1
|
Biswas S, Sarojini S, Jayaram S, Philip I, Umesh M, Mascarenhas R, Pappuswamy M, Balasubramanian B, Arokiyaraj S. Understanding the Role of Antimicrobial Peptides in Neutrophil Extracellular Traps Promoting Autoimmune Disorders. Life (Basel) 2023; 13:1307. [PMID: 37374090 DOI: 10.3390/life13061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
AMPs are small oligopeptides acting as integral elements of the innate immune system and are of tremendous potential in the medical field owing to their antimicrobial and immunomodulatory activities. They offer a multitude of immunomodulatory properties such as immune cell differentiation, inflammatory responses, cytokine production, and chemoattraction. Aberrancy in neutrophil or epithelial cell-producing AMPs leads to inflammation culminating in various autoimmune responses. In this review, we have tried to explore the role of prominent mammalian AMPs-defensins and cathelicidins, as immune regulators with special emphasis on their role in neutrophil extracellular traps which promotes autoimmune disorders. When complexed with self-DNA or self-RNA, AMPs act as autoantigens which activate plasmacytoid dendritic cells and myeloid dendritic cells leading to the production of interferons and cytokines. These trigger a series of self-directed inflammatory reactions, leading to the emergence of diverse autoimmune disorders. Since AMPs show both anti- and pro-inflammatory abilities in different ADs, there is a dire need for a complete understanding of their role before developing AMP-based therapy for autoimmune disorders.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Saranya Jayaram
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Indhu Philip
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Roseanne Mascarenhas
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | | | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
2
|
von Köckritz-Blickwede M, Winstel V. Molecular Prerequisites for Neutrophil Extracellular Trap Formation and Evasion Mechanisms of Staphylococcus aureus. Front Immunol 2022; 13:836278. [PMID: 35237275 PMCID: PMC8884242 DOI: 10.3389/fimmu.2022.836278] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
NETosis is a multi-facetted cellular process that promotes the formation of neutrophil extracellular traps (NETs). NETs as web-like structures consist of DNA fibers armed with granular proteins, histones, and microbicidal peptides, thereby exhibiting pathogen-immobilizing and antimicrobial attributes that maximize innate immune defenses against invading microbes. However, clinically relevant pathogens often tolerate entrapment and even take advantage of the remnants of NETs to cause persistent infections in mammalian hosts. Here, we briefly summarize how Staphylococcus aureus, a high-priority pathogen and causative agent of fatal diseases in humans as well as animals, catalyzes and concurrently exploits NETs during pathogenesis and recurrent infections. Specifically, we focus on toxigenic and immunomodulatory effector molecules produced by staphylococci that prime NET formation, and further highlight the molecular and underlying principles of suicidal NETosis compared to vital NET-formation by viable neutrophils in response to these stimuli. We also discuss the inflammatory potential of NET-controlled microenvironments, as excessive expulsion of NETs from activated neutrophils provokes local tissue injury and may therefore amplify staphylococcal disease severity in hospitalized or chronically ill patients. Combined with an overview of adaptation and counteracting strategies evolved by S. aureus to impede NET-mediated killing, these insights may stimulate biomedical research activities to uncover novel aspects of NET biology at the host-microbe interface.
Collapse
Affiliation(s)
- Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- *Correspondence: Volker Winstel,
| |
Collapse
|
3
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 653] [Impact Index Per Article: 163.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Chen T, Li Y, Sun R, Hu H, Liu Y, Herrmann M, Zhao Y, Muñoz LE. Receptor-Mediated NETosis on Neutrophils. Front Immunol 2021; 12:775267. [PMID: 34804066 PMCID: PMC8600110 DOI: 10.3389/fimmu.2021.775267] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophil extracellular traps (NETs), a web-like structures containing chromatin, have a significant role in assisting the capture and killing of microorganisms by neutrophils during infection. The specific engagement of cell-surface receptors by extracellular signaling molecules activates diverse intracellular signaling cascades and regulates neutrophil effector functions, including phagocytosis, reactive oxygen species release, degranulation, and NET formation. However, overproduction of NETs is closely related to the occurrence of inflammation, autoimmune disorders, non-canonical thrombosis and tumor metastasis. Therefore, it is necessary to understand neutrophil activation signals and the subsequent formation of NETs, as well as the related immune regulation. In this review, we provide an overview of the immunoreceptor-mediated regulation of NETosis. The pathways involved in the release of NETs during infection or stimulation by noninfectious substances are discussed in detail. The mechanisms by which neutrophils undergo NETosis help to refine our views on the roles of NETs in immune protection and autoimmune diseases, providing a theoretical basis for research on the immune regulation of NETs.
Collapse
Affiliation(s)
- Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Bilska B, Zegar A, Slominski AT, Kleszczyński K, Cichy J, Pyza E. Expression of antimicrobial peptide genes oscillates along day/night rhythm protecting mice skin from bacteria. Exp Dermatol 2020; 30:1418-1427. [PMID: 33131146 DOI: 10.1111/exd.14229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of the innate immune system and are involved in skin protection against environmental insults and in wound healing. Herein, we assessed the gene expression of chemerin (Rarres2), cathelicidin CRAMP (Camp), and three β-defensins (Defb1, Defb3, and Defb14) in mouse skin during light/dark cycle (LD 12:12) and constant darkness (DD). Next, we examined the survival of bacteria applied on the skin at specific times during the day. We found that the expression of Rarres2, Camp, and Defb1 was the highest at 4 h after the beginning of darkness, during high activity of mice. These rhythms, however, were not maintained under DD in the skin but were present in the liver. This indicated that in the case of skin, a circadian input was masked by daily changes of light in the environment. In contrast, Defb3 and Defb14 showed the highest mRNA levels when the mice slept, and these rhythmic mRNA oscillations were maintained under DD. This shows that Rarres2, Camp, and Defb1 levels in the skin are correlated with high locomotor activity in mice and they are controlled by daily changes of light and dark. Alternatively, oscillations in the mRNA levels of Defb3 and Defb14 seem to protect skin and heal wounds during sleep. These rhythms are maintained under DD, indicating that they are regulated by a circadian clock. Our study suggests that daily AMP expression affects the survival of bacteria on the surface of skin, which depends on the phase of AMP cycling.
Collapse
Affiliation(s)
- Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Aneta Zegar
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| | | | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
7
|
Cathelicidins Mitigate Staphylococcus aureus Mastitis and Reduce Bacterial Invasion in Murine Mammary Epithelium. Infect Immun 2020; 88:IAI.00230-20. [PMID: 32341117 DOI: 10.1128/iai.00230-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 μM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.
Collapse
|
8
|
Abstract
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Human Defensins: A Novel Approach in the Fight against Skin Colonizing Staphylococcus a ureus. Antibiotics (Basel) 2020; 9:antibiotics9040198. [PMID: 32326312 PMCID: PMC7235756 DOI: 10.3390/antibiotics9040198] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a microorganism capable of causing numerous diseases of the human skin. The incidence of S. aureus skin infections reflects the conflict between the host skin′s immune defenses and the S. aureus’ virulence elements. Antimicrobial peptides (AMPs) are small protein molecules involved in numerous biological activities, playing a very important role in the innate immunity. They constitute the defense of the host′s skin, which prevents harmful microorganisms from entering the epithelial barrier, including S. aureus. However, S. aureus uses ambiguous mechanisms against host defenses by promoting colonization and skin infections. Our review aims to provide a reference collection on host-pathogen interactions in skin disorders, including S. aureus infections and its resistance to methicillin (MRSA). In addition to these, we discuss the involvement of defensins and other innate immunity mediators (i.e., toll receptors, interleukin-1, and interleukin-17), involved in the defense of the host against the skin disorders caused by S. aureus, and then focus on the evasion mechanisms developed by the pathogenic microorganism under analysis. This review provides the “state of the art” on molecular mechanisms underlying S. aureus skin infection and the pharmacological potential of AMPs as a new therapeutic strategy, in order to define alternative directions in the fight against cutaneous disease.
