1
|
Khanda M, Seal P, Mohan AJ, Arya N, Boda SK. Antimicrobial peptides and their application to combat implant-associated infections - opportunities and challenges. NANOSCALE 2025; 17:10462-10484. [PMID: 40227869 DOI: 10.1039/d5nr00953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Despite minimally invasive surgeries and advancements in aseptic techniques, implant-associated infections are a significant complication in post-surgical implantation of medical devices. The standard practice of systemic antibiotic administration is often ineffective due to the development of bacterial antibiotic resistance, poor antibiotic penetration into biofilms, and low antibiotic bioavailability at the infected site. Infected implants are typically salvaged by tissue resection and antibacterial reinforcements during revision surgery. Towards this end, antimicrobial peptides (AMPs) have emerged as a promising alternative to traditional antibiotics to combat infections. Herein, a comprehensive overview of antimicrobial peptides, their structure and function, comparison with conventional antibiotics, antimicrobial properties, mechanisms of action of AMPs, and bacterial resistance to AMPs in relation to antibiotics are discussed. Furthermore, stimuli-responsive AMP delivery and contact killing via AMP coatings on implant surfaces are deliberated. We discuss various methods of AMP immobilization and coatings on implant materials through physico-chemical coating strategies. The review also addresses the clinical status and current limitations of AMP coatings such as proteolytic instability and potential cytotoxicity. Finally, we conclude with future directions to develop small, effective AMP mimetics and encapsulation of AMPs within nanocarriers to improve antimicrobial properties and design-controlled release systems for sustained antimicrobial activity.
Collapse
Affiliation(s)
- Milan Khanda
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
| | - Pallabi Seal
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
| | - Arya J Mohan
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Sunil Kumar Boda
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
- Department of Medical Science and Technology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
2
|
Lennard PR, Hiemstra PS, Dorin JR, Nibbering PH. SAAP-148 and halicin exhibit synergistic antimicrobial activity against antimicrobial-resistant bacteria in skin but not airway epithelial culture models. JAC Antimicrob Resist 2025; 7:dlaf050. [PMID: 40224359 PMCID: PMC11986330 DOI: 10.1093/jacamr/dlaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Background The escalating global threat of antimicrobial resistance (AMR) necessitates the development of novel antimicrobial agents, innovative strategies, and representative infection models to combat AMR bacterial infections. Host defence peptides (HDPs) and their derivatives have been proposed as complements to conventional antibiotics due to their antibacterial activity and modulation of the immune response. Objectives This study investigated the novel use of the HDP-derived synthetic antibacterial and anti-biofilm peptide (SAAP)-148 as a pretreatment in epithelial tissue models to prevent colonization by AMR bacteria. The combined activities of SAAP-148 pretreatment with post-infection halicin to treat infections were also explored. Methods Employing cultured human skin equivalents (HSEs) and primary bronchial epithelial cells (PBECs) as models of tissue infection, we examined the prophylactic and therapeutic effects of SAAP-148, both singularly and in combination with the repurposed antibiotic halicin, against AMR bacteria. We additionally interrogated the response of HSE and PBEC cultures to SAAP-148 treatment via confocal microscopy and quantitative PCR of native HDPs and inflammatory cytokine genes. Results Our findings demonstrated that pretreatment with SAAP-148 significantly reduces colonization of HSEs and PBECs by AMR Staphylococcus aureus and Pseudomonas aeruginosa. Confocal microscopy revealed differential uptake and localization of SAAP-148 in these tissues, correlating with its distinct activity in these tissues. SAAP-148 exposure temporarily increased expression of the HDPs cathelicidin (CAMP) and β-defensin 1 (DEFB1), and the cytokine IL-8 (CXCL8), which did not correlate with the transient antibacterial activity observed. Sequential treatment with SAAP-148 prior to infection with AMR S. aureus and post-infection halicin treatment demonstrated synergistic activity in HSEs, whereas this combined activity was indifferent in PBEC cultures. Conclusions These results support SAAP-148 as a candidate for pre-infection prophylaxis and synergistic antibiotic therapy with halicin in skin, broadening the potential of both agents to address AMR bacterial infection.
Collapse
Affiliation(s)
- Patrick R Lennard
- PulmoScience Laboratory, Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory of Infectious Diseases, Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Pieter S Hiemstra
- PulmoScience Laboratory, Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Julia R Dorin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Peter H Nibbering
- Laboratory of Infectious Diseases, Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Fan J, Li C, Han W, Wu F, Fan H, Fan D, Liu Y, Gu Z, Wang Y, Chen S, Chen B. Yeast peptides alleviate lipopolysaccharide-induced intestinal barrier damage in rabbits involving Toll-like receptor signaling pathway modulation and gut microbiota regulation. Front Vet Sci 2024; 11:1393434. [PMID: 38988982 PMCID: PMC11233764 DOI: 10.3389/fvets.2024.1393434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Yeast peptides have garnered attention as valuable nutritional modifiers due to their potential health benefits. However, the precise mechanisms underlying their effects remain elusive. This study aims to explore the potential of yeast peptides, when added to diets, to mitigate lipopolysaccharide (LPS)-induced intestinal damage and microbiota alterations in rabbits. Methods A total of 160 35-day-old Hyla line rabbits (0.96 ± 0.06 kg) were randomly assigned to 4 groups. These groups constituted a 2 × 2 factorial arrangement: basal diet (CON), 100 mg/kg yeast peptide diet (YP), LPS challenge + basal diet (LPS), LPS challenge +100 mg/kg yeast peptide diet (L-YP). The experiment spanned 35 days, encompassing a 7-day pre-feeding period and a 28-day formal trial. Results The results indicated that yeast peptides mitigated the intestinal barrier damage induced by LPS, as evidenced by a significant reduction in serum Diamine oxidase and D-lactic acid levels in rabbits in the L-YP group compared to the LPS group (p < 0.05). Furthermore, in the jejunum, the L-YP group exhibited a significantly higher villus height compared to the LPS group (p < 0.05). In comparison to the LPS group, the L-YP rabbits significantly upregulated the expression of Claudin-1, Occludin-1 and ZO-1 in the jejunum (p < 0.05). Compared with the CON group, the YP group significantly reduced the levels of rabbit jejunal inflammatory cytokines (TNF-α, IL-1β and IL-6) and decreased the relative mRNA expression of jejunal signaling pathway-associated inflammatory factors such as TLR4, MyD88, NF-κB and IL-1β (p < 0.05). Additionally, notable changes in the hindgut also included the concentration of short-chain fatty acids (SCFA) of the YP group was significantly higher than that of the CON group (p < 0.05). 16S RNA sequencing revealed a substantial impact of yeast peptides on the composition of the cecal microbiota. Correlation analyses indicated potential associations of specific gut microbiota with jejunal inflammatory factors, tight junction proteins, and SCFA. Conclusion In conclusion, yeast peptides have shown promise in mitigating LPS-induced intestinal barrier damage in rabbits through their anti-inflammatory effects, modulation of the gut microbiota, and maintenance of intestinal tight junctions.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Chong Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenxiao Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Huimin Fan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Dongfeng Fan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Yajuan Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, China
| | - Zilin Gu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, China
| | - Yuanyuan Wang
- Agricultural Comprehensive Management Detachment of Tangshan City, Tangshan, China
| | - Saijuan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Sintoris S, Binkowska JM, Gillan JL, Zuurbier RP, Twynam-Perkins J, Kristensen M, Melrose L, Parga PL, Rodriguez AR, Chu ML, van Boeckel SR, Wildenbeest JG, Bowdish DME, Currie AJ, Thwaites RS, Schwarze J, van Houten MA, Boardman JP, Cunningham S, Bogaert D, Davidson DJ. Nasal cathelicidin is expressed in early life and is increased during mild, but not severe respiratory syncytial virus infection. Sci Rep 2024; 14:13928. [PMID: 38886476 PMCID: PMC11182768 DOI: 10.1038/s41598-024-64446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.
Collapse
Affiliation(s)
- Sofia Sintoris
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Justyna M Binkowska
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Jonathan L Gillan
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Roy P Zuurbier
- Spaarne Gasthuis Academy, Spaarne Gasthuis, 2134 TM, Hoofddorp, The Netherlands
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jonathan Twynam-Perkins
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Maartje Kristensen
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Lauren Melrose
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Paula Lusaretta Parga
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Alicia Ruiz Rodriguez
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Mei Ling Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Sara R van Boeckel
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Joanne G Wildenbeest
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Dawn M E Bowdish
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, T2128, Hamilton, ON, L8N 4A6, Canada
| | - Andrew J Currie
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | | | - James P Boardman
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Steve Cunningham
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Debby Bogaert
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Donald J Davidson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK.
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia.
| |
Collapse
|
5
|
Zielke C, Nielsen JE, Lin JS, Barron AE. Between good and evil: Complexation of the human cathelicidin LL-37 with nucleic acids. Biophys J 2024; 123:1316-1328. [PMID: 37919905 PMCID: PMC11163296 DOI: 10.1016/j.bpj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
The innate immune system provides a crucial first line of defense against invading pathogens attacking the body. As the only member of the human cathelicidin family, the antimicrobial peptide LL-37 has been shown to have antiviral, antifungal, and antibacterial properties. In complexation with nucleic acids, LL-37 is suggested to maintain its beneficial health effects while also acting as a condensation agent for the nucleic acid. Complexes formed by LL-37 and nucleic acids have been shown to be immunostimulatory with a positive impact on the human innate immune system. However, some studies also suggest that in some circumstances, LL-37/nucleic acid complexes may be a contributing factor to autoimmune disorders such as psoriasis and systemic lupus erythematosus. This review provides a comprehensive discussion of research highlighting the beneficial health effects of LL-37/nucleic acid complexes, as well as discussing observed detrimental effects. We will emphasize why it is important to investigate and elucidate structural characteristics, such as condensation patterns of nucleic acids within complexation, and their mechanisms of action, to shed light on the intricate physiological effects of LL-37 and the seemingly contradictory role of LL-37/nucleic acid complexes in the innate immune response.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California.
| |
Collapse
|
6
|
Pabón-Carrasco M, Caceres-Matos R, Roche-Campos M, Hurtado-Guapo MA, Ortiz-Romero M, Gordillo-Fernández LM, Pabón-Carrasco D, Castro-Méndez A. Management of Skin Lesions in Patients with Epidermolysis Bullosa by Topical Treatment: Systematic Review and Meta-Analysis. Healthcare (Basel) 2024; 12:261. [PMID: 38275540 PMCID: PMC11154251 DOI: 10.3390/healthcare12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Epidermolysis bullosa (EB) is the overarching term for a set of rare inherited skin fragility disorders that result from mutations in at least 20 different genes. Currently, there is no cure for any of the EB subtypes associated with various mutations. Existing therapies primarily focus on alleviating pain and promoting early wound healing to prevent potential complications. Consequently, there is an urgent need for innovative therapeutic approaches. The objective of this research was to assess the efficacy of various topical treatments in patients with EB with the goal of achieving wound healing. A secondary objective was to analyse the efficacy of topical treatments for symptom reduction. A literature search was conducted using scientific databases, including The Cochrane Library, Medline (Pubmed), Web of Science, CINHAL, Embase, and Scopus. The protocol review was registered in PROSPERO (ID: 418790), and inclusion and exclusion criteria were applied, resulting in the selection of 23 articles. Enhanced healing times were observed compared with the control group. No conclusive data have been observed on pain management, infection, pruritus episodes, and cure rates over time. Additionally, evidence indicates significant progress in gene therapies (B-VEC), as well as cell and protein therapies. The dressing group, Oleogel S-10, allantoin and diacerein 1%, were the most represented, followed by fibroblast utilisation. In addition, emerging treatments that improve the patient's innate immunity, such as calcipotriol, are gaining attention. However, more trials are needed to reduce the prevalence of blistering and improve the quality of life of individuals with epidermolysis bullosa.
