1
|
Said MF, Wadie W, Abd El-Haleim EA, El Shiekh RA, El-Zoheiry HH. Probing new 3-hydrazinyl indole phenacetamide derivatives as multitarget anti-Alzheimer: Synthesis, in vivo, in vitro, and in silico studies. Eur J Med Chem 2025; 295:117720. [PMID: 40449120 DOI: 10.1016/j.ejmech.2025.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 06/02/2025]
Abstract
The development of multi-target directed ligands (MTDLs) amassed great attention to combat the multifactorial nature of Alzheimer's disease (AD). The present study showcases the synthesis of a novel series of 3-hydrazinyl indole phenacetamide derivatives aimed at addressing AD and neuroinflammation by targeting acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase (BACE1) enzymes. The primarily in vivo anti-inflammatory screening nominated derivatives 5a-f, 5h, 5j and 5o for the initial in vitro screening against AChE. Compounds 5a-c, 5j, and 5o, exhibited the most potent inhibitory activity against AChE and BChE, were subsequently subjected to further in vivo biological evaluations. Also, 5a-c were inspected for their impact on hallmarks of AD and histopathological changes. N-phenylacetamide indole derivative bearing unsubstituted phenylhydrazinyl side chain 5a depicted the most cognitive enhancement compared to the reference standard donepezil and significantly improved spatial memory capabilities, mitigated histopathological alterations, reduced AD hallmarks, AChE, BACE1, amyloid beta (Aβ), and p-tubulin associated unit (p-Tau), and modulated oxidative and inflammatory markers, GSH and IL-1β. Moreover, in vitro BACE1 enzyme inhibition assay revealed moderate BACE1 inhibitory activity for derivatives 5a-c. Further, in silico docking studies for the most active derivatives 5a-c in AChE and BACE1 binding pockets evidenced interacting with key amino acid residues supporting their remarkable biological activity. Furthermore, molecular dynamics simulations confirmed the stability of derivative 5a within the AChE and BACE1 binding sites throughout the simulation period. Collectively, N-phenylacetamide indole derivative bearing unsubstituted phenylhydrazinyl side chain 5a represents a promising multi-target candidate, combining AChE, BChE and BACE1 inhibition and can be considered as a lead compound for further development in AD therapy.
Collapse
Affiliation(s)
- Mona F Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa Wadie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Enas A Abd El-Haleim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Riham A El Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Haidy H El-Zoheiry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Kordi R, Andrews TJ, Hicar MD. Infections, genetics, and Alzheimer's disease: Exploring the pathogenic factors for innovative therapies. Virology 2025; 607:110523. [PMID: 40174330 DOI: 10.1016/j.virol.2025.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that creates a significant global health challenge and profoundly affects patients and their families. Recent research has highlighted the critical role of microorganisms, particularly viral infections, in the pathogenesis of AD. The involvement of viral infections in AD pathogenesis is predominantly attributed to their ability to induce neuroinflammation and amyloid beta (Aβ) deposition in the brain. The extant research exploring the relationship between viruses and AD has focused largely on Herpesviridae family. Traces of Herpesviruses, such as Herpes Simplex Virus-1 and Epstein Barr Virus, have been found in the brains of patients with AD. These viruses are thought to contribute to the disease progression by triggering chronic inflammatory responses in the brain. They can remain dormant in the brain, and become reactivated due to stress, a secondary viral infection, or immune-senescence in older adults. This review focuses on the association between Herpesviridae and bacterial infections with AD. We explore the genetic factors that might regulate viral illness and discuss clinical trials investigating antiviral and anti-inflammatory agents as possible therapeutic strategies to mitigate cognitive decline in patients with AD. In summary, understanding the interplay between infections, genetic factors, and AD pathogenesis may pave the way for novel therapeutic approaches, facilitating better management and possibly even prevent this debilitating disease.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Ted J Andrews
- Department of Pediatrics, Division of Developmental Pediatrics and Rehabilitation, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mark D Hicar
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Huang J, Wu F, Cao W, Chen Y, Yao Q, Cen P, Wang J, Hong L, Zhang X, Zhou R, Jin C, Tian M, Zhang H, Zhong Y. Ultrasmall iron-gallic acid coordination polymer nanoparticles for scavenging ROS and suppressing inflammation in tauopathy-induced Alzheimer's disease. Biomaterials 2025; 317:123042. [PMID: 39805185 DOI: 10.1016/j.biomaterials.2024.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder globally, with no effective treatment available yet. A crucial pathological hallmark of AD is the accumulation of hyperphosphorylated tau protein, which is deteriorated by reactive oxygen species (ROS) and neuroinflammation in AD progression. Thus, alleviation of ROS and inflammation has become a potential therapeutic strategy in many studies. Herein, we reported ultrasmall coordination polymer nanoparticles formed by ferric ions and gallic acid (Fe-GA CPNs), which owned antioxidant and anti-inflammation properties for AD therapeutics. The facilely prepared Fe-GA CPNs exhibited remarkable superoxide dismutase-like, peroxidase-like enzyme activity, and ROS eliminating ability with great water solubility, compared with gallic acid. We demonstrated that Fe-GA CPNs effectively relieved oxidative stress, ameliorated inflammation by modulating microglial polarization towards anti-inflammation phenotype, and reduced hyperphosphorylated tau protein levels. Furthermore, Fe-GA CPNs treatment significantly improved cognitive function in tauopathy-induced AD rats, and achieved a neuroprotective effect against AD pathology. This study highlights the potential of coordination polymer nanoparticles as promising therapeutic candidates for AD and other tau-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiani Huang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Fei Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuhan Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qiong Yao
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Lu Hong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Human Phenome Institute, Fudan University, Shanghai, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Di Yang, Wang C, Tao Q, Liu L, Jin M, Cai H, Zheng M, Gong M, Yu L, Du J, Luo Q, Shen J, Qin K, Chu D. Toxoplasma TgCtwh3 Δ rop16 Ⅰ/Ⅲ accelerates neuronal apoptosis and APP production in mouse with acute infection. IBRO Neurosci Rep 2025; 18:830-843. [PMID: 40519998 PMCID: PMC12166438 DOI: 10.1016/j.ibneur.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/21/2025] [Accepted: 05/21/2025] [Indexed: 06/18/2025] Open
Abstract
Objective To explore the mechanism by which rop16 Ⅰ/Ⅲ -deficient/gra15 Ⅱ -dominant toxoplasma gondii Chinese 1 genotype Wh3 (TgCtwh3 Δrop16 Ⅰ/Ⅲ ) strain induced neuron apoptosis, APP and BACE1 production in vivo and vitro. Method BALB/c mice were infected by intraperitoneal injection with TgCtwh3 wild type (TgCtwh3 WT) and TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoites, respectively. One week after infection, the morphology and number of hippocampal neurons were examined by hematoxylin-eosin (H&E) and Nissl staining. Expression levels of apoptosis-related proteins, APP, BACE1 as well as inflammatory factors proteins and genes in the hippocampus were evaluated using western blotting and qRT-PCR. The hippocampal neuron cell line HT22 was infected with TgCtwh3 WT and TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoite, respectively, and the expression of target proteins was analyzed through immunofluorescence staining and western blotting. Furthermore, HT22 apoptosis was assessed using flow cytometry. Result BALB/c mice injected with TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoites presented abnormal appearance and posture changes as well as declined vitality. The hippocampus assay demonstrated that TgCtwh3 Δrop16 Ⅰ/Ⅲ toxoplasma caused neuron loss, neuron alignment disorder, neuronal nucleus abnormal deep-stained and neuron apoptosis. Furthermore, TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoites caused obvious production of APP, BACE1and expression increase of pro-inflammatory factors in hippocampal tissue compared to these in mice infected with TgCtwh3 WT tachyzoites. Contrarily, the expression of transforming growth factor beta 1 (TGF-β1), a pivotal anti-inflammatory cytokine was significantly decreased in TgCtwh3 Δrop16 Ⅰ/Ⅲ infected mice. Further study showed that TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoites induced HT22 apoptosis through triggering ERS, meanwhile promoted HT22 to produce APP, BACE1 by activating NF-κB signaling pathway. Conclusion Our results indicated that the GRA15Ⅱ effector may play a crucial part in neuron apoptosis, pro-inflammatory factors secretion, and APP, BACE1 production. Inversely, ROP16Ⅰ/Ⅲ effector may play a potentially protective role in this process.
Collapse
Affiliation(s)
- Di Yang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University. Anhui Public Health Clinical Center, Hefei, China
| | - Cong Wang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Qing Tao
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lei Liu
- Department of Blood Transfusion, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengmeng Jin
- Maternity and Child Health Hospital of Anhui Province, the Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Haiping Cai
- Spine center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meijuan Zheng
- Department of Laboratory Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengtao Gong
- Department of Laboratory Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingli Luo
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Kunpeng Qin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University. Anhui Public Health Clinical Center, Hefei, China
| | - Deyong Chu
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Li J, Liu T, Xian M, Wei J. Therapeutic applications of exercise in neurodegenerative diseases: focusing on the mechanism of SIRT1. Mol Cell Biochem 2025:10.1007/s11010-025-05299-8. [PMID: 40358811 DOI: 10.1007/s11010-025-05299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Neurodegenerative diseases comprise a group of central nervous system disorders marked by progressive neuronal degeneration and dysfunction. Their pathogenesis is multifactorial, involving oxidative stress, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. Recent research has highlighted the potential of exercise as a non-pharmacological intervention for both the prevention and treatment of these disorders. In particular, exercise has received growing attention for its capacity to upregulate the expression and activity of SIRT1, a critical mediator of neuroprotection via downstream signaling pathways. SIRT1, a key member of the Sirtuin family, is a nicotinamide adenine dinucleotide (NAD +)-dependent class III histone deacetylase. It plays an essential role in regulating cellular metabolism, energy homeostasis, gene expression, and cellular longevity. In the context of neurodegenerative diseases, SIRT1 confers neuroprotection by modulating multiple signaling cascades through deacetylation, suppressing neuronal apoptosis, and promoting neural repair and regeneration. Exercise enhances SIRT1 expression and activity by increasing NAD + synthesis and utilization, improving intracellular redox balance, alleviating oxidative stress-induced inhibition of SIRT1, and thereby promoting its activation. Moreover, exercise may indirectly modulate SIRT1 function by influencing interacting molecular networks. This review summarizes recent advances in the therapeutic application of exercise for neurodegenerative diseases, with a focus on SIRT1 as a central mechanism. It examines how exercise mediates neuroprotection through the regulation of SIRT1 and its associated molecular mechanisms and signaling pathways. Finally, the paper discusses the potential applications and challenges of integrating exercise and SIRT1-targeted strategies in the management of neurodegenerative diseases, offering novel perspectives for the development of innovative treatments and improvements in patients' quality of life.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, 475004, Henan, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, 475004, Henan, China.