Collapse
|
10
|
Doolin T, Gross S, Siryaporn A. Physical Mechanisms of Bacterial Killing by Histones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:117-133. [PMID: 32894480 DOI: 10.1007/978-3-030-46886-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance is a global epidemic, becoming increasingly pressing due to its rapid spread. There is thus a critical need to develop new therapeutic approaches. In addition to searching for new antibiotics, looking into existing mechanisms of natural host defense may enable researchers to improve existing defense mechanisms, and to develop effective, synthetic drugs guided by natural principles. Histones, primarily known for their role in condensing mammalian DNA, are antimicrobial and share biochemical similarities with antimicrobial peptides (AMPs); however, the mechanism by which histones kill bacteria is largely unknown. Both AMPs and histones are similar in size, cationic, contain a high proportion of hydrophobic amino acids, and possess the ability to form alpha helices. AMPs, which mostly kill bacteria through permeabilization or disruption of the biological membrane, have recently garnered significant attention for playing a key role in host defenses. This chapter outlines the structure and function of histone proteins as they compare to AMPs and provides an overview of their role in innate immune responses, especially regarding the action of specific histones against microorganisms and their potential mechanism of action against microbial pathogens.
Collapse
Affiliation(s)
- Tory Doolin
- Department of Developmental and Cell Biology, UC Irvine, Irvine, CA, USA
| | - Steven Gross
- Department of Developmental and Cell Biology, UC Irvine, Irvine, CA, USA. .,Department of Physics & Astronomy, UC Irvine, Irvine, CA, USA.
| | - Albert Siryaporn
- Department of Physics & Astronomy, UC Irvine, Irvine, CA, USA. .,Department of Molecular Biology & Biochemistry, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Ouyang W, Liu C, Pan Y, Han Y, Yang L, Xia J, Xu F. SHP2 deficiency promotes Staphylococcus aureus pneumonia following influenza infection. Cell Prolif 2019; 53:e12721. [PMID: 31782850 PMCID: PMC6985656 DOI: 10.1111/cpr.12721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives Secondary bacterial pneumonia is common following influenza infection. However, it remains unclear about the underlying molecular mechanisms. Materials and methods We established a mouse model of post‐influenza S aureus pneumonia using conditional Shp2 knockout mice (LysMCre/+:Shp2flox/flox). The survival, bacterial clearance, pulmonary histology, phenotype of macrophages, and expression of type I interferons and chemokines were assessed between SHP2 deletion and control mice (Shp2flox/flox). We infused additional KC and MIP‐2 to examine the reconstitution of antibacterial immune response in LysMCre/+:Shp2flox/flox mice. The effect of SHP2 on signal molecules including MAPKs (JNK, p38 and Erk1/2), NF‐κB p65 and IRF3 was further detected. Results LysMCre/+:Shp2flox/flox mice displayed impaired antibacterial immunity and high mortality compared with control mice in post‐influenza S aureus pneumonia. The attenuated antibacterial ability was associated with the induction of type I interferon and suppression of chemo‐attractants KC and MIP‐2, which reduced the infiltration of neutrophils into the lung upon secondary bacterial invasion. In additional, Shp2 knockout mice displayed enhanced polarization to alternatively activated macrophages (M2 phenotype). Further in vitro analyses consistently demonstrated that SHP2‐deficient macrophages were skewed towards an M2 phenotype and had a decreased antibacterial capacity. Moreover, SHP2 modulated the inflammatory response to secondary bacterial infection via interfering with NF‐κB and IRF3 signalling in macrophages. Conclusions Our findings reveal that the SHP2 expression enhances the host immune response and prompts bacterial clearance in post‐influenza S aureus pneumonia.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Pan
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Han
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Yang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyan Xia
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Inoue M, Nakashima R, Enomoto M, Koike Y, Zhao X, Yip K, Huang SH, Waldron JN, Ikura M, Liu FF, Bratman SV. Plasma redox imbalance caused by albumin oxidation promotes lung-predominant NETosis and pulmonary cancer metastasis. Nat Commun 2018; 9:5116. [PMID: 30504805 PMCID: PMC6269536 DOI: 10.1038/s41467-018-07550-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/08/2018] [Indexed: 12/29/2022] Open
Abstract
Neutrophil extracellular traps (NETs) promote cancer metastasis in preclinical models following massive exogenous inflammatory stimuli. It remains unknown whether cancer hosts under physiologic conditions experience NETosis and consequent metastasis. Here we show that plasma redox imbalance caused by albumin oxidation promotes inflammation-independent NETosis. Albumin is the major source of free thiol that maintains redox balance. Oxidation of albumin-derived free thiol is sufficient to trigger NETosis via accumulation of reactive oxygen species within neutrophils. The resultant NETs are found predominantly within lungs where they contribute to the colonization of circulating tumor cells leading to pulmonary metastases. These effects are abrogated by pharmacologic inhibition of NET formation. Moreover, albumin oxidation is associated with pulmonary metastasis in a cohort of head and neck cancer patients. These results implicate plasma redox balance as an endogenous and physiologic regulator of NETosis and pulmonary cancer metastasis, providing new therapeutic and diagnostic opportunities for combatting cancer progression. Neutrophil extracellular traps (NETs) are known to promote metastasis in mouse models. Here the authors show plasma redox imbalance caused by albumin oxidation to induce inflammation-independent NETosis and lung metastasis, and albumin oxidation and reduced plasma free thiol to be associated with lung metastasis in a cohort of head and neck cancer patients.
Collapse
Affiliation(s)
- Minoru Inoue
- Princess Margaret Cancer Centre Research Institute, University Health Network, Toronto, M5G2M9, ON, Canada
| | - Ryota Nakashima
- Princess Margaret Cancer Centre Research Institute, University Health Network, Toronto, M5G2M9, ON, Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre Research Institute, University Health Network, Toronto, M5G2M9, ON, Canada
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu City, 514-8507, Mie Prefecture, Japan
| | - Xiao Zhao
- Princess Margaret Cancer Centre Research Institute, University Health Network, Toronto, M5G2M9, ON, Canada
| | - Kenneth Yip
- Princess Margaret Cancer Centre Research Institute, University Health Network, Toronto, M5G2M9, ON, Canada
| | - Shao Hui Huang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Healthy Network, Toronto, M5G2M9, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, M5G2M9, ON, Canada
| | - John N Waldron
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Healthy Network, Toronto, M5G2M9, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, M5G2M9, ON, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre Research Institute, University Health Network, Toronto, M5G2M9, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, M5G2M9, ON, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre Research Institute, University Health Network, Toronto, M5G2M9, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Healthy Network, Toronto, M5G2M9, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, M5G2M9, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, M5G2M9, ON, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre Research Institute, University Health Network, Toronto, M5G2M9, ON, Canada. .,Radiation Medicine Program, Princess Margaret Cancer Centre, University Healthy Network, Toronto, M5G2M9, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, M5G2M9, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, M5G2M9, ON, Canada.