Collapse
Affiliation(s)
- Manuel Pabón-Carrasco
- Research Group PAIDI-CTS-1054: “Interventions and Health Care, Red Cross (ICSCRE)”, Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 6 Avenzoar ST, 41009 Seville, Spain;
| | - Rocio Caceres-Matos
- Research Group PAIDI-CTS-1050: “Complex Care, Chronicity and Health Outcomes”, Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 6 Avenzoar ST, 41009 Seville, Spain
| | | | | | - Mercedes Ortiz-Romero
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| | - Luis M. Gordillo-Fernández
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| | | | - Aurora Castro-Méndez
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| |
Collapse
|
7
|
Song Y, Zhang S, Zhao N, Nong C, He Y, Bao R. Pseudomonas aeruginosa two-component system CprRS regulates HigBA expression and bacterial cytotoxicity in response to LL-37 stress. PLoS Pathog 2024; 20:e1011946. [PMID: 38198506 PMCID: PMC10805311 DOI: 10.1371/journal.ppat.1011946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/23/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Pseudomonas aeruginosa is a highly pathogenic bacterium known for its ability to sense and coordinate the production of virulence factors in response to host immune responses. However, the regulatory mechanisms underlying this process have remained largely elusive. In this study, we investigate the two-component system CprRS in P. aeruginosa and unveil the crucial role of the sensor protein CprS in sensing the human host defense peptide LL-37, thereby modulating bacterial virulence. We demonstrate that CprS acts as a phosphatase in the presence of LL-37, leading to the phosphorylation and activation of the response regulator CprR. The results prove that CprR directly recognizes a specific sequence within the promoter region of the HigBA toxin-antitoxin system, resulting in enhanced expression of the toxin HigB. Importantly, LL-37-induced HigB expression promotes the production of type III secretion system effectors, leading to reduced expression of proinflammatory cytokines and increased cytotoxicity towards macrophages. Moreover, mutations in cprS or cprR significantly impair bacterial survival in both macrophage and insect infection models. This study uncovers the regulatory mechanism of the CprRS system, enabling P. aeruginosa to detect and respond to human innate immune responses while maintaining a balanced virulence gene expression profile. Additionally, this study provides new evidence and insights into the complex regulatory system of T3SS in P. aeruginosa within the host environment, contributing to a better understanding of host-microbe communication and the development of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ninglin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wei Z, Rolle MW, Camesano TA. Characterization of LL37 Binding to Collagen through Peptide Modification with a Collagen-Binding Domain. ACS OMEGA 2023; 8:35370-35381. [PMID: 37779975 PMCID: PMC10536065 DOI: 10.1021/acsomega.3c05328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Collagen-based biomaterials loaded with antimicrobial peptides (AMPs) present a promising approach for promoting wound healing while providing protection against infections. In our previous work, we modified the AMP LL37 by incorporating a collagen-binding domain (cCBD) as an anchoring unit for collagen-based wound dressings. We demonstrated that cCBD-modified LL37 (cCBD-LL37) exhibited improved retention on collagen after washing with PBS. However, the binding mechanism of cCBD-LL37 to collagen remained to be elucidated. In this study, we found that cCBD-LL37 showed a slightly higher affinity for collagen compared to LL37. Our results indicated that cCBD inhibited cCBD-LL37 binding to collagen but did not fully eliminate the binding. This suggests that cCBD-LL37 binding to collagen may involve more than just one-site-specific binding through the collagen-binding domain, with non-specific interactions also playing a role. Electrostatic studies revealed that both LL37 and cCBD-LL37 interact with collagen via long-range electrostatic forces, initiating low-affinity binding that transitions to close-range or hydrophobic interactions. Circular dichroism analysis showed that cCBD-LL37 exhibited enhanced structural stability compared to LL37 under varying ionic strengths and pH conditions, implying potential improvements in antimicrobial activity. Moreover, we demonstrated that the release of LL37 and cCBD-LL37 into the surrounding medium was influenced by the electrostatic environment, but cCBD could enhance the retention of peptide on collagen scaffolds. Collectively, these results provide important insights into cCBD-modified AMP-binding mechanisms and suggest that the addition of cCBD may enhance peptide structural stability and retention under varying electrostatic conditions.
Collapse
Affiliation(s)
- Ziqi Wei
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Marsha W. Rolle
- Department
of Biomedical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Terri A. Camesano
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| |
Collapse
|
9
|
Morio KA, Sternowski RH, Brogden KA. Induction of Endogenous Antimicrobial Peptides to Prevent or Treat Oral Infection and Inflammation. Antibiotics (Basel) 2023; 12:antibiotics12020361. [PMID: 36830272 PMCID: PMC9952314 DOI: 10.3390/antibiotics12020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Antibiotics are often used to treat oral infections. Unfortunately, excessive antibiotic use can adversely alter oral microbiomes and promote the development of antibiotic-resistant microorganisms, which can be difficult to treat. An alternate approach could be to induce the local transcription and expression of endogenous oral antimicrobial peptides (AMPs). To assess the feasibility and benefits of this approach, we conducted literature searches to identify (i) the AMPs expressed in the oral cavity; (ii) the methods used to induce endogenous AMP expression; and (iii) the roles that expressed AMPs may have in regulating oral inflammation, immunity, healing, and pain. Search results identified human neutrophil peptides (HNP), human beta defensins (HBD), and cathelicidin AMP (CAMP) gene product LL-37 as prominent AMPs expressed by oral cells and tissues. HNP, HBD, and LL-37 expression can be induced by micronutrients (trace elements, elements, and vitamins), nutrients, macronutrients (mono-, di-, and polysaccharides, amino acids, pyropeptides, proteins, and fatty acids), proinflammatory agonists, thyroid hormones, and exposure to ultraviolet (UV) irradiation, red light, or near infrared radiation (NIR). Localized AMP expression can help reduce infection, inflammation, and pain and help oral tissues heal. The use of a specific inducer depends upon the overall objective. Inducing the expression of AMPs through beneficial foods would be suitable for long-term health protection. Additionally, the specialized metabolites or concentrated extracts that are utilized as dosage forms would maintain the oral and intestinal microbiome composition and control oral and intestinal infections. Inducing AMP expression using irradiation methodologies would be applicable to a specific oral treatment area in addition to controlling local infections while regulating inflammatory and healing processes.
Collapse
Affiliation(s)
| | | | - Kim A. Brogden
- College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
10
|
Li B, Yang S, Hou N. Could vitamin D supplementation play a role against COVID-19? Front Immunol 2022; 13:967215. [PMID: 36172345 PMCID: PMC9511139 DOI: 10.3389/fimmu.2022.967215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bi Li
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, China
| | - Shuangshuang Yang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Graduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Ning Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Aloul KM, Nielsen JE, Defensor EB, Lin JS, Fortkort JA, Shamloo M, Cirillo JD, Gombart AF, Barron AE. Upregulating Human Cathelicidin Antimicrobial Peptide LL-37 Expression May Prevent Severe COVID-19 Inflammatory Responses and Reduce Microthrombosis. Front Immunol 2022; 13:880961. [PMID: 35634307 PMCID: PMC9134243 DOI: 10.3389/fimmu.2022.880961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterized by hyperactivation by inflammatory cytokines and recruitment of macrophages, neutrophils, and other immune cells, all hallmarks of a strong inflammatory response that can lead to severe complications and multi-organ damage. Mortality in COVID-19 patients is associated with a high prevalence of neutrophil extracellular trap (NET) formation and microthrombosis that are exacerbated by hyperglycemia, diabetes, and old age. SARS-CoV-2 infection in humans and non-human primates have revealed long-term neurological consequences of COVID-19, possibly concomitant with the formation of Lewy bodies in the brain and invasion of the nervous system via the olfactory bulb. In this paper, we review the relevance of the human cathelicidin LL-37 in SARS-CoV-2 infections. LL-37 is an immunomodulatory, host defense peptide with direct anti-SARS-CoV-2 activity, and pleiotropic effects on the inflammatory response, neovascularization, Lewy body formation, and pancreatic islet cell function. The bioactive form of vitamin D and a number of other compounds induce LL-37 expression and one might predict its upregulation, could reduce the prevalence of severe COVID-19. We hypothesize upregulation of LL-37 will act therapeutically, facilitating efficient NET clearance by macrophages, speeding endothelial repair after inflammatory tissue damage, preventing α-synuclein aggregation, and supporting blood-glucose level stabilization by facilitating insulin release and islet β-cell neogenesis. In addition, it has been postulated that LL-37 can directly bind the S1 domain of SARS-CoV-2, mask angiotensin converting enzyme 2 (ACE2) receptors, and limit SARS-CoV-2 infection. Purposeful upregulation of LL-37 could also serve as a preventative and therapeutic strategy for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Karim M. Aloul
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Erwin B. Defensor
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer S. Lin
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - John A. Fortkort
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Mehrdad Shamloo
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, Bryan, TX, United States
| | - Adrian F. Gombart
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Chaki S, Alkanfari I, Roy S, Amponnawarat A, Hui Y, Oskeritzian CA, Ali H. Inhibition of Orai Channel Function Regulates Mas-Related G Protein-Coupled Receptor-Mediated Responses in Mast Cells. Front Immunol 2022; 12:803335. [PMID: 35126366 PMCID: PMC8810828 DOI: 10.3389/fimmu.2021.803335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mast cells (MCs) are tissue resident immune cells that play important roles in the pathogenesis of allergic disorders. These responses are mediated via the cross-linking of cell surface high affinity IgE receptor (FcϵRI) by antigen resulting in calcium (Ca2+) mobilization, followed by degranulation and release of proinflammatory mediators. In addition to FcϵRI, cutaneous MCs express Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MrgprB2). Activation of MRGPRX2/B2 by the neuropeptide substance P (SP) is implicated in neurogenic inflammation, chronic urticaria, mastocytosis and atopic dermatitis. Although Ca2+ entry is required for MRGPRX2/B2-mediated MC responses, the possibility that calcium release-activated calcium (CRAC/Orai) channels participate in these responses has not been tested. Lentiviral shRNA-mediated silencing of Orai1, Orai2 or Orai3 in a human MC line (LAD2 cells) resulted in partial inhibition of SP-induced Ca2+ mobilization, degranulation and cytokine/chemokine generation (TNF-α, IL-8, and CCL-3). Synta66, which blocks homo and hetero-dimerization of Orai channels, caused a more robust inhibition of SP-induced responses than knockdown of individual Orai channels. Synta66 also blocked SP-induced extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt phosphorylation and abrogated cytokine/chemokine production. It also inhibited SP-induced Ca2+ mobilization and degranulation in primary human skin MCs and mouse peritoneal MCs. Furthermore, Synta66 attenuated both SP-induced cutaneous vascular permeability and leukocyte recruitment in mouse peritoneum. These findings demonstrate that Orai channels contribute to MRGPRX2/B2-mediated MC activation and suggest that their inhibition could provide a novel approach for the modulation of SP-induced MC/MRGPRX2-mediated disorders.
