1
|
Zhou MY, Feng HY, Wang TT, Xu ZS, Gu SL, Li LL, Cai L, Li R. TLR3 as an emerging molecule facilitating pyroptosis in the context of rheumatoid arthritis: A study combined bioinformatics and experimental validation. Cytokine 2025; 187:156875. [PMID: 39884182 DOI: 10.1016/j.cyto.2025.156875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an inflammatory disease of the joints mediated by immune cells. As an immune-related mode of cell death, pyroptosis has yet to be fully understood in RA. This research identified novel pyroptosis-related markers in RA and confirmed its functional significance in RA. METHODS Initially, crucial pyroptosis-related genes of RA were identified through GEO database, and biological pathways were determined through enrichment analysis. Then, PPI network, WGCNA and CIBERSORT analysis was utilized to screen hub genes and evaluate immune cell infiltration levels. Finally, validation experiments determined hub genes expression and regulatory roles in RA pathogenesis, and screened potential therapeutic drugs. RESULTS A total of 46 DEPRGs in RA were identified, which involved in NOD-like receptor and Toll-like receptor signaling pathway. Further screening revealed 3 crucial hub genes: CCL5, LY96, and TLR3 had significantly increased expression in RA synovial tissue and FLS, which might become diagnostic markers of RA. Analysis of immune infiltration revealed that hub genes exhibited associations with plasma cells, T lymphocytes, and macrophages. Further study on the crucial hub gene TLR3 revealed that knocking down TLR3 significantly inhibited the RA FLS hyperproliferation and pyroptosis, and dexamethasone and doxorubicin, as potential drugs, could treat RA by inhibiting TLR3. CONCLUSION Our study indicates that high expression of TLR3 promotes FLS pyroptosis and RA progression, suggesting its potential as both a biomarker and a therapeutic target for RA.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Hong-Yan Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Tian-Tian Wang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, China.
| |
Collapse
|
2
|
Wang C, Yu W, Wu X, Wang S, Chen L, Liu G. Proteomic insights into molecular alterations associated with Kawasaki disease in children. Ital J Pediatr 2025; 51:56. [PMID: 39984993 PMCID: PMC11846444 DOI: 10.1186/s13052-025-01853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/12/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a pediatric vasculitis that can lead to coronary artery complications if not promptly diagnosed. Its nonspecific early symptoms, primarily fever, often result in misdiagnosis. This study aimed to identify potential biomarkers for early KD diagnosis using proteomic analysis of blood samples. METHODS Serum samples were collected from three groups: children with acute KD (n = 20, CQB group), age-matched febrile children with bacterial infections (n = 20, C group), and children recovered from KD (n = 8, CQBC group). Proteomic analysis was performed to identify differentially expressed proteins in serum specimens, followed by functional and pathway enrichment analysis. RESULTS Compared to controls, 92 proteins were upregulated and 101 were downregulated in acute KD, with significant enrichment in the AMPK pathway. In recovered KD, 537 proteins were upregulated and 231 downregulated, predominantly affecting the PI3K-Akt pathway. A total of 56 proteins showed contrasting expression patterns between acute and recovery phases, implicating the complement and coagulation cascades. Notably, complement component 6 (C6), complement component 3 (C3), and α1-antitrypsin (A1AT) emerged as potential biomarkers involved in KD progression and recovery. CONCLUSIONS C6, C3, and A1AT may serve as novel biomarkers for early KD diagnosis and monitoring. These findings provide new insights into KD pathogenesis and potential targets for clinical application.
Collapse
Affiliation(s)
- Chengyi Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 966 HengYu Road, Jinan District, Fuzhou, Fujian, 350001, PR China
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, PR China
| | - Wenxin Yu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 966 HengYu Road, Jinan District, Fuzhou, Fujian, 350001, PR China
| | - Xinyue Wu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 966 HengYu Road, Jinan District, Fuzhou, Fujian, 350001, PR China
| | - Shibiao Wang
- Pediatric Intensive Care Unit, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, PR China
| | - Lumin Chen
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, PR China
| | - Guanghua Liu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 966 HengYu Road, Jinan District, Fuzhou, Fujian, 350001, PR China.
- Department of Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, PR China.
- Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 966 HengYu Road, Jinan District, Fuzhou, Fujian, 350001, PR China.
| |
Collapse
|
3
|
Alghamdi MA, Bahlas SM, Alamry SA, Mattar EH, Redwan EM. Exploring Anticitrullinated Antibodies (ACPAs) and Serum-Derived Exosomes Cargoes. Antibodies (Basel) 2025; 14:10. [PMID: 39982225 PMCID: PMC11843936 DOI: 10.3390/antib14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Autoantibodies such as rheumatoid factor (RF) and anticitrullinated protein autoantibodies (ACPAs) are useful tools for rheumatoid arthritis (RA). The presence of ACPAs against citrullinated proteins (CPs), especially citrullinated fibrinogen (cFBG), seems to be a useful serological marker for diagnosing RA. RA patients' sera were found to be enriched in exosomes that can transmit many proteins. Exosomes have been found to express citrullinated protein such as cFBG. OBJECTIVE We conducted this study in two stages. In the first phase, we aimed to evaluate the association between autoantibodies and risk factors. In the next step, ACPA-positive serum samples from the first phase were subjected to exosomal studies to explore the presence of cFBG, which is a frequent target for ACPAs. METHODS We investigated the autoantibodies in one hundred and sixteen Saudi RA patients and correlated with host-related risk factors. Exosomes were extracted from patients' sera and examined for the presence of cFBG using monoclonal antibodies. RESULTS The study reported a high female-to-male ratio of 8:1, and seropositive RA (SPRA) was more frequent among included RA patients. The frequency and the levels of ACPAs were similar in both genders. Autoantibodies incidences have a direct correlations with patient age, while the average titers decreased as the age increased. Further, the highest incidence and levels of autoantibodies were reported in patients with RA duration between 5 and 10 years. Smoking and family history have no impact on autoantibody, except for ACPAs titers among smokers' RA. Our analysis of serum exosomes revealed that about 50% of SPRA patients expressed cFBG. CONCLUSIONS The female-to-male ratio is 8:1, which is higher than the global ratio. We can conclude that patients' age and disease duration contribute to the autoantibodies, particularly RF and anti-MCV, whereas smoking and family history had no effects on autoantibodies. We detected cFBG in all exosomes from SPRA patients; thus, we suggest that the precise mechanism of exosomes in RA pathogenesis can be investigated to develop effective treatment strategies.
