malignant brain tumours in adults and include glioblastomas and World Health Organization (WHO) grade II and grade III tumours (sometimes referred to as lower-grade gliomas). Genetic tumour profiling is used to classify disease and guide therapy1,2, but involves brain surgery for tissue collection; repeated tumour biopsies may be necessary for accurate genotyping over the course of the disease3-10. While the detection of circulating tumour DNA (ctDNA) in the blood of patients with primary brain tumours remains challenging11,12, sequencing of ctDNA from the cerebrospinal fluid (CSF) may provide an alternative way to genotype gliomas with lower morbidity and cost13,14. We therefore evaluated the representation of the glioma genome in CSF from 85 patients with gliomas who underwent a lumbar puncture because they showed neurological signs or symptoms. Here we show that tumour-derived DNA was detected in CSF from 42 out of 85 patients (49.4%) and was associated with disease burden and adverse outcome. The genomic landscape of glioma in the CSF included a broad spectrum of genetic alterations and closely resembled the genomes of tumour biopsies. Alterations that occur early during tumorigenesis, such as co-deletion of chromosome arms 1p and 19q (1p/19q codeletion) and mutations in the metabolic genes isocitrate dehydrogenase 1 (IDH1) or IDH21,2, were shared in all matched ctDNA-positive CSF-tumour pairs, whereas growth factor receptor signalling pathways showed considerable evolution. The ability to monitor the evolution of the glioma genome through a minimally invasive technique could advance the clinical development and use of genotype-directed therapies for glioma, one of the most aggressive human cancers.
Collapse
|
31
|
Debaize L, Troadec MB. The master regulator FUBP1: its emerging role in normal cell function and malignant development. Cell Mol Life Sci 2019; 76:259-281. [PMID: 30343319 PMCID: PMC11105487 DOI: 10.1007/s00018-018-2933-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
The human Far Upstream Element (FUSE) Binding Protein 1 (FUBP1) is a multifunctional DNA- and RNA-binding protein involved in diverse cellular processes. FUBP1 is a master regulator of transcription, translation, and RNA splicing. FUBP1 has been identified as a potent pro-proliferative and anti-apoptotic factor by modulation of complex networks. FUBP1 is also described either as an oncoprotein or a tumor suppressor. Especially, FUBP1 overexpression is observed in a growing number of cancer and leads to a deregulation of targets that includes the fine-tuned MYC oncogene. Moreover, recent loss-of-function analyses of FUBP1 establish its essential functions in hematopoietic stem cell maintenance and survival. Therefore, FUBP1 appears as an emerging suspect in hematologic disorders in addition to solid tumors. The scope of the present review is to describe the advances in our understanding of the molecular basis of FUBP1 functions in normal cells and carcinogenesis. We also delineate the recent progresses in the understanding of the master role of FUBP1 in normal and pathological hematopoiesis. We conclude that FUBP1 is not only worth studying biologically but is also of clinical relevance through its pivotal role in regulating multiple cellular processes and its involvement in oncogenesis.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France.
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.
- CHRU de Brest, laboratoire de cytogénétique, F-29200, Brest, France.
| |
Collapse
|
32
|
Young JS, Prados MD, Butowski N. Using genomics to guide treatment for glioblastoma. Pharmacogenomics 2018; 19:1217-1229. [PMID: 30203716 DOI: 10.2217/pgs-2018-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma has been shown to have many different genetic mutations found both within and between tumor samples. Molecular testing and genomic sequencing has helped to classify diagnoses and clarify difficult to interpret histopathological specimens. Genomic information also plays a critical role in prognostication for patients, with IDH mutations and MGMT methylation having significant impact of the response to chemotherapy and overall survival of patients. Unfortunately, personalized medicine and targeted therapy against specific mutations have not been shown to improve patient outcomes. As technology continues to improve, exome and RNA sequencing will play a role in the design of clinical trials, classification of patient subgroups and identification of rare mutations that can be targeted by small-molecule inhibitors and biologic agents.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Michael D Prados
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Otani R, Uzuka T, Higuchi F, Matsuda H, Nomura M, Tanaka S, Mukasa A, Ichimura K, Kim P, Ueki K. IDH-mutated astrocytomas with 19q-loss constitute a subgroup that confers better prognosis. Cancer Sci 2018; 109:2327-2335. [PMID: 29752851 PMCID: PMC6029820 DOI: 10.1111/cas.13635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/14/2022] Open
Abstract