Collapse
Affiliation(s)
- Shaswati Chaki
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Ibrahim Alkanfari
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
- Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Aetas Amponnawarat
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
- Department of Family and Community Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Carole A. Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| |
Collapse
|
13
|
Xu B, Wu X, Gong Y, Cao J. IL-27 induces LL-37/CRAMP expression from intestinal epithelial cells: implications for immunotherapy of Clostridioides difficile infection. Gut Microbes 2022; 13:1968258. [PMID: 34432564 PMCID: PMC8405154 DOI: 10.1080/19490976.2021.1968258] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile infection is currently the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. Cathelicidins, a major group of natural antimicrobial peptides, have antimicrobial and immunomodulatory activities in Clostridioides difficile infection. Here, we have shown that cytokine IL-27 induced human cathelicidin antimicrobial peptide (LL-37) expression in primary human colonic epithelial cells. IL-27 receptor-deficient mice had impaired expression of cathelicidin-related antimicrobial peptide (CRAMP, mouse homolog for human LL-37) after Clostridioides difficile infection, and restoration of CRAMP improved Clostridium difficile clearance and reduced mortality in IL-27 receptor-deficient mice after Clostridioides difficile challenge. In clinical samples from 119 patients with Clostridioides difficile infection, elevated levels of IL-27 were positively correlated with LL-37 in the sera and stools. These findings suggest that IL-27 may be involved in host immunity against Clostridioides difficile infection via induction of LL-37/CRAMP. Therefore, IL-27-LL-37 axis may be a valuable pathway in the development of immune-based therapy.
Collapse
Affiliation(s)
- Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xianan Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Gong
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,CONTACT Ju Cao Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1#, Yu Zhong District, Chongqing, China
| |
Collapse
|
14
|
Ul Afshan F, Nissar B, Chowdri NA, Ganai BA. Relevance of vitamin D 3 in COVID-19 infection. GENE REPORTS 2021; 24:101270. [PMID: 34250314 PMCID: PMC8260490 DOI: 10.1016/j.genrep.2021.101270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 virus, the main culprit for COVID-19 disaster, has triggered a gust of curiosity both in the mechanism of action of this infection as well as potential risk factors for disease generation and regimentation. The prime focus of the present review, which is basically a narrative one, is in utilizing the current concepts of vitamin D3 as an agent with myriad functions, one of them being immunocompetence and a promising weapon for both innate and adaptive immunity against COVID-19 infection. Some of the manifestations of SARS-CoV-2 virus such as Acute Respiratory Distress Syndrome (ARDS) overlap with the pathophysiological effects that are overcome due to already established role of vitamin D3 e.g., amelioration of cytokine outburst. Additionally, the cardiovascular complications due to COVID-19 infection may also be connected to vitamin D3 levels and the activity of its active forms. Eventually, we summarise the clinical, observational and epidemiological data of the respiratory diseases including COVID-19 disease and try to bring its association with the potential role of vitamin D3, in particular, the activity of its active forms, circulating levels and its supplementation, against dissemination of this disease.
Collapse
Affiliation(s)
- Falaque Ul Afshan
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| | - Bushra Nissar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| | | | - Bashir Ahmad Ganai
- Centre For Research and Development, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| |
Collapse
|
15
|
Jacobo-Delgado YM, Torres-Juarez F, Rodríguez-Carlos A, Santos-Mena A, Enciso-Moreno JE, Rivas-Santiago C, Diamond G, Rivas-Santiago B. Retinoic acid induces antimicrobial peptides and cytokines leading to Mycobacterium tuberculosis elimination in airway epithelial cells. Peptides 2021; 142:170580. [PMID: 34033876 DOI: 10.1016/j.peptides.2021.170580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is the leading cause of death by a single infectious agent, Mycobacterium tuberculosis (Mtb). Alveolar macrophages and respiratory epithelial cells are the first cells exposed to Mtb during the primary infection, once these cells are activated, secrete cytokines and antimicrobial peptides that are associated with the Mtb contention and elimination. Vitamins are micronutrients that function as boosters on the innate immune system, however, is unclear whether they have any protective activity during Mtb infection. Thus, we investigated the role of vitamin A (retinoic acid), vitamin C (ascorbic acid), vitamin D (calcitriol), and vitamin E (alfa-tocopherol) as inductors of molecules related to mycobacterial infection in macrophages and epithelial cells. Our results showed that retinoic acid promotes the expression of pro- and anti-inflammatory molecules such as Thymic stromal lymphopoietin (TSLP), β-defensin-2, IL-1β, CCL20, β-defensin-3, Cathelicidin LL-37, TGF-β, and RNase 7, whereas calcitriol, ascorbic acid, and α-tocopherol lead to an anti-inflammatory response. Treatment of Mtb-infected epithelial cells and macrophage-like cells with the vitamins showed a differential response, where calcitriol reduced Mtb in macrophages, while retinoic acid reduced infection in epithelial cells. Thereby, we propose that a combination of calcitriol and retinoic acid supplementation can drive the immune response, and promotes the Mtb elimination by increasing the expression of antimicrobial peptides and cytokines, while simultaneously modulating inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cesar Rivas-Santiago
- CONACYT-Academic Unit of Chemical Sciences, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | | |
Collapse
|
16
|
Amponnawarat A, Chompunud Na Ayudhya C, Ali H. Murepavadin, a Small Molecule Host Defense Peptide Mimetic, Activates Mast Cells via MRGPRX2 and MrgprB2. Front Immunol 2021; 12:689410. [PMID: 34248979 PMCID: PMC8261236 DOI: 10.3389/fimmu.2021.689410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a frequent cause of hospital-acquired wound infection and is difficult to treat because it forms biofilms and displays antibiotic resistance. Previous studies in mice demonstrated that mast cells (MCs) not only contribute to P. aeruginosa eradication but also promote wound healing via an unknown mechanism. We recently reported that host defense peptides (HDPs) induce human MC degranulation via Mas-related G protein-coupled receptor-X2 (MRGPRX2). Small molecule HDP mimetics have distinct advantages over HDPs because they are inexpensive to synthesize and display high stability, bioavailability, and low toxicity. Murepavadin is a lipidated HDP mimetic, (also known as POL7080), which displays antibacterial activity against a broad panel of multi-drug-resistant P. aeruginosa. We found that murepavadin induces Ca2+ mobilization, degranulation, chemokine IL-8 and CCL3 production in a human MC line (LAD2 cells) endogenously expressing MRGPRX2. Murepavadin also caused degranulation in RBL-2H3 cells expressing MRGPRX2 but this response was significantly reduced in cells expressing missense variants within the receptor's ligand binding (G165E) or G protein coupling (V282M) domains. Compound 48/80 induced β-arrestin recruitment and promoted receptor internalization, which resulted in substantial decrease in the subsequent responsiveness to the MRGPRX2 agonist. By contrast, murepavadin did not cause β-arrestin-mediated MRGPRX2 regulation. Murepavadin induced degranulation in mouse peritoneal MCs via MrgprB2 (ortholog of human MRGPRX2) and caused increased vascular permeability in wild-type mice but not in MrgprB2-/- mice. The data presented herein demonstrate that murepavadin activates human MCs via MRGPRX2 and murine MCs via MrgprB2 and that MRGPRX2 is resistant to β-arrestin-mediated receptor regulation. Thus, besides its direct activity against P. aeruginosa, murepavadin may contribute to bacterial clearance and promote wound healing by harnessing MC's immunomodulatory property via the activation of MRGPRX2.
Collapse
Affiliation(s)
- Aetas Amponnawarat
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Family and Community Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chalatip Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Zhang TP, Chen SS, Zhang GY, Shi SJ, Wei L, Li HM. Association of vitamin D pathway genes polymorphisms with pulmonary tuberculosis susceptibility in a Chinese population. GENES & NUTRITION 2021; 16:6. [PMID: 33882819 PMCID: PMC8061222 DOI: 10.1186/s12263-021-00687-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/14/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aimed to evaluate the association of single nucleotide polymorphisms (SNPs) of vitamin D metabolic pathway genes with susceptibility to pulmonary tuberculosis (PTB). METHODS Nine hundred seventy-nine patients (490 PTB cases and 489 healthy controls) were included in this study. Seventeen SNPs of vitamin D metabolic pathway genes, including CYP24A1, CYP27A1, CYP27B1, CYP2R1, GC, and DHCR7, were genotyped with improved multiple ligase detection reaction (iMLDR). RESULTS The GC rs3733359 GA, rs16847024 CT genotypes were significantly associated with the reduced risk of PTB, and the rs3733359 A, rs16847024 T alleles were also associated with the decreased PTB susceptibility. The GT genotype of GC rs4588 variant was significantly higher in patients with PTB when compared to controls. Moreover, the increased risk of rs3733359 and rs16847024 variants, and a decreased risk of rs4588, were found under the dominant mode among the PTB patients. However, there was no significant relationship of CYP24A1, CYP27A1, CYP27B1, CYP2R1, and DHCR7 polymorphisms with the risk of PTB. In CYP27A1, the rs17470271 T and rs933994 T alleles were significantly associated with leukopenia, drug resistance in the PTB patients, respectively. In GC gene, the rs7041 and rs3733359 variants were found to be associated with pulmonary infection, fever in the PTB patients, respectively. The increased frequency of rs16847024 TT genotype was found in the PTB patients with fever and drug-induced liver damage. DHCR7 rs12785878 TT genotype, and T allele frequencies were both significantly associated with pulmonary infection in the PTB patients. The haplotype analysis showed that CYP24A1 TACT, CYP2R1 GGCT, GGAT, GC AATG haplotypes were related to PTB susceptibility. CONCLUSION Our study suggested that GC SNPs were associated with the genetic background of PTB. CYP27A1, GC, and DHCR7 genetic variations might contribute to several clinical phenotypes of PTB in Chinese.
Collapse
Affiliation(s)
- Tian-Ping Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, 230001, People's Republic of China.
| | - Shuang-Shuang Chen
- Anhui Chest Hospital (Anhui Provincial TB Institute), Clinical College of Chest, Anhui Medical University, 397 Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Gen-You Zhang
- Anhui Chest Hospital (Anhui Provincial TB Institute), Clinical College of Chest, Anhui Medical University, 397 Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Si-Jiu Shi
- Anhui Chest Hospital (Anhui Provincial TB Institute), Clinical College of Chest, Anhui Medical University, 397 Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Li Wei
- Pharmacoepidemiology and Medication Safety Research Cluster, UCL School of Pharmacy, London, UK
| | - Hong-Miao Li
- Anhui Chest Hospital (Anhui Provincial TB Institute), Clinical College of Chest, Anhui Medical University, 397 Jixi Road, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
18
|
Pérez de la Lastra JM, Asensio-Calavia P, González-Acosta S, Baca-González V, Morales-delaNuez A. Bioinformatic Analysis of Genome-Predicted Bat Cathelicidins. Molecules 2021; 26:1811. [PMID: 33806967 PMCID: PMC8004601 DOI: 10.3390/molecules26061811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/03/2022] Open
Abstract
Bats are unique in their potential to serve as reservoir hosts for intracellular pathogens. Recently, the impact of COVID-19 has relegated bats from biomedical darkness to the frontline of public health as bats are the natural reservoir of many viruses, including SARS-Cov-2. Many bat genomes have been sequenced recently, and sequences coding for antimicrobial peptides are available in the public databases. Here we provide a structural analysis of genome-predicted bat cathelicidins as components of their innate immunity. A total of 32 unique protein sequences were retrieved from the NCBI database. Interestingly, some bat species contained more than one cathelicidin. We examined the conserved cysteines within the cathelin-like domain and the peptide portion of each sequence and revealed phylogenetic relationships and structural dissimilarities. The antibacterial, antifungal, and antiviral activity of peptides was examined using bioinformatic tools. The peptides were modeled and subjected to docking analysis with the region binding domain (RBD) region of the SARS-CoV-2 Spike protein. The appearance of multiple forms of cathelicidins verifies the complex microbial challenges encountered by these species. Learning more about antiviral defenses of bats and how they drive virus evolution will help scientists to investigate the function of antimicrobial peptides in these species.