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Aathira NS, Kaur A, Kumar A, Dar GM, Nimisha, Sharma AK, Bera P, Mahajan B, Chatterjee A, Saluja SS. The genetic risk factors, molecular pathways, microRNAs, and the gut microbiome in Alzheimer's disease. Neuroscience 2025; 577:217-227. [PMID: 40374065 DOI: 10.1016/j.neuroscience.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide. It is a multifaceted condition resulting from interplay of genetic mutations (e.g., APP, PSEN1, PSEN2) that account for less than 5% of cases, several genetic risk variants such as APOE4, TREM2, CD33, CLU, SORL1, and CR1 contribute to disease susceptibility and epigenetic factors, which may mediate the influence of environmental and lifestyle factors over time. Other critical contributors such as aging, protein misfolding and aggregation (amyloid-β and tau), molecular and transcriptomic dysregulation affecting neuronal function, and modifiable lifestyle factors like diet, physical activity, and environmental exposures presents challenges in accurate diagnosis and management. Research has predominantly focused on the diverse molecular pathways in the pathogenesis of AD, with particular attention given to the amyloidogenic pathways, tau pathology, calcium signalling, endolysosomal pathways, and others, whether they are directly or indirectly involved. Apart from these known molecular pathways, miRNAs are gaining attention as important regulators, which have been implicated in moderating the expression of mRNA targets involved in various processes associated with the clearance of pathogenic β-amyloid proteins. A mounting body of research suggests the possible role of gut microbiota in AD which regulates inflammation, neurotransmitters, and the blood-brain barrier. Gut dysbiosis can trigger neuroinflammation and amyloid-beta aggregation, making microbiome composition a potential early AD biomarker. This review aims to explore briefly the diverse risk encompassing genetic polymorphisms, altered molecular pathways implicated in AD pathogenesis, miRNA regulatory mechanisms, and the potential impact of gut microbiota on AD risk.
Collapse
Affiliation(s)
- N S Aathira
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Amanpreet Kaur
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Pinki Bera
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Atri Chatterjee
- Department of Neurology, VMMC and Safdarjung Hospital, New Delhi, India.
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
7
|
Quintero-Espinosa DA, Velez-Pardo C, Jimenez-Del-Rio M. PF-06447475 Molecule Attenuates the Neuropathology of Familial Alzheimer's and Coexistent Parkinson's Disease Markers in PSEN1 I416T Dopaminergic-like Neurons. Molecules 2025; 30:2034. [PMID: 40363838 PMCID: PMC12074268 DOI: 10.3390/molecules30092034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Familial Alzheimer's disease (FAD) is a complex multifactorial disorder clinically characterized by cognitive impairment and memory loss. Pathologically, FAD is characterized by intracellular accumulation of the protein fragment Aβ42 (iAβ), hyperphosphorylated microtubule-associated protein TAU (p-TAU), and extensive degeneration of basal forebrain cholinergic neurons of the nucleus basalis of Meynert (NbM) and the medial septal nucleus (MSN), mainly caused by mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1), and PSEN2 gene. Since the dopaminergic system may contribute to FAD symptoms, alterations in the nigro-hippocampal pathway may be associated with cognitive impairment in FAD. Interestingly, p-α-synuclein (p-α-Syn), Aβ, and p-TAU have been found to coexist in vulnerable regions of postmortem AD brains. However, the mechanism by which Aβ, p-TAU, and α-Syn coexist in DAergic neurons in AD brains has not been determined. We generated PSEN1 I416T dopaminergic-like neurons (DALNs) from I416T menstrual stromal cells (MenSCs) in NeuroForsk 2.0 medium for 7 days and then cultured them in minimal culture medium (MCm) for another 4 days. On day 11, DALNs were analyzed for molecular and pathological markers by flow cytometry and fluorescence microscopy. We found that mutant DALNs showed increased accumulation of iAβ as well as increased phosphorylation of TAU at S202/T205 compared to WT DALNs. Thus, mutant DALNs exhibited typical pathological hallmarks of Alzheimer's disease. Furthermore, PSEN1 I416T DALNs showed concomitant signs of OS as evidenced by the appearance of oxidized sensor protein DJ-1 (i.e., DJ-1C106-SO3) and apoptotic markers TP53, pS63-c-JUN, PUMA, and cleavage caspase 3 (CC3). Notably, these DALNs exhibited PD-associated proteins such as intracellular accumulation of α-Syn (detected as aggregates of pS129-α-Syn) and phosphorylation of LRRK2 kinase at residue S935. In addition, mutant DALNs showed a 17.16- and 6.17-fold decrease in DA-induced Ca2+ flux, compared to WT DALNs. These observations suggest that iAβ and p-TAU, together with p-α-Syn, and p-LRRK2 kinase, may damage DAergic neurons and thereby contribute to the exacerbation of neuropathologic processes in FAD. Remarkably, the LRRK2 inhibitor PF-06447475 (PF-475) significantly reversed PSEN1 I416T-induced neuropathological markers in DAergic neurons. PF-465 inhibitor reduced iAβ, oxDJ-1C106-SO3, and p-TAU. In addition, this inhibitor reduced pS935-LRRK2, pS129-αSYN, pS63-c-JUN, and CC3. We conclude that the observed neuroprotective effects of PF-475 are due to direct inhibition of LRRK2 activity and that the LRRK2 protein is upstream of the molecular cascade of apoptosis and proteinopathy. Our results suggest that PF-475 is an effective neuroprotective agent against endogenous PSEN1 I416T-induced neurotoxicity in DALNs coexisting with Parkinson's disease markers. Therefore, PF-475 may be of great therapeutic value in FAD.
Collapse
Affiliation(s)
| | | | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (D.A.Q.-E.); (C.V.-P.)
| |
Collapse
|
8
|
Yang B, Teymur A, Tang C, Wu T. V-set and immunoglobulin domain containing 4 as a potential predictor of Alzheimer's disease and advanced aging. J Alzheimers Dis 2025; 105:453-463. [PMID: 40116682 DOI: 10.1177/13872877251329463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
BackgroundV-set and immunoglobulin domain containing 4 (VSIG4) emerges as a significant player in the immune system pathways. It has been previously identified as a potential hub gene for Alzheimer's disease (AD) and aging, underscoring its importance in understanding these conditions.ObjectiveThis study aimed to evaluate the diagnostic potential of serum VSIG4 and identify trends in serum VSIG4 in relationship with other biomarkers and neurological tests.MethodsELISA was used to measure the serum concentration of VSIG4 in AD, compared to healthy subjects. The relationship between VSIG4 levels and the age of the subjects, as well as other AD-related serum proteins and various measures of cognition was examined.ResultsVSIG4 was significantly elevated in the serum of AD patients compared to healthy controls (p = 0.0074). Significant correlations were identified between serum VSIG4 and other notable proteins related to AD and inflammation, such as total tau, neurofilament light (NfL), YKL-40, CD14, FABP3, and TNF-α. Significant correlations were also identified between VSIG4 concentration and the results of neurological tests.ConclusionsSerum VSIG4 may reflect neuroinflammation and altered lipid processing, affecting the cognitive performance of AD and aging.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Aygun Teymur
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
9
|
Lin J, Lei L, Liang Q, Huang X, Ding Y, Pan L, Yang J, Li W. Assessment of causality association between serum adiponectin levels and the risk of Alzheimer's disease and Parkinson's disease: a Mendelian randomization study. Front Neurol 2025; 16:1395798. [PMID: 40371086 PMCID: PMC12075267 DOI: 10.3389/fneur.2025.1395798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Background Until recently, the association between circulating adiponectin (ADPN) levels and the risk of Alzheimer's disease (AD) and Parkinson's disease (PD) remained unclear. Methods We utilized public data from the IEU GWAS database to conduct a two-sample bidirectional Mendelian randomization (MR) analysis and multiple sensitivity analyses. The MR analysis was performed using the aggregated data, with the genetic risk score (GRS) serving as an instrumental variable. Results The MR analyses revealed no significant causal association between genetically determined ADPN levels and the risk of AD (ORIVW = 0.852, 95% confidence interval [CI]: 0.586-1.117, p = 0.235) or PD (ORIVW = 0.830, 95% CI: 0.780-1.156, p = 0.606). Conversely, neither AD nor PD demonstrated any causal association with ADPN levels. The GRS approach yielded similar results (p > 0.05). However, it exhibited a negative correlation with interleukin 1β (IL1β, βIVW = -0.31; 95% CI: -0.55 to -0.07, p = 0.011). The Cochrane's Q test and MR-PRESSO analysis revealed no evidence of pleiotropy. Conclusion Our findings provide no evidence to substantiate a causal relationship between ADPN levels and the risk of AD and PD or vice versa. However, elevated levels of ADPN may correlate with lower levels of IL1β.
Collapse
Affiliation(s)
- Jiali Lin
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
| | - Langhuan Lei
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qiuyu Liang
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
| | - Xiaozhi Huang
- Department of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yanping Ding
- Department of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
| | - Liuxian Pan
- Department of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jianrong Yang
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
| | - Wei Li
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
- Department of Health Management, Guangxi Zhuang Autonomous Region People's Hospital, Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
10
|
Turgut GÇ, Pepe NA, Ekiz YC, Şenol H, Şen A. Therapeutic Potential of Nitrogen-Substituted Oleanolic Acid Derivatives in Neuroinflammatory and Cytokine Pathways: Insights From Cell-Based and Computational Models. Chem Biodivers 2025:e202500269. [PMID: 40262123 DOI: 10.1002/cbdv.202500269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
This study was conducted to investigate the mechanism of the potential and anti-inflammatory properties of nitrogen-substituted oleanolic acid derivatives that can be used to treat neuroinflammatory diseases. Nitrogen-containing oleanolic acid derivatives have been evaluated for their anti-neuroinflammatory effects in vitro in neuronal and monocytic cell lines at nontoxic doses, and the production of cytokines (TNF-α, IL-6 and IL-17), the inflammatory enzyme induced nitric oxide synthase (iNOS) and NF-κB signalling under LPS-stimulated conditions, and the expression of genes associated with Alzheimer's disease have been assessed. In addition, molecular docking and molecular dynamics simulation assessments are conducted in silico. Key protein markers of neurodegenerative diseases, especially Alzheimer's disease and neuroinflammation, TAU protein levels, and microglial activation, as well as ionised calcium-binding adaptor protein-1 (IBA1) levels, were significantly reduced with the addition of oleanolic acid derivatives. LPS-induced NF-κB luciferase reporter activity and iNOS activity were significantly inhibited, approaching the levels in uninduced controls. The mRNA expression of proinflammatory cytokines critical for neuroinflammation, such as TNF-α, NF-κB, IL-6 and IL-17, was reduced twofold to sevenfold. Furthermore, the molecular docking and MD simulation analyses revealed potential interactions with the TNF-α and NF-κB proteins. These findings underscore the potential of oleanolic acid derivatives, particularly compound 16, as candidates for further development as therapeutic agents for neurodegenerative diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Gurbet Çelik Turgut
- Department of Organic Agriculture Management, Pamukkale University, Denizli, Türkiye
| | - Nihan Aktaş Pepe
- Department of Molecular Biology & Genetics, Faculty of Life & Natural Sciences, Abdullah Gül University, Kayseri, Türkiye
| | - Yağmur Ceylan Ekiz
- Department of Organic Agriculture Management, Pamukkale University, Denizli, Türkiye
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Alaattin Şen
- Department of Molecular Biology & Genetics, Faculty of Life & Natural Sciences, Abdullah Gül University, Kayseri, Türkiye
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
11
|
Lwere K, Muwonge H, Sendagire H, Sajatovic M, Williams SM, Gumukiriza-Onoria JL, Buwembo D, Buwembo W, Nassanga R, Nakimbugwe R, Nazziwa A, Munabi IG, Nakasujja N, Kaddumukasa M. Characterization of the gut microbiome in Alzheimer disease and mild cognitive impairment among older adults in Uganda: A case-control study. Medicine (Baltimore) 2025; 104:e42100. [PMID: 40258729 PMCID: PMC12014080 DOI: 10.1097/md.0000000000042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/22/2024] [Indexed: 04/23/2025] Open
Abstract
Alzheimer disease (AD) is associated with significant shifts in the gut microbiome and is characterized by reduced microbial diversity and changes in the abundance of specific taxa. These alterations can disrupt the gut-brain axis, leading to increased intestinal permeability ("leaky gut"), systemic inflammation, and oxidative stress. Such microbial changes are thought to contribute to neurodegenerative changes, as observed in AD and cognitive decline, thus emphasizing the role of the microbiome in aging-related neurological health. Our study in urban and rural population in Uganda recruited 104 participants aged 60 years and older, categorized into AD, mild cognitive impairment (MCI), and control groups based on Montreal Cognitive Assessment (MoCA) scores and ICD-11/DSM-V criteria. DNA was extracted from fecal samples using a QIAamp kit and polymerase chain reaction (PCR) products were sequenced using Nanopore. We used diversity indices, principal coordinate analysis (PCoA), permutational multivariate analysis of variance (PERMANOVA), and linear discriminant analysis effect size (LefSe) to identify significant microbial differences among groups. Gut microbiome diversity, as measured by the Chao1 and Shannon indices, was significantly reduced in patients with AD. The AD group had the lowest diversity compared to that of the control group (P < .05). PCoA showed distinct microbial shifts between patients with AD and controls, with MCI showing an intermediate profile. Genera such as Novosphingobium and Staphylococcus were more prevalent in the controls, whereas Hafnia-Obesumbacterium and Dickeya were more common in AD. Age-related changes included increases in Exiguobacterium and Carnobacterium and decreases in Acinetobacter and Klebsiella. Distinct microbial profiles were identified in the AD, MCI, and control groups, suggesting potential microbiome markers of cognitive impairment in the Ugandan population.