Collapse
Affiliation(s)
- Mohammed A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Sami M. Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| |
Collapse
|
4
|
Wang J, Zhang Y, Wang S, Wang X, Jing Y, Su J. Bone aging and extracellular vesicles. Sci Bull (Beijing) 2024; 69:3978-3999. [PMID: 39455324 DOI: 10.1016/j.scib.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Ding Y, Liang L, Guo Y, Zhu B. Bibliometric analysis of research on osteoarthritis and extracellular vesicles: Trends and frontiers. Heliyon 2024; 10:e36127. [PMID: 39224260 PMCID: PMC11366935 DOI: 10.1016/j.heliyon.2024.e36127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Extensive research has made significant progress in exploring the potential application of extracellular vesicles (EV) in the diagnosis and treatment of osteoarthritis (OA). However, there is current a lack of study on bibliometrics. In this study, we completed a novel bibliometric analysis of EV research in OA over the past two decades. Specifically, we identified a total of 354 relevant publications obtained between January 1, 2003 and December 31, 2022. We also provided a description of the distribution information regarding the countries or regions of publication, institutions involved, journals, authors, citations, and keywords. The primary research focuses encompassed the role of extracellular vesicles in the diagnosis of OA, delivery of active ingredients, treatment strategies, and cartilage repair. These findings highlight the latest research frontiers and emerging areas, providing valuable insights for further investigations on the application of extracellular vesicles in the context of osteoarthritis.
Collapse
Affiliation(s)
- Yongkang Ding
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Lu Liang
- Central Clinical Medical College, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Ye Guo
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Bing Zhu
- Central Clinical Medical College, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| |
Collapse
|
6
|
Arntz OJ, Thurlings RM, Blaney Davidson EN, Jansen PWTC, Vermeulen M, Koenders MI, van der Kraan PM, van de Loo FAJ. Profiling of plasma extracellular vesicles identifies proteins that strongly associate with patient's global assessment of disease activity in rheumatoid arthritis. Front Med (Lausanne) 2024; 10:1247778. [PMID: 38274452 PMCID: PMC10808582 DOI: 10.3389/fmed.2023.1247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovial inflammation and cartilage/bone damage. Intercellular messengers such as IL-1 and TNF play a crucial role in the pathophysiology of RA but have limited diagnostic and prognostic values. Therefore, we assessed whether the protein content of the recently discovered extracellular vesicles (EVs), which have gained attention in the pathogenesis of RA, correlates with disease activity parameters in RA patients. Methods We identified and quantified proteins in plasma-derived EVs (pEVs), isolated by size exclusion chromatography from 17 RA patients by mass spectrophotometry (MS). Quantified protein levels were correlated with laboratory and clinical parameters and the patient's own global assessment of their disease activity (PGA-VAS). In a second MS run, the pEV proteins of nine other RA patients were quantified and compared to those from nine healthy controls (HC). Results No differences were observed in the concentration, size, and protein content of pEVs from RA patients. Proteomics revealed >95% overlapping proteins in RA-pEVs, compared to HC-pEVs (data are available via ProteomeXchange with identifier PXD046058). Remarkably, in both runs, the level of far more RA-pEV proteins correlated positively to PGA-VAS than to either clinical or laboratory parameters. Interestingly, all observed PGA-VAS positively correlated RA-pEV proteins were associated with the actin-cytoskeleton linker proteins, ezrin, and moesin. Conclusion Our observation suggests that PGA-VAS (loss of vitality) may have a different underlying pathological mechanism in RA, possibly related to enhanced muscle actin-cytoskeleton activity. Furthermore, our study contributes to the growing awareness and evidence that pEVs contain valuable biomarkers for diseases, with added value for RA patients.
Collapse
Affiliation(s)
- Onno J. Arntz
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rogier M. Thurlings
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Pascal W. T. C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Fons A. J. van de Loo
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Abyadeh M, Alikhani M, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomics provides insights into the theranostic potential of extracellular vesicles. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:101-133. [PMID: 38220422 DOI: 10.1016/bs.apcsb.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Extracellular vesicles (EVs) encompass a diverse range of membranous structures derived from cells, including exosomes and microvesicles. These vesicles are present in biological fluids and play vital roles in various physiological and pathological processes. They facilitate intercellular communication by enabling the exchange of proteins, lipids, and genetic material between cells. Understanding the cellular processes that govern EV biology is essential for unraveling their physiological and pathological functions and their potential clinical applications. Despite significant advancements in EV research in recent years, there is still much to learn about these vesicles. The advent of improved mass spectrometry (MS)-based techniques has allowed for a deeper characterization of EV protein composition, providing valuable insights into their roles in different physiological and pathological conditions. In this chapter, we provide an overview of proteomics studies conducted to identify the protein contents of EVs, which contribute to their therapeutic and pathological features. We also provided evidence on the potential of EV proteome contents as biomarkers for early disease diagnosis, progression, and treatment response, as well as factors that influence their composition. Additionally, we discuss the available databases containing information on EV proteome contents, and finally, we highlight the need for further research to pave the way toward their utilization in clinical settings.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
8
|
Riitano G, Recalchi S, Capozzi A, Manganelli V, Misasi R, Garofalo T, Sorice M, Longo A. The Role of Autophagy as a Trigger of Post-Translational Modifications of Proteins and Extracellular Vesicles in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:12764. [PMID: 37628944 PMCID: PMC10454292 DOI: 10.3390/ijms241612764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, characterized by persistent joint inflammation, leading to cartilage and bone destruction. Autoantibody production is directed to post-translational modified (PTM) proteins, i.e., citrullinated or carbamylated. Autophagy may be the common feature in several types of stress (smoking, joint injury, and infections) and may be involved in post-translational modifications (PTMs) in proteins and the generation of citrullinated and carbamylated peptides recognized by the immune system in RA patients, with a consequent breakage of tolerance. Interestingly, autophagy actively provides information to neighboring cells via a process called secretory autophagy. Secretory autophagy combines the autophagy machinery with the secretion of cellular content via extracellular vesicles (EVs). A role for exosomes in RA pathogenesis has been recently demonstrated. Exosomes are involved in intercellular communications, and upregulated proteins and RNAs may contribute to the development of inflammatory arthritis and the progression of RA. In RA, most of the exosomes are produced by leukocytes and synoviocytes, which are loaded with PTM proteins, mainly citrullinated proteins, inflammatory molecules, and enzymes that are implicated in RA pathogenesis. Microvesicles derived from cell plasma membrane may also be loaded with PTM proteins, playing a role in the immunopathogenesis of RA. An analysis of changes in EV profiles, including PTM proteins, could be a useful tool for the prevention of inflammation in RA patients and help in the discovery of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (S.R.); (A.C.); (V.M.); (R.M.); (T.G.); (A.L.)
