1
|
Jin X, Zhang C, Lin S, Gao T, Qian H, Qu L, Yao J, Du X, Feng G. Pec 1 of Pseudomonas aeruginosa Inhibits Bacterial Clearance of Host by Blocking Autophagy in Macrophages. ACS Infect Dis 2024; 10:2741-2754. [PMID: 39047963 DOI: 10.1021/acsinfecdis.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a common opportunistic pathogen, is highly prone to chronic infection and is almost impossible to eradicate, especially attributed to virulence factors and adaptive mutations. In the present study, pseudomonas effector candidate 1 (Pec 1), a novel virulence factor of P. aeruginosa, was investigated, which inhibited bacterial clearance by the host and aggravated lung injury. Further, it demonstrated that Pec 1 inhibited miR-155 via suppressing integrin β3 expression, thereby activating PI3K-AKT-mTOR and inhibiting autophagy in macrophages. Additionally, the identification of Pec 1 in sputum was related to the bacterial load and assisted in rapid diagnosis of P. aeruginosa infection. This finding underlined the importance of Pec 1 in the pathogenesis of P. aeruginosa infection and indicated that Pec 1 could be a vital independent virulence factor during chronic infection with P. aeruginosa, providing new insights in rapid diagnosis, therapeutic targets, and vaccine antigens of P. aeruginosa infection.
Collapse
Affiliation(s)
- Xiao Jin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Changwen Zhang
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Shaoqing Lin
- Department of Pulmonary and Critical Care Medicine, The 900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Tianming Gao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Huimin Qian
- Department of Acute Infectious Disease Prevention and Control, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210000, China
| | - Lili Qu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jing Yao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Xingran Du
- Department of Pulmonary and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
2
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the causative agent of the recent COVID-19 pandemic, continues representing one of the main health concerns worldwide. Autophagy, in addition to its role in cellular homeostasis and metabolism, plays an important part for the host antiviral immunity. However, viruses including SARS-CoV-2 have evolved diverse mechanisms to not only overcome autophagy's antiviral pressure but also manipulate its machinery in order to enhance viral replication and propagation. Here, we discuss our current knowledge on the impact that autophagy exerts on SARS-CoV-2 replication, as well as the different counteracting measures that this virus has developed to manipulate autophagy's complex machinery. Some of the elements regarding this interplay may become future therapeutic targets in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology and Immunology, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiqiang Hu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd, Dezhou, China
| | | |
Collapse
|
3
|
van Setten GB. Ocular Surface Allostasis-When Homeostasis Is Lost: Challenging Coping Potential, Stress Tolerance, and Resilience. Biomolecules 2023; 13:1246. [PMID: 37627311 PMCID: PMC10452761 DOI: 10.3390/biom13081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The loss of ocular surface (OS) homeostasis characterizes the onset of dry eye disease. Resilience defines the ability to withstand this threat, reflecting the ability of the ocular surface to cope with and bounce back after challenging events. The coping capacity of the OS defines the ability to successfully manage cellular stress. Cellular stress, which is central to the outcome of the pathophysiology of dry eye disease, is characterized by intensity, continuity, and receptivity, which lead to the loss of homeostasis, resulting in a phase of autocatalytic dysregulation, an event that is not well-defined. To better define this event, here, we present a model providing a potential approach when homeostasis is challenged and the coping capacities have reached their limits, resulting in the stage of heterostasis, in which the dysregulated cellular stress mechanisms take over, leading to dry eye disease. The main feature of the proposed model is the concept that, prior to the initiation of the events leading to cellular stress, there is a period of intense activation of all available coping mechanisms preventing the imminent dysregulation of ocular surface homeostasis. When the remaining coping mechanisms and resilience potential have been maximally exploited and have, finally, been exceeded, there will be a transition to manifest disease with all the well-known signs and symptoms, with a shift to allostasis, reflecting the establishment of another state of balance. The intention of this review was to show that it is possibly the phase of heterostasis preceding the establishment of allostasis that offers a better chance for therapeutic intervention and optimized recovery. Once allostasis has been established, as a new steady-state of balance at a higher level of constant cell stress and inflammation, treatment may be far more difficult, and the potential for reversal is drastically decreased. Homeostasis, once lost, can possibly not be fully recovered. The processes established during heterostasis and allostasis require different approaches and treatments for their control, indicating that the current treatment options for homeostasis need to be adapted to a more-demanding situation. The loss of homeostasis necessarily implies the establishment of a new balance; here, we refer to such a state as allostasis.
