1
|
Aljuwayd M, Malli IA, Olson EG, Ricke SC, Rothrock MJ, Kwon YM. Disinfectants and one health review: The role of reactive oxygen species in the bactericidal activity of chlorine against Salmonella. One Health 2025; 20:100989. [PMID: 40035020 PMCID: PMC11874720 DOI: 10.1016/j.onehlt.2025.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Salmonella are among the most common foodborne pathogens in humans, and they are associated with mild to severe diseases commonly referred to as salmonellosis. The genus resides in various animals' intestinal tracts, including humans. It is one of the most diverse genera of bacteria, including over 2500 serovars. Consumption of poultry products contaminated with Salmonella is a significant source of disease transmission in humans. Because of this food safety concern, the poultry industry and governments spend billions of dollars on Salmonella containment methods. However, a completely effective strategy is yet to be established. Chlorine has been commonly used as a disinfectant in the poultry industry. In humans, antibiotic therapy is the primary means for managing Salmonella infection. However, widespread use of both compounds at sub-inhibitory concentrations has allowed resistant strains to emerge and rapidly spread globally. Both antimicrobial compounds involve generating reactive oxygen species (ROS) as a bactericidal mechanism of action. However, ROS generation and its association with bacterial survival and growth inhibition have not been widely explored. Thus, a better understanding of ROS generation during antimicrobial treatments may help devise better Salmonella containment strategies.
Collapse
Affiliation(s)
- Mohammed Aljuwayd
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- College of Medical Applied Sciences, The Northern Border University, Arar 91431, Saudi Arabia
| | - Israa Abdullah Malli
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Michael J. Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605, USA
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Poultry Science, University of Arkansas System, Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Le PM, Pal-Ghosh S, Stepp MA, Menko AS. Shared Phenotypes of Immune Cells Recruited to the Cornea and the Surface of the Lens in Response to Formation of Corneal Erosions. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:960-981. [PMID: 39889825 PMCID: PMC12016862 DOI: 10.1016/j.ajpath.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Injuries to the cornea can lead to recurrent corneal erosions, compromising its barrier function and increasing the risk of infection. Vital as corneal integrity is to the eye's optical power and homeostasis, the immune response to corneal erosions remains poorly understood. It is also unknown whether there is coordinated immune activation between the cornea and other regions of the anterior segment to protect against microbial invasion and limit the spread of inflammation when corneal erosions occur. Herein, a corneal debridement wounding model was used to characterize the immune cell phenotypes populating the cornea in response to erosion formation, and whether and which immune cells are concurrently recruited to the surface of the lens was investigated. The formation of corneal erosions induced an influx of myeloid lineage phenotypes, both M2 macrophages associated with tissue healing and wound repair, and Ly6G+ Ly6C+ myeloperoxidase+ cells resembling neutrophils/polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs), with few regulatory T cells, into the corneal stroma under erosion sites. This leukocyte migration into the cornea when erosions develop was paralleled by the recruitment of immune cells, predominantly neutrophils/PMN-MDSCs, to the anterior, cornea-facing lens capsule. Both cornea-infiltrating and lens capsule-associated neutrophil/PMN-MDSC-like immune cells produce the anti-inflammatory cytokine IL-10. These findings suggest a collaborative role for the lens capsule-associated immune cells in preventing infections, controlling inflammation, and maintaining homeostasis of the anterior segment during recurrent corneal erosions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Ardekani OS, Letafati A, Dehkordi SE, Farahani AV, Bahari M, Mahdavi B, Ariamand N, Taghvaei M, Kohkalani M, Pirkooh AA, Jazayeri SM, Saso L. From infection to infertility: a review of the role of human papillomavirus-induced oxidative stress on reproductive health and infertility. Eur J Med Res 2025; 30:339. [PMID: 40296084 PMCID: PMC12036311 DOI: 10.1186/s40001-025-02605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Infertility has emerged as a significant global health concern, affecting nearby 8-12% of couples in reproductive age worldwide. Increasing evidence suggests a potential link between human papillomavirus (HPV) and infertility in both men and women. Some research indicate that HPV can infect various components of semen, potentially affecting sperm quality by decreasing motility, viability, and increasing DNA fragmentation, all of which may contribute to male infertility. The virus can attach to the equatorial region of the sperm head, enabling infected sperm to transmit the virus to the oocyte or placenta. Consequently, HPV potentially induces apoptosis in trophoblastic cells and disrupts their adhesion to endometrial cells, which raises the risk of miscarriage. HPV may also affect ovarian reserve by causing chronic inflammation, which can impair granulosa cell function and lower serum anti-Müllerian hormone (AMH) levels. Besides, HPV-related immune responses also contribute to infertility by producing anti-sperm antibodies (ASAs), which cause sperm clumping, reduce motility through cervical mucus, activate the complement system that damages sperm in the female reproductive tract and interfere with sperm-egg interactions. Moreover, HPV infection has been linked to reduced success rates in assisted reproductive technologies (ART), potentially disrupting critical processes such as the acrosome reaction, sperm-oocyte interaction, and fusion. One potential mechanism through which HPV contributes to infertility is oxidative stress (OS). Triggered OS can negatively impact sperm quality and cause damage to the female reproductive system, ultimately contributing to infertility. Despite these associations, the precise mechanisms and the strength of the relationship remain uncertain. Thus, this review seeks to investigate the potential impact of HPV on infertility, particularly its effects on the reproductive system through OS. A clearer understanding of these processes could inform future health strategies for addressing HPV-related infertility.