| | | |
Collapse
|
9
|
Zhao J, Zhang B, Meng W, Hu J. Elucidating a fresh perspective on the interplay between exosomes and rheumatoid arthritis. Front Cell Dev Biol 2023; 11:1177303. [PMID: 37187619 PMCID: PMC10175795 DOI: 10.3389/fcell.2023.1177303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by chronic synovitis and the destruction of bones and joints. Exosomes are nanoscale lipid membrane vesicles originating from multivesicular bodies and are used as a vital means of intercellular communication. Both exosomes and the microbial community are essential in RA pathogenesis. Multiple types of exosomes from different origins have been demonstrated to have effects on various immune cells through distinct mechanisms in RA, which depend on the specific cargo carried by the exosomes. Tens of thousands of microorganisms exist in the human intestinal system. Microorganisms exert various physiological and pathological effects on the host directly or through their metabolites. Gut microbe-derived exosomes are being studied in the field of liver disease; however, information on their role in the context of RA is still limited. Gut microbe-derived exosomes may enhance autoimmunity by altering intestinal permeability and transporting cargo to the extraintestinal system. Therefore, we performed a comprehensive literature review on the latest progress on exosomes in RA and provided an outlook on the potential role of microbe-derived exosomes as emerging players in clinical and translational research on RA. This review aimed to provide a theoretical basis for developing new clinical targets for RA therapy.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Nephropathy, The Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Binbin Zhang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wanting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:844-872. [PMID: 34747512 DOI: 10.1002/mas.21749] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exosomes (small extracellular vesicles) in living organisms play an important role in processes such as cell proliferation or intercellular communication. Recently, exosomes have been extensively investigated for biomarker discoveries for various diseases. An important aspect of exosome analysis involves the development of enrichment methods that have been introduced for successful isolation of exosomes. These methods include ultracentrifugation, size exclusion chromatography, polyethylene glycol-based precipitation, immunoaffinity-based enrichment, ultrafiltration, and asymmetric flow field-flow fractionation among others. To confirm the presence of exosomes, various characterization methods have been utilized such as Western blot analysis, atomic force microscopy, electron microscopy, optical methods, zeta potential, visual inspection, and mass spectrometry. Recent advances in high-resolution separations, high-performance mass spectrometry and comprehensive proteome databases have all contributed to the successful analysis of exosomes from patient samples. Herein we review various exosome enrichment methods, characterization methods, and recent trends of exosome investigations using mass spectrometry-based approaches for biomarker discovery.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Nakamachi Y, Uto K, Hayashi S, Okano T, Morinobu A, Kuroda R, Kawan S, Saegusa J. Exosomes derived from synovial fibroblasts from patients with rheumatoid arthritis promote macrophage migration that can be suppressed by miR-124-3p. Heliyon 2023; 9:e14986. [PMID: 37151687 PMCID: PMC10161379 DOI: 10.1016/j.heliyon.2023.e14986] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Objectives Exosomes are potent vehicles for intercellular communication. Rheumatoid arthritis (RA) is a chronic systemic disease of unknown etiology. Local administration of miR-124 precursor to rats with adjuvant-induced arthritis suppresses systemic arthritis and bone destruction. Thus, exosomes may be involved in this disease. We aimed to determine the role of exosomes in the pathology of RA. Methods Fibroblast-like synoviocytes (FLS) were collected from patients with RA and osteoarthritis (OA). miR-124-3p mimic was transfected into the RA FLS (RA miR-124 FLS). Exosomes were collected from the culture medium by ultracentrifugation. Macrophages were produced from THP-1 cells. MicroRNAs in the exosomes were analyzed using real-time PCR. Proteomics analysis was performed using nanoscale liquid chromatography-tandem mass spectrometry. Macrophage migration was evaluated using a Transwell migration assay. SiRNA was used to knockdown proteins of interest. Results MicroRNAs in the RA FLS, RA miR-124 FLS, and OA FLS exosomes were similar. Proteomics analysis revealed that pentraxin 3 (PTX3) levels were higher in RA FLS exosomes than in RA miR-124 FLS and OA FLS exosomes, and proteasome 20S subunit beta 5 (PSMB5) levels were lower in RA FLS exosomes than in RA miR-124 FLS and OA FLS exosomes. The RA FLS exosomes promoted and the RA miR-124 FLS exosomes suppressed macrophage migration. PTX3-silenced RA FLS exosomes suppressed and PSMB5-silenced OA FLS exosomes promoted macrophage migration. Conclusions RA FLS exosomes promote macrophage migration via PTX3 and PSMB5, and miR-124-3p suppresses this migration.
Collapse
|
12
|
Cypryk W, Czernek L, Horodecka K, Chrzanowski J, Stańczak M, Nurmi K, Bilicka M, Gadzinowski M, Walczak-Drzewiecka A, Stensland M, Eklund K, Fendler W, Nyman TA, Matikainen S. Lipopolysaccharide Primes Human Macrophages for Noncanonical Inflammasome-Induced Extracellular Vesicle Secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:322-334. [PMID: 36525001 DOI: 10.4049/jimmunol.2200444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/18/2022] [Indexed: 01/04/2023]
Abstract
Human macrophages secrete extracellular vesicles (EVs) loaded with numerous immunoregulatory proteins. Vesicle-mediated protein secretion in macrophages is regulated by poorly characterized mechanisms; however, it is now known that inflammatory conditions significantly alter both the quantities and protein composition of secreted vesicles. In this study, we employed high-throughput quantitative proteomics to characterize the modulation of EV-mediated protein secretion during noncanonical caspase-4/5 inflammasome activation via LPS transfection. We show that human macrophages activate robust caspase-4-dependent EV secretion upon transfection of LPS, and this process is also partially dependent on NLRP3 and caspase-5. A similar effect occurs with delivery of the LPS with Escherichia coli-derived outer membrane vesicles. Moreover, sensitization of the macrophages through TLR4 by LPS priming prior to LPS transfection dramatically augments the EV-mediated protein secretion. Our data demonstrate that this process differs significantly from canonical inflammasome activator ATP-induced vesiculation, and it is dependent on the autocrine IFN signal associated with TLR4 activation. LPS priming preceding the noncanonical inflammasome activation significantly enhances vesicle-mediated secretion of inflammasome components caspase-1, ASC, and lytic cell death effectors GSDMD, MLKL, and NINJ1, suggesting that inflammatory EV transfer may exert paracrine effects in recipient cells. Moreover, using bioinformatics methods, we identify 15-deoxy-Δ12,14-PGJ2 and parthenolide as inhibitors of caspase-4-mediated inflammation and vesicle secretion, indicating new therapeutic potential of these anti-inflammatory drugs.