Collapse
Affiliation(s)
- Kamada Lwere
- Department of Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Microbiology, Faculty of Health Sciences, Soroti University, Soroti, Uganda
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Haruna Muwonge
- Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Hakim Sendagire
- Department of Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Martha Sajatovic
- Neurological and Behavioral Outcomes Center, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Denis Buwembo
- School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - William Buwembo
- Department of Anatomy, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Rita Nassanga
- Department of Radiology, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Rheem Nakimbugwe
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Aisha Nazziwa
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Ian Guyton Munabi
- Department of Anatomy, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mark Kaddumukasa
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
12
|
Cui XM, Wang W, Yang L, Nie BW, Liu Q, Li XH, Duan DX. Acanthopanax Senticosus Saponins Prevent Cognitive Decline in Rats with Alzheimer's Disease. Int J Mol Sci 2025; 26:3715. [PMID: 40332373 PMCID: PMC12027677 DOI: 10.3390/ijms26083715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative disease of the nervous system that affects older adults. Its main clinical manifestations include memory loss, cognitive dysfunction, abnormal behaviour, and social dysfunction. Neuroinflammation is typical in most neurodegenerative diseases, such as AD. Therefore, suppressing inflammation may improve AD symptoms. This study investigated the neuroprotective effects of Acanthopanax senticosus saponins (ASS) in an AD model induced by streptozotocin (STZ). Here, we characterised a rat model of STZ-induced AD with the parallel deterioration of memory loss and neuroinflammation. Following the end of the treatment with ASS (50 mg/kg for 14 consecutive days), behavioural tests (Morris water maze test, Y-maze test) were performed on the rat, and the molecular parameters (DAPK1, Tau5, p-Tau, NF-κB, IL-1β, TNF-α, and NLRP3) of the rat hippocampus were also assessed. We demonstrated that ASS, which has potent anti-inflammatory effects, can reduce neuroinflammation and prevent cognitive impairment. In the water maze test, ASS-treated groups exhibited significantly increased average escape latency (p < 0.05), the percentage of stay in the target quadrant (p < 0.05), and the number of times each group of rats crossed the platform (p < 0.05) compared to the negative control. And ASS could reduce the phosphorylation of the Tau protein (p < 0.001) and death-associated protein kinase 1 (DAPK1, p < 0.001) in the hippocampal tissue, improving cognitive impairment in STZ-treated rats by suppressing the inflammatory response; the molecular analysis showed a significant reduction in pro-inflammatory markers like NLRP3, IL-1β, TNF-α, and NF-κB (p < 0.001). It was also discovered that the NF-κB inhibitor SN50 had the same effect. Therefore, the present study used ASS through its anti-inflammatory effects to prevent and treat AD. This study highlights the potential efficacy of ASS in alleviating cognitive dysfunction in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong-Xiao Duan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-M.C.); (W.W.); (L.Y.); (B.-W.N.); (Q.L.); (X.-H.L.)
| |
Collapse
|
13
|
Sun H, Hao Y, Liu H, Gao F. The immunomodulatory effects of GLP-1 receptor agonists in neurogenerative diseases and ischemic stroke treatment. Front Immunol 2025; 16:1525623. [PMID: 40134421 PMCID: PMC11932860 DOI: 10.3389/fimmu.2025.1525623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor is widely distributed in the digestive system, cardiovascular system, adipose tissue and central nervous system. Numerous GLP-1 receptor-targeting drugs have been investigated in clinical studies for various indications, including type 2 diabetes and obesity (accounts for 70% of the total studies), non-alcoholic steatohepatitis, Alzheimer's disease, and Parkinson's disease. This review presented fundamental information regarding two categories of GLP-1 receptor agonists (GLP-1RAs): peptide-based and small molecule compounds, and elaborated their potential neuroprotective effects by inhibiting neuroinflammation, reducing neuronal apoptosis, and ultimately improving cognitive function in various neurodegenerative diseases. As a new hypoglycemic drug, GLP-1RA has a unique role in reducing the concurrent risk of stroke in T2D patients. Given the infiltration of various peripheral immune cells into brain tissue, particularly in the areas surrounding the infarct lesion, we further investigated the potential immune regulatory mechanisms. GLP-1RA could not only facilitate the M2 polarization of microglia through both direct and indirect pathways, but also modulate the quantity and function of T cell subtypes, including CD4, CD8, and regulatory T cells, resulting into the inhibition of inflammatory responses and the promotion of neuronal regeneration through interleukin-10 secretion. Therefore, we believe that the "Tregs-microglia-neuron/neural precursor cells" axis is instrumental in mediating immune suppression and neuroprotection in the context of ischemic stroke. Given the benefits of rapid diffusion, favorable blood-brain barrier permeability and versatile administration routes, these small molecule compounds will be one of the important candidates of GLP-1RA. We look forward to the further clinical evidence of small molecule GLP-1RA intervention in ischemic stroke or T2D complicated by ischemic stroke.
Collapse
Affiliation(s)
| | | | - Hao Liu
- School of Basic Medical Science, School of Medicine, Ningbo University,
Ningbo, Zhejiang, China
| | | |
Collapse
|
14
|
Jiao B, Ouyang Z, Xiao X, Zhang C, Xu T, Yang Q, Zhu Y, Liu Y, Liu X, Zhou Y, Liao X, Luo S, Tang B, Li Z, Shen L. Development and validation of machine learning models with blood-based digital biomarkers for Alzheimer's disease diagnosis: a multicohort diagnostic study. EClinicalMedicine 2025; 81:103142. [PMID: 40115175 PMCID: PMC11925590 DOI: 10.1016/j.eclinm.2025.103142] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Background Alzheimer's disease (AD) involves complex alterations in biological pathways, making comprehensive blood biomarkers crucial for accurate and earlier diagnosis. However, the cost-effectiveness and operational complexity of method using blood-based biomarkers significantly limit its availability in clinical practice. Methods We developed low-cost, convenient machine learning-based with digital biomarkers (MLDB) using plasma spectra data to detect AD or mild cognitive impairment (MCI) from healthy controls (HCs) and discriminate AD from different types of neurodegenerative diseases. Retrospective data were gathered for 1324 individuals, including 293 with amyloid beta positive AD, 151 with mild cognitive impairment (MCI), 106 with Lewy body dementia (DLB), 106 with frontotemporal dementia (FTD), 135 with progressive supranuclear palsy (PSP) and 533 healthy controls (HCs) between July 2017 and August 2023. Findings Random forest classifier and feature selection procedures were used to select digital biomarkers. MLDB achieved area under the curves (AUCs) of 0.92 (AD vs. HC, Sensitivity 88.2%, specificity 84.1%), 0.89 (MCI vs. HC, Sensitivity 88.8%, specificity 86.4%), 0.83 (AD vs. DLB, Sensitivity 77.2%, specificity 74.6%), 0.80 (AD vs. FTD, sensitivity 74.2%, specificity 72.4%), and 0.93 (AD vs. PSP, sensitivity 76.1%, specificity 75.7%). Digital biomarkers distinguishing AD from HC were negatively correlated with plasma p-tau217 (r = -0.22, p < 0.05) and glial fibrillary acidic protein (GFAP) (r = -0.09, p < 0.05). Interpretation The ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) plasma spectra features can identify AD-related pathological changes. These spectral features serve as digital biomarkers, providing valuable support in the early screening and diagnosis of AD. Funding The National Natural Science Foundation of China, STI2030-Major Projects, National Key R&D Program of China, Outstanding Youth Fund of Hunan Provincial Natural Science Foundation, Hunan Health Commission Grant, Science and Technology Major Project of Hunan Province, Hunan Innovative Province Construction Project, Grant of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital and Postdoctoral Fellowship Program of CPSF.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Brain Research Center, Central South University, Changsha, China
- FuRong Laboratory, Changsha, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Cong Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yiliang Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Brain Research Center, Central South University, Changsha, China
- FuRong Laboratory, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Brain Research Center, Central South University, Changsha, China
- FuRong Laboratory, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shilin Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Brain Research Center, Central South University, Changsha, China
- FuRong Laboratory, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Brain Research Center, Central South University, Changsha, China
- FuRong Laboratory, Changsha, China
| | - Zhigang Li
- College of Information Science and Engineering, Northeastern University, Shenyang, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Brain Research Center, Central South University, Changsha, China
- FuRong Laboratory, Changsha, China
| |
Collapse
|
15
|
Xavier-de-Britto I, Gomes-da-Silva NC, Gomes Soares MA, Follmer C, Dabkiewicz D, Alencar LMR, Sant’Anna C, Ferreira TPT, Martins PRES, Ricci-Junior E, Fechine PBA, Santos-Oliveira R. Therapeutic Potential of Arimoclomol Nanomicelles: In Vitro Impact on Alzheimer's and Parkinson's Pathology and Correlation with In Vivo Inflammatory Response. ACS Chem Neurosci 2025; 16:699-710. [PMID: 39907698 PMCID: PMC11843614 DOI: 10.1021/acschemneuro.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
This study investigates the potential of arimoclomol-loaded nanomicelles for the treatment of neurodegenerative diseases like Alzheimer's and Parkinson's, as well as their anti-inflammatory properties. Arimoclomol, a coinducer of heat shock proteins (HSPs), has shown clinical promise in mitigating protein misfolding, a hallmark of these diseases. In this work, arimoclomol nanomicelles significantly reduced the aggregation of β-amyloid (Aβ1-42) and α-synuclein (α-syn), key pathological proteins in Alzheimer's and Parkinson's. Additionally, the nanomicelles demonstrated potent anti-inflammatory effects, reducing leukocyte and neutrophil counts in an acute inflammation model. These results suggest that arimoclomol nanomicelles could enhance clinical outcomes by targeting both neurodegenerative and inflammatory processes, offering a promising therapeutic strategy for long-term disease management.