| |
Collapse
|
13
|
Franco-Martínez L, Tvarijonaviciute A, Horvatić A, Guillemin N, Cerón JJ, Escribano D, Eckersall D, Kocatürk M, Yilmaz Z, Lamy E, Martínez-Subiela S, Mrljak V. Changes in salivary analytes in canine parvovirus: A high-resolution quantitative proteomic study. Comp Immunol Microbiol Infect Dis 2018; 60:1-10. [PMID: 30396423 PMCID: PMC7124818 DOI: 10.1016/j.cimid.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/24/2023]
Abstract
The present study evaluated the changes in salivary proteome in parvoviral enteritis (PVE) in dogs through a high-throughput quantitative proteomic analysis. Saliva samples from healthy dogs and dogs with severe parvovirosis that survived or perished due to the disease were analysed and compared by Tandem Mass Tags (TMT) analysis. Proteomic analysis quantified 1516 peptides, and 287 (corresponding to 190 proteins) showed significantly different abundances between studied groups. Ten proteins were observed to change significantly between dogs that survived or perished due to PVE. Bioinformatics' analysis revealed that saliva reflects the involvement of different pathways in PVE such as catalytic activity and binding, and indicates antimicrobial humoral response as a pathway with a major role in the development of the disease. These results indicate that saliva proteins reflect physiopathological changes that occur in PVE and could be a potential source of biomarkers for this disease.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Anita Horvatić
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Nicolas Guillemin
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain; Department of Animal and Food Science, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - David Eckersall
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Meriç Kocatürk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University, 16059, Bursa, Turkey
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University, 16059, Bursa, Turkey
| | - Elsa Lamy
- ICAAM - Institute of Mediterranean Agricultural and Environmental Sciences, University of Evora, Portugal
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain.
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| |
Collapse
|
14
|
Skerrett SJ, Braff MH, Liggitt HD, Rubens CE. Toll-like receptor 2 has a prominent but nonessential role in innate immunity to Staphylococcus aureus pneumonia. Physiol Rep 2018; 5:5/21/e13491. [PMID: 29142002 PMCID: PMC5688782 DOI: 10.14814/phy2.13491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus is an important cause of acute bacterial pneumonia. Toll‐like receptor 2 (TLR2) recognizes multiple components of the bacterial cell wall and activates innate immune responses to gram‐positive bacteria. We hypothesized that TLR2 would have an important role in pulmonary host defense against S. aureus. TLR null (TLR2−/−) mice and wild type (WT) C57BL/6 controls were challenged with aerosolized S. aureus at a range of inocula for kinetic studies of cytokine and antimicrobial peptide expression, lung inflammation, bacterial killing by alveolar macrophages, and bacterial clearance. Survival was measured after intranasal infection. Pulmonary induction of most pro‐inflammatory cytokines was significantly blunted in TLR2−/− mice 4 and 24 h after infection in comparison with WT controls. Bronchoalveolar concentrations of cathelicidin‐related antimicrobial peptide also were reduced in TLR2−/− mice. Lung inflammation, measured by enumeration of bronchoalveolar neutrophils and scoring of histological sections, was significantly blunted in TLR2−/− mice. Phagocytosis of S. aureus by alveolar macrophages in vivo after low‐dose infection was unimpaired, but viability of ingested bacteria was significantly greater in TLR2−/− mice. Bacterial clearance from the lungs was slightly impaired in TLR2−/− mice after low‐dose infection only; bacterial elimination from the lungs was slightly accelerated in the TLR2−/− mice after high‐dose infection. Survival after high‐dose intranasal challenge was 50–60% in both groups. TLR2 has a significant role in early innate immune responses to S. aureus in the lungs but is not required for bacterial clearance and survival from S. aureus pneumonia.
Collapse
Affiliation(s)
- Shawn J Skerrett
- Department of Medicine, University of Washington, Seattle, Washington
| | - Marissa H Braff
- Seattle Children's Hospital Research Institute, Seattle, Washington
| | - H Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Craig E Rubens
- Seattle Children's Hospital Research Institute, Seattle, Washington
| |
Collapse
|
15
|
Brandwein M, Bentwich Z, Steinberg D. Endogenous Antimicrobial Peptide Expression in Response to Bacterial Epidermal Colonization. Front Immunol 2017; 8:1637. [PMID: 29230218 PMCID: PMC5711782 DOI: 10.3389/fimmu.2017.01637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/09/2017] [Indexed: 01/30/2023] Open
Abstract
Bacterial commensal colonization of human skin is vital for the training and maintenance of the skin’s innate and adaptive immune functions. In addition to its physical barrier against pathogen colonization, the skin expresses a variety of antimicrobial peptides (AMPs) which are expressed constitutively and induced in response to pathogenic microbial stimuli. These AMPs are differentially effective against a suite of microbial skin colonizers, including both bacterial and fungal residents of the skin. We review the breadth of microorganism-induced cutaneous AMP expression studies and their complementary findings on the efficacy of skin AMPs against different bacterial and fungal species. We suggest further directions for skin AMP research based on emerging skin microbiome knowledge in an effort to advance our understanding of the nuanced host–microbe balance on human skin. Such advances should enable the scientific community to bridge the gap between descriptive disease-state AMP studies and experimental single-species in vitro studies, thereby enabling research endeavors that more closely mimic the natural skin environs.
Collapse
Affiliation(s)
- Michael Brandwein
- Biofilm Research Laboratory, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Ein Kerem, Jerusalem, Israel.,Cutaneous Microbiology Laboratory, The Skin Research Institute, Dead Sea and Arava Science Center, Masada, Israel
| | - Zvi Bentwich
- Cutaneous Microbiology Laboratory, The Skin Research Institute, Dead Sea and Arava Science Center, Masada, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Ein Kerem, Jerusalem, Israel
| |
Collapse
|
16
|
Grønnemose RB, Saederup KL, Kolmos HJ, Hansen SWK, Asferg CA, Rasmussen KJ, Palarasah Y, Andersen TE. A novel in vitro model for haematogenous spreading ofS. aureusdevice biofilms demonstrating clumping dispersal as an advantageous dissemination mechanism. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/28/2017] [Indexed: 01/07/2023]
Affiliation(s)
- R. B. Grønnemose
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - K. L. Saederup
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - H. J. Kolmos
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - S. W. K. Hansen
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - C. A. Asferg
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - K. J. Rasmussen
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - Y. Palarasah
- Unit for Thrombosis Research, Department of Clinical Biochemistry; University of Southern Denmark; Esbjerg Denmark
| | - T. E. Andersen
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| |
Collapse
|
17
|
Coorens M, Schneider VAF, de Groot AM, van Dijk A, Meijerink M, Wells JM, Scheenstra MR, Veldhuizen EJA, Haagsman HP. Cathelicidins Inhibit Escherichia coli-Induced TLR2 and TLR4 Activation in a Viability-Dependent Manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1418-1428. [PMID: 28710255 PMCID: PMC5544931 DOI: 10.4049/jimmunol.1602164] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/09/2017] [Indexed: 11/19/2022]
Abstract
Activation of the immune system needs to be tightly regulated to provide protection against infections and, at the same time, to prevent excessive inflammation to limit collateral damage to the host. This tight regulation includes regulating the activation of TLRs, which are key players in the recognition of invading microbes. A group of short cationic antimicrobial peptides, called cathelicidins, have previously been shown to modulate TLR activation by synthetic or purified TLR ligands and may play an important role in the regulation of inflammation during infections. However, little is known about how these cathelicidins affect TLR activation in the context of complete and viable bacteria. In this article, we show that chicken cathelicidin-2 kills Escherichia coli in an immunogenically silent fashion. Our results show that chicken cathelicidin-2 kills E. coli by permeabilizing the bacterial inner membrane and subsequently binds the outer membrane-derived lipoproteins and LPS to inhibit TLR2 and TLR4 activation, respectively. In addition, other cathelicidins, including human, mouse, pig, and dog cathelicidins, which lack antimicrobial activity under cell culture conditions, only inhibit macrophage activation by nonviable E. coli In total, this study shows that cathelicidins do not affect immune activation by viable bacteria and only inhibit inflammation when bacterial viability is lost. Therefore, cathelicidins provide a novel mechanism by which the immune system can discriminate between viable and nonviable Gram-negative bacteria to tune the immune response, thereby limiting collateral damage to the host and the risk for sepsis.