Collapse
Affiliation(s)
- José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (S.G.-A.); (V.B.-G.); (A.M.-d.)
| | - Patricia Asensio-Calavia
- Biological Activity Service, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain;
| | - Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (S.G.-A.); (V.B.-G.); (A.M.-d.)
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (S.G.-A.); (V.B.-G.); (A.M.-d.)
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (S.G.-A.); (V.B.-G.); (A.M.-d.)
| |
Collapse
|
19
|
Gasaly N, Hermoso MA, Gotteland M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22063061. [PMID: 33802759 PMCID: PMC8002420 DOI: 10.3390/ijms22063061] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70–80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.
Collapse
Affiliation(s)
- Naschla Gasaly
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Human Nutrition, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-989-059-222
| |
Collapse
|
20
|
Shin MK, Shin SJ. Genetic Involvement of Mycobacterium avium Complex in the Regulation and Manipulation of Innate Immune Functions of Host Cells. Int J Mol Sci 2021; 22:ijms22063011. [PMID: 33809463 PMCID: PMC8000623 DOI: 10.3390/ijms22063011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium complex (MAC), a collection of mycobacterial species representing nontuberculous mycobacteria, are characterized as ubiquitous and opportunistic pathogens. The incidence and prevalence of infectious diseases caused by MAC have been emerging globally due to complications in the treatment of MAC-pulmonary disease (PD) in humans and the lack of understating individual differences in genetic traits and pathogenesis of MAC species or subspecies. Despite genetically close one to another, mycobacteria species belonging to the MAC cause diseases to different host range along with a distinct spectrum of disease. In addition, unlike Mycobacterium tuberculosis, the underlying mechanisms for the pathogenesis of MAC infection from environmental sources of infection to their survival strategies within host cells have not been fully elucidated. In this review, we highlight unique genetic and genotypic differences in MAC species and the virulence factors conferring the ability to MAC for the tactics evading innate immune attacks of host cells based on the recent advances in genetic analysis by exemplifying M. avium subsp. hominissuis, a major representative pathogen causing MAC-PD in humans. Further understanding of the genetic link between host and MAC may contribute to enhance host anti-MAC immunity, but also provide novel therapeutic approaches targeting the pangenesis-associated genes of MAC.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1813
| |
Collapse
|
21
|
Wang B, Yao Y, Wei P, Song C, Wan S, Yang S, Zhu GM, Liu HM. Housefly Phormicin inhibits Staphylococcus aureus and MRSA by disrupting biofilm formation and altering gene expression in vitro and in vivo. Int J Biol Macromol 2020; 167:1424-1434. [PMID: 33202277 DOI: 10.1016/j.ijbiomac.2020.11.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
The increasing drug resistance of pathogenic bacteria is a crisis that threatens public health. Antimicrobial peptides (AMPs) have been suggested to be potentially effective alternatives to solve this problem. Here, we tested housefly Phormicin-derived peptides for effects on Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) infections in vitro and in vivo. A decreased bacterial load of MRSA was observed in the mouse scald model after treatment with Phormicin and in the positive control group (vancomycin). A mouse scrape model indicated that Phormicin helps the host fight drug-resistant MRSA infections. The protective effect of Phormicin on MRSA was confirmed in the Hermetia illucens larvae model. Phormicin also disrupted the formation of S. aureus and MRSA biofilms. Furthermore, this effect coincided with the downregulation of biofilm formation-related gene expression (agrC, sigB, RNAIII, altA, rbf, hla, hld, geh and psmɑ). Notably, virulence genes and several regulatory factors were also altered by Phormicin treatment. Based on these findings, housefly Phormicin helps the host inhibit MRSA infection through effects on biofilm formation and related gene networks. Therefore, housefly Phormicin potential represents a candidate agent for clinical MRSA chemotherapy.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China.
| | - Yang Yao
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - PengWei Wei
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - ChaoRong Song
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Shan Wan
- Department of Microbial Immunology, The first affiliated hospital of Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - SuWen Yang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Gui Ming Zhu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China
| | - Hong Mei Liu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
22
|
Bilezikian JP, Bikle D, Hewison M, Lazaretti-Castro M, Formenti AM, Gupta A, Madhavan MV, Nair N, Babalyan V, Hutchings N, Napoli N, Accili D, Binkley N, Landry DW, Giustina A. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. Eur J Endocrinol 2020; 183:R133-R147. [PMID: 32755992 PMCID: PMC9494342 DOI: 10.1530/eje-20-0665] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
The SARS-CoV-2 virus responsible for the COVID-19 pandemic has generated an explosion of interest both in the mechanisms of infection leading to dissemination and expression of this disease, and in potential risk factors that may have a mechanistic basis for disease propagation or control. Vitamin D has emerged as a factor that may be involved in these two areas. The focus of this article is to apply our current understanding of vitamin D as a facilitator of immunocompetence both with regard to innate and adaptive immunity and to consider how this may relate to COVID-19 disease. There are also intriguing potential links to vitamin D as a factor in the cytokine storm that portends some of the most serious consequences of SARS-CoV-2 infection, such as the acute respiratory distress syndrome. Moreover, cardiac and coagulopathic features of COVID-19 disease deserve attention as they may also be related to vitamin D. Finally, we review the current clinical data associating vitamin D with SARS-CoV-2 infection, a putative clinical link that at this time must still be considered hypothetical.
Collapse
Affiliation(s)
- John P Bilezikian
- Endocrinology Division, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Daniel Bikle
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina – Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| | - Anna Maria Formenti
- Institute of Endocrine and Metabolic Sciences, San Raffaele, Vita-Salute University and IRCCS Hospital, Milano, Italy
| | - Aakriti Gupta
- Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
- Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Mahesh V Madhavan
- Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
- Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA
| | - Nandini Nair
- Endocrinology Division, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, Missouri, USA
| | - Domenico Accili
- Endocrinology Division, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Neil Binkley
- University of Wisconsin, Madison, Wisconsin, USA
| | - Donald W Landry
- Division of Nephrology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele, Vita-Salute University and IRCCS Hospital, Milano, Italy
| |
Collapse
|
23
|
Jeong YS, Bae YS. Formyl peptide receptors in the mucosal immune system. Exp Mol Med 2020; 52:1694-1704. [PMID: 33082511 PMCID: PMC7572937 DOI: 10.1038/s12276-020-00518-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Formyl peptide receptors (FPRs) belong to the G protein-coupled receptor (GPCR) family and are well known as chemotactic receptors and pattern recognition receptors (PRRs) that recognize bacterial and mitochondria-derived formylated peptides. FPRs are also known to detect a wide range of ligands, including host-derived peptides and lipids. FPRs are highly expressed not only in phagocytes such as neutrophils, monocytes, and macrophages but also in nonhematopoietic cells such as epithelial cells and endothelial cells. Mucosal surfaces, including the gastrointestinal tract, the respiratory tract, the oral cavity, the eye, and the reproductive tract, separate the external environment from the host system. In mucosal surfaces, the interaction between the microbiota and host cells needs to be strictly regulated to maintain homeostasis. By sharing the same FPRs, immune cells and epithelial cells may coordinate pathophysiological responses to various stimuli, including microbial molecules derived from the normal flora. Accumulating evidence shows that FPRs play important roles in maintaining mucosal homeostasis. In this review, we summarize the roles of FPRs at mucosal surfaces.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
24
|
Li F, Zhao C, Shao T, Liu Y, Gu Z, Jiang M, Li H, Zhang L, Gillevet PM, Puri P, Deng ZB, Chen SY, Barve S, Gobejishvili L, Vatsalya V, McClain CJ, Feng W. Cathelicidin-related antimicrobial peptide alleviates alcoholic liver disease through inhibiting inflammasome activation. J Pathol 2020; 252:371-383. [PMID: 33245573 DOI: 10.1002/path.5531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/05/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is associated with gut dysbiosis and hepatic inflammasome activation. While it is known that antimicrobial peptides (AMPs) play a critical role in the regulation of bacterial homeostasis in ALD, the functional role of AMPs in the alcohol-induced inflammasome activation is unclear. The aim of this study was to determine the effects of cathelicidin-related antimicrobial peptide (CRAMP) on inflammasome activation in ALD. CRAMP knockout (Camp-/-) and wild-type (WT) mice were subjected to binge-on-chronic alcohol feeding and synthetic CRAMP peptide was administered. Serum/plasma and hepatic tissue samples from human subjects with alcohol use disorder and/or alcoholic hepatitis were analyzed. CRAMP deficiency exacerbated ALD with enhanced inflammasome activation as shown by elevated serum interleukin (IL)-1β levels. Although Camp-/- mice had comparable serum endotoxin levels compared to WT mice after alcohol feeding, hepatic lipopolysaccharide (LPS) binding protein (LBP) and cluster of differentiation (CD) 14 were increased. Serum levels of uric acid (UA), a Signal 2 molecule in inflammasome activation, were positively correlated with serum levels of IL-1β in alcohol use disorder patients with ALD and were increased in Camp-/- mice fed alcohol. In vitro studies showed that CRAMP peptide inhibited LPS binding to macrophages and inflammasome activation stimulated by a combination of LPS and UA. Synthetic CRAMP peptide administration decreased serum UA and IL-1β concentrations and rescued the liver from alcohol-induced damage in both WT and Camp-/- mice. In summary, CRAMP exhibited a protective role against binge-on-chronic alcohol-induced liver damage via regulation of inflammasome activation by decreasing LPS binding and UA production. CRAMP administration may represent a novel strategy for treating ALD. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fengyuan Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Cuiqing Zhao
- Department of Medicine, University of Louisville, Louisville, KY, USA.,College of Animal Science and Technology, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Tuo Shao
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yunhuan Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Zelin Gu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Mengwei Jiang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Huimin Li
- Department of Medicine, University of Louisville, Louisville, KY, USA.,School of Pharmaceutical Sciences, Jiujiang University, Jiujiang, PR China
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | | | - Puneet Puri
- Section of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA.,McGuire VA Medical Center, Richmond, VA, USA
| | - Zhong-Bin Deng
- Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Leila Gobejishvili
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Vatsalya Vatsalya
- Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.,Robley Rex VA Medical Center, Louisville, KY, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
25
|
Wang Q, Ma A, Schouten EG, Kok FJ. A double burden of tuberculosis and diabetes mellitus and the possible role of vitamin D deficiency. Clin Nutr 2020; 40:350-357. [PMID: 32948348 DOI: 10.1016/j.clnu.2020.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 08/07/2020] [Accepted: 08/30/2020] [Indexed: 01/19/2023]
Abstract
Tuberculosis remains a major global health challenge, particularly in low-to-middle income countries such as China. At the same time, the country is facing a rapidly increasing diabetes incidence over the last 10 years. Diabetes aggravates the tuberculosis epidemic which poses a serious challenge in public health. In recent years, the high prevalence of vitamin D deficiency represents a global health problem, which is also associated with the risk of diabetes, and tuberculosis. Therefore, this review aims to provide an overall and updated understanding of the epidemiology of co-occurrence of tuberculosis and diabetes in China, and to elucidate the possible role of vitamin D deficiency. In conclusion, significant aggravation of the tuberculosis epidemic due to diabetes may exist in China for a relatively long period of time to come. Further, the double burden and its implications to public health in this country may be significantly influenced by the high prevalence of vitamin D deficiency. Bidirectional screening for tuberculosis and diabetes is recommended, and extra vitamin D may benefit especially in a situation of a heavy tuberculosis burden combined with prevalent vitamin D deficiency. Longitudinal studies to verify the role of vitamin D deficiency in the double burden, and trials on the effect of vitamin D supplementation are needed in the future.