Collapse
Affiliation(s)
- Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Arash Letafati
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mahshid Bahari
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Bahar Mahdavi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Negar Ariamand
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mahdie Taghvaei
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Moein Kohkalani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Angila Ataei Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Jazayeri
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy.
| |
Collapse
|
4
|
Roccaforte V, Sabbatini G, Panella R, Daves M, Formenti P, Gotti M, Galimberti A, Spreafico M, Piccin A, Lippi G, Pezzi A, Pastori S. The potential role of leukocytes cell population data (CPD) for diagnosing sepsis in adult patients admitted to the intensive care unit. Clin Chem Lab Med 2025; 63:1031-1042. [PMID: 39851139 DOI: 10.1515/cclm-2024-1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/26/2025]
Abstract
OBJECTIVES The aim of the study was to evaluate the predictive value of cell population data (CPD) parameters in comparison with procalcitonin (PCT) and C-reactive protein (CRP) for an early diagnosis of sepsis in intensive care unit (ICU). The effect of renal function on CPD, PCT and CRP, in septic and non-septic patients was also investigated. METHODS This is a retrospective, observational and single-center study, performed with data collected from patients consecutively admitted to the ICU of the Edoardo Bassini Hospital in Milan. Patients were divided in septic and non-septic according to Sepsis-III criteria. The control group was formed by critically ill patients without sepsis. Patients with sepsis were further divided in patients with sepsis and patients with septic shock. RESULTS A significant difference between septic and non-septic patients was found for neutrophils complexity (NE-SSC), neutrophils fluorescence intensity (NE-SFL), width of dispersion of neutrophils fluorescence (NE-WY), monocytes complexity (MO-X), monocytes fluorescence intensity (MO-Y), PCT and CRP parameters. PCT, neutrophils sixe (NE-FSC), NE-WY, width of dispersion of neutrophils size (NE-WZ) and MO-X discriminated sepsis and septic-shock patients. CPD parameters were not influenced by renal function. CPD, PCT and CRP had a heterogeneous diagnostic performance efficiency in the prediction of sepsis. Overall, NE-SSC, NE-SFL, width of dispersion of neutrophils complexity (NE-WX), MO-X, MO-Y, PCT and CRP displayed the best diagnostic performance for sepsis. CONCLUSIONS This study suggested that some CPD parameters (i.e., NE-SFL and MO-X) might provide useful information for diagnosis and management of sepsis.
Collapse
Affiliation(s)
- Vincenzo Roccaforte
- S.C. Analisi Chimico Cliniche e Microbiologiche, 159114 ASST Nord Milano , Ospedale Bassini, Cinisello Balsamo, Italy
| | - Giovanni Sabbatini
- S.C. Anestesia, Rianimazione e Terapia Intensiva, 159114 ASST Nord Milano , Ospedale Bassini, Cinisello Balsamo, Italy
| | - Rossella Panella
- S.C. Analisi Chimico Cliniche e Microbiologiche, 159114 ASST Nord Milano , Ospedale Bassini, Cinisello Balsamo, Italy
| | - Massimo Daves
- Laboratory of Clinical Biochemistry (SABES-ASDAA), Hospital of Bolzano, Bolzano, Italy
| | - Paolo Formenti
- S.C. Anestesia, Rianimazione e Terapia Intensiva, 159114 ASST Nord Milano , Ospedale Bassini, Cinisello Balsamo, Italy
| | - Miriam Gotti
- S.C. Anestesia, Rianimazione e Terapia Intensiva, 159114 ASST Nord Milano , Ospedale Bassini, Cinisello Balsamo, Italy
| | - Andrea Galimberti
- S.C. Anestesia, Rianimazione e Terapia Intensiva, 159114 ASST Nord Milano , Ospedale Bassini, Cinisello Balsamo, Italy
| | - Marta Spreafico
- Department of Transfusion Medicine and Hematology, ASST-Lecco, Lecco, Italy
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, UK
- University of Medicine Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Angelo Pezzi
- S.C. Anestesia, Rianimazione e Terapia Intensiva, 159114 ASST Nord Milano , Ospedale Bassini, Cinisello Balsamo, Italy
| | - Stefano Pastori
- S.C. Analisi Chimico Cliniche e Microbiologiche, 159114 ASST Nord Milano , Ospedale Bassini, Cinisello Balsamo, Italy
| |
Collapse
|
5
|
Shen S, Yuan Y, Song J, Zhu Y, Wang Y, Yue C, Du M, Wei J, Feng F, Tian M. A phenothiazine-based ratiometric fluorescent probe for detecting hypochlorite (ClO -) and its application in foods and water samples. Food Chem 2025; 485:144547. [PMID: 40311560 DOI: 10.1016/j.foodchem.2025.144547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/09/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
As a significant reactive oxygen species (ROS), ClO- plays versatile roles in daily life and many biological events. However, its abnormal levels are responsible for serious harm to human health. Therefore, it is of crucial interest to develop effective methods for detecting ClO- in foods and living organisms. In this work, a novel fluorescent probe ethyl 2-(3-formyl-2-methoxy-10H-phenothiazin-10-yl)acetate (PEA) for detecting ClO- was presented. It shows the merits of rapid ratiometric response (within 10 s), high selectivity and very large Stokes shift (190 nm). The detection limit of PEA for ClO- was determined to be 0.47 μM. We not only successfully prepared paper test strips for efficient qualitative naked eye ClO- detection, but also demonstrated its potential for the valid detection of ClO- in natural water samples, beverages and foods. Furthermore, the probe PEA was also applied to the fluorescence imaging of ClO- in onion epidermal cells.