Collapse
Affiliation(s)
- Gysbert-Botho van Setten
- St. Eriks Eye Hospital, 171 04 Solna, Sweden;
- Lab of DOHF and Wound Healing, Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Eugeniavägen 12/Level 6, 171 04 Solna, Sweden
| |
Collapse
|
4
|
Qin C, Lu Y, Bai L, Wang K. The molecular regulation of autophagy in antimicrobial immunity. J Mol Cell Biol 2022; 14:6547771. [PMID: 35278083 PMCID: PMC9335221 DOI: 10.1093/jmcb/mjac015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Autophagy is a catabolic process that can degrade worn-out organelles and invading pathogens. The activation of autophagy regulates innate and adaptive immunity, playing a key role in the response to microbial invasion. Microbial infection may cause different consequences such as the elimination of invaders through autophagy or xenophagy, host cell death, and symbiotic relationships. Pathogens adapt to the autophagy mechanism and further relieve intracellular stress, which is conducive to host cell survival and microbial growth. The regulation of autophagy forms a complex network through which host immunity is modulated, resulting in a variety of pathophysiological manifestations. Modification of the autophagic pathway is an essential target for the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Yalan Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Lin Bai
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Kewei Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
5
|
Onishchenko NA, Gonikova ZZ, Nikolskaya AO, Kirsanova LA, Sevastianov VI. Programmed cell death and liver diseases. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022; 24:72-88. [DOI: 10.15825/1995-1191-2022-1-72-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cell death represents the most critical pathologic entity in liver disease, which dictates pathologic consequences such as inflammation, fibrosis, and cell transformation. We analyzed the conclusions of studies on the involvement of different types of programmed cell death (PCD) in the pathogenesis of liver diseases. Three main forms of PCD (autophagy, apoptosis, necrosis) and five additional, still insufficiently studied PCD – necroptosis, ferroptosis, pyroptosis, partanatosis and entosis – observed in the liver in various acute and chronic diseases are considered. The involvement of several PCD at once in the development of any one pathology and one type of PCD in different pathologies was established. This indicates the existence of cross-regulation of metabolism in the liver cells with different levels of damage in the formation of the main dominant type of PCD. Available results indicate the possibility of attenuation (correction) of functional and morphological manifestations of PCD in the organ by controlled blocking of effector-mediated PCD pathways, as well as targeted induction of autophagy, anti-apoptotic and anti-necrotic mechanisms in liver cells.
Collapse
Affiliation(s)
- N. A. Onishchenko
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - Z. Z. Gonikova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - A. O. Nikolskaya
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - L. A. Kirsanova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| |
Collapse
|
6
|
Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int J Mol Sci 2021; 22:ijms222413397. [PMID: 34948194 PMCID: PMC8704656 DOI: 10.3390/ijms222413397] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.
Collapse
|
7
|
Sengupta A, Mukherjee S, Ghosh S, Keswani T, Sarkar S, Majumdar G, Das M, Bhattacharyya A. Partial impairment of late-stage autophagic flux in murine splenocytes leads to sqstm1/p62 mediated nrf2-keap1 antioxidant pathway activation and induced proteasome-mediated degradation in malaria. Microb Pathog 2020; 147:104289. [PMID: 32693118 DOI: 10.1016/j.micpath.2020.104289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023]
Abstract
Splenomegaly, a major symptom in Plasmodium infection, is extensively studied for its immunopathological role in mice malaria model infected with Plasmodium berghei ANKA. The status of autophagic regulation in hosts in malaria pathogenesis remains unreported till date. This study demonstrated the autophagy, proteasomal degradation and NRF2-KEAP1 antioxidant pathway status in the host during Plasmodium infection taking murine spleen as our organ of interest. Initial staining and autophagic gene expression indicate a possibility of autophagic pathway activation. Although the conversion of LC3A to LC3B and lysosome-autophagosome fusion increases, the final degradation step remains incomplete. Resultant upregulation of p62 and its altered phosphorylated status enhances its binding to keap1 causing NRF2 translocation to the nucleus. NRF2 act as transcription factor upregulating p62 level itself leading to an autoinduction loop of p62 expression. Interestingly, enhancement of P62 interaction with proteasome subunit RPT1 indicates a possible role in transporting ubiquitinated cargo to proteasome complex. Ubiquitination level increased with subsequent upregulation of all three modes of proteasomal degradation i.e trypsin-like, caspase-like and especially chymotrypsin-like. Sqstm1/p62 plays a critical central role in regulating autophagy, proteasomal degradation, and NRF2-KEAP1 pathway. The incomplete autophagic flux in the final step may be a key therapeutic target, as autophagic degradation and subsequent pathogenic peptide presentation is of utmost necessity for downstream immune response.