Collapse
Affiliation(s)
- Qiuzhen Wang
- Institute of Human Nutrition, Medical College of Qingdao University, Qingdao, China.
| | - Aiguo Ma
- Institute of Human Nutrition, Medical College of Qingdao University, Qingdao, China
| | - Evert G Schouten
- Division of Nutrition and Health, Wageningen University&Research, Wageningen, the Netherlands
| | - Frans J Kok
- Division of Nutrition and Health, Wageningen University&Research, Wageningen, the Netherlands
| |
Collapse
|
26
|
Li Z, Song Y, Yuan P, Guo W, Hu X, Xing W, Ao L, Tan Y, Wu X, Ao X, He X, Jiang D, Liang H, Xu X. Antibacterial Fusion Protein BPI21/LL-37 Modification Enhances the Therapeutic Efficacy of hUC-MSCs in Sepsis. Mol Ther 2020; 28:1806-1817. [PMID: 32445625 PMCID: PMC7403330 DOI: 10.1016/j.ymthe.2020.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/16/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis, which is characterized by multiple organ dysfunctions as a result of an unbalanced host-inflammatory response to pathogens, is potentially a life-threatening condition and a major cause of death in the intensive care units (ICUs). However, effective treatment or intervention to prevent sepsis-associated lethality is still lacking. Human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation has been shown to have potent immunomodulatory properties and improve tissue repair yet lacks direct antibacterial and endotoxin clearance activities. In this study, we engineered hUC-MSCs to express a broad-spectrum antibacterial fusion peptide containing BPI21 and LL-37 (named BPI21/LL-37) and confirmed that the BPI21/LL-37 modification did not affect the stemness and immunoregulatory capacities of hUC-MSCs but remarkably, enhanced its antibacterial and toxin-neutralizing activities in vitro. Furthermore, we showed that administration of BPI21/LL-37-engineered hUC-MSCs significantly reduces serum levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6, whereas increases that of IL-10 in cecal ligation and puncture (CLP)-induced sepsis mouse model. Administration of BPI21/LL-37-engineered hUC-MSCs significantly reduced systemic endotoxin (lipopolysaccharide [LPS]) levels and organ bacterial load, ameliorated damage to multiple organs, and improved survival. Taken together, our study demonstrates that BPI21/LL-37-engineered hUC-MSCs might offer a novel therapeutic strategy to prevent or treat sepsis via enhanced antimicrobial and anti-inflammatory properties to preserve organ functions better.
Collapse
Affiliation(s)
- Zhan Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yuqing Song
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Department of Critical Care Medicine, Jinling Hospital, Nanjing 210000, PR China
| | - Peisong Yuan
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Wei Guo
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xueting Hu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Luoquan Ao
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yan Tan
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiaofeng Wu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiang Ao
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiao He
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Dongpo Jiang
- Department of Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China; Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
27
|
Choi KYG, Wu BC, Lee AHY, Baquir B, Hancock REW. Utilizing Organoid and Air-Liquid Interface Models as a Screening Method in the Development of New Host Defense Peptides. Front Cell Infect Microbiol 2020; 10:228. [PMID: 32509598 PMCID: PMC7251080 DOI: 10.3389/fcimb.2020.00228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Host defense peptides (HDPs), also known as antimicrobial peptides, are naturally occurring polypeptides (~12–50 residues) composed of cationic and hydrophobic amino acids that adopt an amphipathic conformation upon folding usually after contact with membranes. HDPs have a variety of biological activities including immunomodulatory, anti-inflammatory, anti-bacterial, and anti-biofilm functions. Although HDPs have the potential to address the global threat of antibiotic resistance and to treat immune and inflammatory disorders, they have yet to achieve this promise. Indeed, there are several challenges associated with bringing peptide-based drug candidates from the lab bench to clinical practice, including identifying appropriate indications, stability, toxicity, and cost. These challenges can be addressed in part by the development of innate defense regulator (IDR) peptides and peptidomimetics, which are synthetic derivatives of HDPs with similar or better efficacy, increased stability, and reduced toxicity and cost of the original HDP. However, one of the largest gaps between basic research and clinical application is the validity and translatability of conventional model systems, such as cell lines and animal models, for screening HDPs and their derivatives as potential drug therapies. Indeed, such translation has often relied on animal models, which have only limited validity. Here we discuss the recent development of human organoids for disease modeling and drug screening, assisted by the use of omics analyses. Organoids, developed from primary cells, cell lines, or human pluripotent stem cells, are three-dimensional, self-organizing structures that closely resemble their corresponding in vivo organs with regards to immune responses, tissue organization, and physiological properties; thus, organoids represent a reliable method for studying efficacy, formulation, toxicity and to some extent drug stability and pharmacodynamics. The use of patient-derived organoids enables the study of patient-specific efficacy, toxicogenomics and drug response predictions. We outline how organoids and omics data analysis can be leveraged to aid in the clinical translation of IDR peptides.
Collapse
Affiliation(s)
- Ka-Yee Grace Choi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Bing Catherine Wu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Beverlie Baquir
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Wang Q, Ma A, Gao T, Liu Y, Ren L, Han L, Wei B, Liu Q, Dong C, Mu Y, Li D, Kok FJ, Schouten EG. Poor Vitamin D Status in Active Pulmonary Tuberculosis Patients and Its Correlation with Leptin and TNF-α. J Nutr Sci Vitaminol (Tokyo) 2020; 65:390-398. [PMID: 31666475 DOI: 10.3177/jnsv.65.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vitamin D deficiency (VDD) is common in tuberculosis (TB) and may be implicated in the etiology of the disease and in its clinical course. The aim of this study was to investigate the association between leptin, inflammatory markers and VD status in TB patients, stratified for presence or absence of diabetes mellitus (DM). Two hundred ninety-nine TB patients were recruited from October 2015 to August 2016. Also, 91 normal controls were included. The information including socio-demographics, dietary intake and living habits was obtained by face-to-face interview. Serum concentrations of leptin and TNF-α, CRP and IL-6 were compared between TB patients with and without severe VDD (SVDD). Pearson's correlation was used to analyze the association between TNF-α, leptin and 25-hydroxyvitamin D (25(OH)D). A significantly higher prevalence of VDD and SVDD was observed in TB patients compared with normal controls (93.0% vs 70.3%, 65.9% vs 3.3% respectively). Concentration of leptin was significantly lower, while TNF-α higher in TB patients with SVDD compared to those without (p<0.05). After adjustment for confounders, leptin was positively associated with 25(OH)D (r=0.210, p=0.002) with similar correlation in TB patients with DM (r=0.240, p=0.020). A negative association between TNF-α and 25(OH)D was observed (r=-0.197, p=0.003), which was significant only in the subgroup without DM (r=-0.304, p=0.001). Our findings indicate that a higher VD status in TB patients may be related to higher immune activity and less serious tissue damage, and that this relation is different according to presence or absence of DM co-morbidity.
Collapse
Affiliation(s)
- Qiuzhen Wang
- Institute of Human Nutrition, Medical College of Qingdao University
| | - Aiguo Ma
- Institute of Human Nutrition, Medical College of Qingdao University
| | - Tianlin Gao
- Institute of Human Nutrition, Medical College of Qingdao University
| | | | - Lisheng Ren
- The Affiliated Hospital of Qingdao University
| | - Lei Han
- The Affiliated Hospital of Qingdao University
| | - Boyang Wei
- Institute of Human Nutrition, Medical College of Qingdao University
| | - Qian Liu
- Institute of Human Nutrition, Medical College of Qingdao University
| | - Chunjiang Dong
- Institute of Human Nutrition, Medical College of Qingdao University
| | - Yuze Mu
- Institute of Human Nutrition, Medical College of Qingdao University
| | - Duo Li
- Institute of Human Nutrition, Medical College of Qingdao University
| | - Frans J Kok
- Division of Human Nutrition, Wageningen University
| | | |
Collapse
|
29
|
Geng W, Long SL, Chang YJ, Saxton AM, Joyce SA, Lin J. Evaluation of bile salt hydrolase inhibitor efficacy for modulating host bile profile and physiology using a chicken model system. Sci Rep 2020; 10:4941. [PMID: 32188876 PMCID: PMC7080769 DOI: 10.1038/s41598-020-61723-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Gut microbial enzymes, bile salt hydrolases (BSHs) are the gateway enzymes for bile acid (BA) modification in the gut. This activity is a promising target for developing innovative non-antibiotic growth promoters to enhance animal production and health. Compelling evidence has shown that inhibition of BSH activity should enhance weight gain by altering the BA pool, host signalling and lipid metabolism. We recently identified a panel of promising BSH inhibitors. Here, we address the potential of them as alternative, effective, non-antibiotic feed additives, for commercial application, to promote animal growth using a chicken model. In this study, the in vivo efficacy of three BSH inhibitors (caffeic acid phenethylester, riboflavin, carnosic acid) were evaluated. 7-day old chicks (10 birds/group) were either untreated or they received one of the specific BSH inhibitors (25 mg/kg body weight) via oral gavage for 17 days. The chicks in treatment groups consistently displayed higher body weight gain than the untreated chicks. Metabolomic analysis demonstrated that BSH inhibitor treatment led to significant changes in both circulating and intestinal BA signatures in support of blunted intestinal BSH activity. Consistent with this finding, liver and intestinal tissue RNA-Seq analysis showed that carnosic acid treatment significantly altered expression of genes involved in lipid and bile acid metabolism. Taken together, this study validates microbial BSH activity inhibition as an alternative target and strategy to antibiotic treatment for animal growth promotion.
Collapse
Affiliation(s)
- Wenjing Geng
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA
| | - Sarah L Long
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Yun-Juan Chang
- Department of High Performance Computing and Research, University of Rutgers, Newark, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA.
| |
Collapse
|
30
|
Flamann C, Peter K, Kreutz M, Bruns H. Regulation of the Immune Balance During Allogeneic Hematopoietic Stem Cell Transplantation by Vitamin D. Front Immunol 2019; 10:2586. [PMID: 31749811 PMCID: PMC6848223 DOI: 10.3389/fimmu.2019.02586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
One of the most promising therapeutic approaches for numerous hematological malignancies represents the allogeneic hematopoietic stem cell transplantation (allo-HSCT). One major complication is the development of the life-threatening graft-vs.-host disease (GvHD) which limits beneficial effects of graft-vs.-leukemia (GvL) responses during allo-HSCT. Strengthening GvL effects without induction of severe GvHD is essential to decrease the relapse rate after allo-HSCT. An interesting player in this context is vitamin D3 since it has modulatory capacity in both preventing GvHD and boosting GvL responses. Current studies claim that vitamin D3 induces an immunosuppressive environment by dendritic cell (DC)-dependent generation of regulatory T cells (Tregs). Since vitamin D3 is known to support the antimicrobial defense by re-establishing the physical barrier as well as releasing defensins and antimicrobial peptides, it might also improve graft-vs.-infection (GvI) effects in patients. Beyond that, alloreactive T cells might be attenuated by vitamin D3-mediated inhibition of proliferation and activation. Despite the inhibitory effects of vitamin D3 on T cells, anti-tumor responses of GvL might be reinforced by vitamin D3-triggered phagocytic activity and antibody-based immunotherapy. Therefore, vitamin D3 treatment does not only lead to a shift from a pro-inflammatory toward a tolerogenic state but also promotes tumoricidal activity of immune cells. In this review we focus on vitamin D3 and its immunomodulatory effects by enhancing anti-tumor activity while alleviating harmful allogeneic responses in order to restore the immune balance.