IDH‐mutant gliomas are classified into astrocytic or oligodendroglial tumors by 1p/19q status in the WHO 2016 classification, with the latter presenting with characteristic morphology and better prognosis in general. However, the morphological and genetic features within each category are varied, and there might be distinguishable subtypes. We analyzed 170 WHO grade II‐IV gliomas resected in our institution. 1p/19q status was analyzed by microsatellite analysis, and genetic mutations were analyzed by next‐generation sequencing and Sanger sequencing. For validation, the Brain Lower Grade Glioma dataset of The Cancer Genome Atlas was analyzed. Of the 42 grade III IDH‐mutated gliomas, 12 were 1p‐intact/19q‐intact (anaplastic astrocytomas [AA]), 7 were 1p‐intact/19q‐loss (AA), and 23 showed 1p/19q‐codeletion (anaplastic oligodendrogliomas). Of the 88 IDH‐wild type glioblastomas (GBMs), 14 showed 1p‐intact/19q‐loss status. All of the seven 1p‐intact/19q‐loss AAs harbored TP53 mutation, but no TERT promotor mutation. All 19q‐loss AAs had regions presenting oligodendroglioma‐like morphology, and were associated with significantly longer overall survival compared to 19q‐intact AAs (P = .001). This tendency was observed in The Cancer Genome Atlas Lower Grade Glioma dataset. In contrast, there was no difference in overall survival between the 19q‐loss GBM and 19q‐intact GBM (P = .4). In a case of 19q‐loss AA, both oligodendroglial morphology and 19q‐loss disappeared after recurrence, possibly indicating correlation between 19q‐loss and oligodendroglial morphology. We showed that there was a subgroup, although small, of IDH‐mutated astrocytomas harboring 19q‐loss that present oligodendroglial morphology, and also were associated with significantly better prognosis compared to other 19q‐intact astrocytomas.
Collapse
Affiliation(s)
- Ryohei Otani
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Japan
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Japan
| | - Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Japan
| | - Hadzki Matsuda
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Japan
| | - Masashi Nomura
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Phyo Kim
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
34
|
Barthel FP, Wesseling P, Verhaak RGW. Reconstructing the molecular life history of gliomas. Acta Neuropathol 2018; 135:649-670. [PMID: 29616301 PMCID: PMC5904231 DOI: 10.1007/s00401-018-1842-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
At the time of their clinical manifestation, the heterogeneous group of adult and pediatric gliomas carries a wide range of diverse somatic genomic alterations, ranging from somatic single-nucleotide variants to structural chromosomal rearrangements. Somatic abnormalities may have functional consequences, such as a decrease, increase or change in mRNA transcripts, and cells pay a penalty for maintaining them. These abnormalities, therefore, must provide cells with a competitive advantage to become engrained into the glioma genome. Here, we propose a model of gliomagenesis consisting of the following five consecutive phases that glioma cells have traversed prior to clinical manifestation: (I) initial growth; (II) oncogene-induced senescence; (III) stressed growth; (IV) replicative senescence/crisis; (V) immortal growth. We have integrated the findings from a large number of studies in biology and (neuro)oncology and relate somatic alterations and other results discussed in these papers to each of these five phases. Understanding the story that each glioma tells at presentation may ultimately facilitate the design of novel, more effective therapeutic approaches.
Collapse
Affiliation(s)
- Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA.
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
35
|
Kuga D, Hata N, Akagi Y, Amemiya T, Sangatsuda Y, Hatae R, Yoshimoto K, Mizoguchi M, Iihara K. The Effectiveness of Salvage Treatments for Recurrent Lesions of Oligodendrogliomas Previously Treated with Upfront Chemotherapy. World Neurosurg 2018; 114:e735-e742. [PMID: 29551724 DOI: 10.1016/j.wneu.2018.03.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND We previously reported a favorable outcome in a case series of patients with oligodendrogliomas treated with upfront chemotherapy; however, their progression-free survival (PFS) was relatively short considering their long-term overall survival (OS). This suggests that salvage treatments after progression were effective. However, the clinical impact of salvage treatments on outcomes of patients with recurrent oligodendrogliomas has not been precisely investigated. METHODS Our case series included 28 patients with newly diagnosed isocitrate dehydrogenase-mutant and 1p/19q-codeleted oligodendroglial tumors treated with upfront procarbazine, nimustine, and vincristine. Clinical outcomes and patterns of recurrence were reviewed retrospectively. RESULTS The median follow-up period of enrolled patients was 90.2 months. Disease progression occurred in 15 patients (53.6%), whereas the cancer appeared as local relapse alone in 14 (93.3%) patients. Salvage treatments were performed for all local relapses; thereafter, most of the subsequent progressions also appeared as resectable local relapses. The 5-year PFS and OS rates from the first progression were 30.3% and 92.9%, respectively. These relatively short PFS and favorable OS indicated the effectiveness of salvage treatment even after multiple progression. Thus far, 9 (60%) of 15 patients are deterioration-free with locally controlled lesions or complete remission; however, clinical deterioration was observed in 6 patients, and 4 of them experienced dissemination. CONCLUSIONS In isocitrate dehydrogenase-mutant and 1p/19q-codeleted oligodendrogliomas, most of the tumors that demonstrated early progression appeared as local, nonlethal lesions, which have been well-controlled by salvage treatments. A precise diagnosis of oligodendrogliomas using molecular parameters is crucial to receive the best benefit from salvage treatment.