Collapse
Affiliation(s)
- Anirban Sengupta
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Tarun Keswani
- Department of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Gargi Majumdar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
8
|
Lee HJ, Kang SJ, Woo Y, Hahn TW, Ko HJ, Jung YJ. TLR7 Stimulation With Imiquimod Induces Selective Autophagy and Controls Mycobacterium tuberculosis Growth in Mouse Macrophages. Front Microbiol 2020; 11:1684. [PMID: 32765474 PMCID: PMC7380068 DOI: 10.3389/fmicb.2020.01684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a lysosomal self-digestion pathway that maintains internal homeostasis inside cells and critical process by which the innate immune system eliminates intracellular bacteria. In this study, we showed that stimulation of toll-like receptor 7 (TLR7) with imiquimod (IMQ) triggered autophagic cell death in macrophages by enhancing the generation of reactive oxygen species (ROS) via the p38- or MEK/ERK1/2-mediated signaling pathway in the early phase. IMQ significantly increased mitochondrial ROS and targeted autophagosomes to the mitochondria. Stimulation of TLR7 with IMQ enhanced the expression of BNIP3, which was localized to mitochondria and interacted with beclin-1, leading to mitophagy. In addition, IMQ substantially induced NO production through the GSK-3β-mediated signaling pathway, which led to autophagy in the late stage. We further examined whether the induction of autophagy by IMQ effectively eliminated intracellular microbes. Macrophages were infected with a virulent Mycobacterium tuberculosis (Mtb) strain, H37Rv, and then treated with IMQ. IMQ suppressed intracellular Mtb growth by inducing autophagy in a dose-dependent manner and increased NO production. Inhibition of autophagy using 3-methyladenine (3-MA) prevented autophagosome formation and control of intracellular Mtb growth in macrophages. These findings revealed a novel mechanism by which IMQ induces selective autophagy to promote intracellular killing machinery against Mtb infection in macrophages.
Collapse
Affiliation(s)
- Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Institute of Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Su-Jin Kang
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Yunseo Woo
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Institute of Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Institute of Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
9
|
Effects of a Sudden Drop in Salinity on Scapharca subcrenata Antioxidant Defenses and Metabolism Determined Using LC-MS Non-targeted Metabolomics. Sci Rep 2020; 10:7324. [PMID: 32355228 PMCID: PMC7192903 DOI: 10.1038/s41598-020-63293-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/27/2020] [Indexed: 11/08/2022] Open
Abstract
In this experiment, the effects of a sudden drop in salinity on the antioxidant defense system and related gene expression of the ark shell Scapharca subcrenata were examined. The sudden drop in seawater salinity after a rainstorm was simulated, and subsequently differentially expressed metabolic markers were identified by LC-MS non-targeted metabolomics. When the salinity dropped to 14‰ (S14), the total anti-oxidant content, activity of Na+/K+-ATPase, superoxide dismutase (SOD), and catalase (CAT), content of malondialdehyde, and expression levels of Mn-SOD, CAT, and C-type lectin of S. subcrenata were significantly higher than in groups with salinity of 22‰ (S22) or 30‰ (S30) (P < 0.05). The activity of glutathione peroxidase (GPx), the content of reduced glutathione, and the expression levels of GPx were not significantly different between S14 and S22, but the values in each group were significantly higher than those in S30 (P < 0.05). Using the metabolomics technique, 361, 271, and 264 metabolites with significant differences were identified from S22 vs. S14, S30 vs. S14, and S30 vs. S22, respectively. The drop in salinity was accompanied by up-regulation of phosphatidylcholine (PC) (20:4 (5Z, 8Z, 11Z, 14Z)/P-18: 1 (11Z)), PC (16:0/22: 6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), phosphatidylethanolamine (PE) (18:4 (6Z, 9Z, 12Z, 15Z)/24:1 (15Z)), phosphatidylinositol (PI) (20:1 (11Z)/0:0), phalluside-1, C16 sphinganine, and LacCer (d18:0/14:0) and by significant down-regulation of PI-Cer (d18:1/14:0) and PE (14:0/16:1(9Z). The results of this study illustrate how these nine metabolites can be used as metabolic markers for the response of S. subcrenata to a sudden drop in salinity. They also provide the theoretical groundwork for selection of bottom areas with salinity that is optimal for release and proliferation of S. subcrenata, which is needed to restore the declining populations of this species.