Collapse
Affiliation(s)
- Isabelle Xavier-de-Britto
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Natália Cristina Gomes-da-Silva
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Marilia Amável Gomes Soares
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Cristian Follmer
- Laboratory
of Biological Chemistry of Neurodegenerative Disorders, Department
of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - David Dabkiewicz
- Laboratory
of Biological Chemistry of Neurodegenerative Disorders, Department
of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Biophysics
and Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, Maranhão 65065690, Brazil
| | - Celso Sant’Anna
- Laboratory
of Microscopy Applied to Life Science–Lamav, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de
Janeiro 25250-020, Brazil
| | | | | | - Eduardo Ricci-Junior
- Federal
University of Rio de Janeiro, School of
Pharmacy, Rio de Janeiro, Rio de Janeiro 21941900, Brazil
| | - Pierre Basílio Almeida Fechine
- Group
of Chemistry of Advanced Materials (GQMat)–Department of Analytical
Chemistry and Physical-Chemistry, Federal
University of Ceará, Fortaleza, Ceará 451-970, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
- Rio
de Janeiro State University, Laboratory
of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 23070200, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Marizzoni M, Tournier BB, Chevalier C, Saleri S, Lathuilière A, Ceyzériat K, Paquis A, Park R, Troesch E, Cattaneo A, Millet P, Frisoni GB. Stools from a human APOEe2 donor reduces amyloid and tau pathology and increases neuroinflammation in a 3xTg AD mouse model. Front Aging Neurosci 2025; 17:1539067. [PMID: 40026419 PMCID: PMC11868276 DOI: 10.3389/fnagi.2025.1539067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Background The mechanisms underlying the protective effect of the e2 variant of the APOE gene (APOEe2) against Alzheimer's disease (AD) have not been elucidated. We altered the microbiota of 3xTgAD mice by fecal microbiota transplantation from a human APOEe2 donor (e2-FMT) and tested the effect of microbiota perturbations on brain AD pathology. Methods FMT of bacteria isolated from stools of untreated 3xTgAD mice (M-FMT) or e2-FMT were transplanted in 15-month-old 3xTgAD mice. FMT was done alone or in combination with antibiotic and proton-pump inhibitor following the Microbiota Transfer Therapy protocol (MTT). The effect of donor (M or e2) and transplantation protocol (FMT or MTT) on hippocampal amyloid, tau pathology and neuroinflammation were assessed at the end of the treatment. Results e2-FMT reduced amyloid, and tau pathology as well as increased neuroinflammation as compared with M-FMT. MTT was associated with reduced number of Aβ40+ plaques and tau pathology. Low levels of amyloid were associated with high levels of pro-inflammatory molecules in e2-FMT mice. These associations were partially attenuated by MTT. Conclusion Bacteria from a human APOEe2 donor reduced AD pathology and increased neuroinflammation in mice suggesting that the gut microbiota may be a mediator of the protective effect of APOEe2.
Collapse
Affiliation(s)
- Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benjamin B. Tournier
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Claire Chevalier
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Samantha Saleri
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Aurélien Lathuilière
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Kelly Ceyzériat
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Arthur Paquis
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Rahel Park
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Emma Troesch
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Philippe Millet
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Giovanni B. Frisoni
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
17
|
Qian W, Liu D, Liu J, Liu M, Ji Q, Zhang B, Yang Z, Cheng Y, Zhou S. The Mitochondria-Targeted Micelle Inhibits Alzheimer's Disease Progression by Alleviating Neuronal Mitochondrial Dysfunction and Neuroinflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408581. [PMID: 39713820 DOI: 10.1002/smll.202408581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice. Under the high level of reactive oxygen species (ROS) environment in damaged mitochondria of microglia and neurons, the linker (thioketal, TK) between CsA and SS-31 is broken and CsA and SS-31 are released while consuming ROS in the microenvironment. The released CsA and SS-31 synergistically restore the mitochondrial membrane potential and the balance between the fission and fusion of mitochondria, which subsequently protect neurons from apoptosis and reduce the activation of microglia in the brains of 5 × FAD mice. Ultimately, the neuroinflammation and cognitive impairment of 5 × FAD mice are ameliorated. This research provides a synergistic treatment strategy for AD through alleviating mitochondrial dysfunction to reduce neuroinflammation and restore the function of neurons simultaneously.
Collapse
Affiliation(s)
- Wenqiang Qian
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Jie Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| |
Collapse
|
18
|
Yao K, Wang S, Xu Z, Fan Z, Chen Z, Jia P, Tu S, Liu Y, Lin X, Xu Y, Fang Y, Dou B, Guo Y. Mechanisms of comorbidity between Alzheimer's disease and pain. Alzheimers Dement 2025; 21:e14605. [PMID: 39998175 PMCID: PMC11852355 DOI: 10.1002/alz.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
Clinical studies have revealed a significant correlation between pain and neurodegenerative diseases, particularly Alzheimer's disease (AD). However, due to cognitive and speech impairments, AD patients, especially those in moderate to severe stages, are often overlooked in pain management. The challenges in obtaining pain-related information from this population exacerbate the issue. Although recent clinical research has increasingly recognized the comorbidity of AD and pain, the pathological alterations and interactive mechanisms underlying this relationship remain inadequately explored. This review provides a comprehensive analysis of the clinical features and pathological mechanisms of AD with and without pain comorbidity. It examines underlying processes, including neuroinflammation, peripheral-central immune interactions, and neurotransmitter dynamics. Furthermore, it highlights current pain assessment and management strategies in AD patients. By offering a theoretical framework, this review aims to support the development of effective pain management approaches and serve as a reference for clinical interventions targeting AD-associated pain. HIGHLIGHTS: The comorbidity between AD and CP encompasses multiple interrelated biological pathways, such as neurodegeneration and inflammatory responses. The damage to neurons and synapses in AD patients influences the brain regions responsible for processing pain, thereby reducing the pain response. Neuroinflammation plays a vital role in the development of both AD and CP. Enhanced inflammatory responses have an impact on the CNS and promote sensitization. Common neurotransmitter alterations exist in the comorbidity of AD and CP, influencing cognition, emotion, and pain perception.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Peng Jia
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Shiwei Tu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Yuan Xu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Yuxing Fang
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Baomin Dou
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Yi Guo
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
- School of Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinP. R. China
| |
Collapse
|
19
|
Ma YD, Liu H, Chen Q, Zheng Y, Yan CR, Li YS, Wang YX, Dai YT, Jiang YH, Shi JM. Gallic acid and loganic acid attenuate amyloid-β oligomer-induced microglia damage via NF-КB signaling pathway. Neuropharmacology 2025; 263:110215. [PMID: 39536861 DOI: 10.1016/j.neuropharm.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Amyloid β peptide (Aβ) induces neurodegeneration in the early stage of Alzheimer's disease (AD), resulting in neuroinflammation, oxidative damage, and mitochondrial impaired function. These reactions were closely associated with the pathological changes of brain microglia. Therefore, it was crucial to investigate the precise process of neuroinflammation induced by Aβ in microglia and discover therapies to alleviate its harmful consequences. This study evaluated the toxicity detection of primary microglia generated by Aβ42 ADDL. identification of inflammatory markers, measurement of ROS, and assessment of mitochondrial energy metabolism, mitochondrial membrane potential damage and mitochondrial ROS to evaluate the reparative properties of natural small molecule compounds Gallic acid and Loganic acid on primary mouse microglia. The findings indicated that Gallic acid and Loganic acid exhibited diverse reparative effects on impaired microglia. Thus, it can be provisionally predicted that Aβ42 ADDL affects microglia and promotes modifications in the NF-кB signaling pathway. Gallic acid and Loganic acid were expected to initially restore the NF-кB signaling pathway, leading to a reduction in M1-microglia and an elevation in M2-microglia, thereby decreasing various inflammatory factors and increasing anti-inflammatory factors. The mitochondrial metabolism, mitochondrial membrane potential, and mitochondrial ROS of primary microglia were restored, leading to a reduction in neuroinflammation.
Collapse
Affiliation(s)
- Yan-Dong Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Hang Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Qian Chen
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yi Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao-Ren Yan
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yan-Song Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yi-Xuan Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yu-Ting Dai
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yang-Hua Jiang
- Laboratory Medical Center of the First People's Hospital of Chenzhou City, Chenzhou, Hunan province, 423000, China.
| | - Jing-Ming Shi
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China.
| |
Collapse
|
20
|
Chevalier C, Tournier BB, Marizzoni M, Park R, Paquis A, Ceyzériat K, Badina AM, Lathuiliere A, Saleri S, Cillis FD, Cattaneo A, Millet P, Frisoni GB. Fecal Microbiota Transplantation (FMT) From a Human at Low Risk for Alzheimer's Disease Improves Short-Term Recognition Memory and Increases Neuroinflammation in a 3xTg AD Mouse Model. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70012. [PMID: 39801363 PMCID: PMC11725982 DOI: 10.1111/gbb.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT). Behavioral assessments included novel object recognition (NOR), Y-maze, open-field, and elevated plus maze tests; brain pathology (amyloid and tau), neuroinflammation (in situ autoradiography of the 18 kDa translocator protein in the hippocampus); and gut microbiota were analyzed. APOEe2-FMT improved short-term memory in the NOR test compared to AD-FMT, without significant changes in other behavioral tests. This was associated with increased neuroinflammation in the hippocampus, but no effect was detected on brain amyloidosis and tauopathy. Specific genera, such as Parabacteroides and Prevotellaceae_UGC001, were enriched in the APOEe2-FMT group and associated with neuroinflammation, while genera like Desulfovibrio were reduced and linked to decreased neuroinflammation. Gut microbiota from a donor with a protective factor against AD improved short-term memory and induced neuroinflammation in regions strategic to AD. The association of several genera with neuroinflammation in the APOEe2-FMT group suggests a collegial effect of the transplanted microbiome rather than a single-microbe driver effect. These data support an association between gut bacteria, glial cell activation, and cognitive function in AD.