Collapse
Affiliation(s)
- Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Liliana Czernek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Katarzyna Horodecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Jędrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Stańczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Katariina Nurmi
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marcelina Bilicka
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | | - Maria Stensland
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway; and
| | - Kari Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tuula A Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway; and
| | - Sampsa Matikainen
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
13
|
Yang X, Xia H, Liu C, Wu Y, Liu X, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Jia R. The novel delivery-exosome application for diagnosis and treatment of rheumatoid arthritis. Pathol Res Pract 2023; 242:154332. [PMID: 36696804 DOI: 10.1016/j.prp.2023.154332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic degenerative disease characterized by persistent systemic synovitis, with a high risk of stiffness, pain, and swelling. It may affect the other extra-articular tissues. There is no ideal treatment for this disease at present, and it can only be controlled by medication to alleviate the prognosis. Exosomes are small vesicles secreted by various cells in the organism under normal or pathological conditions, and play a role in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and so on. Due to the adverse effects of conventional drugs and treatments in the treatment of RA, exosomes, as a nanocarrier with many advantages, can have a great impact on the loading of drugs for the treatment of RA. This article reviews the role of exosomes in the pathogenesis of RA and the progress of exosome-based therapy for RA.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xinyi Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, People's Republic of China; School of Life Science, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| |
Collapse
|
14
|
Bo L, Jin X, Hu Y, Yang R. Role of Liquid Biopsies in Rheumatoid Arthritis. Methods Mol Biol 2023; 2695:237-246. [PMID: 37450123 DOI: 10.1007/978-1-0716-3346-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease caused by genetic and environmental factors. Early diagnosis is crucial for effective therapy and prognosis of RA, while biomarkers play important roles in early diagnosis. Traditional laboratory tests include rheumatoid factor, anti-cyclic citrullinated peptide antibody, which are inadequate in the ability of early diagnosis. Liquid biopsy technology is a technique using biomarkers found in the blood, urine, and other biological samples from patients, including DNA, RNA, exosome, etc. Evidence indicates that these biomarkers are involved in pathological and physiological conditions of RA. We reviewed the effects of liquid biopsy technology in the early diagnosis of RA and may provide new ideas for effective and precise treatment.
Collapse
Affiliation(s)
- Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojia Jin
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yaqi Hu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ru Yang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) is an elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2D-GE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The use of an internal pooled standard makes 2D-DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. Technical limitations of this technique (i.e., underrating of low abundant, high molecular mass and integral membrane proteins) are counterbalanced by the incomparable separation power which allows proteoforms and unknown PTM (posttranslational modification) identification. Moreover, the image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.
Collapse
Affiliation(s)
- Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy.
| |
Collapse
|
16
|
Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater 2022; 22:423-452. [PMID: 36311050 PMCID: PMC9588998 DOI: 10.1016/j.bioactmat.2022.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.
Collapse
|
17
|
Lv B, Cheng Z, Yu Y, Chen Y, Gan W, Li S, Zhao K, Yang C, Zhang Y. Therapeutic perspectives of exosomes in glucocorticoid-induced osteoarthrosis. Front Surg 2022; 9:836367. [PMID: 36034358 PMCID: PMC9405187 DOI: 10.3389/fsurg.2022.836367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes are widely involved in a variety of physiological and pathological processes. These important roles are also hidden in the physiological processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts, and bone marrow mesenchymal stem cells produce and secrete exosomes, thereby affecting the biology process of target cells. Furthermore, in the primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly involve glucocorticoid (GC), the exosomes have also widely participated. Therefore, exosomes may also play an important role in glucocorticoid-induced osteoarthrosis and serve as a promising treatment for early intervention of osteoarthrosis in addition to playing a regulatory role in malignant tumors. This review summarizes the previous results on this direction, systematically combs the role and therapeutic potential of exosomes in GC-induced osteoarthrosis, discusses the potential role of exosomes in the treatment and prevention of GC-induced osteoarthrosis, and reveals the current challenges we confronted.
Collapse
Affiliation(s)
- Bin Lv
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | | | | | | | | | | | - Kangcheng Zhao
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Cao Yang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Yukun Zhang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| |
Collapse
|
18
|
[Proteomics of serum exosomes in children in the acute stage of Kawasaki disease: a prospective study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:392-398. [PMID: 35527414 PMCID: PMC9044997 DOI: 10.7499/j.issn.1008-8830.2110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the biological processes and functions of serum exosomes in children in the acute stage of Kawasaki disease (KD), so as to provide new biomarkers for the early diagnosis of KD. METHODS In this prospective study, 13 children with KD who were treated in Children's Hospital of Soochow University from June 2019 to August 2020 were enrolled as the KD group, and 13 children who were hospitalized due to bacterial infection during the same period were enrolled as the control group. Whole blood was collected on the next morning after admission, serum samples were obtained by centrifugation, and exosomes were extracted through ultracentrifugation. Serum exosomes were analyzed by label-free quantitative proteomics, and differentially expressed proteins (DEPs) were screened out for functional enrichment analysis. A protein-protein interaction (PPI) network was plotted, and unique proteins were validated by targeted proteomics. RESULTS A total of 131 DEPs were screened out for the two groups, among which 27 proteins were detected in both groups. There were 48 unique DEPs in the KD group, among which 23 were upregulated and 25 were downregulated, and these proteins acted on "complement and coagulation cascades" and "the MAPK signaling pathway". Validation by targeted proteomics showed that FGG, SERPING1, C1R, C1QA, IGHG4, and C1QC proteins were quantifiable in the KD group. A total of 29 proteins were only expressed in the control group, among which 12 were upregulated and 17 were downregulated. Four proteins were quantifiable based on targeted proteomics, i.e., VWF, ECM1, F13A1, and TTR. A PPI network was plotted for each group. In the KD group, FGG and C1QC had close interaction with other proteins, while in the control group, VWF had close interaction with other proteins. CONCLUSIONS The serum exosomes FGG and C1QC in children in the acute stage of KD are expected to become the biomarkers for the early diagnosis of KD. For children with unexplained fever, detection of FGG, C1QC1, and VWF may help with etiological screening.
Collapse
|
19
|
Lättekivi F, Guljavina I, Midekessa G, Viil J, Heath PR, Bæk R, Jørgensen MM, Andronowska A, Kingo K, Fazeli A. Profiling Blood Serum Extracellular Vesicles in Plaque Psoriasis and Psoriatic Arthritis Patients Reveals Potential Disease Biomarkers. Int J Mol Sci 2022; 23:ijms23074005. [PMID: 35409365 PMCID: PMC9000144 DOI: 10.3390/ijms23074005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) are inflammatory diseases with unresolved pathophysiological aspects. Extracellular vesicles (EVs) play an important role in intercellular communication. We compared the miRNA contents and surface proteome of the EVs in the blood serum of PsV and PsA patients to healthy controls. Size-exclusion chromatography was used to isolate EVs from the blood serum of 12 PsV patients, 12 PsA patients and 12 healthy control subjects. EV samples were characterized and RNA sequencing was used to identify differentially enriched EV-bound miRNAs. We found 212 differentially enriched EV-bound miRNAs present in both PsV and PsA groups—a total of 13 miRNAs at FDR ≤ 0.05. The predicted target genes of these miRNAs were significantly related to lesser known but potentially disease-relevant pathways. The EV array revealed that PsV patient EV samples were significantly enriched with CD9 EV-marker compared to controls. Analysis of EV-bound miRNAs suggests that signaling via EVs in the blood serum could play a role in the pathophysiological processes of PsV and PsA. EVs may be able to fill the void in clinically applicable diagnostic and prognostic biomarkers for PsV and PsA.