Collapse
|
10
|
Bajić SS, Đokić J, Dinić M, Tomić S, Popović N, Brdarić E, Golić N, Tolinački M. GABA potentiate the immunoregulatory effects of Lactobacillus brevis BGZLS10-17 via ATG5-dependent autophagy in vitro. Sci Rep 2020; 10:1347. [PMID: 31992761 PMCID: PMC6987229 DOI: 10.1038/s41598-020-58177-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
The characterization of mechanisms involved in the positive effects of probiotic bacteria in various pathophysiological conditions is a prerogative for their safe and efficient application in biomedicine. We have investigated the immunological effects of live bacteria-free supernatant collected from GABA-producing Lactobacillus brevis BGZLS10-17 on Concanavalin A-stimulated mesenteric lymph node cells (MLNC), an in vitro model of activated immune cells. We have shown that GABA containing and GABA-free supernatant of Lactobacillus brevis BGZLS10-17 have strong immunoregulatory effects on MLNC. Further, GABA produced by this strain exhibit additional inhibitory effects on proliferation, IFN-γ and IL-17 production by MLNC, and the expression of MHCII and CD80 on antigen presenting cells. At the other hand, GABA-containing supernatants displayed the strongest stimulatory effects on the expression of immunoregulatory molecules, such as Foxp3+, IL-10, TGF-β, CTLA4 and SIRP-α. By looking for the mechanisms of actions, we found that supernatants produced by BGZLS10-17 induce autophagy in different MLNC, such as CD4+ and CD8+ T lymphocytes, NK and NKT cells, as well as antigen presenting cells. Further, we showed that the stimulation of Foxp3+, IL-10 and TGF-β expression by BGZLS10-17 produced GABA is completely mediated by the induction of ATG5 dependent autophagy, and that other molecules in the supernatants display GABA-, ATG5-, Foxp3+-, IL-10- and TGF-β- independent, immunoregulatory effects.
Collapse
Affiliation(s)
- Svetlana Soković Bajić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia.
| | - Miroslav Dinić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nikola Popović
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Emilija Brdarić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S. TLRs/NLRs: Shaping the landscape of host immunity. Int Rev Immunol 2017; 37:3-19. [PMID: 29193992 DOI: 10.1080/08830185.2017.1397656] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immune system provides the first line of defense against pathogenic organisms. It has a varied and large collection of molecules known as pattern recognition receptors (PRRs) which can tackle the pathogens promptly and effectively. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are members of the PRR family that recognize pathogen associated molecular patterns (PAMPs) and play pivotal roles to mediate defense against infections from bacteria, fungi, virus and various other pathogens. In this review, we discuss the critical roles of TLRs and NLRs in the regulation of host immune-effector functions such as cytokine production, phagosome-lysosome fusion, inflammasome activation, autophagy, antigen presentation, and B and T cell immune responses that are known to be essential for mounting a protective immune response against the pathogens. This review may be helpful to design TLRs/NLRs based immunotherapeutics to control various infections and pathophysiological disorders.
Collapse
Affiliation(s)
- Komal Dolasia
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Manoj K Bisht
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Gourango Pradhan
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Atul Udgata
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Sangita Mukhopadhyay
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| |
Collapse
|
12
|
Xu G, Shen J, Sun P, Niu Y, Zhao P, Tang P, Zhang J, Fei C, Bu L, Yue Z, Liu H, Wang Z, Yang L, Sun D. Potato freeze-thaw solution enhances immune function and antitumor activity in vivo. Oncol Lett 2017; 14:6129-6134. [PMID: 29113257 DOI: 10.3892/ol.2017.6970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
Although potato extract, derived from various methods, exhibits anticancer, antiviral and anti-parasite activities in vitro and in vivo, the bioactivity of potato solution remains unclear using the freeze-thaw extraction method granted by the State Intellectual Property Office of China. In the present study, a potato freeze-thaw solution (PFTS) was fed to mice with ascites tumor that were pre-treated with cyclophosphamide. The numbers of peripheral white blood cells (WBCs), macrophage phagocytosis, lymphocyte transformation and survival of mice were measured. While mice injected with cyclophosphamide exhibited decreased counts of peripheral WBCs, treatment of the cyclophosphamide-injected mice with PFTS for 10 days significantly increased the number of peripheral WBCs and reversed WBC counts to the normal level, a comparable effect to that of Ganoderma lucidum. In addition, treatment with PFTS for 20 days significantly enhanced peritoneal macrophage phagocytosis and lymphocyte transformation. Lastly, PFTS was noticed to prolong the survival of tumor-bearing mice when compared with that of control mice. Collectively, these data suggested that PFTS, at least in part, enhances immune function and possesses antitumor activity.