Collapse
Affiliation(s)
- Cindy Flamann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Peter
- Department of Internal Medicine III - Hematology and Internal Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III - Hematology and Internal Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
31
|
Prodinger C, Reichelt J, Bauer JW, Laimer M. Epidermolysis bullosa: Advances in research and treatment. Exp Dermatol 2019; 28:1176-1189. [PMID: 31140655 PMCID: PMC6900197 DOI: 10.1111/exd.13979] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Epidermolysis bullosa (EB) is the umbrella term for a group of rare inherited skin fragility disorders caused by mutations in at least 20 different genes. There is no cure for any of the subtypes of EB resulting from different mutations, and current therapy only focuses on the management of wounds and pain. Novel effective therapeutic approaches are therefore urgently required. Strategies include gene-, protein- and cell-based therapies. This review discusses molecular procedures currently under investigation at the EB House Austria, a designated Centre of Expertise implemented in the European Reference Network for Rare and Undiagnosed Skin Diseases. Current clinical research activities at the EB House Austria include newly developed candidate substances that have emerged out of our translational research initiatives as well as already commercially available medications that are applied in off-licensed indications. Squamous cell carcinoma is the major cause of death in severe forms of EB. We are evaluating immunotherapy using an anti-PD1 monoclonal antibody as a palliative treatment option for locally advanced or metastatic squamous cell carcinoma of the skin unresponsive to previous systemic therapy. In addition, we are evaluating topical calcipotriol and topical diacerein as potential agents to improve the healing of skin wounds in EBS patients. Finally, the review will highlight the recent advancements of gene therapy development for EB.
Collapse
Affiliation(s)
- Christine Prodinger
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| | - Julia Reichelt
- Department of DermatologyVenereology and Allergology, Medical University of InnsbruckInnsbruckAustria
| | - Johann W. Bauer
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| | - Martin Laimer
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| |
Collapse
|
32
|
Golpour A, Bereswill S, Heimesaat MM. Antimicrobial and Immune-Modulatory Effects of Vitamin D Provide Promising Antibiotics-Independent Approaches to Tackle Bacterial Infections - Lessons Learnt from a Literature Survey. Eur J Microbiol Immunol (Bp) 2019; 9:80-87. [PMID: 31662886 PMCID: PMC6798578 DOI: 10.1556/1886.2019.00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial multidrug-resistance (MDR) constitutes an emerging threat to global health and makes the effective prevention and treatment of many, particularly severe infections challenging, if not impossible. Many antibiotic classes have lost antimicrobial efficacy against a plethora of infectious agents including bacterial species due to microbial acquisition of distinct resistance genes. Hence, the development of novel anti-infectious intervention strategies including antibiotic-independent approaches is urgently needed. Vitamins such as vitamin D and vitamin D derivates might be such promising molecular candidates to combat infections caused by bacteria including MDR strains. Using the Pubmed database, we therefore performed an in-depth literature survey, searching for publications on the antimicrobial effect of vitamin D directed against bacteria including MDR strains. In vitro and clinical studies between 2009 and 2019 revealed that vitamin D does, in fact, possess antimicrobial properties against both Gram-positive and Gram-negative bacterial species, whereas conflicting results could be obtained from in vivo studies. Taken together, the potential anti-infectious effects for the antibiotic-independent application of vitamin D and/or an adjunct therapy in combination with antibiotic compounds directed against infectious diseases such as tuberculosis, H. pylori infections, or skin diseases, for instance, should be considered and further investigated in more detail.
Collapse
Affiliation(s)
- Ainoosh Golpour
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
33
|
Levast B, Hogan D, van Kessel J, Strom S, Walker S, Zhu J, Meurens F, Gerdts V. Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro. Front Vet Sci 2019; 6:233. [PMID: 31355218 PMCID: PMC6640542 DOI: 10.3389/fvets.2019.00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/27/2019] [Indexed: 01/02/2023] Open
Abstract
Host defense peptides (HDPs) show both antimicrobial and immunomodulatory properties making them important mediators of the host immune system. In humans but also in pigs many HDPs have been identified and important families such as cathelicidins and defensins have been established. In our study, we assessed: (i) the potential interactions that could occur between three peptides (LL37, PR39, and synthetic innate defense regulator (IDR)-1002) and a common TLR ligand called poly(I:C); (ii) the impact of selected peptides on the response of alveolar macrophage (AM) to poly(I:C) stimulation; (iii) the anti-porcine respiratory and reproductive syndrome virus (PRRSV) properties of the peptides; and (iv) their adjuvant potential in a PRRSV challenge experiment after immunization with different vaccine formulations. The results are as following: LL37, PR39, and IDR-1002 were able to interact with poly(I:C) using an agarose gel migration assay. Then, an alteration of AM's response to poly(I:C) stimulation was observed when the cells were co-stimulated with LL37 and IDR-1002. Regarding the anti-PRRSV potential of the peptides only LL37 showed a PRRSV inhibition in infected AM as well as precision cut lung slices (PCLS). However, in our conditions and despite their immunomodulatory properties, neither LL37 nor IDR-1002 showed any convincing potential as an adjuvant when associated to killed PRRSV in a challenge experiment. In conclusion, both antiviral and immunomodulatory properties could be identified for LL37, only immunomodulatory properties for IDR-1002, and both peptides failed to improve the immune response consecutive to an immunization with a killed vaccine in a PPRSV challenge experiment. However, further studies are needed to fully decipher and explain differences between peptide properties.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stacy Strom
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stew Walker
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
34
|
Schrumpf JA, Ninaber DK, van der Does AM, Hiemstra PS. TGF-β1 Impairs Vitamin D-Induced and Constitutive Airway Epithelial Host Defense Mechanisms. J Innate Immun 2019; 12:74-89. [PMID: 30970352 DOI: 10.1159/000497415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Airway epithelium is an important site for local vitamin D (VD) metabolism; this can be negatively affected by inflammatory mediators. VD is an important regulator of respiratory host defense, for example, by increasing the expression of hCAP18/LL-37. TGF-β1 is increased in chronic obstructive pulmonary disease (COPD), and known to decrease the expression of constitutive host defense mediators such as secretory leukocyte protease inhibitor (SLPI) and polymeric immunoglobulin receptor (pIgR). VD has been shown to affect TGF-β1-signaling by inhibiting TGF-β1-induced epithelial-to-mesenchymal transition. However, interactions between VD and TGF-β1, relevant for the understanding host defense in COPD, are incompletely understood. Therefore, the aim of the present study was to investigate the combined effects of VD and TGF-β1 on airway epithelial cell host defense mechanisms. Exposure to TGF-β1 reduced both baseline and VD-induced expression of hCAP18/LL-37, partly by increasing the expression of the VD-degrading enzyme CYP24A1. TGF-β1 alone decreased the number of secretory club and goblet cells and reduced the expression of constitutive host defense mediators SLPI, s/lPLUNC and pIgR, effects that were not modulated by VD. These results suggest that TGF-β1 may decrease the respiratory host defense both directly by reducing the expression of host defense mediators, and indirectly by affecting VD-mediated effects such as expression of hCAP18/LL-37.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands,
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Roy M, Lebeau L, Chessa C, Damour A, Ladram A, Oury B, Boutolleau D, Bodet C, Lévêque N. Comparison of Anti-Viral Activity of Frog Skin Anti-Microbial Peptides Temporin-Sha and [K³]SHa to LL-37 and Temporin-Tb against Herpes Simplex Virus Type 1. Viruses 2019; 11:v11010077. [PMID: 30669255 PMCID: PMC6356695 DOI: 10.3390/v11010077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Temporins are anti-microbial peptides synthesized in the skin of frogs of the Ranidae family. The few studies to date that have examined their anti-viral properties have shown that they have potential as anti-viral therapies. In this work, we evaluated the anti-herpes simplex virus type 1 (HSV-1) activity of the temporin-SHa (SHa) and its synthetic analog [K3]SHa. Human cathelicidin LL-37 and temporin-Tb (Tb), previously demonstrated to have anti-HSV-1 properties, were used as positive controls. We observed that SHa and [K3]SHa significantly inhibit HSV-1 replication in human primary keratinocytes when used at micromolar concentrations. This anti-viral activity was equivalent to that of Tb, but lower than that of LL-37. Transcriptomic analyses revealed that SHa did not act through the modulation of the cell innate immune response, but rather, displayed virucidal properties by reducing infectious titer of HSV-1 in suspension. In contrast, pre-incubation of the virus with LL-37 suggests that this peptide does not act directly on the viral particle at non-cytotoxic concentrations tested. The anti-HSV-1 activity of LL-37 appears to be due to the potentiation of cellular anti-viral defenses through the induction of interferon stimulated gene expression in infected primary keratinocytes. This study demonstrated that SHa and [K3]SHa, in addition to their previously reported antibacterial and antiparasitic activities, are direct-acting anti-HSV-1 peptides. Importantly, this study extends the little studied anti-viral attributes of frog temporins and offers perspectives for the development of new anti-HSV-1 therapies.
Collapse
Affiliation(s)
- Maëva Roy
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, 86000 Poitiers, France.
| | - Lucie Lebeau
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86000 Poitiers, France.
| | - Céline Chessa
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, 86000 Poitiers, France.
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86000 Poitiers, France.
| | - Alexia Damour
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, 86000 Poitiers, France.
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, 75252 Paris, France.
| | - Bruno Oury
- Institut de Recherche pour le Développement (IRD), UMR 224 IRD-CNRS-Univ Montpellier 1 et 2 Maladies infectieuses et Vecteurs: écologie, génétique, évolution et contrôle (MiVegec), 34394 Montpellier, France.
- IRD, UMR 177 IRD-CIRAD, Interactions Hôtes-Vecteurs-Parasites-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae (InterTryp), 34394 Montpellier, France.
| | - David Boutolleau
- Sorbonne Universités, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Eq1, 75013 Paris, France.
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Virologie, Centre National de Référence Herpèsvirus, 75652 Paris, France.
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, 86000 Poitiers, France.
| | - Nicolas Lévêque
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, 86000 Poitiers, France.
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
36
|
Zhou Z, Huang J, Hao H, Wei H, Zhou Y, Peng J. Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
37
|
Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:215-240. [PMID: 30980360 DOI: 10.1007/978-981-13-3588-4_12] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incorporation of the innate immune system into humans is essential for survival and health due to the rapid replication of invading microbes and the delayed action of the adaptive immune system. Antimicrobial peptides are important components of human innate immunity. Over 100 such peptides have been identified in various human tissues. Human cathelicidin LL-37 is best studied, and there has been a growing interest in designing new peptides based on LL-37. This chapter describes the alternative processing of the human cathelicidin precursor, protease digestion, and lab cutting of LL-37. Both a synthetic peptide library and structure-based design are utilized to identify the active regions. Although challenging, the determination of the 3D structure of LL-37 enabled the identification of the core antimicrobial region. The minimal region of LL-37 can be function-dependent. We discuss the design and potential applications of LL-37 into antibacterial, antibiofilm, antiviral, antifungal, immune modulating, and anticancer peptides. LL-37 has been engineered into 17BIPHE2, a stable, selective, and potent antimicrobial, antibiofilm, and anticancer peptide. Both 17BIPHE2 and SAAP-148 can eliminate the ESKAPE pathogens and show topical in vivo antibiofilm efficacy. Also discussed are other application strategies, including peptide formulation, antimicrobial implants, and peptide-inducing factors such as vitamin D and sunlight. Finally, we summarize what we learned from peptide design based on human LL-37.