Collapse
Affiliation(s)
- Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
| | - Irina Guljavina
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
| | - Getnet Midekessa
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Janeli Viil
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia;
| | - Paul R. Heath
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK;
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, 9000 Aalborg, Denmark; (R.B.); (M.M.J.)
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, 9000 Aalborg, Denmark; (R.B.); (M.M.J.)
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9220 Aalborg, Denmark
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima St. 10, 10-748 Olsztyn, Poland;
| | - Kulli Kingo
- Clinic of Dermatology, Institute of Clinical Medicine, University of Tartu, Raja 31, 50417 Tartu, Estonia;
- Clinic of Dermatology, Tartu University Hospital, Raja 31, 50417 Tartu, Estonia
| | - Alireza Fazeli
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield S10 2SF, UK
- Correspondence: ; Tel.: +372-737-4425
| |
Collapse
|
20
|
Yin B, Ni J, Witherel CE, Yang M, Burdick JA, Wen C, Wong SHD. Harnessing Tissue-derived Extracellular Vesicles for Osteoarthritis Theranostics. Theranostics 2022; 12:207-231. [PMID: 34987642 PMCID: PMC8690930 DOI: 10.7150/thno.62708] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic whole-joint disease characterized by low-grade systemic inflammation, degeneration of joint-related tissues such as articular cartilage, and alteration of bone structures that can eventually lead to disability. Emerging evidence has indicated that synovium or articular cartilage-secreted extracellular vesicles (EVs) contribute to OA pathogenesis and physiology, including transporting and enhancing the production of inflammatory mediators and cartilage degrading proteinases. Bioactive components of EVs are known to play a role in OA include microRNA, long non-coding RNA, and proteins. Thus, OA tissues-derived EVs can be used in combination with advanced nanomaterial-based biosensors for the diagnostic assessment of OA progression. Alternatively, mesenchymal stem cell- or platelet-rich plasma-derived EVs (MSC-EVs or PRP-EVs) have high therapeutic value for treating OA, such as suppressing the inflammatory immune microenvironment, which is often enriched by pro-inflammatory immune cells and cytokines that reduce chondrocytes apoptosis. Moreover, those EVs can be modified or incorporated into biomaterials for enhanced targeting and prolonged retention to treat OA effectively. In this review, we explore recently reported OA-related pathological biomarkers from OA joint tissue-derived EVs and discuss the possibility of current biosensors for detecting EVs and EV-related OA biomarkers. We summarize the applications of MSC-EVs and PRP-EVs and discuss their limitations for cartilage regeneration and alleviating OA symptoms. Additionally, we identify advanced therapeutic strategies, including engineered EVs and applying biomaterials to increase the efficacy of EV-based OA therapies. Finally, we provide our perspective on the future of EV-related diagnosis and therapeutic potential for OA treatment.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Junguo Ni
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | | | - Mo Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, PA 16802, USA.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| | - Chunyi Wen
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,Research Institute of Smart Ageing, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| |
Collapse
|
21
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
22
|
Bai SY, Li ML, Ren Y, Su XM. HDAC8-inhibitor PCI-34051-induced exosomes inhibit human bronchial smooth muscle cell proliferation via miR-381-3p mediated TGFB3. Pulm Pharmacol Ther 2021; 71:102096. [PMID: 34740750 DOI: 10.1016/j.pupt.2021.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
The present study aimed to investigate the effects of PCI-34051-induced human bronchial epithelial cells (HBECs)-derived exosomes (PCI-Exo) on human bronchial smooth muscle cells (HBSMCs) and the key exosomal miRNAs involved in this process. Blank exosomes (Exo) and PCI-Exo were extracted from HBECs treated with PBS and PCI-34051, respectively. RNA-sequencing was performed to uncover the miRNA expression profile affected by PCI-Exo. The MTT, flow cytometry and TUNEL assays were performed to reveal the effect of PCI-34051 and PCI-Exo on the proliferation and apoptosis of HBSMCs. Western blotting and qRT-PCR were used for detecting protein and mRNA expression. A total of 25 exosomal miRNAs consisted of 17 down-regulated and eight up-regulated miRNAs were differentially expressed among PCI-Exo and Exo. Target genes of the exosomal miRNAs were mainly associated with signal transduction, cell adhesion, microRNAs in cancer, and ECM receptor interaction. miR-381-3p was identified as the most significant upregulated differential miRNA in PCI-Exo after qRT-PCR validation and could be transferred to HBSMCs by PCI-Exo. PCI-Exo treatment inhibited the proliferation but induced the apoptosis of HBSMCs. TGFβ3 was identified as a target gene of miR-381-3p which could directly bind to the 3'UTR of TGFβ3 mRNA. After transfecting the miR-381-3p mimic into HBSMCs, the proliferation inhibition and apoptosis rate of HBSMCs was significantly increased, and siTGFβ3 transfection showed similar effects. Moreover, miR-381-3p overexpression could not only decrease the expression of α-SMA, FN1 and collagen I but also increase that of E-cadherin in HBSMCs. Our findings suggested that PCI-Exo could hinder the proliferation and obviously induce the apoptosis of HBSMCs, and its mechanisms might partly be attributable to the reduction of TGFβ3 level by up-regulating exosomal miR-381-3p expression. These results may be vital for the treatment of lung related-diseases, especially asthma.
Collapse
Affiliation(s)
- Shi-Yao Bai
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Meng-Lu Li
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yuan Ren
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin-Ming Su
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
23
|
Schioppo T, Ubiali T, Ingegnoli F, Bollati V, Caporali R. The role of extracellular vesicles in rheumatoid arthritis: a systematic review. Clin Rheumatol 2021; 40:3481-3497. [PMID: 33544235 PMCID: PMC8357675 DOI: 10.1007/s10067-021-05614-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that carries high social and economic costs and can lead to permanent disability. RA pathogenesis has not been completely elucidated yet. Extracellular vesicles (EVs) are membrane-contained vesicles released by cells playing a role in cell-to-cell communication and they could be involved in different diseases. Evidence on the involvement of EVs in RA is currently inconclusive. Therefore, a systematic review on the role of EVs in RA was performed in order to explore this relationship. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The research was conducted on PubMed, Scopus, and Embase up to March 5, 2020: 41 studies were analyzed out of 674 screened. The total plasmatic and synovial fluid (SF) EV number seems increased in RA as compared with healthy controls. Both RA plasma and SF contained EVs subpopulations of heterogenous origin, especially derived from platelets and immune system cells. No univocal evidence emerged on miRNA expression and EV content profile within RA patients. EVs showed to enhance pro-inflammatory pathways, such as cytokines and chemokine release and TNF blockade seemed to revert this effect. Our work highlights the requirement to standardize study methodologies in order to make results comparable and draw conclusions that remain, at present, unclear.