Collapse
Affiliation(s)
- Guihua Xu
- Department of Clinical Medical Research Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Jie Shen
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Peng Sun
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Yan Niu
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Pengwei Zhao
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Pingping Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Jiayi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Chunxue Fei
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Leinan Bu
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Zhiyi Yue
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Honghao Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Zhiqiang Wang
- Department of Anatomy, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Limin Yang
- Institute of Microbiology and Immunology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China.,Inner Mongolia Mengjian Biotechnology Company, Wuchua, Inner Mongolia 011700, P.R. China
| | - Dejun Sun
- Departments of Respiratory and Critical Diseases, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| |
Collapse
|
13
|
Harnett MM, Pineda MA, Latré de Laté P, Eason RJ, Besteiro S, Harnett W, Langsley G. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home. Biomed J 2017; 40:9-22. [PMID: 28411887 PMCID: PMC6138802 DOI: 10.1016/j.bj.2016.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022] Open
Abstract
Christian de Duve first coined the expression “autophagy” during his seminal work on the discovery of lysosomes, which led to him being awarded the Nobel Prize in Physiology or Medicine in 1974. The term was adopted to distinguish degradation of intracellular components from the uptake and degradation of extracellular substances that he called “heterophagy”. Studies until the 1990s were largely observational/morphological-based until in 1993 Yoshinori Oshumi described a genetic screen in yeast undergoing nitrogen deprivation that led to the isolation of autophagy-defective mutants now better known as ATG (AuTophaGy-related) genes. The screen identified mutants that fell into 15 complementation groups implying that at least 15 genes were involved in the regulation of autophagy in yeast undergoing nutrient deprivation, but today, 41 yeast ATG genes have been described and many (though not all) have orthologues in humans. Attempts to identify the genetic basis of autophagy led to an explosion in its research and it's not surprising that in 2016 Yoshinori Oshumi was awarded the Nobel Prize in Physiology or Medicine. Our aim here is not to exhaustively review the ever-expanding autophagy literature (>60 papers per week), but to celebrate Yoshinori Oshumi's Nobel Prize by highlighting just a few aspects that are not normally extensively covered. In an accompanying mini-review we address the role of autophagy in early-diverging eukaryote parasites that like yeast, lack lysosomes and so use a digestive vacuole to degrade autophagosome cargo and also discuss how parasitized host cells react to infection by subverting regulation of autophagy.
Collapse
Affiliation(s)
- Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Perle Latré de Laté
- Inserm U1016, CNRS UMR8104, Cochin Institute, Paris, France; The laboratory of Comparative Cell Biology of Apicomplexa, Medical Faculty of Paris-Descartes University, Sorbonne Paris City, France
| | - Russell J Eason
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Sébastien Besteiro
- DIMNP, UMR CNRS 5235, Montpellier University, Place Eugène Bataillon, Building 24, CC Montpellier, France
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gordon Langsley
- Inserm U1016, CNRS UMR8104, Cochin Institute, Paris, France; The laboratory of Comparative Cell Biology of Apicomplexa, Medical Faculty of Paris-Descartes University, Sorbonne Paris City, France.
| |
Collapse
|
14
|
Eriksen AB, Torgersen ML, Holm KL, Abrahamsen G, Spurkland A, Moskaug JØ, Simonsen A, Blomhoff HK. Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy. Autophagy 2016; 11:460-71. [PMID: 25749095 DOI: 10.1080/15548627.2015.1009797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present study we have established a vital role of autophagy in retinoic acid (RA)-induced differentiation of toll-like receptor (TLR)-stimulated human B cells into Ig-secreting cells. Thus, RA enhanced autophagy in TLR9- and CD180-stimulated peripheral blood B cells, as revealed by increased levels of the autophagosomal marker LC3B-II, enhanced colocalization between LC3B and the lysosomal marker Lyso-ID, by a larger percentage of cells with more than 5 characteristic LC3B puncta, and by the concomitant reduction in the level of SQSTM1/p62. Furthermore, RA induced expression of the autophagy-inducing protein ULK1 at the transcriptional level, in a process that required the retinoic acid receptor RAR. By inhibiting autophagy with specific inhibitors or by knocking down ULK1 by siRNA, the RA-stimulated IgG production in TLR9- and CD180-mediated cells was markedly reduced. We propose that the identified prominent role of autophagy in RA-mediated IgG-production in normal human B cells provides a novel mechanism whereby vitamin A exerts its important functions in the immune system.