Collapse
Affiliation(s)
- Siyi Shen
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yuehua Yuan
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Jinping Song
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yongjun Zhu
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yuzhen Wang
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Chaoyi Yue
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Mengqing Du
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Jiyuan Wei
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Maozhong Tian
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
6
|
Mizumoto G, Morgon NH, de Souza AR, Ximenes VF. Electrophilic Susceptibility of Graphene Quantum Dots: Hypochlorous versus Hypobromous Acids-Experimental and Theoretical Study. ACS OMEGA 2025; 10:15753-15761. [PMID: 40290942 PMCID: PMC12019441 DOI: 10.1021/acsomega.5c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Graphene quantum dots (GQDs) are water-soluble, are biocompatible, and exhibit low toxicity. These properties, along with their adjustable and efficient fluorescent emission, make GQDs valuable for biological applications, particularly as spectroscopic nanosensors. In this context, GQDs have been utilized to detect hypochlorous acid (HOCl). While HOCl is a well-known synthetic disinfectant, it is also naturally produced by the enzyme myeloperoxidase (MPO) in mammals. This heme-peroxidase also catalyzes the production of hypobromous acid (HOBr), a more potent halogenating agent. In our study, we compared the reactivity of HOCl and HOBr with GQDs. By monitoring the fluorescence bleaching of the GQDs, we demonstrated that HOBr is more reactive than HOCl. The increased reactivity was attributed to HOBr's higher electrophilicity. The electrophilic nature of the reaction was further confirmed by introducing nicotine as a chlorination catalyst. Anisole did not inhibit the electrophilic attack, confirming the high reactivity of GODs with HOBr. The enzyme MPO was used to generate HOBr through oxidation of Br- by H2O2. Thus, the enzymatic activity of MPO could be monitored by GQDs' fluorescence bleaching, and the efficiency of MPO inhibitors could be evaluated. We applied differential function theory (DFT) methodologies to support our experimental findings, proposing a transition state for the electrophilic attack. Consistent with our experimental results, the energetic barrier for the reaction with HOBr was lower than that for HOCl. Overall, our results indicate the susceptibility of GQDs to electrophilic attacks by hypohalous acids and highlight new opportunities for biological applications.
Collapse
Affiliation(s)
- Guilherme
Justiniano Mizumoto
- Departamento
de Química, Universidade Estadual
Paulista Júlio de Mesquita Filho (UNESP), Bauru, São Paulo 17033-360, Brazil
| | - Nelson Henrique Morgon
- Departamento
de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Aguinaldo Robinson de Souza
- Departamento
de Química, Universidade Estadual
Paulista Júlio de Mesquita Filho (UNESP), Bauru, São Paulo 17033-360, Brazil
| | - Valdecir Farias Ximenes
- Departamento
de Química, Universidade Estadual
Paulista Júlio de Mesquita Filho (UNESP), Bauru, São Paulo 17033-360, Brazil
| |
Collapse
|
7
|
Biernat MM, Camp OG, Moussa DN, Awonuga AO, Abu-Soud HM. The interplay between the myeloperoxidase-hypochlorous acid system, heme oxygenase, and free iron in inflammatory diseases. J Inorg Biochem 2025; 270:112927. [PMID: 40267847 DOI: 10.1016/j.jinorgbio.2025.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Accumulated unbound free iron (Fe(II or III)) is a redox engine generating reactive oxygen species (ROS) that promote oxidative stress and inflammation. Iron is implicated in diseases with free radical pathology including cardiovascular, neurodegenerative, reproductive disorders, and some types of cancer. While many studies focus on iron overload disorders, few explore the potential link between the myeloperoxidase-hypochlorous acid (MPO-HOCl) system and localized iron accumulation through heme and iron‑sulfur (FeS) cluster protein destruction. Although inducible heme oxygenase (HO-1), the rate-limiting enzyme in heme catabolism, is frequently associated with these diseases, we hypothesize that HOCl also contributes to the generation of free iron and heme degradation products. Furthermore, HO-1 and HOCl may play a dual role in free iron accumulation by regulating the activity of key iron metabolism proteins. Enzymatic and non-enzymatic modulators, as well as scavengers of HOCl, can help prevent heme destruction and reduce the accumulation of free iron. Given iron's role in disease progression and severity, identifying the primary sources, mechanisms, and mediators involved in free iron generation is crucial for developing effective pharmacological treatments. Further investigation focusing on the specific contributions of the MPO-HOCl system and free iron is necessary to explore novel strategies to mitigate its harmful effects in biological systems.
Collapse
Affiliation(s)
- Mia M Biernat
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
Banik D, Banerjee S, Halder S, Ganguly R, Karak A, Ghosh P, Jana K, Mahapatra AK. A dual-responsive ratiometric fluorescent probe for the detection of hypochlorite and hydrazine in environmental samples, live cells, and plant tissues. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3290-3304. [PMID: 40197602 DOI: 10.1039/d5ay00153f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Hypochlorite (ClO-), a potent oxidizer and disinfectant, and hydrazine, a powerful reducing agent, are widely used in daily life and various industries. However, their extensive use comes with significant risks, as they are highly toxic to both the environment and human health. They have been associated with various health issues and even linked to cancer. Therefore, the simultaneous detection of hypochlorite and hydrazine is crucial for assessing their impact and monitoring the onset and progression of related diseases. A phenanthroimidazole-indandione based colorimetric and ratiometric fluorescent probe PIID was designed and synthesized for dual channel detection of hypochlorite and hydrazine in environmental and biological samples. Probe PIID, which showed a strong yellow-orange emission at 640 nm with a massive Stokes shift of 220 nm, exhibited excellent fluorescence change from yellow-orange to green (526 nm) in the presence of ClO- and from yellow-orange to blue (424 nm) in the presence of hydrazine in an aqueous-THF solvent system. A strong ICT effect, which was acting in probe PIID, gets weakened through ClO- - mediated cleavage of the CC bridge bond to produce aldehyde PIB with a blue shift of 114 nm and hydrazine-induced hydrazinolysis of the indanedione moiety to form hydrazone compound PIBH with a blue shift of 216 nm and that was also confirmed by DFT studies. Not only that, the probe exhibits excellent selectivity over other ROS (reactive oxygen species) and amines with a very fast response time of 40 seconds for hypochlorite and 90 seconds for hydrazine, and high sensitivity was observed with detection limits of 32.75 nM for hypochlorite and 92 nM for hydrazine. Moreover, PIID was employed to monitor both the analytes successfully in environmental water samples and in a solid-state TLC strip study. Hypochlorite was monitored in commercial disinfectants, and by exogenous bioimaging in human breast cancer cells (MDA-MB 231) and endogenous bioimaging in RAW 264.7 macrophage cells with very low cytotoxicity and good cell viability. Meanwhile, hydrazine was tracked in soil samples, and confocal imaging was performed on onion tissue.