Collapse
Affiliation(s)
- Tommaso Schioppo
- Division of Clinical Rheumatology, ASST Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy.
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Research Center for Environmental Health, Università degli Studi di Milano, Milan, Italy.
| | - Tania Ubiali
- Division of Clinical Rheumatology, ASST Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - Francesca Ingegnoli
- Division of Clinical Rheumatology, ASST Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Research Center for Environmental Health, Università degli Studi di Milano, Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Research Center for Environmental Health, Università degli Studi di Milano, Milan, Italy
- EPIGET LAB, Università degli Studi di Milano, Milan, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Research Center for Environmental Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Yang T, He R, Li G, Liang J, Zhao L, Zhao X, Li L, Wang P. Growth arrest and DNA damage-inducible protein 34 (GADD34) contributes to cerebral ischemic injury and can be detected in plasma exosomes. Neurosci Lett 2021; 758:136004. [PMID: 34098025 DOI: 10.1016/j.neulet.2021.136004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Growth arrest and DNA damage-inducible protein 34 (GADD34), one of the key effectors of negative feedback loops, is induced by stress and subsequently attempts to restore homeostasis. It plays a critical role in response to DNA damage and endoplasmic reticulum stress. GADD34 has opposing effects on different stimulus-induced cell apoptosis events in many nervous system diseases, but its role in ischemic stroke is unclear. In this study, we evaluated the role of GADD34 and its distribution in a rat cerebral ischemic model. The results showed that GADD34 was increased in the cortex and contributed to brain injury in ischemic rats. Furthermore, treatment with a GADD34 inhibitor reduced the infarct volume, improved functional outcomes, and inhibited neuronal apoptosis in the cortical penumbra after ischemia. The role of GADD34 in ischemic stroke was associated with the dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and phosphorylation of p53. In addition, the GADD34 level was increased in plasma exosomes of cerebral ischemic rats. These findings indicate that GADD34 could be a potential therapeutic target and biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Tianhui Yang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ruyi He
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gongzhe Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jia Liang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Liang Zhao
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xing Zhao
- Department of Ophthalmology and Otolaryngology, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, Liaoning, China
| | - Liyang Li
- Department of Ophthalmology and Otolaryngology, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, Liaoning, China
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
25
|
Proteomic Exploration of Plasma Exosomes and Other Small Extracellular Vesicles in Pediatric Hodgkin Lymphoma: A Potential Source of Biomarkers for Relapse Occurrence. Diagnostics (Basel) 2021; 11:diagnostics11060917. [PMID: 34063765 PMCID: PMC8223799 DOI: 10.3390/diagnostics11060917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Exosomes and other small extracellular vesicles (EVs) are potential sources of cancer biomarkers. Plasma-derived EVs have not yet been studied in pediatric Hodgkin lymphoma (HL), for which predictive biomarkers of relapse are greatly needed. In this two-part proteomic study, we used two-dimensional difference gel electrophoresis (2D-DIGE) followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) to analyze EV proteins of plasma collected at diagnosis from children with nodular sclerosis HL, relapsed or not. EVs isolated using membrane affinity had radii ranging from 20 to 130 nm and contained the programmed cell death 6-interacting (ALIX) and the tumor susceptibility gene 101 (TSG101) proteins, whereas calnexin (CANX) was not detected. 2D-DIGE identified 16 spots as differentially abundant between non-relapsed and relapsed HL (|fold change| ≥ 1.5, p < 0.05). LC–MS/MS identified these spots as 11 unique proteins, including five more abundant in non-relapsed HL (e.g., complement C4b, C4B; fibrinogen γ chain, FGG) and six more abundant in relapsed HL (e.g., transthyretin, TTR). Shotgun LC–MS/MS on pooled EV proteins from non-relapsed HL identified 161 proteins, including 127 already identified in human exosomes (ExoCarta data). This EV cargo included 89 proteins not yet identified in exosomes from healthy plasma. Functional interrogation by the Database for Annotation, Visualization and Integrated Discovery (DAVID) revealed that the EV proteins participate in platelet degranulation and serine-type endopeptidase activity as the most significant Gene Ontology (GO) biological process and molecular function (p < 0.01).
Collapse
|
26
|
The emerging roles of exosomes in autoimmune diseases, with special emphasis on microRNAs in exosomes. Pharmacol Res 2021; 169:105680. [PMID: 34010670 DOI: 10.1016/j.phrs.2021.105680] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases include rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic vasculitis, dermatomyositis, systemic sclerosis (SSc), mixed connective tissue disease, autoimmune hemolytic anemia, autoimmune thyroiditis (AITD) and ulcerative colitis. Exosomes exist in body fluids, including blood, saliva, urine, cerebrospinal fluid and milk. They are mainly derived from the invagination of intracellular lysosomal particles, which are released into the extracellular matrix after fusion of the outer membrane of the exosomes with the cell membrane. Exosomes mediate intercellular communication and regulate the biological activity of receptor cells by carrying proteins, nucleic acids and lipids. Evidences show that exosomes are involved in the pathogenesis of various autoimmune diseases. In view of the important roles of exosomes in autoimmune diseases, this work systematically reviewed the effects of exosomes on the pathogenesis of autoimmune diseases, especially the regulatory roles of exosome derived microRNAs (miRNAs) in the pathogenesis of RA, SLE, dermatomyositis, SSc, AITD and ulcerative colitis. The review of the roles of exosomes in autoimmune diseases will help to clarify the pathogenesis of these diseases and explore new diagnostic markers and therapeutic targets.
Collapse
|
27
|
Arioz BI, Tufekci KU, Olcum M, Durur DY, Akarlar BA, Ozlu N, Bagriyanik HA, Keskinoglu P, Yener G, Genc S. Proteome profiling of neuron-derived exosomes in Alzheimer's disease reveals hemoglobin as a potential biomarker. Neurosci Lett 2021; 755:135914. [PMID: 33901610 DOI: 10.1016/j.neulet.2021.135914] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is a chronic and progressive neurodegenerative disorder, which is the most common cause of dementia worldwide. Although amyloid plaques and neurofibrillary tangles are identified as the hallmarks of the disease, the only valid diagnostic method yet is post-mortem imaging of these molecules in brain sections. Exosome is a type of extracellular vesicles secreted into extracellular space and plays fundamental roles in healthy and pathological conditions, including cell-to-cell communication. In this study, we aimed to investigate the proteomic contents of neuron-derived exosomes (NDEs) from AD patients and healthy controls (HCs) to identify a possible marker for AD diagnosis. We identified alpha-globin, beta-globin, and delta-globin increase in neuron-derived exosomes of AD patients compared to HCs with LC-MS/MS proteomics analysis. Then, we confirmed the high hemoglobin (Hb) level in NDEs of AD patients with ELISA. We found the area under the curve of hemoglobin level as 0.6913 with ROC analysis. Cargo proteins of NDEs may be useful diagnostic biomarker for AD.