Collapse
Key Words
- ATG, autophagy-related
- B lymphocytes
- BDS, bright detail similarity
- CD180
- CD180, CD180 molecule
- CVID, common variable immune deficiency
- ELISA, enzyme-linked immunosorbent assay
- IL, interleukin
- Ig, immunoglobulin
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 β
- MTOR, mechanistic target of rapamycin (serine/threonine kinase)
- PAMP, pathogen-associated molecular pattern, PML/RARA, promyelocytic leukemia/ retinoic acid receptor α
- RA, all-trans retinoic acid
- RAR, retinoic acid receptor
- RP105
- SQSTM1, sequestosome 1
- TLR, toll-like receptor
- TLR9
- ULK1
- ULK1, unc-51 like autophagy activating kinase 1
- antibody secretion
- autophagy
- plasma cell differentiation
- retinoic acid
Collapse
Affiliation(s)
- Agnete Bratsberg Eriksen
- a Department of Biochemistry ; Institute of Basic Medical Sciences; University of Oslo ; Oslo , Norway
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Merched AJ, Daret D, Li L, Franzl N, Sauvage-Merched M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis. FASEB J 2016; 30:2123-34. [PMID: 26891734 DOI: 10.1096/fj.201500131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Higher cardiovascular morbidity in patients with a wide range of autoimmune diseases highlights the importance of autoimmunity in promoting atherosclerosis. Our purpose was to investigate the mechanisms of accelerated atherosclerosis and identified vascular autoantigens targeted by autoimmunity. We created a mouse model of autoimmunity-associated atherosclerosis by transplanting bone marrow from FcγRIIB knockout (FcRIIB(-/-)) mice into LDL receptor knockout mice. We characterized the cellular and molecular mechanisms of atherogenesis and identified specific aortic autoantigens using serologic proteomic studies. En face lesion area analysis showed more aggressive atherosclerosis in autoimmune mice compared with control mice (0.64 ± 0.12 vs 0.32 ± 0.05 mm(2); P < 0.05, respectively). At the cellular level, FcRIIB(-/-) macrophages showed significant reduction (46-72%) in phagocytic capabilities. Proteomic analysis revealed circulating autoantibodies in autoimmune mice that targeted 25 atherosclerotic lesion proteins, including essential components of adhesion complex, cytoskeleton, and extracellular matrix, and proteins involved in critical functions and pathways. Microscopic examination of atherosclerotic plaques revealed essential colocalization of autoantibodies with endothelial cells, their adherence to basement membranes, the internal elastica lamina, and necrotic cores. The new vascular autoimmunosome may be a useful target for diagnostic and immunotherapeutic interventions in autoimmunity-associated diseases that have accelerated atherosclerosis.-Merched, A. J., Daret, D., Li, L., Franzl, N., Sauvage-Merched, M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis.
Collapse
Affiliation(s)
- Aksam J Merched
- Department of Pharmaceutical Sciences, and INSERM U1053, University of Bordeaux, Bordeaux, France Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Danièle Daret
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lan Li
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathalie Franzl
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
16
|
Crauwels P, Bohn R, Thomas M, Gottwalt S, Jäckel F, Krämer S, Bank E, Tenzer S, Walther P, Bastian M, van Zandbergen G. Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy 2016; 11:285-97. [PMID: 25801301 PMCID: PMC4502818 DOI: 10.1080/15548627.2014.998904] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed—in contrast to viable parasites—that apoptotic-like parasites enter an LC3+, autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4+ T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells´ autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.
Collapse
Key Words
- ANXA5, annexin V
- CFSE, carboxyfluorescein succinimidyl ester
- CM, complete medium
- IF, immunofluorescence
- IL, interleukin
- LAP
- LAP, LC3-associated phagocytosis
- Lm, Leishmania
- MACS, magnetic-associated cell sorting
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- MOI, multiplicity of infection
- PBMCs, peripheral blood mononuclear cells
- PS, phosphatidylserine
- T-cell proliferation
- TGFB, transforming growth factor
- anti-inflammatory
- apoptotic-like Leishmania
- autophagy
- hMDM, human monocyte derived macrophage
- human primary macrophages
- immune evasion
- log.ph, logarithmic phase
- stat.ph, stationary phase
- β; TT, tetanus toxoid
Collapse
Affiliation(s)
- Peter Crauwels
- a Division of Immunology ; Paul-Ehrlich-Institute ; Langen , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu C, Feng K, Zhao X, Huang S, Cheng Y, Qian L, Wang Y, Sun H, Jin M, Chuang TH, Zhang Y. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination. Autophagy 2015; 10:2239-50. [PMID: 25484083 PMCID: PMC4502788 DOI: 10.4161/15548627.2014.981792] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases.
Collapse
Key Words
- Atg, autophagy-related
- BALF, bronchoalveolar lavage fluid
- BECN1
- BMDM, bone marrow-derived macrophage
- CFU, colony-forming unit
- GFP, green fluorescent protein
- HRP, horseradish peroxidase
- LPS, lipopolysaccharide
- MAP1LC3A, microtubule-associated protein 1 light chain 3 α
- MOI, multiplicity of infection
- NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells
- PBS, phosphate-buffered saline
- RIPK1, receptor (TNFRSF)-interacting serine-threonine kinase 1
- RNF216
- RNF216, ring finger protein 216;TIRAP, toll-interleukin 1 receptor (TIR) domain containing adaptor protein
- TICAM1/TRIF, toll-like receptor adaptor molecule 1
- TICAM2, toll-like receptor adaptor molecule 2
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRAF, TNF receptor-associated factor
- Triad, 2 RING fingers and a DRIL (double RING finger linked)
- Ub, ubiquitin
- autophagy
- i.t., intratracheally
- protein degradation
- shRNA, short hairpin RNA
- ubiquitination
Collapse
Affiliation(s)
- Congfeng Xu
- a Shanghai Institute of Immunology; Institutes of Medical Sciences; Shanghai Jiao Tong University School of Medicine (SJTUSM); and Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences & SJTUSM ; Shanghai , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Reuschel EL, Wang J, Shivers DK, Muthumani K, Weiner DB, Ma Z, Finkel TH. REDD1 Is Essential for Optimal T Cell Proliferation and Survival. PLoS One 2015; 10:e0136323. [PMID: 26301899 PMCID: PMC4547781 DOI: 10.1371/journal.pone.0136323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/02/2015] [Indexed: 12/21/2022] Open
Abstract
REDD1 is a highly conserved stress response protein that is upregulated following many types of cellular stress, including hypoxia, DNA damage, energy stress, ER stress, and nutrient deprivation. Recently, REDD1 was shown to be involved in dexamethasone induced autophagy in murine thymocytes. However, we know little of REDD1’s function in mature T cells. Here we show for the first time that REDD1 is upregulated following T cell stimulation with PHA or CD3/CD28 beads. REDD1 knockout T cells exhibit a defect in proliferation and cell survival, although markers of activation appear normal. These findings demonstrate a previously unappreciated role for REDD1 in T cell function.