Collapse
Affiliation(s)
- Claire Chevalier
- Département de Readaptation et gériatrieUniversity of GenevaGenevaSwitzerland
| | | | - Moira Marizzoni
- Biological Psychiatry UnitIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Rahel Park
- Département de Readaptation et gériatrieUniversity of GenevaGenevaSwitzerland
| | - Arthur Paquis
- Département de Readaptation et gériatrieUniversity of GenevaGenevaSwitzerland
| | - Kelly Ceyzériat
- Département de PsychiatrieUniversity of GenevaGenevaSwitzerland
| | | | | | - Samantha Saleri
- Biological Psychiatry UnitIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Floriana De Cillis
- Biological Psychiatry UnitIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Annamaria Cattaneo
- Biological Psychiatry UnitIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Philippe Millet
- Département de PsychiatrieUniversity of GenevaGenevaSwitzerland
| | - Giovanni B. Frisoni
- Département de Readaptation et gériatrieUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
21
|
Liu Z, Jia J. Omaveloxolone Ameliorates Cognitive Deficits by Inhibiting Apoptosis and Neuroinflammation in APP/PS1 Mice. Mol Neurobiol 2025; 62:2191-2202. [PMID: 39088030 DOI: 10.1007/s12035-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease associated with aging, characterized by progressive cognitive impairment and memory loss. However, treatments that delay AD progression or improve its symptoms remain limited. The aim of the present study was to investigate the therapeutic effects of omaveloxolone (Omav) on AD and to explore the underlying mechanisms. Thirty-week-old APP/PS1 mice were selected as an experimental model of AD. The spatial learning and memory abilities were tested using the Morris water maze. Amyloid-beta (Aβ) deposition in the brains was measured using immunohistochemistry. Network pharmacological analyses and molecular docking were conducted to gain insights into the therapeutic mechanisms of Omav. Finally, validation analyses were conducted to detect changes in the associated pathways and proteins. Our finding revealed that Omav markedly rescued cognitive dysfunction and reduced Aβ deposition in the brains of APP/PS1 mice. Network pharmacological analysis identified 112 intersecting genes, with CASP3 and MTOR emerging as the key targets. In vivo validation experiments indicated that Omav attenuated neuronal apoptosis by regulating apoptotic proteins, including caspase 3, Bax, and Bcl-2. Moreover, Omav suppressed neuroinflammation and induced autophagy by inhibiting the phosphorylation of mTOR. These findings highlight the therapeutic efficacy of Omav in AD and that its neuroprotective effects were associated with inhibiting neuronal apoptosis and regulating neuroinflammation.
Collapse
Affiliation(s)
- Zhaojun Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, PR China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, PR China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, PR China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, PR China.
| |
Collapse
|
22
|
Zaccarelli-Magalhães J, Citadin CT, Langman J, Smith DJ, Matuguma LH, Lin HW, Udo MSB. Protein arginine methyltransferases as regulators of cellular stress. Exp Neurol 2025; 384:115060. [PMID: 39551462 PMCID: PMC11973959 DOI: 10.1016/j.expneurol.2024.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Arginine modification can be a "switch" to regulate DNA transcription and a post-translational modification via methylation of a variety of cellular targets involved in signal transduction, gene transcription, DNA repair, and mRNA alterations. This consequently can turn downstream biological effectors "on" and "off". Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs 1-9) in both the nucleus and cytoplasm, and is thought to be involved in many disease processes. However, PRMTs have not been well-documented in the brain and their function as it relates to metabolism, circulation, functional learning and memory are understudied. In this review, we provide a comprehensive overview of PRMTs relevant to cellular stress, and future directions into PRMTs as therapeutic regulators in brain pathologies.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Julia Langman
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Drew James Smith
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Luiz Henrique Matuguma
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Mariana Sayuri Berto Udo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
23
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
24
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Hashim A, Wilson DA, Weiss LM, Shukla S, Chokkalingam P, Das S, Das BC, Saito M. Methionine Aminopeptidase 2 (MetAP2) Inhibitor BL6 Attenuates Inflammation in Cultured Microglia and in a Mouse Model of Alzheimer's Disease. Molecules 2025; 30:620. [PMID: 39942725 PMCID: PMC11820257 DOI: 10.3390/molecules30030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) plays an important role in the regulation of protein synthesis and post-translational processing. Preclinical/clinical applications of MetAP2 inhibitors for the treatment of various diseases have been explored because of their antiangiogenic, anticancer, antiobesity, antidiabetic, and immunosuppressive properties. However, the effects of MetAP2 inhibitors on CNS diseases are rarely examined despite the abundant presence of MetAP2 in the brain. Previously, we synthesized a novel boron-containing MetAP2 inhibitor, BL6, and found that it suppressed angiogenesis and adipogenesis yet improved glucose uptake. Here, we studied the anti-inflammatory effects of BL6 in SIM-A9 microglia and in a mouse model of Alzheimer's disease generated by the intracerebroventricular (icv) injection of streptozotocin (STZ). We found that BL6 reduced proinflammatory molecules, such as nitric oxide, iNOS, IL-1β, and IL-6, together with phospho-Akt and phospho-NF-κB p65, which were elevated in lipopolysaccharide (LPS)-activated microglial SIM-A9 cells. However, the LPS-induced reduction in Arg-1 and CD206 was attenuated by BL6, suggesting that BL6 promotes microglial M1 to M2 polarization. BL6 also decreased glial activation along with a reduction in phospho-tau and an elevation in synaptophysin in the icv-STZ mouse model. Thus, our experiments demonstrate an anti-neuroinflammatory action of BL6, suggesting possible clinical applications of MetAP2 inhibitors for brain disorders in which neuroinflammation is involved.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Audrey Hashim
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY 10016, USA
| | - Louis M. Weiss
- Department of Pathology/Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Srushti Shukla
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Parthiban Chokkalingam
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Sasmita Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Bhaskar C. Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
25
|
Dias D, Socodato R. Beyond Amyloid and Tau: The Critical Role of Microglia in Alzheimer's Disease Therapeutics. Biomedicines 2025; 13:279. [PMID: 40002692 PMCID: PMC11852436 DOI: 10.3390/biomedicines13020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is traditionally viewed through the lens of the amyloid cascade hypothesis, implicating amyloid-beta and tau protein aggregates as the main pathological culprits. However, burgeoning research points to the brain's resident immune cells, microglia, as critical players in AD pathogenesis, progression, and potential therapeutic interventions. This review examines the dynamic roles of microglia within the intricate framework of AD. We detail the involvement of these immune cells in neuroinflammation, explaining how their activation and response fluctuations may influence the disease trajectory. We further elucidate the complex relationship between microglia and amyloid-beta pathology. This study highlights the dual nature of these cells, which contribute to both aggregation and clearance of the amyloid-beta protein. Moreover, an in-depth analysis of the interplay between microglia and tau unveils the significant, yet often overlooked, impact of this interaction on neurodegeneration in AD. Shifting from the conventional therapeutic approaches, we assess the current AD treatments primarily targeting amyloid and tau and introduce novel strategies that involve manipulating microglial functions. These innovative methods herald a potential paradigm shift in the management of AD. Finally, we explore the burgeoning field of precision diagnosis and the pursuit of robust AD biomarkers. We underline how a more profound comprehension of microglial biology could enrich these essential areas, potentially paving the way for more accurate diagnostic tools and tailored treatment strategies. In conclusion, this review expands on the conventional perspective of AD pathology and treatment, drawing attention to the multifaceted roles of microglia. As we continue to enhance our understanding of these cells, microglial-focused therapeutic interventions emerge as a promising frontier to bolster our arsenal to fight against AD.
Collapse
Affiliation(s)
- Daniela Dias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-022 Porto, Portugal;
- ESS—Escola Superior de Saúde do Politécnico do Porto, 4200-072 Porto, Portugal
| | - Renato Socodato
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-022 Porto, Portugal;
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| |
Collapse
|
26
|
Arfeen M, Dhaked DK, Mani V. Multipotent Effect of Clozapine on Lipopolysaccharide-Induced Acetylcholinesterase, Cyclooxygenase-2,5-Lipoxygenase, and Caspase-3: In Vivo and Molecular Modeling Studies. Molecules 2025; 30:266. [PMID: 39860136 PMCID: PMC11767763 DOI: 10.3390/molecules30020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD. Structure-based virtual screening of US-FDA-approved molecules from the ZINC15 database identified clozapine (CLOZ) as the dual inhibitor of COX-2 and AChE, with significant binding affinity. Further molecular docking of CLOZ in the active site of LOX and Caspase-3 also showed significant binding potential. Further, the results from molecular docking were validated using molecular dynamics simulation (MDS) studies, confirming the results from molecular docking. The results from MDS showed good binding potential and interactions with key residues. The CLOZ was further assessed using lipopolysaccharide (LPS)-challenged rats treated for thirty days at doses of 5 and 10 mg/kg, p.o. The results demonstrated modulation of COX-2, 5-LOX, AChE, Caspase-3, and MDA in LPS-induced brains. Additionally, the expression level of IL-10 was also measured. Our results showed a significant decrease in the levels of COX-2, 5-LOX, AChE, Caspase-3, and MDA. Our results also showed a significant decrement in the pro-inflammatory markers NF-κB, TNF-α, and IL-6 and an improvement in the levels of anti-inflammatory markers IL-10 and TGF-β1. Overall, the findings indicate that CLOZ has potential for neuroprotective effects against LPS-treated rats and can be explored.
Collapse
Affiliation(s)
- Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata 700054, India;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
27
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
28
|
Zoghi S, Mingels C, Badawi RD, Spencer BA, Yarbrough TL, Nardo L, Chaudhari AJ. Role of Total Body PET/CT in Inflammatory Disorders. Semin Nucl Med 2025; 55:41-51. [PMID: 39578110 PMCID: PMC11645246 DOI: 10.1053/j.semnuclmed.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Inflammatory disorders historically have been difficult to monitor with conventional PET imaging due to limitations including radiation exposure, lack of validated imaging biomarkers, low spatial resolution, and long acquisition durations. However, the recent development of long-axial field-of-view (LAFOV) PET/CT scanners may allow utilization of novel noninvasive biomarkers to diagnose, predict outcomes, and monitor therapeutic response of inflammatory conditions. LAFOV PET scanners can image most of the human body (if not the entire body) simultaneously in one bed position, with improved signal collection efficiency compared to conventional PET scanners. This allows for imaging with shorter acquisition durations, decreased injected radiotracer dose, prolonged uptake times, or a combination of any of these. In addition, LAFOV PET scanners enable whole-body dynamic imaging. Altogether, these intrinsically superior capabilities in assessing both local and systemic diseases, have allowed these scanners to make increasingly significant contributions to the assessment of inflammatory conditions. This review aims to further explore the role and benefits of LAFOV scanners for imaging various inflammatory conditions while addressing future developments and challenges faced by this technology.