Collapse
Affiliation(s)
- Maarten Coorens
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Viktoria A F Schneider
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - A Marit de Groot
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Marjolein Meijerink
- Host Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - Jerry M Wells
- Host Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands;
| |
Collapse
|
18
|
Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and Mucosal Inflammation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:77-100. [PMID: 27193451 DOI: 10.1146/annurev-pathol-012615-044231] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called "inflammatory hypoxia," which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045; .,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Eric L Campbell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045; .,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
19
|
Stephan A, Batinica M, Steiger J, Hartmann P, Zaucke F, Bloch W, Fabri M. LL37:DNA complexes provide antimicrobial activity against intracellular bacteria in human macrophages. Immunology 2017; 148:420-32. [PMID: 27177697 DOI: 10.1111/imm.12620] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/30/2022] Open
Abstract
As part of the innate host response neutrophils release neutrophil extracellular traps (NETs), protein:DNA complexes that contain a number of antimicrobial peptides (AMPs), such as cathelicidin. Human cathelicidin in its active form, LL37, has potent antimicrobial activity against bacteria. However, whether LL37 derived from NETs contributes to antimicrobial activity against intracellular pathogens remains unclear. Here, we report that NETs induced by mycobacteria contain cathelicidin. Human macrophages internalized NET-bound cathelicidin, which is transported to lysosomal compartments. Furthermore, using a model of in vitro-generated LL37:DNA complexes we found that LL37 derived from such complexes attacks mycobacteria in macrophage phagolysosomes resulting in antimicrobial activity. Taken together, our results suggest a mechanism by which LL37 in complex with DNA contributes to host defence against intracellular bacteria in human macrophages.
Collapse
Affiliation(s)
| | - Marina Batinica
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Julia Steiger
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Pia Hartmann
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne, Cologne, Germany.,Department of Hospital Hygiene and Infection Control, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Centre for Biochemistry, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Mario Fabri
- Department of Dermatology, University of Cologne, Cologne, Germany.,Centre for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Interleukin-17A (IL-17A) and IL-17F Are Critical for Antimicrobial Peptide Production and Clearance of Staphylococcus aureus Nasal Colonization. Infect Immun 2016; 84:3575-3583. [PMID: 27736775 DOI: 10.1128/iai.00596-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/02/2016] [Indexed: 01/05/2023] Open
Abstract
Approximately 20% of the population is persistently colonized by Staphylococcus aureus in the nares. Th17-like immune responses mediated by the interleukin-17 (IL-17) family of cytokines and neutrophils are becoming recognized as relevant host defense mechanisms for resolution of S. aureus mucocutaneous infections. Since antimicrobial peptides are regulated by the IL-17 cytokines, we sought to determine the role of IL-17 cytokines in production of antimicrobial peptides in a murine model of S. aureus nasal carriage. We discovered that nasal tissue supernatants have antistaphylococcal activity, and mice deficient in both IL-17A and IL-17F lost the ability to clear S. aureus nasal colonization. IL-17A was found to be sufficient for nasal mBD-3 production ex vivo and was required for CRAMP, mBD-3, and mBD-14 expression in response to S. aureus colonization in vivo These data were confirmed in a clinical study of nasal secretions in which elevated levels of the human forms of these antimicrobial peptides were found in nasal secretions from healthy human subjects when they were colonized with S. aureus but not in secretions from noncolonized subjects. Together, these data provide evidence for the importance of IL-17A regulation of antimicrobial peptides and IL-17F in the clearance of S. aureus nasal carriage.
Collapse
|
21
|
Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L, Chen Y, van Endert P, Agerberth B, Diana J. Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota. Immunity 2015; 43:304-17. [PMID: 26253786 DOI: 10.1016/j.immuni.2015.07.013] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) expressed by epithelial and immune cells are largely described for the defense against invading microorganisms. Recently, their immunomodulatory functions have been highlighted in various contexts. However how AMPs expressed by non-immune cells might influence autoimmune responses in peripheral tissues, such as the pancreas, is unknown. Here, we found that insulin-secreting β-cells produced the cathelicidin related antimicrobial peptide (CRAMP) and that this production was defective in non-obese diabetic (NOD) mice. CRAMP administrated to prediabetic NOD mice induced regulatory immune cells in the pancreatic islets, dampening the incidence of autoimmune diabetes. Additional investigation revealed that the production of CRAMP by β-cells was controlled by short-chain fatty acids produced by the gut microbiota. Accordingly, gut microbiota manipulations in NOD mice modulated CRAMP production and inflammation in the pancreatic islets, revealing that the gut microbiota directly shape the pancreatic immune environment and autoimmune diabetes development.
Collapse
Affiliation(s)
- Jia Sun
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, 214122 Jiangsu, P.R. China
| | - Laetitia Furio
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1163, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Ramine Mecheri
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Anne M van der Does
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Erik Lundeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Loredana Saveanu
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France
| | - Yongquan Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, 214122 Jiangsu, P.R. China
| | - Peter van Endert
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France
| | - Birgitta Agerberth
- Medical Microbial Pathogenesis Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Julien Diana
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
22
|
Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun 2015; 83:2443-52. [PMID: 25824841 DOI: 10.1128/iai.00303-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 11/20/2022] Open
Abstract
Cigarette smoking is the leading preventable cause of death, disease, and disability worldwide. It is well established that cigarette smoke provokes inflammatory activation and impairs antimicrobial functions of human immune cells. Here we explore whether cigarette smoke likewise affects the virulence properties of an important human pathogen, Staphylococcus aureus, and in particular methicillin-resistant S. aureus (MRSA), one of the leading causes of invasive bacterial infections. MRSA colonizes the nasopharynx and is thus exposed to inhalants, including cigarette smoke. MRSA exposed to cigarette smoke extract (CSE-MRSA) was more resistant to macrophage killing (4-fold higher survival; P < 0.0001). CSE-MRSA demonstrated reduced susceptibility to cell lysis (1.78-fold; P = 0.032) and antimicrobial peptide (AMP) (LL-37) killing (MIC, 8 μM versus 4 μM). CSE modified the surface charge of MRSA in a dose-dependent fashion, impairing the binding of particles with charge similar to that of AMPs by 90% (P < 0.0001). These changes persisted for 24 h postexposure, suggesting heritable modifications. CSE exposure increased hydrophobicity by 55% (P < 0.0001), which complemented findings of increased MRSA adherence and invasion of epithelial cells. CSE induced upregulation of mprF, consistent with increased MRSA AMP resistance. S. aureus without mprF had no change in surface charge upon exposure to CSE. In vivo, CSE-MRSA pneumonia induced higher mouse mortality (40% versus 10%) and increased bacterial burden at 8 and 20 h postinfection compared to control MRSA-infected mice (P < 0.01). We conclude that cigarette smoke-induced immune resistance phenotypes in MRSA may be an additional factor contributing to susceptibility to infectious disease in cigarette smokers.