Collapse
Affiliation(s)
- Emma L. Reuschel
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - JiangFang Wang
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Debra K. Shivers
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zhengyu Ma
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Terri H. Finkel
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Autophagy plays a crucial role in intracellular defense against various pathogens. Xenophagy is a form of selective autophagy that targets intracellular pathogens for degradation. In addition, several related, yet distinct, intracellular defense responses depend on autophagy-related genes. This review gives an overview of these processes, pathogen strategies to subvert them, and their crosstalk with various cell death programs. RECENT FINDINGS The recruitment of autophagy-related proteins plays a key role in multiple intracellular defense programs, specifically xenophagy, microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis, and the interferon gamma-mediated elimination of pathogens, such as Toxoplasma gondii and murine norovirus. Recent progress has revealed methods employed by pathogens to resist these intracellular defense mechanisms and/or persist in spite of them. The intracellular pathogen load can tip the balance between cell survival and cell death. Further, it was recently observed that LC3-associated phagocytosis is indispensable for the efficient clearance of dying cells. SUMMARY Autophagy-dependent and autophagy-related gene-dependent pathways are essential in intracellular defense against a broad range of pathogens.
Collapse
|
20
|
Johnson BM, Fraietta JA, Gracias DT, Hope JL, Stairiker CJ, Patel PR, Mueller YM, McHugh MD, Jablonowski LJ, Wheatley MA, Katsikis PD. Acute exposure to ZnO nanoparticles induces autophagic immune cell death. Nanotoxicology 2014; 9:737-48. [DOI: 10.3109/17435390.2014.974709] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Abstract
The common clear cell subtype of renal cell carcinoma is associated with hereditary or acquired loss of function of the von Hippel-Lindau tumor suppressor, a key component in oxygen sensing, perpetuating a stressed state. Autophagy is primarily a highly conserved, catabolic process by which stressed cells shuttle damaged or effete organelles and proteins into autophagosomes for sequestration and digestion after fusion with lysosomes. Autophagy is directed by autophagy-related genes and is divided into 4 discrete steps: initiation, nucleation, maturation, and degradation. During early tumorigenesis, apoptosis is enhanced and autophagy is suppressed, allowing accumulation of mutations and emergence of genomic instability. Late, an "autophagic switch" occurs, promoting survival and limiting apoptosis. Compounds such as chloroquine and hydroxychloroquine that prevent acidification of the lysosomal compartment are the sole clinically available inhibitors of autophagy. Currently, there are more than 30 trials examining combinations of hydroxychloroquine with anticancer agents. The intricate effects of autophagy on the immune response complicate manipulation of autophagy as part of the antitumor strategy. Further understanding of basic mechanisms of renal cell carcinoma pathogenesis and of autophagy will enable development of the next generation of pharmacologic modulators of autophagy.