Collapse
Affiliation(s)
- Burak Ibrahim Arioz
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Melis Olcum
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Devrim Yagmur Durur
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Busra A Akarlar
- Department of Molecular Biology and Genetics, Faculty of Science, Koc University, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Koc University, Istanbul, Turkey
| | - H Alper Bagriyanik
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Pembe Keskinoglu
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
28
|
Mustonen AM, Nieminen P. Extracellular Vesicles and Their Potential Significance in the Pathogenesis and Treatment of Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14040315. [PMID: 33915903 PMCID: PMC8065796 DOI: 10.3390/ph14040315] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by inflammation, gradual destruction of articular cartilage, joint pain, and functional limitations that eventually lead to disability. Join tissues, including synovium and articular cartilage, release extracellular vesicles (EVs) that have been proposed to sustain joint homeostasis as well as to contribute to OA pathogenesis. EVs transport biologically active molecules, and OA can be characterized by altered EV counts and composition in synovial fluid. Of EV cargo, specific non-coding RNAs could have future potential as diagnostic biomarkers for early OA. EVs may contribute to the propagation of inflammation and cartilage destruction by transporting and enhancing the production of inflammatory mediators and cartilage-degrading proteinases. In addition to inducing OA-related gene expression patterns in synoviocytes and articular chondrocytes, EVs can induce anti-OA effects, including increased extracellular matrix deposition and cartilage protection. Especially mesenchymal stem cell-derived EVs can alleviate intra-articular inflammation and relieve OA pain. In addition, surgically- or chemically-induced cartilage defects have been repaired with EV therapies in animal models. While human clinical trials are still in the future, the potential of actual cures to OA by EV products is very promising.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- Correspondence: ; Tel.: +358-294-45-1111
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| |
Collapse
|
29
|
Choi ES, Faruque HA, Kim JH, Kim KJ, Choi JE, Kim BA, Kim B, Kim YJ, Woo MH, Park JY, Hur K, Lee MY, Kim DS, Lee SY, Kim E. CD5L as an Extracellular Vesicle-Derived Biomarker for Liquid Biopsy of Lung Cancer. Diagnostics (Basel) 2021; 11:diagnostics11040620. [PMID: 33808296 PMCID: PMC8067192 DOI: 10.3390/diagnostics11040620] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/18/2023] Open
Abstract
Cancer screening and diagnosis can be achieved by analyzing specific molecules within serum-derived extracellular vesicles (EVs). This study sought to profile EV-derived proteins to identify potential lung cancer biomarkers. EVs were isolated from 80 serum samples from healthy individuals and cancer patients via polyethylene glycol (PEG)-based precipitation and immunoaffinity separation using antibodies against CD9, CD63, CD81, and EpCAM. Proteomic analysis was performed using 2-D gel electrophoresis and matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI–TOF MS). The expression of proteins that were differentially upregulated in the EVs or tissue of lung cancer samples was validated by Western blotting. The area under the curve (AUC) was calculated to assess the predictability of each differentially expressed protein (DEP) for lung cancer. A total of 55 upregulated protein spots were selected, seven of which (CD5L, CLEC3B, ITIH4, SERFINF1, SAA4, SERFINC1, and C20ORF3) were found to be expressed at high levels in patient-derived EVs by Western blotting. Meanwhile, only the expression of EV CD5L correlated with that in cancer tissues. CD5L also demonstrated the highest AUC value (0.943) and was found to be the core regulator in a pathway related to cell dysfunction. Cumulatively, these results show that EV-derived CD5L may represent a potential biomarker—detected via a liquid biopsy—for the noninvasive diagnosis of lung cancer.
Collapse
Affiliation(s)
- Eun-Sook Choi
- Division of Bi-Fusion Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Techno-jungangdaero 333, Dague 42988, Korea; (E.-S.C.); (H.A.F.)
| | - Hasan Al Faruque
- Division of Bi-Fusion Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Techno-jungangdaero 333, Dague 42988, Korea; (E.-S.C.); (H.A.F.)
| | - Jung-Hee Kim
- Division of Electronic Information System Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Techno-Jungangdaero 333, Dague 42988, Korea;
| | - Kook Jin Kim
- Genomine Research Division, Genomine Inc., Pohang Technopark, Pohang 37668, Korea; (K.J.K.); (B.A.K.); (B.K.); (Y.J.K.); (M.H.W.); (D.S.K.)
| | - Jin Eun Choi
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.E.C.); (K.H.)
| | - Bo A. Kim
- Genomine Research Division, Genomine Inc., Pohang Technopark, Pohang 37668, Korea; (K.J.K.); (B.A.K.); (B.K.); (Y.J.K.); (M.H.W.); (D.S.K.)
| | - Bora Kim
- Genomine Research Division, Genomine Inc., Pohang Technopark, Pohang 37668, Korea; (K.J.K.); (B.A.K.); (B.K.); (Y.J.K.); (M.H.W.); (D.S.K.)
| | - Ye Jin Kim
- Genomine Research Division, Genomine Inc., Pohang Technopark, Pohang 37668, Korea; (K.J.K.); (B.A.K.); (B.K.); (Y.J.K.); (M.H.W.); (D.S.K.)
| | - Min Hee Woo
- Genomine Research Division, Genomine Inc., Pohang Technopark, Pohang 37668, Korea; (K.J.K.); (B.A.K.); (B.K.); (Y.J.K.); (M.H.W.); (D.S.K.)
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Keun Hur
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.E.C.); (K.H.)
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea;
| | - Dong Su Kim
- Genomine Research Division, Genomine Inc., Pohang Technopark, Pohang 37668, Korea; (K.J.K.); (B.A.K.); (B.K.); (Y.J.K.); (M.H.W.); (D.S.K.)
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Correspondence: (S.Y.L.); (E.K.); Tel.: +82-53-200-2632 (S.Y.L.); +82-53-785-2530 (E.K.)
| | - Eunjoo Kim
- Division of Electronic Information System Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Techno-Jungangdaero 333, Dague 42988, Korea;
- Correspondence: (S.Y.L.); (E.K.); Tel.: +82-53-200-2632 (S.Y.L.); +82-53-785-2530 (E.K.)
| |
Collapse
|
30
|
Potential of Exosomes for Diagnosis and Treatment of Joint Disease: Towards a Point-of-Care Therapy for Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052666. [PMID: 33800860 PMCID: PMC7961842 DOI: 10.3390/ijms22052666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.