Collapse
Affiliation(s)
- Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yojiro Akagi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Amemiya
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Nomura M, Mukasa A, Nagae G, Yamamoto S, Tatsuno K, Ueda H, Fukuda S, Umeda T, Suzuki T, Otani R, Kobayashi K, Maruyama T, Tanaka S, Takayanagi S, Nejo T, Takahashi S, Ichimura K, Nakamura T, Muragaki Y, Narita Y, Nagane M, Ueki K, Nishikawa R, Shibahara J, Aburatani H, Saito N. Distinct molecular profile of diffuse cerebellar gliomas. Acta Neuropathol 2017; 134:941-956. [PMID: 28852847 PMCID: PMC5663812 DOI: 10.1007/s00401-017-1771-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Recent studies have demonstrated that tumor-driving alterations are often different among gliomas that originated from different brain regions and have underscored the importance of analyzing molecular characteristics of gliomas stratified by brain region. Therefore, to elucidate molecular characteristics of diffuse cerebellar gliomas (DCGs), 27 adult, mostly glioblastoma cases were analyzed. Comprehensive analysis using whole-exome sequencing, RNA sequencing, and Infinium methylation array (n = 17) demonstrated their distinct molecular profile compared to gliomas in other brain regions. Frequent mutations in chromatin-modifier genes were identified including, noticeably, a truncating mutation in SETD2 (n = 4), which resulted in loss of H3K36 trimethylation and was mutually exclusive with H3F3A K27M mutation (n = 3), suggesting that epigenetic dysregulation may lead to DCG tumorigenesis. Alterations that cause loss of p53 function including TP53 mutation (n = 9), PPM1D mutation (n = 2), and a novel type of PPM1D fusion (n = 1), were also frequent. On the other hand, mutations and copy number changes commonly observed in cerebral gliomas were infrequent. DNA methylation profile analysis demonstrated that all DCGs except for those with H3F3A mutations were categorized in the "RTK I (PDGFRA)" group, and those DCGs had a gene expression signature that was highly associated with PDGFRA. Furthermore, compared with the data of 315 gliomas derived from different brain regions, promoter methylation of transcription factors genes associated with glial development showed a characteristic pattern presumably reflecting their tumor origin. Notably, SOX10, a key transcription factor associated with oligodendroglial differentiation and PDGFRA regulation, was up-regulated in both DCG and H3 K27M-mutant diffuse midline glioma, suggesting their developmental and biological commonality. In contrast, SOX10 was silenced by promoter methylation in most cerebral gliomas. These findings may suggest potential tailored targeted therapy for gliomas according to their brain region, in addition to providing molecular clues to identify the region-related cellular origin of DCGs.