Collapse
|
22
|
Zullo AJ, Jurcic Smith KL, Lee S. Mammalian target of Rapamycin inhibition and mycobacterial survival are uncoupled in murine macrophages. BMC BIOCHEMISTRY 2014; 15:4. [PMID: 24528777 PMCID: PMC3937017 DOI: 10.1186/1471-2091-15-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023]
Abstract
Background Autophagy is a cellular response to intracellular pathogens including mycobacteria and is induced by the direct inhibitors of mammalian target of Rapamycin (mTOR), a major negative regulator of autophagy. Autophagy induction by mTOR inhibition (mTOR dependent autophagy), through chemical means or starvation, leads to mycobacterial killing in infected cells. However, previous work by our group has shown that mycobacterial infection of macrophages naturally induces both autophagy and mammalian target of Rapamycin (mTOR) activity (mTOR independent autophagy). In the current work, we further explore the relationship between mTOR activity and mycobacterial killing in macrophages. Results While low concentrations of the mTOR inhibitors, Rapamycin, Torin 1, and Torin 2, can effectively reduce or block mTOR activity in response to lipopolysaccharides (LPS) or mycobacteria, higher concentrations (10 uM) are required to observe Mycobacterium smegmatis killing. The growth of M. smegmatis was also inhibited by high concentrations of Rapamycin in LC3B and ATG5 deficient bone marrow derived macrophages, suggesting that non-autophagic mechanisms might contribute to killing at high doses. Since mycobacterial killing could be observed only at fairly high concentrations of the mTOR inhibitors, exceeding doses necessary to inhibit mTOR, we hypothesized that high doses of Rapamycin, the most commonly utilized mTOR inhibitor for inducing autophagic killing, may exert a direct bactericidal effect on the mycobacteria. Although a short-term treatment of mycobacteria with Rapamycin did not substantially affect mycobacterial growth, a long-term exposure to Rapamycin could impact mycobacterial growth in vitro in select species. Conclusions This data, coupled with previous work from our laboratory, further indicates that autophagy induction by mTOR inhibition is an artificial means to increase mycobacterial killing and masks more relevant endogenous autophagic biochemistry that needs to be understood.
Collapse
Affiliation(s)
| | | | - Sunhee Lee
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
23
|
Junkins RD, McCormick C, Lin TJ. The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy 2014; 10:538-47. [PMID: 24434788 PMCID: PMC4077897 DOI: 10.4161/auto.27750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), a channel that normally transports anions across epithelial cell membranes. The most common manifestation of CF is buildup of mucus in the airways and bacterial colonization of the lower respiratory tract, accompanied by chronic inflammation. Antibiotics are used to control CF-associated opportunistic infections, but lengthy antibiotic treatment risks the emergence of multiple-drug resistant (MDR) strains. New antimicrobial strategies are needed to prevent and treat infections in these high-risk individuals. Autophagy contributes to the control of a variety of microbial infections. For this reason, the recent discovery of functional impairment of autophagy in CF provides a new basis for understanding susceptibility to severe infections. Here, we review the role of autophagy in host defense against CF-associated bacterial and fungal pathogens, and survey pharmacologic approaches to restore normal autophagy function in these individuals. Autophagy restoration therapy may improve pathogen clearance and mitigate lung inflammation in CF airways.
Collapse
Affiliation(s)
- Robert D Junkins
- Department of Microbiology and Immunology; Dalhousie University; Halifax, NS CA; Department of Pediatrics; IWK Health Centre; Halifax, NS CA; Beatrice Hunter Cancer Research Institute; Halifax, NS CA
| | - Craig McCormick
- Department of Microbiology and Immunology; Dalhousie University; Halifax, NS CA; Beatrice Hunter Cancer Research Institute; Halifax, NS CA
| | - Tong-Jun Lin
- Department of Microbiology and Immunology; Dalhousie University; Halifax, NS CA; Department of Pediatrics; IWK Health Centre; Halifax, NS CA; Beatrice Hunter Cancer Research Institute; Halifax, NS CA
| |
Collapse
|
24
|
Zhang Y, Wang X, Yang H, Liu H, Lu Y, Han L, Liu G. Kinase AKT controls innate immune cell development and function. Immunology 2013; 140:143-52. [PMID: 23692658 DOI: 10.1111/imm.12123] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022] Open
Abstract
The critical roles of kinase AKT in tumour cell proliferation, apoptosis and protein synthesis have been widely recognized. But AKT also plays an important role in immune modulation. Recent studies have confirmed that kinase AKT can regulate the development and functions of innate immune cells (neutrophil, macrophage and dendritic cell). Studies have shown that different isoforms of kinase AKT have different effects in regulating immunity-related diseases, mainly through the mammalian target of rapamycin-dependent or -independent pathways. The purpose of this review is to illustrate the immune modulating effects of kinase AKT on innate immune cell development, survival and function.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China; Shenyang Agriculture University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Junkins RD, Shen A, Rosen K, McCormick C, Lin TJ. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One 2013; 8:e72263. [PMID: 24015228 PMCID: PMC3756076 DOI: 10.1371/journal.pone.0072263] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Ann Shen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kirill Rosen
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
26
|
Pu Y, Bassham DC. Links between ER stress and autophagy in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e24297. [PMID: 23603973 PMCID: PMC3907440 DOI: 10.4161/psb.24297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 05/23/2023]
Abstract
Autophagy is a major pathway for the delivery of proteins or organelles to be degraded in the vacuole and recycled. It can be induced by abiotic stresses, senescence, and pathogen infection. Recent research has shown that autophagy is activated by ER stress. Here we review the major progress that has been made in the study of autophagy and ER stress in plants, and describe the links between ER stress and autophagy to guide further study on how autophagy is regulated in response to ER stress.
Collapse
|