Collapse
|
23
|
Parlet CP, Kavanaugh JS, Horswill AR, Schlueter AJ. Chronic ethanol feeding increases the severity of Staphylococcus aureus skin infections by altering local host defenses. J Leukoc Biol 2015; 97:769-78. [PMID: 25605871 DOI: 10.1189/jlb.4a0214-092r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcoholics are at increased risk of Staphylococcus aureus skin infection and serious sequelae, such as bacteremia and death. Despite the association between alcoholism and severe S. aureus skin infection, the impact of EtOH on anti-S. aureus cutaneous immunity has not been investigated in a model of chronic EtOH exposure. To test the hypothesis that EtOH enhances the severity of S. aureus skin infection, mice were fed EtOH for ≥12 weeks via the Meadows-Cook model of alcoholism and inoculated with S. aureus following epidermal abrasion. Evidence of exacerbated staphylococcal disease in EtOH-fed mice included: skin lesions that were larger and contained more organisms, greater weight loss, and increased bacterial dissemination. Infected EtOH-fed mice demonstrated poor maintenance and induction of PMN responses in skin and draining LNs, respectively. Additionally, altered PMN dynamics in the skin of these mice corresponded with reduced production of IL-23 and IL-1β by CD11b(+) myeloid cells and IL-17 production by γδ T cells, with the latter defect occurring in the draining LNs as well. In addition, IL-17 restoration attenuated S. aureus-induced dermatopathology and improved bacterial clearance defects in EtOH-fed mice. Taken together, the findings show, in a novel model system, that the EtOH-induced increase in S. aureus-related injury/illness corresponds with defects in the IL-23/IL-17 inflammatory axis and poor PMN accumulation at the site of infection and draining LNs. These findings offer new information about the impact of EtOH on cutaneous host-defense pathways and provide a potential mechanism explaining why alcoholics are predisposed to S. aureus skin infection.
Collapse
Affiliation(s)
- Corey P Parlet
- Departments of *Pathology and Microbiology and Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jeffrey S Kavanaugh
- Departments of *Pathology and Microbiology and Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alexander R Horswill
- Departments of *Pathology and Microbiology and Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Annette J Schlueter
- Departments of *Pathology and Microbiology and Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
24
|
|
25
|
Nawrocki KL, Crispell EK, McBride SM. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antibiotics (Basel) 2014; 3:461-92. [PMID: 25419466 PMCID: PMC4239024 DOI: 10.3390/antibiotics3040461] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Kathryn L Nawrocki
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Emily K Crispell
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| |
Collapse
|
26
|
Role for streptococcal collagen-like protein 1 in M1T1 group A Streptococcus resistance to neutrophil extracellular traps. Infect Immun 2014; 82:4011-20. [PMID: 25024366 DOI: 10.1128/iai.01921-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptococcal collagen-like protein 1 (Scl-1) is one of the most highly expressed proteins in the invasive M1T1 serotype group A Streptococcus (GAS), a globally disseminated clone associated with higher risk of severe invasive infections. Previous studies using recombinant Scl-1 protein suggested a role in cell attachment and binding and inhibition of serum proteins. Here, we studied the contribution of Scl-1 to the virulence of the M1T1 clone in the physiological context of the live bacterium by generating an isogenic strain lacking the scl-1 gene. Upon subcutaneous infection in mice, wild-type bacteria induced larger lesions than the Δscl mutant. However, loss of Scl-1 did not alter bacterial adherence to or invasion of skin keratinocytes. We found instead that Scl-1 plays a critical role in GAS resistance to human and murine phagocytic cells, allowing the bacteria to persist at the site of infection. Phenotypic analyses demonstrated that Scl-1 mediates bacterial survival in neutrophil extracellular traps (NETs) and protects GAS from antimicrobial peptides found within the NETs. Additionally, Scl-1 interferes with myeloperoxidase (MPO) release, a prerequisite for NET production, thereby suppressing NET formation. We conclude that Scl-1 is a virulence determinant in the M1T1 GAS clone, allowing GAS to subvert innate immune functions that are critical in clearing bacterial infections.
Collapse
|
27
|
Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci 2014; 15:8753-72. [PMID: 24840573 PMCID: PMC4057757 DOI: 10.3390/ijms15058753] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a widespread cutaneous pathogen responsible for the great majority of bacterial skin infections in humans. The incidence of skin infections by S. aureus reflects in part the competition between host cutaneous immune defenses and S. aureus virulence factors. As part of the innate immune system in the skin, cationic antimicrobial peptides (CAMPs) such as the β-defensins and cathelicidin contribute to host cutaneous defense, which prevents harmful microorganisms, like S. aureus, from crossing epithelial barriers. Conversely, S. aureus utilizes evasive mechanisms against host defenses to promote its colonization and infection of the skin. In this review, we focus on host-pathogen interactions during colonization and infection of the skin by S. aureus and methicillin-resistant Staphylococcus aureus (MRSA). We will discuss the peptides (defensins, cathelicidins, RNase7, dermcidin) and other mediators (toll-like receptor, IL-1 and IL-17) that comprise the host defense against S. aureus skin infection, as well as the various mechanisms by which S. aureus evades host defenses. It is anticipated that greater understanding of these mechanisms will enable development of more sustainable antimicrobial compounds and new therapeutic approaches to the treatment of S. aureus skin infection and colonization.
Collapse
|
28
|
Gasim A. Cathelicidin antimicrobial peptide as a serologic marker and potential pathogenic factor in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Res Ther 2014; 16:105. [PMID: 25164257 PMCID: PMC3978818 DOI: 10.1186/ar4495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Antineutrophil cytoplasmic antibodies are associated with pauci-immune small-vessel vasculitis and crescentic glomerulonephritis. Cathelicidin LL37 is the human member of a family of antimicrobial peptides that are released from activated neutrophils and monocytes at sites of acute inflammation. Zhang and colleagues evaluated serum levels of cathelicidin LL37 and interferon-alpha in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV) and glomerulonephritis. Increased levels of cathelicidin LL37 and interferon-alpha were associated with AAV patients, particularly those with glomerular crescent formation. Cathelicidin LL37 may also be involved in the pathogenesis of AAV and thus could be a target for novel therapy. Cathelicidin LL37 is a promising new biomarker for active AAV, including aggressive crescentic glomerulonephritis, and may prove to be both a prognostic marker and a guide for treatment.
Collapse
|
29
|
Liu P, Wu X, Liao C, Liu X, Du J, Shi H, Wang X, Bai X, Peng P, Yu L, Wang F, Zhao Y, Liu M. Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity. PLoS One 2014; 9:e90042. [PMID: 24587206 PMCID: PMC3934966 DOI: 10.1371/journal.pone.0090042] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
The formation of extracellular traps (ETs) has recently been recognized as a novel defense mechanism in several types of innate immune cells. It has been suggested that these structures are toxic to microbes and contribute significantly to killing several pathogens. However, the role of ETs formed by macrophages (METs) in defense against microbes remains little known. In this study, we demonstrated that a subset of murine J774A.1 macrophage cell line (8% to 17%) and peritoneal macrophages (8.5% to 15%) form METs-like structures (METs-LS) in response to Escherichia coli and Candida albicans challenge. We found only a portion of murine METs-LS, which are released by dying macrophages, showed detectable killing effects on trapped E. coli but not C. albicans. Fluorescence and scanning electron microscopy analyses revealed that, in vitro, both microorganisms were entrapped in J774A.1 METs-LS composed of DNA and microbicidal proteins such as histone, myeloperoxidase and lysozyme. DNA components of both nucleus and mitochondrion origins were detectable in these structures. Additionally, METs-LS formation occurred independently of ROS produced by NADPH oxidase, and this process did not result in cell lysis. In summary, our results emphasized that microbes induced METs-LS in murine macrophage cells and that the microbicidal activity of these METs-LS differs greatly. We propose the function of METs-LS is to contain invading microbes at the infection site, thereby preventing the systemic diffusion of them, rather than significantly killing them.