Collapse
|
38
|
Development of a Cell-Based High-Throughput Screening Assay to Identify Porcine Host Defense Peptide-Inducing Compounds. J Immunol Res 2018; 2018:5492941. [PMID: 30581875 PMCID: PMC6276403 DOI: 10.1155/2018/5492941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/19/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022] Open
Abstract
Novel alternatives to antibiotics are needed for the swine industry, given increasing restrictions on subtherapeutic use of antibiotics. Augmenting the synthesis of endogenous host defense peptides (HDPs) has emerged as a promising antibiotic-alternative approach to disease control and prevention. To facilitate the identification of HDP inducers for swine use, we developed a stable luciferase reporter cell line, IPEC-J2/PBD3-luc, through permanent integration of a luciferase reporter gene driven by a 1.1 kb porcine β-defensin 3 (PBD3) gene promoter in porcine IPEC-J2 intestinal epithelial cells. Such a stable reporter cell line was employed in a high-throughput screening of 148 epigenetic compounds and 584 natural products, resulting in the identification of 41 unique hits with a minimum strictly standardized mean difference (SSMD) value of 3.0. Among them, 13 compounds were further confirmed to give at least a 5-fold increase in the luciferase activity in the stable reporter cell line, with 12 being histone deacetylase (HDAC) inhibitors. Eight compounds were subsequently observed to be comparable to sodium butyrate in inducing PBD3 mRNA expression in parental IPEC-J2 cells in the low micromolar range. Six HDAC inhibitors including suberoylanilide hydroxamine (SAHA), HC toxin, apicidin, panobinostat, SB939, and LAQ824 were additionally found to be highly effective HDP inducers in a porcine 3D4/31 macrophage cell line. Besides PBD3, other HDP genes such as PBD2 and cathelicidins (PG1–5) were concentration-dependently induced by those compounds in both IPEC-J2 and 3D4/31 cells. Furthermore, the antibacterial activities of 3D4/31 cells were augmented following 24 h exposure to HDAC inhibitors. In conclusion, a cell-based high-throughput screening assay was developed for the discovery of porcine HDP inducers, and newly identified HDP-inducing compounds may have potential to be developed as alternatives to antibiotics for applications in swine and possibly other animal species.
Collapse
|
39
|
Duan Z, Fang Y, Sun Y, Luan N, Chen X, Chen M, Han Y, Yin Y, Mwangi J, Niu J, Wang K, Miao Y, Zhang Z, Lai R. Antimicrobial peptide LL-37 forms complex with bacterial DNA to facilitate blood translocation of bacterial DNA and aggravate ulcerative colitis. Sci Bull (Beijing) 2018; 63:1364-1375. [PMID: 36658908 DOI: 10.1016/j.scib.2018.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Bacterial DNA (bacDNA) is frequently found in serum of patient with ulcerative colitis (UC) and Crohn's disease, even blood bacterial culture is negative. How bacDNA evades immune elimination and is translocated into blood remain unclear. Here, we showed that bacDNA avoids elimination and disables bacteria-killing function of antimicrobial peptide LL-37 (Cramp in mice) by forming complex with LL-37, which is inducible after culture with bacteria or bacterial products. Elevated LL-37-bacDNA complex was found in plasma and lesions of patients with UC. LL-37-bacDNA promoted inflammation by inducing Th1, Th2 and Th17 differentiation and activating toll-like receptor-9 (TLR9). The complex also increased paracellular permeability, which possibly combines its inflammatory effects to promote local damage and bacDNA translocation into blood. Cramp-bacDNA aggravated mouse colitis severity while interference with the complex ameliorated the disease. The study identifies that inflammatogenic bacDNA utilizes LL-37 as a vehicle for blood translocation and to evade immune elimination. Additionally, bacteria may make a milieu by releasing bacDNA to utilize and resist host antimicrobial peptides as a 'trojan horse'.
Collapse
Affiliation(s)
- Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Yaqun Fang
- Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ning Luan
- Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Mengrou Chen
- Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China
| | - Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Yizhu Yin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Kunhua Wang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
40
|
Koppen BC, Mulder PPG, de Boer L, Riool M, Drijfhout JW, Zaat SAJ. Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. Int J Antimicrob Agents 2018; 53:143-151. [PMID: 30315918 DOI: 10.1016/j.ijantimicag.2018.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/07/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance and biofilm formation are the main reasons for failure in treatment of bacterial infections. This study aimed to identify synergistic combinations of conventional antibiotics and novel synthetic antimicrobial and antibiofilm peptides (SAAPs) inspired by the structures of the natural human cationic peptides LL-37 and thrombocidin-1 (TC-1). The LL-37-inspired lead peptide SAAP-148 was combined with antibiotics of different classes against Staphylococcus aureus, and showed synergy with teicoplanin. Synergy with teicoplanin was also observed with LL-37, the LL-37-inspired SAAP-276 and the TC-1-inspired TC84. Interestingly, no synergy was observed against Staphylococcus epidermidis. Furthermore, teicoplanin combined with SAAP-148 or SAAP-276 showed strong interaction against S. aureus biofilms. The dltABCD operon and the mprF gene in S. aureus conferred resistance to LL-37, but SAAP-148 proved to be indifferently potent against wild-type, ΔdltA and ΔmprF S. aureus strains. When used alone, relatively high concentrations of both LL-37 and teicoplanin (30-120 µM and 4-32 mg/L, respectively) were required to kill S. aureus. Resistance to LL-37 in S. aureus was overcome by combined use of teicoplanin and LL-37. Thus, teicoplanin potentiates peptide LL-37, enhancing the efficacy of the innate defence, and combining the novel peptides with teicoplanin offers potential for enhanced efficacy of treatment of S. aureus infections, including biofilms.
Collapse
Affiliation(s)
- Bruce C Koppen
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick P G Mulder
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
van der Does AM, Amatngalim GD, Keijser B, Hiemstra PS, Villenave R. Contribution of Host Defence Proteins and Peptides to Host-Microbiota Interactions in Chronic Inflammatory Lung Diseases. Vaccines (Basel) 2018; 6:vaccines6030049. [PMID: 30060554 PMCID: PMC6161034 DOI: 10.3390/vaccines6030049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
The respiratory tract harbours a variety of microorganisms, collectively called the respiratory microbiota. Over the past few years, alterations in respiratory and gut microbiota composition have been associated with chronic inflammatory diseases of the lungs. How these changes influence disease development and progression is an active field of investigation. Identifying and understanding host-microbiota interactions and factors contributing to these interactions could promote the development of novel therapeutic strategies aimed at restoring host-microbiota homeostasis. In this review, we discuss recent literature on host-microbiota interactions in the respiratory tract, with a specific focus on the influence of endogenous host defence peptides and proteins (HDPs) on the composition of microbiota populations in vivo and explore possible HDPs-related therapeutic approaches targeting microbiota dysbiosis in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht 3508 AB, The Netherlands.
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3508 AB, The Netherlands.
| | - Bart Keijser
- Research Group Microbiology and Systems Biology, TNO (The Netherlands Organization for Applied Scientific Research), Zeist 3704 HE, The Netherlands.
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam 1008 AA, The Netherlands.
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.
| | | |
Collapse
|
42
|
Lyu W, Deng Z, Sunkara LT, Becker S, Robinson K, Matts R, Zhang G. High Throughput Screening for Natural Host Defense Peptide-Inducing Compounds as Novel Alternatives to Antibiotics. Front Cell Infect Microbiol 2018; 8:191. [PMID: 29942796 PMCID: PMC6004375 DOI: 10.3389/fcimb.2018.00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
A rise in antimicrobial resistance demands novel alternatives to antimicrobials for disease control and prevention. As an important component of innate immunity, host defense peptides (HDPs) are capable of killing a broad spectrum of pathogens and modulating a range of host immune responses. Enhancing the synthesis of endogenous HDPs has emerged as a novel host-directed antimicrobial therapeutic strategy. To facilitate the identification of natural products with a strong capacity to induce HDP synthesis, a stable macrophage cell line expressing a luciferase reporter gene driven by a 2-Kb avian β-defensin 9 (AvBD9) gene promoter was constructed through lentiviral transduction and puromycin selection. A high throughput screening assay was subsequently developed using the stable reporter cell line to screen a library of 584 natural products. A total of 21 compounds with a minimum Z-score of 2.0 were identified. Secondary screening in chicken HTC macrophages and jejunal explants further validated most compounds with a potent HDP-inducing activity in a dose-dependent manner. A follow-up oral administration of a lead natural compound, wortmannin, confirmed its capacity to enhance the AvBD9 gene expression in the duodenum of chickens. Besides AvBD9, most other chicken HDP genes were also induced by wortmannin. Additionally, butyrate was also found to synergize with wortmannin and several other newly-identified compounds in AvBD9 induction in HTC cells. Furthermore, wortmannin acted synergistically with butyrate in augmenting the antibacterial activity of chicken monocytes. Therefore, these natural HDP-inducing products may have the potential to be developed individually or in combinations as novel antibiotic alternatives for disease control and prevention in poultry and possibly other animal species including humans.
Collapse
Affiliation(s)
- Wentao Lyu
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Zhuo Deng
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Lakshmi T Sunkara
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Sage Becker
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Kelsy Robinson
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Robert Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States.,Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States.,Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
43
|
Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 2018; 18:136-152. [DOI: 10.1017/s1466252317000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.
Collapse
|
44
|
Dietary modulation of endogenous host defense peptide synthesis as an alternative approach to in-feed antibiotics. ACTA ACUST UNITED AC 2018; 4:160-169. [PMID: 30140755 PMCID: PMC6104571 DOI: 10.1016/j.aninu.2018.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/01/2018] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention. However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogens have led to a ban of all antibiotics in livestock production by the European Union in January 2006 and a removal of medically important antibiotics in animal feeds in the United States in January 2017. An urgent need arises for antibiotic alternatives capable of maintaining animal health and productivity without triggering antimicrobial resistance. Host defense peptides (HDP) are a critical component of the animal innate immune system with direct antimicrobial and immunomodulatory activities. While in-feed supplementation of recombinant or synthetic HDP appears to be effective in maintaining animal performance and alleviating clinical symptoms in the context of disease, dietary modulation of the synthesis of endogenous host defense peptides has emerged as a cost-effective, antibiotic-alternative approach to disease control and prevention. Several different classes of small-molecule compounds have been found capable of promoting HDP synthesis. Among the most efficacious compounds are butyrate and vitamin D. Moreover, butyrate and vitamin D synergize with each other in enhancing HDP synthesis. This review will focus on the regulation of HDP synthesis by butyrate and vitamin D in humans, chickens, pigs, and cattle and argue for potential application of HDP-inducing compounds in antibiotic-free livestock production.