Collapse
Affiliation(s)
- Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
9
|
Silva GHO, Amaral CF, da Rocha EMT, Cuman RKN, de Souza Silva Comar FM. Effect of gamma-terpinene on the articular inflammatory response. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04153-4. [PMID: 40232375 DOI: 10.1007/s00210-025-04153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
This study investigates the anti-inflammatory and antinociceptive effects of gamma-terpinene (GT), a monoterpene present in essential oils, in models of acute joint inflammation and pain. GT was administered orally at doses of 25, 50, 75, and 100 mg/kg. Joint inflammation was induced by an intra-articular injection of zymosan to assess joint edema, leukocyte migration, and myeloperoxidase (MPO) enzyme activity. A carrageenan-induced paw edema model was used to evaluate edema and mechanical hyperalgesia, with measurements taken via plethysmometry and Von Frey testing. Results showed that GT significantly decreased leukocyte migration, joint edema, and MPO activity in the zymosan model, indicating an anti-inflammatory effect. In the carrageenan model, GT also demonstrated a dose-dependent reduction in paw edema and mechanical hyperalgesia, highlighting its analgesic potential. These findings support that GT possesses notable anti-inflammatory and antinociceptive properties, making it a promising candidate for natural therapeutic applications in managing inflammatory joint conditions. This suggests a potential role of GT as a natural alternative to NSAIDs and glucocorticoids (GCs), reducing inflammation while minimizing side effects. Future studies should explore its clinical applicability and long-term safety.
Collapse
Affiliation(s)
- Guilherme Henrique Oliveira Silva
- Post-Graduation Program in Health Science (PCS), State University of Maringá(UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020 - 900, Brazil.
| | - Camila Ferreira Amaral
- Post-Graduation Program in Health Science (PCS), State University of Maringá(UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020 - 900, Brazil
| | - Edvalkia Magna Teobaldo da Rocha
- Post-Graduation Program in Pharmaceutical Science (PCF), State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020 - 900, Brazil
| | - Roberto Kenji Nakamura Cuman
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, 87020 - 900, Brazil
| | - Francielli Maria de Souza Silva Comar
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, 87020 - 900, Brazil
| |
Collapse
|
10
|
Karaman G, Ipek V. Preliminary study of neutrophils and neutrophil extracellular traps (NETs) in canine mammary tumors. Res Vet Sci 2025; 186:105573. [PMID: 39965363 DOI: 10.1016/j.rvsc.2025.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Neutrophils play a complex role in cancer biology, can contributing to tumor progression and immune defense. Neutrophil extracellular traps (NETs) have emerged as key modulators within the tumor microenvironment. Herein, the association between molecular classification, histological grade, necrosis, tumor-infiltrating neutrophils, and NETs was assessed in 19 canine mammary malignant tumors. Immunohistochemistry using citrullinated histone-3 (cith3) and myeloperoxidase (MPO) antibodies were used to detect NETs. A fading and re-staining method was applied on the same sections. NETs were scored based on the presence of cith3 positive areas and compared with tumor grade. The neutrophil score numerically increased as the tumor grade increased. The NET score was slightly higher in grade I carcinomas compared to carcinomas with other grades. On contrary, the necrosis score was also higher in grade II and III tumors than grade I tumors. A low but non-significant negative correlation existed between tumor grade and NET score (r = -0.219). No statistically significant associations between the tumor markers (ER, PR, HER2) and molecular subtypes with tumor grade, NET score, neutrophil count, and necrosis. In this study, the presence of NETs in canine malignant mammary tumor of different histological subtypes and grades was reported. Preliminary evidence was gathered that NETs are negatively correlated with tumor grade, suggesting their potential role in prognostication.