Collapse
Affiliation(s)
- Shervin Zoghi
- Department of Radiology, University of California Davis, Sacramento, CA, USA.
| | - Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Tracy L Yarbrough
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
29
|
Mohd Murshid N, Mohd Sahardi NFN, Makpol S. Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies. Int J Mol Sci 2024; 26:241. [PMID: 39796097 PMCID: PMC11719782 DOI: 10.3390/ijms26010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature. This review aims to study the development of an advanced AD model that accurately replicates key AD pathophysiological aspects using cutting-edge biomaterials and microenvironment design. Incorporating biomolecular elements like Tau proteins and beta-amyloid (Aβ) plaques improve the accuracy of illustrating disease mechanisms. The expected results involve creating a solid foundation for high-throughput screening with enhanced scalability, translational significance, and the possibility of speeding up drug discovery. Thus, this review fills the gaps in AD modelling and shows potential for creating precise and efficient drug treatments for AD.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Fatin Nabilah Mohd Sahardi
- Secretariat of Research and Innovation, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
30
|
Zhuang X, Lin J, Song Y, Ban R, Zhao X, Xia Z, Wang Z, Zhang G. The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer's Disease. Neuromolecular Med 2024; 27:2. [PMID: 39751702 DOI: 10.1007/s12017-024-08815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder, and the vast majority of cases occur in elderly patients. Recently, the accumulation of Aβ and tau proteins has drawn considerable attention in AD research. This review explores the multifaceted interactions between these proteins and their contribution to the pathological landscape of AD, encompassing synaptic dysfunction, neuroinflammation, and PANoptosis. PANoptosis is a collective term for programmed cell death (PCD) modalities that encompass elements of apoptosis, pyroptosis, and necroptosis. The accumulation of Aβ peptides and tau proteins, along with the immune response in brain cells, may trigger PANoptosis, thus advancing the progression of the disease. Recent advancements in molecular imaging and genetics have provided deeper insights into the interactions between Aβ peptides, tau proteins, and the immune response. The review also discusses the role of mitochondrial dysregulation in AD. The exploration of the interplay between neurodegeneration, immune responses, and cell death offers promising avenues for the development of innovative treatments.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Jie Lin
- School of Basic Medicine Sciences, Shandong University, Jinan, China
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, 250012, China.
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
31
|
Jang BK, Shin SJ, Park HH, Kumar V, Park YH, Kim JY, Kang HY, Park S, Kwon Y, Shin SE, Moon M, Lee BJ. Investigation of Novel Aronia Bioactive Fraction-Alginic Acid Nanocomplex on the Enhanced Modulation of Neuroinflammation and Inhibition of Aβ Aggregation. Pharmaceutics 2024; 17:13. [PMID: 39861665 PMCID: PMC11769017 DOI: 10.3390/pharmaceutics17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP). We evaluated whether it is more stable and effective in cognitive disorder mice and neuroinflammation cell models. METHODS The physicochemical properties of the AANCP, such as nanoparticle size, structural stability, and release rate, were characterized. The AANCP was administered to scopolamine-injected Balb/c mice, and to BV2 microglia treated with lipopolysaccharide (LPS) and amyloid beta (Aβ). Inflammation responses were measured via qPCR and ELISA in vitro, and cognitive functions were measured via behavior tests in vivo. RESULTS The AANCP readily formed nanoparticles, 209.6 nm in size, with a negatively charged zeta potential. The AANCP exhibited better stability in four plasma samples (human, dog, rat, and mouse) and was slowly released in different pH conditions (pH 2.0, 7.4, and 8.0) compared with non-complexedABF. In vitro studies on microglial cells treated with AANCPs revealed a suppression of inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6) induced by LPS. The AANCP increased microglial Aβ phagocytosis through the activation of triggering receptor expressed on myeloid cell 2 (TREM2)-related microglial polarization. The AANCP inhibited aggregation of Aβ in vitro and alleviated cognitive impairment in a scopolamine-induced in vivo dementia mouse model. CONCLUSIONS Our data indicate that AANCPs are more stable than ABFs and effective for cognitive disorders and neuroinflammation via modulation of M2 microglial polarization.
Collapse
Affiliation(s)
- Bong-Keun Jang
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Jeom-Yong Kim
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
- JBKLAB, Inc., 464 Dunchon-daero, Jungwon-gu, Seongnam-si 13229, Republic of Korea
| | - Hye-Yeon Kang
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Sunyoung Park
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Youngsun Kwon
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Sang-Eun Shin
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
32
|
Zhang H, Zhang C, Wang Q, Fu W, Xing W, Jin P, Wu H, Bu Y, Xu D, Xu D. PFOS sub-chronic exposure selectively activates Aβ clearance pathway to improve the cognitive ability of AD mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125031. [PMID: 39454812 DOI: 10.1016/j.envpol.2024.125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Perfluorooctane sulfonate (PFOS), an emerging persistent organic pollutant, has been controversial in its impact on cognitive functions. Our previous research has confirmed that the sub-chronic PFOS exposure leads to neuronal apoptosis in the cerebral cortex, impairing cognitive functions in normal mice. However, our current study presents a surprising finding: sub-chronic exposure to PFOS effectively reduces cognitive impairments in Alzheimer's disease (AD) mice and significantly retards the disease's progression. Our results indicate that PFOS exposure upregulates the expression level of insulin-degrading enzyme (IDE) in the prefrontal cortex (PFC) of AD mice, thereby selectively enhancing the amyloid-beta (Aβ) clearance pathway without affecting the Aβ production. Moreover, PFOS exposure inhibits microglial proliferation and reduces inflammatory cytokines levels in the PFC of AD mice, providing further supporting for the pivotal role of IDE in attenuating AD progression under PFOS exposure. Collectively, our study is the first to demonstrate that sub-chronic PFOS exposure can alleviates cognitive impairments in AD pathology, with the IDE-mediated Aβ clearance pathway potentially playing a critical role.
Collapse
Affiliation(s)
- Haijing Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Peng Jin
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Haowei Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Yuanjing Bu
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China.
| |
Collapse
|
33
|
Alhenaky A, Alhazmi S, Alamri SH, Alkhatabi HA, Alharthi A, Alsaleem MA, Abdelnour SA, Hassan SM. Exosomal MicroRNAs in Alzheimer's Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J Clin Med 2024; 13:6960. [PMID: 39598105 PMCID: PMC11594708 DOI: 10.3390/jcm13226960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents a significant health concern, often leading to substantial cognitive decline among older adults. A prominent feature of AD is progressive dementia, which eventually disrupts daily functioning and the ability to live independently. A major challenge in addressing AD is its prolonged pre-symptomatic phase, which makes early detection difficult. Moreover, the disease's complexity and the inefficiency of current diagnostic methods impede the development of targeted therapies. Therefore, there is an urgent need to enhance diagnostic methodologies for detection and treating AD even before clinical symptoms appear. Exosomes are nanoscale biovesicles secreted by cells, including nerve cells, into biofluids. These exosomes play essential roles in the central nervous system (CNS) by facilitating neuronal communication and thus influencing major physiological and pathological processes. Exosomal cargo, particularly microRNAs (miRNAs), are critical mediators in this cellular communication, and their dysregulation affects various pathological pathways related to neurodegenerative diseases, including AD. This review discusses the significant roles of exosomal miRNAs in the pathological mechanisms related to AD, focusing on the promising use of exosomal miRNAs as diagnostic biomarkers and targeted therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Alhanof Alhenaky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Sultan H. Alamri
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mansour A. Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Princess Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
34
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
35
|
Gao Y, Zhang H, Hu Y. Baseline serum glutamate: Implications for diagnosis and prediction in mild cognitive impairment and Alzheimer's disease of the Alzheimer's Disease Neuroimaging Initiative. J Clin Neurosci 2024; 129:110828. [PMID: 39265358 DOI: 10.1016/j.jocn.2024.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/28/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Numerous studies have highlighted a close link between metabolic imbalances and Alzheimer's Disease (AD). The advancement of metabolomics has recently enabled the exploration of characteristic metabolic changes associated with AD. Studies indicate that serum glutamate (Glu) levels may correlate with mild cognitive impairment (MCI) and AD. This study aims to further elucidate the characteristics of baseline serum Glu levels in MCI and AD. METHODS This study included 783 participants from the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) cohort, categorized into cognitively normal (CN, n = 224), stable MCI (sMCI, n = 181), progressive MCI (pMCI, n = 193), and AD (n = 185). The study aimed to analyze the diagnostic value of baseline serum Glu, to explore its predictive capability for the progression from CN to MCI or AD, and from MCI to AD, and to analyze the relationship between serum Glu and cerebrospinal fluid (CSF) biomarkers and cognitive functions in different diagnostic groups. RESULTS Compared to the CN and sMCI groups, the pMCI group showed significantly lower levels of serum Glu, and the AD group also had lower Glu levels compared to the sMCI group. However, serum Glu did not show significant diagnostic value for MCI and AD. Lower levels of serum Glu could predict the progression from MCI to AD. CONCLUSION Serum Glu levels can predict the progression from MCI to AD, suggesting that it could provide new insights into the pathophysiological mechanisms of AD. However, serum Glu may not be an ideal peripheral biomarker for AD.
Collapse
Affiliation(s)
- Ying Gao
- Department of General Medical Wards Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy. Chongqing 400014, China
| | - Hua Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuming Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
36
|
Leclerc H, Lee AKW, Kunicki ZJ, Alber J. Added value of inflammatory plasma biomarkers to pathologic biomarkers in predicting preclinical Alzheimer's disease. J Alzheimers Dis 2024; 102:89-98. [PMID: 39497301 PMCID: PMC11540337 DOI: 10.1177/13872877241283692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
BACKGROUND Plasma biomarkers have recently emerged for the diagnosis, assessment, and disease monitoring of Alzheimer's disease (AD), but have yet to be fully validated in preclinical AD. In addition to AD pathologic plasma biomarkers (amyloid-β (Aβ) and phosphorylated tau (p-tau) species), a proteomic panel can discriminate between symptomatic AD and cognitively unimpaired older adults in a dementia clinic population. OBJECTIVE Examine the added value of a plasma proteomic panel, validated in symptomatic AD, over standard AD pathologic plasma biomarkers and demographic and genetic (apolipoprotein (APOE) ɛ4 status) risk factors in detecting preclinical AD. METHODS 125 cognitively unimpaired older adults (mean age = 66 years) who completed Aβ PET and plasma draw were analyzed using multiple regression with Aβ PET status (positive versus negative) as the outcome to determine the best fit for predicting preclinical AD. Model 1 included age, education, and gender. Model 2 and 3 added predictors APOE ɛ4 status (carrier versus non-carrier) and AD pathologic blood biomarkers (Aβ42/40 ratio, p-tau181), respectively. Random forest modeling established the 5 proteomic markers from the proteomic panel that best predicted Aβ PET status, and these markers were added in Model 4. RESULTS The best model for predicting Aβ PET status included age, years of education, APOE ɛ4 status, Aβ42/40 ratio, and p-tau181. Adding the top 5 proteomic markers did not significantly improve the model. CONCLUSIONS Proteomic markers in plasma did not add predictive value to standard AD pathologic plasma biomarkers in predicting preclinical AD in this sample.