Collapse
Affiliation(s)
- Pan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiuping Wu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Chengshui Liao
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Jing Du
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Haining Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Xuelin Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Peng Peng
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Feng Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Ying Zhao
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
30
|
Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. J Mol Med (Berl) 2013; 92:139-49. [PMID: 24297496 DOI: 10.1007/s00109-013-1100-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/15/2013] [Accepted: 10/31/2013] [Indexed: 12/15/2022]
Abstract
UNLABELLED Based on in vitro synergy studies, the addition of nafcillin to daptomycin was used to treat refractory methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Daptomycin is a de facto cationic antimicrobial peptide in vivo, with antistaphylococcal mechanisms reminiscent of innate host defense peptides (HDPs). In this study, the effects of nafcillin on HDP activity against MRSA were examined in vitro and in vivo. Exposures to β-lactam antimicrobials in general, and nafcillin in particular, significantly increased killing of S. aureus by selected HDPs from keratinocytes, neutrophils, and platelets. This finding correlated with enhanced killing of MRSA by whole blood, neutrophils, and keratinocytes after growth in nafcillin. Finally, nafcillin pretreatment ex vivo reduced MRSA virulence in a murine subcutaneous infection model. Despite the lack of direct activity against MRSA, these studies show potent, consistent, and generalized nafcillin-mediated "sensitization" to increased killing of MRSA by various components of the innate host response. The use of nafcillin as adjunctive therapy in MRSA bacteremia merits further study and should be considered in cases refractory to standard therapy. KEY MESSAGES Nafcillin has been used as adjunctive therapy to clear persistent MRSA bacteremia. Nafcillin enhances killing of MRSA by a cadre of innate host defense peptides. Nafcillin increases binding of human cathelicidin LL-37 to the MRSA membrane. Nafcillin enhances killing of MRSA by neutrophils. Nafcillin reduces virulence of MRSA in a murine subcutaneous infection model.
Collapse
|
31
|
Matsushima H, Geng S, Lu R, Okamoto T, Yao Y, Mayuzumi N, Kotol PF, Chojnacki BJ, Miyazaki T, Gallo RL, Takashima A. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood 2013; 121:1677-89. [PMID: 23305731 PMCID: PMC3591793 DOI: 10.1182/blood-2012-07-445189] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022] Open
Abstract
Neutrophils have been reported to acquire surface expression of MHC class II and co-stimulatory molecules as well as T-cell stimulatory activities when cultured with selected cytokines. However, cellular identity of those unusual neutrophils showing antigen presenting cell (APC)-like features still remains elusive. Here we show that both immature and mature neutrophils purified from mouse bone marrow differentiate into a previously unrecognized "hybrid" population showing dual properties of both neutrophils and dendritic cells (DCs) when cultured with granulocyte macrophage-colony-stimulating factor but not with other tested growth factors. The resulting hybrid cells express markers of both neutrophils (Ly6G, CXCR2, and 7/4) and DCs (CD11c, MHC II, CD80, and CD86). They also exhibit several properties typically reserved for DCs, including dendritic morphology, probing motion, podosome formation, production of interleukin-12 and other cytokines, and presentation of various forms of foreign protein antigens to naïve CD4 T cells. Importantly, they retain intrinsic abilities of neutrophils to capture exogenous material, extrude neutrophil extracellular traps, and kill bacteria via cathelicidin production. Not only do our results reinforce the notion that neutrophils can acquire APC-like properties, they also unveil a unique differentiation pathway of neutrophils into neutrophil-DC hybrids that can participate in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hironori Matsushima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu T, Kobayashi SD, Quinn MT, Deleo FR. A NET Outcome. Front Immunol 2012; 3:365. [PMID: 23227026 PMCID: PMC3514450 DOI: 10.3389/fimmu.2012.00365] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/16/2012] [Indexed: 01/11/2023] Open
Abstract
Neutrophils constitute a critical part of innate immunity and are well known for their ability to phagocytose and kill invading microorganisms. The microbicidal processes employed by neutrophils are highly effective at killing most ingested bacteria and fungi. However, an alternative non-phagocytic antimicrobial mechanism of neutrophils has been proposed whereby microorganisms are eliminated by neutrophil extracellular traps (NETs). NETs are comprised of DNA, histones, and antimicrobial proteins extruded by neutrophils during NETosis, a cell death pathway reported to be distinct from apoptosis, phagocytosis-induced cell death, and necrosis. Although multiple laboratories have reported NETs using various stimuli in vitro, the molecular mechanisms involved in this process have yet to be definitively elucidated, and many questions regarding the formation and putative role or function of NETs in innate host defense remain unanswered. It is with these questions in mind that we provide some reflection and perspective on NETs and NETosis.
Collapse
Affiliation(s)
- Thea Lu
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | | | | | |
Collapse
|
33
|
An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:916-24. [DOI: 10.1016/j.nano.2011.11.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
|
34
|
Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109:13076-81. [PMID: 22826226 DOI: 10.1073/pnas.1200419109] [Citation(s) in RCA: 691] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated thrombosis often lacks a clear etiology. However, it is linked to a poor prognosis and represents the second-leading cause of death in cancer patients. Recent studies have shown that chromatin released into blood, through the generation of neutrophil extracellular traps (NETs), is procoagulant and prothrombotic. Using a murine model of chronic myelogenous leukemia, we show that malignant and nonmalignant neutrophils are more prone to NET formation. This increased sensitivity toward NET generation is also observed in mammary and lung carcinoma models, suggesting that cancers, through a systemic effect on the host, can induce an increase in peripheral blood neutrophils, which are predisposed to NET formation. In addition, in the late stages of the breast carcinoma model, NETosis occurs concomitant with the appearance of venous thrombi in the lung. Moreover, simulation of a minor systemic infection in tumor-bearing, but not control, mice results in the release of large quantities of chromatin and a prothrombotic state. The increase in neutrophil count and their priming is mediated by granulocyte colony-stimulating factor (G-CSF), which accumulates in the blood of tumor-bearing mice. The prothrombotic state in cancer can be reproduced by treating mice with G-CSF combined with low-dose LPS and leads to thrombocytopenia and microthrombosis. Taken together, our results identify extracellular chromatin released through NET formation as a cause for cancer-associated thrombosis and unveil a target in the effort to decrease the incidence of thrombosis in cancer patients.
Collapse
|
35
|
Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int J Nanomedicine 2012; 7:1805-18. [PMID: 22619529 PMCID: PMC3356211 DOI: 10.2147/ijn.s28077] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Pathogenic bacteria are able to develop various strategies to counteract the bactericidal action of antibiotics. Silver nanoparticles (AgNPs) have emerged as a potential alternative to conventional antibiotics because of their potent antimicrobial properties. The purpose of this study was to synthesize chitosan-stabilized AgNPs (CS-AgNPs) and test for their cytotoxic, genotoxic, macrophage cell uptake, antibacterial, and antibiofilm activities. Methods AgNPs were synthesized using chitosan as both a stabilizing and a reducing agent. Antibacterial activity was determined by colony-forming unit assay and scanning electron microscopy. Genotoxic and cytotoxic activity were determined by DNA fragmentation, comet, and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. Cellular uptake and intracellular antibacterial activity were tested on macrophages. Results CS-AgNPs exhibited potent antibacterial activity against different human pathogens and also impeded bacterial biofilm formation. Scanning electron microscopy analysis indicated that CS-AgNPs kill bacteria by disrupting the cell membrane. CS-AgNPs showed no significant cytotoxic or DNA damage effect on macrophages at the bactericidal dose. Propidium iodide staining indicated active endocytosis of CS-AgNPs resulting in reduced intracellular bacterial survival in macrophages. Conclusion The present study concludes that at a specific dose, chitosan-based AgNPs kill bacteria without harming the host cells, thus representing a potential template for the design of antibacterial agents to decrease bacterial colonization and to overcome the problem of drug resistance.