Collapse
|
45
|
Wolf P, Weger W, Patra V, Gruber-Wackernagel A, Byrne SN. Desired response to phototherapy vs photoaggravation in psoriasis: what makes the difference? Exp Dermatol 2018; 25:937-944. [PMID: 27376966 DOI: 10.1111/exd.13137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
Psoriasis commonly responds beneficially to UV radiation from natural sunlight or artificial sources. Therapeutic mechanisms include the proapoptotic and immunomodulating effects of UV, affecting many cells and involving a variety of pro- and anti-inflammatory cytokines, downregulating the Th17/IL-23 response with simultaneous induction of regulatory immune cells. However, exposure to UV radiation in a subset of psoriasis patients leads to exacerbation of the disease. We herein shed light on the predisposing factors of photosensitive psoriasis, including genetics (such as HLA-Cw*0602 or CARD14), gender and coexisting photodermatoses such as polymorphic light eruption (PLE) in the context of potential molecular mechanisms behind therapeutic photoresponsiveness or photoaggravation. UV-induced damage/pathogen-associated molecular patterns, damage to self-coding RNA (signalling through Toll-like receptors), certain antimicrobial peptides and/or inflammasome activation may induce innate immunity, leading to psoriasis at the site of UV exposure when there is concomitant, predisposing resistance against UV-induced suppression of the adaptive immune response (like in PLE) that otherwise would act to reduce psoriasis.
Collapse
Affiliation(s)
- Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Wolfgang Weger
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - VijayKumar Patra
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | | | - Scott N Byrne
- Cellular Photoimmunology Group, Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Baumann A, Kiener MS, Haigh B, Perreten V, Summerfield A. Differential Ability of Bovine Antimicrobial Cathelicidins to Mediate Nucleic Acid Sensing by Epithelial Cells. Front Immunol 2017; 8:59. [PMID: 28203238 PMCID: PMC5285380 DOI: 10.3389/fimmu.2017.00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/16/2017] [Indexed: 12/26/2022] Open
Abstract
Cathelicidins encompass a family of cationic peptides characterized by antimicrobial activity and other functions, such as the ability to enhance the sensing of nucleic acids by the innate immune system. The present study aimed to investigate the ability of the bovine cathelicidins indolicidin, bactenecin (Bac)1, Bac5, bovine myeloid antimicrobial peptide (BMAP)-27, BMAP-28, and BMAP-34 to inhibit the growth of bacteria and to enhance the sensing of nucleic acid by the host’s immune system. BMAP-27 was the most effective at killing Staphylococcus aureus, Streptococcus uberis, and Escherichia coli, and this was dependent on its amphipathic structure and cationic charge. Although most cathelicidins possessed DNA complexing activity, only the alpha-helical BMAP cathelicidins and the cysteine-rich disulfide-bridged Bac1 were able to enhance the sensing of nucleic acids by primary epithelial cells. We also compared these responses with those mediated by neutrophils. Activation of neutrophils with phorbol myristate acetate resulted in degranulation and release of cathelicidins as well as bactericidal activity in the supernatants. However, only supernatants from unstimulated neutrophils were able to promote nucleic acid sensing in epithelial cells. Collectively, the present data support a role for certain bovine cathelicidins in helping the innate immune system to sense nucleic acids. The latter effect is observed at concentrations clearly below those required for direct antimicrobial functions. These findings are relevant in development of future strategies to promote protection at mucosal surfaces against pathogen invasion.
Collapse
Affiliation(s)
- Arnaud Baumann
- Institute of Virology and Immunology , Bern , Switzerland
| | | | - Brendan Haigh
- AgResearch, Ruakura Research Centre , Hamilton , New Zealand
| | - Vincent Perreten
- Vetsuisse Faculty, Department of Infectious Diseases and Pathobiology, Institute of Veterinary Bacteriology, University of Bern , Bern , Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland; Vetsuisse Faculty, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Attia S, Versloot CJ, Voskuijl W, van Vliet SJ, Di Giovanni V, Zhang L, Richardson S, Bourdon C, Netea MG, Berkley JA, van Rheenen PF, Bandsma RH. Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study. Am J Clin Nutr 2016; 104:1441-1449. [PMID: 27655441 PMCID: PMC5081715 DOI: 10.3945/ajcn.116.130518] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diarrhea affects a large proportion of children with severe acute malnutrition (SAM). However, its etiology and clinical consequences remain unclear. OBJECTIVE We investigated diarrhea, enteropathogens, and systemic and intestinal inflammation for their interrelation and their associations with mortality in children with SAM. DESIGN Intestinal pathogens (n = 15), cytokines (n = 29), fecal calprotectin, and the short-chain fatty acids (SCFAs) butyrate and propionate were determined in children aged 6-59 mo (n = 79) hospitalized in Malawi for complicated SAM. The relation between variables, diarrhea, and death was assessed with partial least squares (PLS) path modeling. RESULTS Fatal subjects (n = 14; 18%) were younger (mean ± SD age: 17 ± 11 compared with 25 ± 11 mo; P = 0.01) with higher prevalence of diarrhea (46% compared with 18%, P = 0.03). Intestinal pathogens Shigella (36%), Giardia (33%), and Campylobacter (30%) predominated, but their presence was not associated with death or diarrhea. Calprotectin was significantly higher in children who died [median (IQR): 1360 mg/kg feces (2443-535 mg/kg feces) compared with 698 mg/kg feces (1438-244 mg/kg feces), P = 0.03]. Butyrate [median (IQR): 31 ng/mL (112-22 ng/mL) compared with 2036 ng/mL (5800-149 ng/mL), P = 0.02] and propionate [median (IQR): 167 ng/mL (831-131 ng/mL) compared with 3174 ng/mL (5819-357 ng/mL), P = 0.04] were lower in those who died. Mortality was directly related to high systemic inflammation (path coefficient = 0.49), whereas diarrhea, high calprotectin, and low SCFA production related to death indirectly via their more direct association with systemic inflammation. CONCLUSIONS Diarrhea, high intestinal inflammation, low concentrations of fecal SCFAs, and high systemic inflammation are significantly related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens. These findings offer an important understanding of inflammatory changes in SAM, which may lead to improved therapies. This trial was registered at www.controlled-trials.com as ISRCTN13916953.
Collapse
Affiliation(s)
- Suzanna Attia
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Christian J Versloot
- Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning
| | - Wieger Voskuijl
- Department of Paediatrics and Child Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Global Child Health Group, Emma Children's Hospital, Academic Medical Centre, Amsterdam, Netherlands
| | - Sara J van Vliet
- University of Groningen, University Medical Center Groningen, Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Groningen, Netherlands
| | - Valeria Di Giovanni
- Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning
| | - Ling Zhang
- Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning
| | | | - Céline Bourdon
- Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - James A Berkley
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom; and.,Childhood Acute Illness and Nutrition Network (CHAIN)
| | - Patrick F van Rheenen
- University of Groningen, University Medical Center Groningen, Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Groningen, Netherlands
| | - Robert Hj Bandsma
- Division of Gastroenterology, Hepatology, and Nutrition, .,Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning.,Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,University of Groningen, University Medical Center Groningen, Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Groningen, Netherlands.,Childhood Acute Illness and Nutrition Network (CHAIN)
| |
Collapse
|
48
|
Kubicek-Sutherland JZ, Lofton H, Vestergaard M, Hjort K, Ingmer H, Andersson DI. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides. J Antimicrob Chemother 2016; 72:115-127. [PMID: 27650186 PMCID: PMC5161045 DOI: 10.1093/jac/dkw381] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
Background The clinical development of antimicrobial peptides (AMPs) is currently under evaluation to combat the rapid increase in MDR bacterial pathogens. However, many AMPs closely resemble components of the human innate immune system and the ramifications of prolonged bacterial exposure to AMPs are not fully understood. Objectives We show that in vitro serial passage of a clinical USA300 MRSA strain in a host-mimicking environment containing host-derived AMPs results in the selection of stable AMP resistance. Methods Serial passage experiments were conducted using steadily increasing concentrations of LL-37, PR-39 or wheat germ histones. WGS and proteomic analysis by MS were used to identify the molecular mechanism associated with increased tolerance of AMPs. AMP-resistant mutants were characterized by measuring in vitro fitness, AMP and antibiotic susceptibility, and virulence in a mouse model of sepsis. Results AMP-resistant Staphylococcus aureus mutants often displayed little to no fitness cost and caused invasive disease in mice. Further, this phenotype coincided with diminished susceptibility to both clinically prescribed antibiotics and human defence peptides. Conclusions These findings suggest that therapeutic use of AMPs could select for virulent mutants with cross-resistance to human innate immunity as well as antibiotic therapy. Thus, therapeutic use of AMPs and the implications of cross-resistance need to be carefully monitored and evaluated.
Collapse
Affiliation(s)
| | - Hava Lofton
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123, Uppsala, Sweden
| | - Martin Vestergaard
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Copenhagen, Denmark
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123, Uppsala, Sweden
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Copenhagen, Denmark
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123, Uppsala, Sweden
| |
Collapse
|
49
|
Abstract
Human cathelicidin LL-37, the only member of the cathelicidin family of host defense peptides expressed in humans, plays a crucial role in host defense against pathogen invasion, as well as in regulating the functions of anti-inflammation, antitumorigenesis, and tissue repair. It is primarily produced by phagocytic leukocytes and epithelial cells, and mediates a wide range of biological responses. Emerging evidence from several studies indicates that LL-37 plays a prominent and complex role in inflammatory bowel disease (IBD). Although overexpression of LL-37 has been implicated in the inflamed and noninflamed colon mucosa in patients with ulcerative colitis, LL-37 expression was not changed in the inflamed or noninflamed colon or ileal mucosa in patients with Crohn's disease. Furthermore, studies in animal models and human patients further characterized the protective effect of cathelicidins both in ulcerative colitis and Crohn's disease. These data suggest the intricate functions of LL-37 in IBD. They will also create many strategies and opportunities for therapeutic intervention in IBD in the future. This review aims to elucidate the structure and bioactivity of LL-37 and also discuss the recent progress in understanding the relationship between LL-37 and IBD.
Collapse
|
50
|
Gupta K, Kotian A, Subramanian H, Daniell H, Ali H. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget 2016; 6:28573-87. [PMID: 26378047 PMCID: PMC4745678 DOI: 10.18632/oncotarget.5611] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/30/2015] [Indexed: 01/21/2023] Open
Abstract
Preclinical evaluation of Retrocyclins (RC-100, RC-101) and Protegrin-1 (PG-1) antimicrobial peptides (AMPs) is important because of their therapeutic potential against bacterial, fungal and viral infections. Human mast cells (HMCs) play important roles in host defense and wound healing but the abilities of retrocyclins and protegrin-1 to harness these functions have not been investigated. Here, we report that chemically synthesized RC-100 and PG-1 caused calcium mobilization and degranulation in HMCs but these responses were not blocked by an inhibitor of formyl peptide receptor-like 1 (FPRL1), a known receptor for AMPs. However, RC-100 and PG-1 induced degranulation in rat basophilic leukemia (RBL-2H3) cells stably expressing Mas related G protein coupled receptor X2 (MrgX2). Chemical synthesis of these AMPs is prohibitively expensive and post-synthesis modifications (cyclization, disulfide bonds, folding) are inadequate for optimal antimicrobial activity. Indeed, we found that synthetic RC-100, which caused mast cell degranulation via MrgX2, did not display any antimicrobial activity. Green-fluorescent protein (GFP)-tagged RC-101 (analog of RC-100) and GFP-tagged PG-1 purified from transgenic plant chloroplasts killed bacteria and induced mast cell degranulation. Furthermore, GFP-PG1 bound specifically to RBL-2H3 cells expressing MrgX2. These findings suggest that retrocyclins and protegrins activate HMCs independently of FPRL1 but via MrgX2. Harnessing this novel feature of AMPs to activate mast cell's host defense/wound healing properties in addition to their antimicrobial activities expands their clinical potential. Low cost production of AMPs in plants should facilitate their advancement to the clinic overcoming major hurdles in current production systems.
Collapse
Affiliation(s)
- Kshitij Gupta
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Akhil Kotian
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hariharan Subramanian
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hydar Ali
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|