Collapse
Affiliation(s)
- Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kenji Tatsuno
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiroki Ueda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shiro Fukuda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takayoshi Umeda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tomonari Suzuki
- Department of Neuro-Oncology/Neurosurgery, Saitama International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan
| | - Ryohei Otani
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Keiichi Kobayashi
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
37
|
Tanaka M, Yoshimoto T, Nakamura T. A double-edged sword: The world according to Capicua in cancer. Cancer Sci 2017; 108:2319-2325. [PMID: 28985030 PMCID: PMC5715262 DOI: 10.1111/cas.13413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
CIC/Capicua is an HMG‐box transcription factor that is well conserved during evolution. CIC recognizes the T(G/C)AATG(A/G)A sequence and represses its target genes, such as PEA3 family genes. The receptor tyrosine kinase/RAS/MAPK signals downregulate CIC and relieves CIC's target genes from the transrepressional activity; CIC thus acts as an important downstream molecule of the pathway and as a tumor suppressor. CIC loss‐of‐function mutations are frequently observed in several human neoplasms such as oligodendroglioma, and lung and gastric carcinoma. CIC is also involved in chromosomal translocation‐associated gene fusions in highly aggressive small round cell sarcoma that is biologically and clinically distinct from Ewing sarcoma. In these mutations, PEA3 family genes and other important target genes are upregulated, inducing malignant phenotypes. Downregulation of CIC abrogates the effect of MAPK inhibitors, suggesting its potential role as an important modifier of molecular target therapies for cancer. These data reveal the importance of CIC as a key molecule in signal transduction, carcinogenesis, and developing novel therapies.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toyoki Yoshimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
38
|
Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J Mol Med (Berl) 2017; 95:1167-1178. [PMID: 28871446 DOI: 10.1007/s00109-017-1587-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 08/20/2017] [Indexed: 10/18/2022]
Abstract
Tumor heterogeneity has been identified at various -omic levels. The tumor genome, transcriptome, proteome, and phenome can vary widely across cells in patient tumors and are influenced by tumor cell interactions with heterogeneous physical conditions and cellular components of the tumor microenvironment. Here, we explore the concept that while variation exists at multiple -omic levels, changes at each of these levels converge on the same pathways and lead to convergent phenotypes in tumors that can provide common drug targets. These phenotypes include cellular growth and proliferation, sustained oncogenic signaling, and immune avoidance, among others. Tumor heterogeneity complicates treatment of patient cancers as it leads to varied response to therapies. Identification of convergent cellular phenotypes arising in patient cancers and targeted therapies that reverse them has the potential to transform the way clinicians treat these cancers and to improve patient outcome.
Collapse
|
39
|
Simón-Carrasco L, Graña O, Salmón M, Jacob HKC, Gutierrez A, Jiménez G, Drosten M, Barbacid M. Inactivation of Capicua in adult mice causes T-cell lymphoblastic lymphoma. Genes Dev 2017; 31:1456-1468. [PMID: 28827401 PMCID: PMC5588927 DOI: 10.1101/gad.300244.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
Abstract
CIC (also known as Capicua) is a transcriptional repressor negatively regulated by RAS/MAPK signaling. Here, Simón-Carrasco et al. show that Cic inactivation in mice induces T-ALL by a mechanism involving derepression of its well-known target, Etv4. Cic inactivation renders T-ALL insensitive to MEK inhibitors in both mouse and human cell lines. CIC (also known as Capicua) is a transcriptional repressor negatively regulated by RAS/MAPK signaling. Whereas the functions of Cic have been well characterized in Drosophila, little is known about its role in mammals. CIC is inactivated in a variety of human tumors and has been implicated recently in the promotion of lung metastases. Here, we describe a mouse model in which we inactivated Cic by selectively disabling its DNA-binding activity, a mutation that causes derepression of its target genes. Germline Cic inactivation causes perinatal lethality due to lung differentiation defects. However, its systemic inactivation in adult mice induces T-cell acute lymphoblastic lymphoma (T-ALL), a tumor type known to carry CIC mutations, albeit with low incidence. Cic inactivation in mice induces T-ALL by a mechanism involving derepression of its well-known target, Etv4. Importantly, human T-ALL also relies on ETV4 expression for maintaining its oncogenic phenotype. Moreover, Cic inactivation renders T-ALL insensitive to MEK inhibitors in both mouse and human cell lines. Finally, we show that Ras-induced mouse T-ALL as well as human T-ALL carrying mutations in the RAS/MAPK pathway display a genetic signature indicative of Cic inactivation. These observations illustrate that CIC inactivation plays a key role in this human malignancy.
Collapse
Affiliation(s)
- Lucía Simón-Carrasco
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Osvaldo Graña
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Marina Salmón
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Harrys K C Jacob
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gerardo Jiménez
- Institut de Biologia Molecular de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Parc Cientifíc de Barcelona, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08028 Barcelona, Spain
| | - Matthias Drosten
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Mariano Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| |
Collapse
|
40
|
The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int J Mol Sci 2017; 18:ijms18071586. [PMID: 28754000 PMCID: PMC5536073 DOI: 10.3390/ijms18071586] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially ‘omics’ technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously ‘unsupportive’ microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.
Collapse
|