Collapse
Affiliation(s)
- Gulsum Karaman
- Burdur Mehmet Akif Ersoy University, Health Sciences Institute, Burdur, Türkiye
| | - Volkan Ipek
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Pathology, Burdur, Türkiye.
| |
Collapse
|
11
|
Cui ZJ. To activate a G protein-coupled receptor permanently with cell surface photodynamic action in the gastrointestinal tract. World J Gastroenterol 2025; 31:102423. [PMID: 40182590 PMCID: PMC11962841 DOI: 10.3748/wjg.v31.i12.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 03/26/2025] Open
Abstract
Different from reversible agonist-stimulated receptor activation, singlet oxygen oxidation activates permanently G protein-coupled receptor (GPCR) cholecystokinin 1 (CCK1R) in type II photodynamic action, with soluble photosensitizer dyes (sulphonated aluminum phthalocyanine, λmax 675 nm) or genetically encoded protein photosensitizers (KillerRed λmax 585 nm; mini singlet oxygen generator λmax 450 nm), together with a pulse of light (37 mW/cm2, 1-2 minutes). Three lines of evidence shed light on the mechanism of GPCR activated by singlet oxygen (GPCR-ABSO): (1) CCK1R is quantitatively converted from dimer to monomer; (2) Transmembrane domain 3, a pharmacophore for permanent photodynamic CCK1R activation, can be transplanted to non-susceptible M3 acetylcholine receptor; and (3) Larger size of disordered region in intracellular loop 3 correlates with higher sensitivity to photodynamic CCK1R activation. GPCR-ABSO will add to the arsenal of engineered designer GPCR such as receptors activated solely by synthetic ligands and designer receptors exclusively activated by designer drugs, but show some clear advantages: Enhanced selectivity (double selectivity of localized photosensitizer and light illumination), long-lasting activation with no need for repeated drug administration, antagonist-binding site remains intact when needed, ease to apply to multiple GPCR. This type of permanent photodynamic activation may be applied to functional proteins other than GPCR.
Collapse
Affiliation(s)
- Zong-Jie Cui
- Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- The Ministry of Education Laboratory for Cell Proliferation and Regulation, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Lopez-Silva T, Anderson CF, Schneider JP. Modulating Neutrophil Extracellular Trap Formation In Vivo with Locoregional Precision Using Differently Charged Self-Assembled Hydrogels. ACS CENTRAL SCIENCE 2025; 11:465-478. [PMID: 40161959 PMCID: PMC11950866 DOI: 10.1021/acscentsci.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Neutrophil extracellular traps (NETs) are DNA networks released by neutrophils, first described as a defense response against pathogens but have since been associated with numerous inflammatory diseases. Diverse physical material properties have been shown to promote NET formation. Herein, we report the discovery that the charge of self-assembled peptide hydrogels predictably modulates the formation of NETs in vivo within the implanted material. Positively charged gels induce rapid NET release, whereas negatively charged gels do not. This differential immune response to our self-assembled peptide gels enabled the development of a material platform that allows rheostat-like modulation over the degree of NET formation with anatomical and locoregional control.
Collapse
Affiliation(s)
- Tania
L. Lopez-Silva
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Caleb F. Anderson
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
13
|
Zhang Y, Nomura M, Nishimura K, Zang W, Koike Y, Xiao M, Ito H, Fukumoto M, Tanaka A, Aoyama Y, Saika W, Hasegawa C, Yamazaki H, Takaori-Kondo A, Inoue D. In-depth functional analysis of BRD9 in fetal hematopoiesis reveals context-dependent roles. iScience 2025; 28:112010. [PMID: 40109374 PMCID: PMC11919606 DOI: 10.1016/j.isci.2025.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The hierarchical organization of hematopoietic stem cells (HSCs) governing adult hematopoiesis has been extensively investigated. However, the dynamic epigenomic transition from fetal to adult hematopoiesis remains incompletely understood, particularly regarding the involvement of epigenetic factors. In this study, we investigate the roles of BRD9, an essential component of the non-canonical BAF (ncBAF) complex known to govern the fate of adult HSCs, in fetal hematopoiesis. Consistent with observations in adult hematopoiesis, BRD9 loss impairs fetal HSC stemness and disturbs erythroid maturation. Intriguingly, the impact on myeloid lineage was discrepant: BRD9 loss inhibited and promoted myeloid differentiation in fetal and adult models, respectively. Through comprehensive transcriptomic and epigenomic analysis, we elucidate the differential roles of BRD9 in a context- and lineage-dependent manner. Our data uncover how BRD9/ncBAF complex modulates transcription in a stage-specific manner, providing deeper insights into the epigenetic regulation underlying the transition from fetal to adult hematopoiesis.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Muran Xiao
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Department of Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Chihiro Hasegawa
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Lu N, Li Y, Wang J, Li G, Li G, Liu F, Tang CY. Precise manipulation of iron spin states in single-atom catalytic membranes for singlet oxygen selective production. MATERIALS HORIZONS 2025; 12:1944-1952. [PMID: 39704204 DOI: 10.1039/d4mh01479k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Heterogeneous single-atom catalysts are attracting substantial attention for selectively generating singlet oxygen (1O2). However, precise manipulation of atom coordination structures remains challenging. Here, the fine coordination structure of iron single-atom carbon-nitride catalysts (Fe-CNs) was manipulated by precisely tuning the heating rate with 1 °C min-1 difference. Multiple techniques in combination with density functional theory (DFT) calculations reveal that FeN6 coordination sites with high Fe spin states promote the adsorption, electron transfer, and dissociation of peroxymonosulfate (PMS), resulting in nearly 100% selection of 1O2 generation. A lamellar single atom catalytic membrane is constructed, exhibiting high permeance, high degradation, high-salinity resistance and sustained operation stability. This work provides ideas for regulating spin states of the metal site to fabricate catalysts with selective 1O2 generation for membrane separation and environment catalysis applications.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanle Li
- 4.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313000, P. R. China
| | - Jianqiang Wang
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guiliang Li
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guowei Li
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- CAS Key Laboratory of Magnetic Materials and Devices/Zhejiang Province Key, Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Chuyang Y Tang
- 5.Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| |
Collapse
|
15
|
Wang L, Lu G, Wang F, Tao Y, Dai C. Kurarinone Attenuates LPS-Induced Pneumonia by Inhibiting MAPK and NF-κB Signaling Pathways. APMIS 2025; 133:e70013. [PMID: 40083172 DOI: 10.1111/apm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Kurarinone is a prenylated flavanone isolated from Sophora flavescens Aiton. This investigation aimed to elucidate whether kurarinone could ameliorate lipopolysaccharide (LPS)-induced pneumonia and explore the underlying mechanism. C57BL/6 mice were treated with LPS (50 μg/20 μL) to establish pneumonia models. Kurarinone (100 mg/kg) or dexamethasone (DEX, 5 mg/kg) was administered for 7 days before LPS inhalation. BEAS-2B cells were incubated with kurarinone at 1, 2, and 5 μM for 2 h before LPS stimulation for 24 h. We found that kurarinone ameliorated lung injury and inflammatory cell infiltration in the mouse lung (p < 0.001). Kurarinone decreased MPO activity (47.6%, p < 0.001) and alleviated the inflammatory response by reducing the levels of IL-1β (34.9%, p < 0.001), TNF-α (55.1%, p < 0.001), and IL-6 (36.2%, p < 0.001) in the lung. Kurarinone reduced the levels of IL-1β, TNF-α, IL-6, iNOS, and COX2 in LPS-treated BEAS-2B cells in a concentration-dependent manner (p < 0.05). Mechanistically, kurarinone restrained LPS-induced activation of MAPK and NF-κB pathways in vivo and in vitro (p < 0.05). Overall, kurarinone alleviates LPS-induced pneumonia in mice by reducing inflammation via MAPK and NF-κB pathways, suggesting that kurarinone might be a potential therapeutic agent for pneumonia. This study provides new research ideas for the discovery of natural flavonoids that can treat pneumonia.