Collapse
Affiliation(s)
- Haley Leclerc
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Athene KW Lee
- Butler Hospital Memory & Aging Program, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Zachary J Kunicki
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jessica Alber
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Butler Hospital Memory & Aging Program, Providence, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
37
|
Cantero-Fortiz Y, Boada M. The role of inflammation in neurological disorders: a brief overview of multiple sclerosis, Alzheimer's, and Parkinson's disease'. Front Neurol 2024; 15:1439125. [PMID: 39539666 PMCID: PMC11558529 DOI: 10.3389/fneur.2024.1439125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroinflammation is a central feature in the pathophysiology of several neurodegenerative diseases, including MS, AD, and PD. This review aims to synthesize current research on the role of inflammation in these conditions, emphasizing the potential of inflammatory biomarkers for diagnosis and treatment. We highlight recent findings on the mechanisms of neuroinflammation, the utility of biomarkers in disease differentiation, and the implications for therapeutic strategies. Advances in understanding inflammatory pathways offer promising avenues for developing targeted interventions to improve patient outcomes. Future research should focus on validating these biomarkers in larger cohorts and integrating them into clinical practice to enhance diagnostic accuracy and therapeutic efficacy.
Collapse
Affiliation(s)
- Yahveth Cantero-Fortiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Popescu C, Munteanu C, Anghelescu A, Ciobanu V, Spînu A, Andone I, Mandu M, Bistriceanu R, Băilă M, Postoiu RL, Vlădulescu-Trandafir AI, Giuvara S, Malaelea AD, Onose G. Novelties on Neuroinflammation in Alzheimer's Disease-Focus on Gut and Oral Microbiota Involvement. Int J Mol Sci 2024; 25:11272. [PMID: 39457054 PMCID: PMC11508522 DOI: 10.3390/ijms252011272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recent studies underscore the role of gut and oral microbiota in influencing neuroinflammation through the microbiota-gut-brain axis, including in Alzheimer's disease (AD). This review aims to provide a comprehensive synthesis of recent findings on the involvement of gut and oral microbiota in the neuroinflammatory processes associated with AD, emphasizing novel insights and therapeutic implications. This review reveals that dysbiosis in AD patients' gut and oral microbiota is linked to heightened peripheral and central inflammatory responses. Specific bacterial taxa, such as Bacteroides and Firmicutes in the gut, as well as Porphyromonas gingivalis in the oral cavity, are notably altered in AD, leading to significant changes in microglial activation and cytokine production. Gut microbiota alterations are associated with increased intestinal permeability, facilitating the translocation of endotoxins like lipopolysaccharides (LPS) into the bloodstream and exacerbating neuroinflammation by activating the brain's toll-like receptor 4 (TLR4) pathways. Furthermore, microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and amyloid peptides, can cross the blood-brain barrier and modulate neuroinflammatory responses. While microbial amyloids may contribute to amyloid-beta aggregation in the brain, certain SCFAs like butyrate exhibit anti-inflammatory properties, suggesting a potential therapeutic avenue to mitigate neuroinflammation. This review not only highlights the critical role of microbiota in AD pathology but also offers a ray of hope by suggesting that modulating gut and oral microbiota could represent a novel therapeutic strategy for reducing neuroinflammation and slowing disease progression.
Collapse
Affiliation(s)
- Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Vlad Ciobanu
- Department of Computer Science and Engineering, Faculty for Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihaela Mandu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Roxana Bistriceanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sebastian Giuvara
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Alin-Daniel Malaelea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| |
Collapse
|
39
|
Hu Y, Cui J, Sun J, Liu X, Gao S, Mei X, Wu C, Tian H. A novel biomimetic nanovesicle containing caffeic acid-coupled carbon quantum dots for the the treatment of Alzheimer's disease via nasal administration. J Nanobiotechnology 2024; 22:642. [PMID: 39425199 PMCID: PMC11490022 DOI: 10.1186/s12951-024-02912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive cognitive and physical impairment. Neuroinflammation is related to AD, and the misfolding and aggregation of amyloid protein in the brain creates an inflammatory microenvironment. Microglia are the predominant contributors to neuroinflammation, and abnormal activation of microglia induces the release of a large amount of inflammatory factors, promotes neuronal apoptosis, and leads to cognitive impairment. In this study, we used microglial membranes containing caffeic acid-coupled carbon quantum dots to prepare a novel biomimetic nanocapsule (CDs-CA-MGs) for the treatment of AD. The application of CDs-CA-MGs via nasal administration can bypass the blood‒brain barrier (BBB) and directly target the site of inflammation. After treatment with CDs-CA-MGs, AD mice showed reduced inflammation in the brain, decreased neuronal apoptosis, and significantly improved learning and memory abilities. In addition, CDs-CA-MGs affect inflammation-related JAK-STAT and Toll-like receptor signaling pathways in AD mice. CDs-CA-MGs significantly downregulated interleukins (IL-1β and IL-6) and tumor necrosis factor (TNF-α). This finding suggested that CDs-CA-MGs may improve cognitive impairment by modulating inflammatory responses. In conclusion, the use of CDs-CA-MGs provides a possible therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jingwen Cui
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Shuang Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xifan Mei
- Liaoning Vocational College of Medicine, Shenyang, Liaoning, 110101, China.
| | - Chao Wu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
40
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
41
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
42
|
Chen X, Dai Y, Li Y, Xin J, Zou J, Wang R, Zhang H, Liu Z. Identification of cross-talk pathways and PANoptosis-related genes in periodontitis and Alzheimer's disease by bioinformatics analysis and machine learning. Front Aging Neurosci 2024; 16:1430290. [PMID: 39258145 PMCID: PMC11384588 DOI: 10.3389/fnagi.2024.1430290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Background and objectives Periodontitis (PD), a chronic inflammatory disease, is a serious threat to oral health and is one of the risk factors for Alzheimer's disease (AD). A growing body of evidence suggests that the two diseases are closely related. However, current studies have not provided a comprehensive understanding of the common genes and common mechanisms between PD and AD. This study aimed to screen the crosstalk genes of PD and AD and the potential relationship between cross-talk and PANoptosis-related genes. The relationship between core genes and immune cells will be analyzed to provide new targets for clinical treatment. Materials and methods The PD and AD datasets were downloaded from the GEO database and differential expression analysis was performed to obtain DEGs. Overlapping DEGs had cross-talk genes linking PD and OP, and PANoptosis-related genes were obtained from a literature review. Pearson coefficients were used to compute cross-talk and PANoptosis-related gene correlations in the PD and AD datasets. Cross-talk genes were obtained from the intersection of PD and AD-related genes, protein-protein interaction(PPI) networks were constructed and cross-talk genes were identified using the STRING database. The intersection of cross-talk and PANoptosis-related genes was defined as cross-talk-PANoptosis genes. Core genes were screened using ROC analysis and XGBoost. PPI subnetwork, gene-biological process, and gene-pathway networks were constructed based on the core genes. In addition, immune infiltration on the PD and AD datasets was analyzed using the CIBERSORT algorithm. Results 366 cross-talk genes were overlapping between PD DEGs and AD DEGs. The intersection of cross-talk genes with 109 PANoptosis-related genes was defined as cross-talk-PANoptosis genes. ROC and XGBoost showed that MLKL, DCN, IL1B, and IL18 were more accurate than the other cross-talk-PANoptosis genes in predicting the disease, as well as better in overall characterization. GO and KEGG analyses showed that the four core genes were involved in immunity and inflammation in the organism. Immune infiltration analysis showed that B cells naive, Plasma cells, and T cells gamma delta were significantly differentially expressed in patients with PD and AD compared with the normal group. Finally, 10 drugs associated with core genes were retrieved from the DGIDB database. Conclusion This study reveals the joint mechanism between PD and AD associated with PANoptosis. Analyzing the four core genes and immune cells may provide new therapeutic directions for the pathogenesis of PD combined with AD.
Collapse
Affiliation(s)
- Xiantao Chen
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yifei Dai
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yushen Li
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jiajun Xin
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jiatong Zou
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
43
|
Visansirikul S, Yanaso S, Boondam Y, Prasittisa K, Prutthiwanasan B, Chongruchiroj S, Sripha K. Discovery of novel coumarin triazolyl and phenoxyphenyl triazolyl derivatives targeting amyloid beta aggregation-mediated oxidative stress and neuroinflammation for enhanced neuroprotection. RSC Med Chem 2024; 15:2745-2765. [PMID: 39149102 PMCID: PMC11324061 DOI: 10.1039/d4md00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
This study involved designing, synthesizing, and evaluating the protective potential of compounds on microglial cells (BV-2 cells) and neurons (SH-SY5Y cells) against cell death induced by Aβ1-42. It aimed to identify biologically specific activities associated with anti-Aβ aggregation and understand their role in oxidative stress initiation and modulation of proinflammatory cytokine expression. Actively designed compounds CE5, CA5, PE5, and PA5 showed protective effects on BV-2 and SH-SY5Y cells, with cell viability ranging from 60.78 ± 2.32% to 75.38 ± 2.75% for BV-2 cells and 87.21% ± 1.76% to 91.55% ± 1.78% for SH-SY5Y cells. The transformation from ester in CE5 to amide in CA5 resulted in significant antioxidant properties. Molecular docking studies revealed strong binding of CE5 to critical Aβ aggregation regions, disrupting both intra- and intermolecular formations. TEM assessment supported CE5's anti-Aβ aggregation efficacy. Structural variations in PE5 and PA5 had diverse effects on IL-1β and IL-6, suggesting further specificity studies for Alzheimer's disease. Log P values suggested potential blood-brain barrier permeation for CE5 and CA5, indicating suitability for CNS drug development. In silico ADMET and toxicological screening revealed that CE5, PA5, and PE5 have favorable safety profiles, while CA5 shows a propensity for hepatotoxicity. According to this prediction, coumarin triazolyl derivatives are likely to exhibit mutagenicity. Nevertheless, CE5 and CA5 emerge as promising lead compounds for Alzheimer's therapeutic intervention, with further insights expected from subsequent in vivo studies.