Collapse
Affiliation(s)
- Prajna Jena
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India
| | | | | | | | | |
Collapse
|
36
|
Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells. Infect Immun 2012; 80:1891-9. [PMID: 22371374 DOI: 10.1128/iai.00050-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We recently documented the neutrophil response to enterovirulent diffusely adherent Escherichia coli expressing Afa/Dr fimbriae (Afa/Dr DAEC), using the human myeloid cell line PLB-985 differentiated into fully mature neutrophils. Upon activation, particularly during infections, neutrophils release neutrophil extracellular traps (NETs), composed of a nuclear DNA backbone associated with antimicrobial peptides, histones, and proteases, which entrap and kill pathogens. Here, using fluorescence microscopy and field emission scanning electron microscopy, we observed NET production by PLB-985 cells infected with the Afa/Dr wild-type (WT) E. coli strain C1845. We found that these NETs were able to capture, immobilize, and kill WT C1845 bacteria. We also developed a coculture model of human enterocyte-like Caco-2/TC7 cells and PLB-985 cells previously treated with WT C1845 and found, for the first time, that the F-actin cytoskeleton of enterocyte-like cells is damaged in the presence of bacterium-induced NETs and that this deleterious effect is prevented by inhibition of protease release. These findings provide new insights into the neutrophil response to bacterial infection via the production of bactericidal NETs and suggest that NETs may damage the intestinal epithelium, particularly in situations such as inflammatory bowel diseases.
Collapse
|
37
|
Vethanayagam RR, Almyroudis NG, Grimm MJ, Lewandowski DC, Pham CTN, Blackwell TS, Petraitiene R, Petraitis V, Walsh TJ, Urban CF, Segal BH. Role of NADPH oxidase versus neutrophil proteases in antimicrobial host defense. PLoS One 2011; 6:e28149. [PMID: 22163282 PMCID: PMC3233573 DOI: 10.1371/journal.pone.0028149] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/02/2011] [Indexed: 12/18/2022] Open
Abstract
NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox−/−) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)−/−×cathepsin G (CG)−/− mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox−/− mice, whereas NE−/−×CG−/− mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens.
Collapse
Affiliation(s)
- R. Robert Vethanayagam
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Nikolaos G. Almyroudis
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Medicine, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Melissa J. Grimm
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - David C. Lewandowski
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Christine T. N. Pham
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Timothy S. Blackwell
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ruta Petraitiene
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell University Medical Center, New York, New York, United States of America
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell University Medical Center, New York, New York, United States of America
| | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell University Medical Center, New York, New York, United States of America
| | | | - Brahm H. Segal
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Medicine, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol 2011; 34:261-80. [PMID: 22057887 DOI: 10.1007/s00281-011-0292-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/14/2011] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is an important human pathogen that is responsible for the vast majority of bacterial skin and soft tissue infections in humans. S. aureus can also become more invasive and cause life-threatening infections such as bacteremia, pneumonia, abscesses of various organs, meningitis, osteomyelitis, endocarditis, and sepsis. These infections represent a major public health threat due to the enormous numbers of these infections and the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. MSRA is endemic in hospitals worldwide and is rapidly spreading throughout the normal human population in the community. The increasing frequency of MRSA infections has complicated treatment as these strains are more virulent and are increasingly becoming resistant to multiple different classes of antibiotics. The important role of the immune response against S. aureus infections cannot be overemphasized as humans with certain genetic and acquired immunodeficiency disorders are at an increased risk for infection. Understanding the cutaneous immune responses against S. aureus is essential as most of these infections occur or originate from a site of infection or colonization of the skin and mucosa. This review will summarize the innate immune responses against S. aureus skin infections, including antimicrobial peptides that have direct antimicrobial activity against S. aureus as well as pattern recognition receptors and proinflammatory cytokines that promote neutrophil abscess formation in the skin, which is required for bacterial clearance. Finally, we will discuss the recent discoveries involving IL-17-mediated responses, which provide a key link between cutaneous innate and adaptive immune responses against S. aureus skin infections.
Collapse
Affiliation(s)
- Sheila Krishna
- Division of Dermatology, Department of Medicine, University of California Los Angeles, 52-121 Center for Health Sciences, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | |
Collapse
|
39
|
Brubaker AL, Palmer JL, Kovacs EJ. Age-related Dysregulation of Inflammation and Innate Immunity: Lessons Learned from Rodent Models. Aging Dis 2011; 2:346-360. [PMID: 22396887 PMCID: PMC3295081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 05/31/2023] Open
Abstract
In the elderly patient population, it has become increasingly evident that immune dysregulation is a contributing factor to age-related pathologies and their associated morbidity and mortality. In particular, elderly subjects are plagued by poor responses to infectious challenge and immunization and are at heightened risk for the development of autoimmune, neuroinflammatory and tumor-associated pathologies. Rodent models of aging and age-related disorders have been utilized to better describe how innate immune cell dysfunction contributes to these clinical scenarios. As the elderly population continues to increase in size, use of these aging rodent models to study immune dysregulation may translate into increased healthy living years for these individuals.
Collapse
Affiliation(s)
- Aleah L. Brubaker
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Program of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Jessica L. Palmer
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Elizabeth J. Kovacs
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Program of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
40
|
Sonawane A, Santos JC, Mishra BB, Jena P, Progida C, Sorensen OE, Gallo R, Appelberg R, Griffiths G. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell Microbiol 2011; 13:1601-17. [PMID: 21790937 DOI: 10.1111/j.1462-5822.2011.01644.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Macrophages have been shown to kill Mycobacterium tuberculosis through the action of the antimicrobial peptide cathelicidin (CAMP), whose expression was shown to be induced by 1,25-dihydroxyvitamin D3 (1,25D3). Here, we investigated in detail the antimycobacterial effect of murine and human cathelicidin against Mycobacterium smegmatis and M. bovis BCG infections. We have synthesized novel LL-37 peptide variants that exhibited potent in vitro bactericidal activity against M. smegmatis, M. bovis BCG and M. tuberculosis H37Rv, as compared with parental peptide. We show that the exogenous addition of LL-37 or endogenous overexpression of cathelicidin in macrophages significantly reduced the intracellular survival of mycobacteria relative to control cells. An upregulation of cathelicidin mRNA expression was observed that correlated with known M. smegmatis killing phases in J774 macrophages. Moreover, RNAi-based Camp knock-down macrophages and Camp(-/-) bone marrow derived mouse macrophages were significantly impaired in their ability to kill mycobacteria. M. smegmatis killing in Camp(-/-) macrophages was less extensive than in Camp(+/+) cells following activation with FSL-1, an inducer of cathelicidin expression. Finally we show that LL-37 and 1,25D3 treatment results in increase in colocalization of BCG-containing phagosomes with lysosomes. Altogether, these data demonstrate that cathelicidin plays an important role in controlling intracellular survival of mycobacteria.