Collapse
Affiliation(s)
- Lili Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Guoyu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Fangli Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yanyan Tao
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Changyuan Dai
- Department of Urology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
16
|
Fokam Tagne MA, Noubissi PA, Foyet Fondjo A, Nono Njomguep L, Ngakou Mukam J, Sokeng Dongmo S, Kamgang R. Effects of aqueous extract of Waltheria indica (Sterculiaceae) leafy stems on acetic acid-induced ulcerative colitis in rats. Inflammopharmacology 2025; 33:1505-1516. [PMID: 39934536 DOI: 10.1007/s10787-025-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Ulcerative colitis is one of the inflammatory bowel diseases that manifest itself by uncontrolled inflammation of colon. The objective of this work was to evaluate the effects of aqueous extract of Waltheria indica on acetic acid-induced ulcerative colitis in rats. Six (6) groups of five (5) rats each, were anesthetized with a ketamine (50 mg/kg)/valium (10 mg/kg) mixture after eighteen (18) fasting hours. Colitis was induced by intrarectal administration of 1 mL of acetic acid (5%) in animals. Five (5) hours later, the normal control (NC) and the colitis control (CC) received distilled water (10 mL/kg bw), the positive control (Pre5) received prednisolone (5 mg/kg) and the other three test groups received the W. indica extract at 50 (Wi50), 100 (Wi100) and 200 (Wi200) mg/kg bw, orally for 7 days. At the end of the treatment, the animals were sacrificed and the blood was collected from the carotid artery, part in the ethylenediaminetetraacetate (EDTA) tube for hematological analyzes and part in dry tubes for biochemical assays. The abdomen was then opened, the colon, liver, spleen, lungs and heart were removed, drained, weighed and the indexes of each organ were determined. The extract at 200 mg/kg reduced myeloperoxidase (MPO) and inhibited the production of interleukin-1 beta (IL-1β) and interleukin-6(IL-6) in the colon and serum. The extract significantly increased the blood platelet level of the colitis rats. Thus, these results suggest that Walthera indica extract may have therapeutic potential for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Michel Archange Fokam Tagne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.
| | - Paul Aimé Noubissi
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Angèle Foyet Fondjo
- Department of Applied Sciences for Health, Higher Institute of Applied Sciences, University Institute of Gulf of Guinea, 237, Douala, Cameroon
| | - Laurelle Nono Njomguep
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Joseph Ngakou Mukam
- Animal Physiology Laboratory, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Sélestin Sokeng Dongmo
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - René Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
17
|
Mao GJ, Yang TT, Gong Y, Ma N, Wang P, Li CY, Wang K, Zhang G. Hypochlorous Acid-Activatable NIR Fluorescence/Photoacoustic Dual-Modal Probe with High Signal-to-Background Ratios for Imaging of Liver Injury and Plasma Diagnosis of Sepsis. ACS Sens 2025; 10:1032-1042. [PMID: 39813236 DOI: 10.1021/acssensors.4c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper. NIRF-PA-HClO showed excellent NIRF/PA dual-modal responses with high SBRs for HClO in solution, cells, and mice. Moreover, NIRF-PA-HClO was successfully applied for high-contrast imaging of DILI. Finally, NIRF-PA-HClO was employed for the blood plasma diagnosis of sepsis with satisfactory results. In summary, the above results proved that NIRF-PA-HClO would be a potentially useful tool for the study of physiological and pathological roles of HClO, the investigation of the pathology and therapeutic mechanisms of hepatotoxicity, and the diagnosis of blood infection. Also, the development of NIRF-PA-HClO provides new design mentality for constructing other analyte-activatable NIRF/PA dual-modal probes with high SBRs.