Collapse
Affiliation(s)
- Satsawat Visansirikul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| | - Suthira Yanaso
- Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University Samut Prakan 10540 Thailand
| | - Yingrak Boondam
- Department of Physiology, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Mahidol University Bangkok 10400 Thailand
| | - Kanjanawadee Prasittisa
- Division of Science, Faculty of Education, Nakhon Phanom University Nakhon Phanom 48000 Thailand
| | - Brompoj Prutthiwanasan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Molecular Simulations in Drug Discovery, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
| | - Kittisak Sripha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
44
|
Cheng X, Dai Y, Shang B, Zhang S, Lin L, Wu Q, Zhan R, Li S, Liu S. Danggui Shaoyao San and disassembled prescription: neuroprotective effects via AMPK/mTOR-mediated autophagy in mice. BMC Complement Med Ther 2024; 24:298. [PMID: 39127649 PMCID: PMC11317013 DOI: 10.1186/s12906-024-04588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Danggui Shaoyao San (DSS), a frequently prescribed Chinese medicine formula, has demonstrated clinical efficacy in the treatment of Alzheimer's disease (AD). This study aims to explore the differences in therapeutic effects of DSS and its disassembled prescriptions, Suangan (SG) and Xingan (XG), in treating Alzheimer's Disease and the mechanism of DSS recovering autophagy in AD. METHODS A network pharmacology strategy was employed to delineate the bioactive constituents, associated targets, and regulatory mechanisms of DSS in AD, encompassing in silico target forecasting, the generation and scrutiny of PPI networks, alongside GO and KEGG-based pathway elucidation. An AD mouse model, induced by intracerebroventricular injection of Aβ1-42, was used to evaluate the therapeutic effects of DSS and its disassembled prescriptions on AD. Cognitive function was evaluated using the Morris water maze. Expression levels of inflammatory cytokines were quantified via RT-qPCR and ELISA. Western blotting was used to detect the expression of proteins related to AD pathological markers and the AMPK/mTOR signaling pathway. RESULTS 50 active compounds and 718 HUB genes were screened from relevant databases and literature. KEGG and GO analyses indicated that DSS's potential mechanisms against AD involved the AMPK/mTOR signaling pathway and mitophagy. In vivo animal model, the results demonstrated that DSS, SG, and XG treatments improved cognitive function and ameliorated neuroinflammation in mice. Additionally, they alleviated the pathological changes of neuronal cells. These treatments also increased the protein level of PSD-95, and decreased levels of APP and p-Tau. Among them, DSS exhibited the best efficacy. Furthermore, DSS, SG, and XG upregulated the expression of LC3, Beclin1, and p-AMPK, while decreasing the expression of P62 and p-mTOR. CONCLUSIONS DSS, SG, and XG were found to ameliorate AD-related pathological symptoms in Aβ1-42-injected mice, likely through the AMPK/mTOR autophagy signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Yuqiong Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Baoling Shang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Liting Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Qingguang Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Ruoting Zhan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
| | - Sijun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
45
|
Winfree RL, Erreger K, Phillips J, Seto M, Wang Y, Schneider JA, Bennett DA, Schrag MS, Hohman TJ, Hamm HE. Elevated protease-activated receptor 4 (PAR4) gene expression in Alzheimer's disease predicts cognitive decline. Neurobiol Aging 2024; 140:93-101. [PMID: 38761538 PMCID: PMC11610797 DOI: 10.1016/j.neurobiolaging.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024]
Abstract
Platelet activation of protease-activated receptor 4 (PAR4) and thrombin are at the top of a chain of events leading to fibrin deposition, microinfarcts, blood-brain barrier disruption, and inflammation. We evaluated mRNA expression of the PAR4 gene F2RL3 in human brain and global cognitive performance in participants with and without cognitive impairment or dementia. Data were acquired from the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). F2RL3 mRNA was elevated in AD cases and was associated with worse retrospective longitudinal cognitive performance. Moreover, F2RL3 expression interacted with clinical AD diagnosis on longitudinal cognition whereas this relationship was attenuated in individuals without cognitive impairment. Additionally, when adjusting for the effects of AD neuropathology, F2RL3 expression remained a significant predictor of cognitive decline. F2RL3 expression correlated positively with transcript levels of proinflammatory markers including TNFα, IL-1β, NFκB, and fibrinogen α/β/γ. Together, these results reveal that F2RL3 mRNA expression is associated with multiple AD-relevant outcomes and its encoded product, PAR4, may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Rebecca L Winfree
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin Erreger
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jared Phillips
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Matthew S Schrag
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| | - Heidi E Hamm
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
Zhang T, Wang P, Li R, Wang Y, Yan S. Correlation between obesity and Alzheimer 's disease and the mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1052-1061. [PMID: 39788493 PMCID: PMC11495975 DOI: 10.11817/j.issn.1672-7347.2024.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a progressive central neurodegenerative disorder with an insidious onset. With global aging, the incidence and mortality of AD have been steadily increasing, yet effective treatments remain elusive. Obesity, characterized by excessive or abnormal fat accumulation, is a complex metabolic disorder and a confirmed risk factor for numerous diseases. Both obesity and AD have become major public health concerns, posing significant threats to human health and economic development. Studies have revealed a strong correlation between obesity and AD, with multiple contributing factors, including metabolic abnormalities of endocrine factors, inflammatory responses, and genetic interactions. Exploring the correlation and mechanisms between obesity and AD provides important insights and new strategies for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tenglin Zhang
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000.
| | - Ping Wang
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000
| | - Ruonan Li
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Shuxun Yan
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.
| |
Collapse
|
47
|
Monaco M, Trebesova H, Grilli M. Muscarinic Receptors and Alzheimer's Disease: New Perspectives and Mechanisms. Curr Issues Mol Biol 2024; 46:6820-6835. [PMID: 39057049 PMCID: PMC11276210 DOI: 10.3390/cimb46070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases on a global scale. Historically, this pathology has been linked to cholinergic transmission, and despite the scarcity of effective therapies, numerous alternative processes and targets have been proposed as potential avenues for comprehending this complex illness. Nevertheless, the fundamental pathophysiological mechanisms underpinning AD remain largely enigmatic, with a growing body of evidence advocating for the significance of muscarinic receptors in modulating the brain's capacity to adapt and generate new memories. This review summarizes the current state of the art in the field of muscarinic receptors' involvement in AD. A specific key factor was the relationship between comorbidity and the emergence of new mechanisms.
Collapse
Affiliation(s)
- Martina Monaco
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
| | - Hanna Trebesova
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (H.T.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
48
|
Sun M, Chen Z. Unveiling the Complex Role of Exosomes in Alzheimer's Disease. J Inflamm Res 2024; 17:3921-3948. [PMID: 38911990 PMCID: PMC11193473 DOI: 10.2147/jir.s466821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative illness, characterized by memory loss and cognitive decline, accounting for 60-80% of dementia cases. AD is characterized by senile plaques made up of amyloid β (Aβ) protein, intracellular neurofibrillary tangles caused by hyperphosphorylation of tau protein linked with microtubules, and neuronal loss. Currently, therapeutic treatments and nanotechnological developments are effective in treating the symptoms of AD, but a cure for the illness has not yet been found. Recently, the increased study of extracellular vesicles (EVs) has led to a growing awareness of their significant involvement in neurodegenerative disorders, including AD. Exosomes are small extracellular vesicles that transport various components including messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive compounds from one cell to another, facilitating information transmission and material movement. There is growing evidence indicating that exosomes have complex functions in AD. Exosomes may have a dual role in Alzheimer's disease by contributing to neuronal death and also helping to alleviate the pathological progression of the disease. Therefore, the primary aim of this review is to outline the updated understandings on exosomes biogenesis and many functions of exosomes in the generation, conveyance, distribution, and elimination of hazardous proteins related to Alzheimer's disease. This review is intended to provide novel insights for understanding the development, specific treatment, and early detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Zhuoyou Chen
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| |
Collapse
|
49
|
Baril AA, Picard C, Labonté A, Sanchez E, Duclos C, Mohammediyan B, Breitner JCS, Villeneuve S, Poirier J. Longer sleep duration and neuroinflammation in at-risk elderly with a parental history of Alzheimer's disease. Sleep 2024; 47:zsae081. [PMID: 38526098 PMCID: PMC11168764 DOI: 10.1093/sleep/zsae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
STUDY OBJECTIVES Although short sleep could promote neurodegeneration, long sleep may be a marker of ongoing neurodegeneration, potentially as a result of neuroinflammation. The objective was to evaluate sleep patterns with age of expected Alzheimer's disease (AD) onset and neuroinflammation. METHODS We tested 203 dementia-free participants (68.5 ± 5.4 years old, 78M). The PREVENT-AD cohort includes older persons with a parental history of AD whose age was nearing their expected AD onset. We estimated expected years to AD onset by subtracting the participants' age from their parent's at AD dementia onset. We extracted actigraphy sleep variables of interest (times of sleep onset and morning awakening, time in bed, sleep efficiency, and sleep duration) and general profiles (sleep fragmentation, phase delay, and hypersomnia). Cerebrospinal fluid (CSF) inflammatory biomarkers were assessed with OLINK multiplex technology. RESULTS Proximity to, or exceeding, expected age of onset was associated with a sleep profile suggestive of hypersomnia (longer sleep and later morning awakening time). This hypersomnia sleep profile was associated with higher CSF neuroinflammatory biomarkers (IL-6, MCP-1, and global score). Interaction analyses revealed that some of these sleep-neuroinflammation associations were present mostly in those closer/exceeding the age of expected AD onset, APOE4 carriers, and those with better memory performance. CONCLUSIONS Proximity to, or exceeding, parental AD dementia onset was associated with a longer sleep pattern, which was related to elevated proinflammatory CSF biomarkers. We speculate that longer sleep may serve a compensatory purpose potentially triggered by neuroinflammation as individuals are approaching AD onset. Further studies should investigate whether neuroinflammatory-triggered long sleep duration could mitigate cognitive deficits.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS-NIM, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cynthia Picard
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Anne Labonté
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Erlan Sanchez
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Catherine Duclos
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS-NIM, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
| | - Béry Mohammediyan
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - John C S Breitner
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sylvia Villeneuve
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Judes Poirier
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
Chi J, Hu J, Wu N, Cai H, Lin C, Lai Y, Huang J, Li W, Su P, Li M, Xu L. Causal effects for neurodegenerative diseases on the risk of myocardial infarction: a two-sample Mendelian randomization study. Aging (Albany NY) 2024; 16:9944-9958. [PMID: 38850523 PMCID: PMC11210233 DOI: 10.18632/aging.205909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
Several studies have demonstrated a correlation between neurodegenerative diseases (NDDs) and myocardial infarction (MI), yet the precise causal relationship between these remains elusive. This study aimed to investigate the potential causal associations of genetically predicted Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Parkinson's disease (PD), and multiple sclerosis (MS) with MI using two-sample Mendelian randomization (TSMR). Various methods, including inverse variance weighted (IVW), weighted median (WM), MR-Egger regression, weighted mode, and simple mode, were employed to estimate the effects of genetically predicted NDDs on MI. To validate the analysis, we assessed pleiotropic effects, heterogeneity, and conducted leave-one-out sensitivity analysis. We identified that genetic predisposition to NDDs was suggestively associated with higher odds of MI (OR_IVW=1.07, OR_MR-Egger=1.08, OR_WM=1.07, OR_weighted mode=1.07, OR_simple mode=1.10, all P<0.05). Furthermore, we observed significant associations of genetically predicted DLB with MI (OR_IVW=1.07, OR_MR-Egger=1.11, OR_WM=1.09, OR_weighted mode=1.09, all P<0.05). However, there was no significant causal evidence of genetically predicted PD and MS in MI. Across all MR analyses, no horizontal pleiotropy or statistical heterogeneity was observed (all P>0.05). Additionally, results from MRPRESSO and leave-one-out sensitivity analysis confirmed the robustness of the causal effect estimations for genetically predicted AD, DLB, PD, and MS on MI. This study provides further support for the causal effects of AD on MI and, for the first time, establishes robust causal evidence for the detrimental effect of DLB on the risk of MI. Our findings emphasize the importance of monitoring the cardiovascular function of the elderly experiencing neurodegenerative changes.
Collapse
Affiliation(s)
- Jianing Chi
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaman Hu
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ningxia Wu
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Cai
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cailong Lin
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingying Lai
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Huang
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
| | - Weihua Li
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Peng Su
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Min Li
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|