Collapse
|
31
|
Hejrati A, Hasani B, Esmaili M, Bashash D, Tavakolinia N, Zafari P. Role of exosome in autoimmunity, with a particular emphasis on rheumatoid arthritis. Int J Rheum Dis 2020; 24:159-169. [PMID: 33159418 DOI: 10.1111/1756-185x.14021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Cell-derived exosomes are identified as carriers of lipids, proteins, and genetic materials that participate in cell-cell signal communication, biological process, and cell signaling. Also, their involvement has been reported in a vast array of disorders and inflammatory conditions such as autoimmune diseases. Rheumatoid arthritis (RA), a common cause of joint disorder, is an inflammation-based disease in which the precise understanding of its pathogenesis needs to be further investigated. Also, there is only a palliative care approach for the alleviation of RA symptoms. This paper discusses the recent advances in the biology of exosomes in autoimmune disorders especially in RA, and also provides a new line of research for arthritis therapy using exosomes.
Collapse
Affiliation(s)
- Alireza Hejrati
- Department of Internal Medicine, Hazrate-Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Hasani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Esmaili
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
32
|
Serum Peptidomic Profile as a Novel Biomarker for Rheumatoid Arthritis. Int J Rheumatol 2020; 2020:6069484. [PMID: 32831850 PMCID: PMC7422355 DOI: 10.1155/2020/6069484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/17/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Over the last decades, there has been an increasing need to discover new diagnostic RA biomarkers, other than the current serologic biomarkers, which can assist early diagnosis and response to treatment. The purpose of this study was to analyze the serum peptidomic profile in patients with rheumatoid arthritis (RA) by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The study included 35 patients with rheumatoid arthritis (RA), 35 patients with primary osteoarthritis (OA) as the disease control (DC), and 35 healthy controls (HC). All participants were subjected to serum peptidomic profile analysis using magnetic bead (MB) separation (MALDI-TOF-MS). The trial showed 113 peaks that discriminated RA from OA and 101 peaks that discriminated RA from HC. Moreover, 95 peaks were identified and discriminated OA from HC; 38 were significant (p < 0.05) and 57 nonsignificant. The genetic algorithm (GA) model showed the best sensitivity and specificity in the three trials (RA versus HC, OA versus HC, and RA versus OA). The present data suggested that the peptidomic pattern is of value for differentiating individuals with RA from OA and healthy controls. We concluded that MALDI-TOF-MS combined with MB is an effective technique to identify novel serum protein biomarkers related to RA.
Collapse
|
33
|
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X, Chen L. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 2020; 8:25. [PMID: 32596023 PMCID: PMC7305215 DOI: 10.1038/s41413-020-0100-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.
Collapse
Affiliation(s)
- Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Cformation of H-type vessel in subchondral enter of Trauma and War Injury; Daping Hospital, Army Medical University of PLA, Chongqing, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Eleven Squadron Three Brigade, School of Basic Medical Science, Army Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei He
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
34
|
Osteoarthritis year in review 2019: biomarkers (biochemical markers). Osteoarthritis Cartilage 2020; 28:296-315. [PMID: 31887390 DOI: 10.1016/j.joca.2019.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide an insightful summary of studies on biochemical markers for osteoarthritis (OA). DESIGN Two investigators systematically searched the electronic PubMed database for clinical studies into soluble biochemical markers for OA in humans that were published between 01-03-2018 and 01-03-2019. Data from selected publications were systematically extracted and tabulated and were summarized in a narrative review. RESULTS Out of 1,279 publications, 124 fulfilled all selection criteria and were selected for data extraction. The majority were around knee OA, cross-sectional in design, relatively small, and/or focused on one or a few biochemical markers. Among the intervention studies, relatively many were on non-pharmacological interventions, used clinical outcomes and/or were rather short. Some leads that were provided by this year's studies pertained to less conventional inflammatory mediators, oxidative stress, acidosis, angiogenesis and/or autoantibody formation. CONCLUSIONS This year's biochemical marker studies did provide potential leads for therapeutic targets or other biochemical marker applications that require robust and strategic follow-up research to be validated.
Collapse
|
35
|
Jayaseelan VP, Arumugam P. Dissecting the theranostic potential of exosomes in autoimmune disorders. Cell Mol Immunol 2019; 16:935-936. [PMID: 31619771 DOI: 10.1038/s41423-019-0310-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Affiliation(s)
- Vijayashree Priyadharsini Jayaseelan
- Biomedical Research Unit and Laboratory Animal Centre-Dental Research Cell, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Paramasivam Arumugam
- Biomedical Research Unit and Laboratory Animal Centre-Dental Research Cell, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
36
|
An Update on Isolation Methods for Proteomic Studies of Extracellular Vesicles in Biofluids. Molecules 2019; 24:molecules24193516. [PMID: 31569778 PMCID: PMC6803898 DOI: 10.3390/molecules24193516] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer enclosed particles which present in almost all types of biofluids and contain specific proteins, lipids, and RNA. Increasing evidence has demonstrated the tremendous clinical potential of EVs as diagnostic and therapeutic tools, especially in biofluids, since they can be detected without invasive surgery. With the advanced mass spectrometry (MS), it is possible to decipher the protein content of EVs under different physiological and pathological conditions. Therefore, MS-based EV proteomic studies have grown rapidly in the past decade for biomarker discovery. This review focuses on the studies that isolate EVs from different biofluids and contain MS-based proteomic analysis. Literature published in the past decade (2009.1-2019.7) were selected and summarized with emphasis on isolation methods of EVs and MS analysis strategies, with the aim to give an overview of MS-based EV proteomic studies and provide a reference for future research.
Collapse
|
37
|
Using the tools of proteomics to understand the pathogenesis of idiopathic inflammatory myopathies. Curr Opin Rheumatol 2019; 31:617-622. [PMID: 31385878 DOI: 10.1097/bor.0000000000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW One of the most important advances in medical research over the past 20 years has been the emergence of technologies to assess complex biological processes on a global scale. Although a great deal of attention has been given to genome-scale genetics and genomics technologies, the utility of studying the proteome in a comprehensive way is sometimes under-appreciated. In this review, we discuss recent advances in proteomics as applied to dermatomyositis/polymyositis as well as findings from other inflammatory diseases that may enlighten our understanding of dermatomyositis/polymyositis. RECENT FINDINGS Proteomic approaches have been used to investigate basic mechanisms contributing to lung and skin disease in dermatomyositis/polymyositis as well as to the muscle disease itself. In addition, proteomic approaches have been used to identify autoantibodies targeting the endothelium in juvenile dermatomyositis. Studies from other inflammatory diseases have shown the promise of using proteomics to characterize the composition of immune complexes and the protein cargoes of exosomes. SUMMARY There are many relevant scientific and clinical questions in dermatomyositis/polymyositis that can be addressed using proteomics approaches. Careful attention to both methodology and analytic approaches are required to obtain useful and reproducible data.
Collapse
|