Collapse
Affiliation(s)
- Guo-Jiang Mao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tian-Tian Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yijun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Peng Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou, Zhejiang 310022, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
18
|
Etsè KS, Harrad MA, Etsè KD, Zaragoza G, Demonceau A, Mouithys-Mickalad A. Free Radical Scavenging Activity and Inhibition of Enzyme-Catalyzed Oxidation by trans-aryl-Palladium Complexes. Molecules 2025; 30:1122. [PMID: 40076345 PMCID: PMC11901561 DOI: 10.3390/molecules30051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Herein, nine square planar trans-arylbis(triphenylphosphine)palladium halides (PdX(PPh3)2Ar) were synthesized and fully characterized. The molecular structure of two complexes (1 and 2) have been determined by both X-ray diffraction and described thanks to Hirshfeld surface analysis. Investigation of the antioxidant activities showed that most of the complexes exhibit a strong dose-dependent radical scavenging activity towards DPPH radical as well as in the ABTS radical scavenging test. Complexes 1 [PdI(PPh3)2(4-MeOC6H4)] and 3 [PdCl(PPh3)2(4-MeOC6H4)] showed the highest activity in the DPPH assay with EC50 values of 1.14 ± 0.90 and 1.9 ± 0.87 µM, respectively. In contrast, for the ABTS assay, quercetin (5.56 ± 0.97 µM) was slightly more efficient than the three complexes 1 (5.78 ± 0.98 µM), 2 (7.01 ± 0.98 µM), and 3 (11.12 ± 0.94 µM). The use of kinetic studies as a powerful parameter shows that complexes 1, 2, and 3 displayed the best antioxidant efficiency. The antioxidant effect of the nine palladium complexes has been also evaluated on the enzyme-catalyzed oxidation of the L012 probe (using HRP/H2O2) by using a chemiluminescence technique. As with the last model, complexes 1, 2, and 3 showed the best activity, with EC50 values of 3.56 ± 1.87, 148 0.71, and 5.8 ± 2.60 µM, respectively. Interestingly, those complexes (1, 2, and 3) even exhibited a higher dose-dependent activity than the quercetin (7.06 ± 2.56 µM) used as a standard. Taken together, the combined results reveal that the antiradical and enzyme (HRP) inhibitory activity of complexes decrease following the ligand order of p-OMePh > p-OAcPh >> Ph.
Collapse
Affiliation(s)
- Koffi Sénam Etsè
- Laboratory of Macromolecular Chemistry and Organic Catalysis, Department of Chemistry, University of Liège, Sart-Tilman (B.6a), 4000 Liège, Belgium; (K.S.E.); (A.D.)
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15, 4000 Liège, Belgium
| | - Mohamed Anouar Harrad
- Environmental, Ecological, and Agro-Industrial Engineering Laboratory, Sultan Moulay Slimane University, P.O. Box 523, Beni Mellal 23000, Morocco;
- Regional Centre for Education Training and Formation—CRMEF, Marrakech-Safi 40000, Morocco
| | - Kodjo Djidjolé Etsè
- Laboratoire de Physiologie et Biotechnologie Végétales (LPBV), Faculté des Sciences (FDS), Université de Lomé (UL), Lomé BP 1515, Togo;
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, Universidade de Santiago de Compostela, Edificio CACTUS, Campus Vida, 15782 Santiago de Compostela, Spain;
| | - Albert Demonceau
- Laboratory of Macromolecular Chemistry and Organic Catalysis, Department of Chemistry, University of Liège, Sart-Tilman (B.6a), 4000 Liège, Belgium; (K.S.E.); (A.D.)
| | - Ange Mouithys-Mickalad
- Center for Oxygen, Research and Development (CORD), Center for Interdisciplinary Research on Medicines (CIRM), Veterinary Clinic, University of Liège, Quartier Vallée 2, Avenue de Cureghem 5, Sart-Tilman (B.6a), 4000 Liège, Belgium
| |
Collapse
|
19
|
Zhou W, Li Q, Liu M, Gu X, He X, Xie C, Fan Q. Biodegradable semiconducting polymer nanoparticles for phototheranostics. J Mater Chem B 2025; 13:2242-2253. [PMID: 39815890 DOI: 10.1039/d4tb02437k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Semiconducting polymer nanoparticles (SPNs) have been widely applied for phototheranostics. However, the disadvantage of in vivo long-term metabolism greatly suppresses the clinical application of SPNs. To improve the metabolic rate and minimize the long-term toxicity of SPNs, biodegradable semiconducting polymers (BSPs), whose backbones may be degraded under certain conditions, have been designed. This review summarizes recent advances in BSP-constructed nanoparticles (BSPNs) for phototheranostics. BSPs are divided into two categories: conjugated backbone degradable BSPs (CBD-BSPs) and non-conjugated backbone degradable BSPs (NCBD-BSPs), based on the feature of chemical structure. The biological applications, including cancer imaging and combination therapy, of these BSPNs are described. Finally, the conclusion and future perspectives of this field are discussed.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Qiang Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Mingming Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xuxuan Gu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xiaowen He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chen Xie
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
20
|
Lu C, Xu J, Song Z, Zhu G, Dai Z. A novel multifunctional fluorescent probe with ESIPT and AIE effects for the detection of Co 2+ and HClO. RSC Adv 2025; 15:4000-4013. [PMID: 39926234 PMCID: PMC11799882 DOI: 10.1039/d4ra07451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
We developed a novel fluorescent probe featuring excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) effects, which displayed dual-channel fluorescence emission. The probe detected both Co2+ and HClO with naked eye under daylight as well as through a fluorescence spectrophotometer. The probe exhibited a low detection limit for Co2+ at 2.823 μM, while the detection limit for HClO was 11.55 μM. When the probe (10 μM) was mixed with Co2+, the fluorescence intensity at 556 nm rapidly decreased within 10 minutes and stabilized after 40 minutes, while for HClO, it took 960 min to observe the same decrease in intensity within 960 min. The probe (10 μM) achieved naked-eye detection of Co2+ recognition under daylight; however, achieving naked-eye detection of HClO under daylight necessitated higher concentrations (500 μM). Thus, this probe shows promising potential for environmental monitoring and water quality detection.