Collapse
Affiliation(s)
- Avinash Sonawane
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar 751024, Orissa, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lemaire S, Van Bambeke F, Tulkens PM. Activity of finafloxacin, a novel fluoroquinolone with increased activity at acid pH, towards extracellular and intracellular Staphylococcus aureus, Listeria monocytogenes and Legionella pneumophila. Int J Antimicrob Agents 2011; 38:52-9. [DOI: 10.1016/j.ijantimicag.2011.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 02/03/2023]
|
42
|
Jena P, Mishra B, Leippe M, Hasilik A, Griffiths G, Sonawane A. Membrane-active antimicrobial peptides and human placental lysosomal extracts are highly active against mycobacteria. Peptides 2011; 32:881-7. [PMID: 21396418 DOI: 10.1016/j.peptides.2011.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/02/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, manifests discreet strategies to subvert host immune responses, which enable the pathogen to survive and multiply inside the macrophages. This problem is further worsened by the emergence of multidrug resistant mycobacterial strains, which make most of the anti-tuberculous drugs ineffective. It is thus imperative to search for and design better therapeutic strategies, including employment of new antibiotics. Recently, naturally produced antimicrobial molecules such as enzymes, peptides and their synthetic analogs have emerged as compounds with potentially significant therapeutical applications. Although, many antimicrobial peptides have been identified only very few of them have been tested against mycobacteria. A major limitation in using peptides as therapeutics is their sensitivity to enzymatic degradation or inactivity under certain physiological conditions such as relatively high salt concentration. Here, we show that NK-2, a peptide representing the cationic core region of the lymphocytic effector protein NK-lysin, and Ci-MAM-A24, a synthetic salt-tolerant peptide derived from immune cells of Ciona intestinalis, efficiently kill Mycobacterium smegmatis and Mycobacterium bovis-BCG. In addition, NK-2 and Ci-MAM-A24 showed a synergistic killing effect against M. smegmatis, no cytotoxic effect on mouse macrophages at bactericidal concentrations, and were even found to kill mycobacteria residing inside the macrophages. We also show that human placental lysosomal contents exert potent killing effect against mycobacteria under acidic and reducing growth conditions. Electron microscopic studies demonstrate that the lysosomal extract disintegrate bacterial cell membrane resulting in killing of mycobacteria.
Collapse
Affiliation(s)
- Prajna Jena
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Orissa, India
| | | | | | | | | | | |
Collapse
|
43
|
Jann NJ, Schmaler M, Ferracin F, Landmann R. TLR2 enhances NADPH oxidase activity and killing of Staphylococcus aureus by PMN. Immunol Lett 2010; 135:17-23. [PMID: 20875459 DOI: 10.1016/j.imlet.2010.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/06/2010] [Accepted: 09/17/2010] [Indexed: 12/21/2022]
Abstract
Toll-like receptors play an essential role in the detection of invading pathogens. TLR2 is expressed in high concentrations on neutrophils and has been implicated as a critical mediator inducing host antimicrobial defenses against Gram-positive bacteria. Neutrophil responses induced via TLR2 are likely to have important clinical consequences, since Gram-positive organisms, such as Staphylococcus aureus, are an increasingly important source of severe infections. In the present study, we report that TLR2 has a central role in killing of S. aureus by murine PMN via enhancement of NADPH oxidase activity. PMN from TLR2-deficient mice showed a similar inability to kill S. aureus in vitro and under in vivo-like conditions as PMN with a non-functional NADPH oxidase. This defect in killing by TLR2-deficient PMN was not related to phagocytosis but caused by delayed and reduced NADPH oxidase-mediated production of superoxide anion in response to S. aureus and other Gram-positive bacteria. The cause of this was independent of PI3K- and p38 signaling. The TLR2-enhanced induction of superoxide was a defect in proper NADPH oxidase assembly. We hypothesize that early activation of TLR2-signaling may enhance p47(phox) phosphorylation subsequent to phagocytosis-mediated phosphorylation. Summarized, these data demonstrate a novel role of TLR2 in the killing of S. aureus by ensuring a rapid activation of the NADPH oxidase complex.
Collapse
Affiliation(s)
- Naja J Jann
- Department of Biomedicine, Division of Infection Biology, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | |
Collapse
|
44
|
Berends ETM, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2010; 2:576-86. [PMID: 20829609 DOI: 10.1159/000319909] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/04/2010] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key effectors of the host innate immune response against bacterial infection. Staphylococcus aureus is a preeminent human pathogen, with an ability to produce systemic infections even in previously healthy individuals, thereby reflecting a resistance to effective neutrophil clearance. The recent discovery of neutrophil extracellular traps (NETs) has opened a novel dimension in our understanding of how these specialized leukocytes kill pathogens. NETs consist of a nuclear DNA backbone associated with antimicrobial peptides, histones and proteases that provide a matrix to entrap and kill various microbes. Here, we used targeted mutagenesis to examine a potential role of S. aureus nuclease in NET degradation and virulence in a murine respiratory tract infection model. In vitro assays using fluorescence microscopy showed the isogenic nuclease-deficient (nuc-deficient) mutant to be significantly impaired in its ability to degrade NETs compared with the wild-type parent strain USA 300 LAC. Consequently, the nuc-deficient mutant strain was significantly more susceptible to extracellular killing by activated neutrophils. Moreover, S. aureus nuclease production was associated with delayed bacterial clearance in the lung and increased mortality after intranasal infection. In conclusion, this study shows that S. aureus nuclease promotes resistance against NET-mediated antimicrobial activity of neutrophils and contributes to disease pathogenesis in vivo.
Collapse
Affiliation(s)
- Evelien T M Berends
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
45
|
M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 group A Streptococcus. mBio 2010; 1. [PMID: 20827373 PMCID: PMC2934611 DOI: 10.1128/mbio.00191-10] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/29/2010] [Indexed: 12/14/2022] Open
Abstract
The initiation of hyperinvasive disease in group A Streptococcus (GAS) serotype M1T1 occurs by mutation within the covRS two-component regulon (named covRS for control of virulence regulatory sensor kinase), which promotes resistance to neutrophil-mediated killing through the upregulation of bacteriophage-encoded Sda1 DNase. To determine whether other virulence factors contribute to this phase-switching phenomenon, we studied a panel of 10 isogenic GAS serotype M1T1 virulence gene knockout mutants. While loss of several individual virulence factors did not prevent GAS covRS switching in vivo, we found that M1 protein and hyaluronic acid capsule are indispensable for the switching phenotype, a phenomenon previously attributed uniquely to the Sda1 DNase. We demonstrate that like M1 protein and Sda1, capsule expression enhances survival of GAS serotype M1T1 within neutrophil extracellular traps. Furthermore, capsule shares with M1 protein a role in GAS resistance to human cathelicidin antimicrobial peptide LL-37. We conclude that a quorum of GAS serotype M1T1 virulence genes with cooperative roles in resistance to neutrophil extracellular killing is essential for the switch to a hyperinvasive phenotype in vivo. The pathogen group A Streptococcus (GAS) causes a wide range of human infections ranging from the superficial “strep throat” to potentially life-threatening conditions, such as necrotizing fasciitis, also known as “flesh-eating disease.” A marked increase in the number of cases of severe invasive GAS infection during the last 30 years has been traced to the emergence and spread of a single clone of the M1T1 serotype. Recent studies have shown that GAS serotype M1T1 bacteria undergo a genetic “switch” in vivo to a hypervirulent state that allows dissemination into the bloodstream. The present study was undertaken to identify specific GAS serotype M1T1 virulence factors required for this switch to hypervirulence. The surface-anchored GAS M1 protein and hyaluronic acid capsule are found to be essential for the switching phenotype, and a novel role for capsule in GAS resistance to host defense peptides and neutrophil extracellular killing is revealed.
Collapse
|