Collapse
Affiliation(s)
- Chenxiang Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 24 Tongjiaxiang Nanjing, 210009 P. R. China
| | - Jiawei Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 24 Tongjiaxiang Nanjing, 210009 P. R. China
| | - Zhe Song
- China Pharmaceutical University Center for Analysis and Testing 24 Tongjiaxiang 210009 P. R. China
| | - Guoqin Zhu
- Department of Geriatric Gastroenterology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University 300 Guangzhou Road Nanjing 210029 P. R. China
| | - Zhenya Dai
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 24 Tongjiaxiang Nanjing, 210009 P. R. China
| |
Collapse
|
21
|
Retter A, Singer M, Annane D. "The NET effect": Neutrophil extracellular traps-a potential key component of the dysregulated host immune response in sepsis. Crit Care 2025; 29:59. [PMID: 39905519 PMCID: PMC11796136 DOI: 10.1186/s13054-025-05283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Neutrophils release neutrophil extracellular traps (NETs) as part of a healthy host immune response. NETs physically trap and kill pathogens as well as activating and facilitating crosstalk between immune cells and complement. Excessive or inadequately resolved NETs are implicated in the underlying pathophysiology of sepsis and other inflammatory diseases, including amplification of the inflammatory response and inducing thrombotic complications. Here, we review the growing evidence implicating neutrophils and NETs as central players in the dysregulated host immune response. We discuss potential strategies for modifying NETs to improve patient outcomes and the need for careful patient selection.
Collapse
Affiliation(s)
- Andrew Retter
- Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- School of Immunology and Microbial Sciences, King's College, London, UK.
- Volition, London, UK.
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Djillali Annane
- Department of Intensive Care, Raymond Poincaré Hospital, APHP University Versailles Saint Quentin-University Paris Saclay, INSERM, Garches, France
- IHU PROMETHEUS, Comprehensive Sepsis Center, Garches, France
- University Versailles Saint Quentin-University Paris Saclay, INSERM, Garches, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), Garches, France
| |
Collapse
|
22
|
Wu X, Pan T, Fang Z, Hui T, Yu X, Liu C, Guo Z, Liu C. Identification of EGR1 as a Key Diagnostic Biomarker in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Through Machine Learning and Immune Analysis. J Inflamm Res 2025; 18:1639-1656. [PMID: 39925925 PMCID: PMC11806694 DOI: 10.2147/jir.s499396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/25/2025] [Indexed: 02/11/2025] Open
Abstract
Background Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), as a common chronic liver condition globally, is experiencing an increasing incidence rate which poses significant health risks. Despite this, the detailed mechanisms underlying the disease's onset and progression remain poorly understood. In this study, we aim to identify effective diagnostic biomarkers for MASLD using microarray data combined with machine learning techniques, which will aid in further understanding the pathogenesis of MASLD. Methods We collected six datasets from the Gene Expression Omnibus (GEO) database, using five of them as training sets and one as a validation set. We employed three machine learning methods-LASSO, SVM, and Random Forest (RF)-to identify hub genes associated with MASLD. These genes were further validated using the external dataset GSE164760. Additionally, functional enrichment analysis, immune infiltration analysis, and immune function analysis were conducted. A TF-miRNA-mRNA network was constructed, and single-cell RNA sequencing was used to determine the distribution of key genes within key cell clusters. Finally, the expression of the key genes was further validated using the palmitic acid-induced AML-12 cell line and the MCD mouse model. Results In this study, through differential gene expression (DEGs) analysis and machine learning techniques, we successfully identified 10 hub genes. Among these, the key gene EGR1 was validated and screened using an external dataset, with an area under the curve (AUC) of 0.882. Enrichment analyses and immune infiltration assessments revealed multiple pathways involving EGR1 in the pathogenesis and progression of MASLD, showing significant correlations with various immune cells. Furthermore, additional cellular experiments and animal model validations confirmed that the expression trends of EGR1 are highly consistent with our analytical findings. Conclusion Our research has confirmed EGR1 as a key gene in MASLD, providing novel insights into the disease's pathogenesis and identifying new therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Xuanlin Wu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tao Pan
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Zhihao Fang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Titi Hui
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiaoxiao Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Changxu Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Zihao Guo
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Chang Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
23
|
Ramaiah KB, Suresh I, Nesakumar N, Sai Subramanian N, Rayappan JBB. "Urinary tract infection: Conventional testing to developing Technologies". Clin Chim Acta 2025; 565:119979. [PMID: 39341530 DOI: 10.1016/j.cca.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Urinary tract infections (UTIs) present an escalating global health concern, precipitating increased hospitalizations and antibiotic utilization, thereby fostering the emergence of antimicrobial resistance. Current diagnostic modalities exhibit protracted timelines and substantial financial burdens, necessitating specialized infrastructures. Addressing these impediments mandates the development of a precise diagnostic paradigm to expedite identification and augment antibiotic stewardship. The application of biosensors, recognized for their transformative efficacy, emerges as a promising resolution. Recent strides in biosensor technologies have introduced pioneering methodologies, yielding pertinent biosensors and integrated systems with significant implications for point-of-care applications. This review delves into historical perspectives, furnishing a comprehensive delineation of advancements in UTI diagnostics, disease etiology, and biomarkers, underscoring the potential merits of these innovations for optimizing patient care.
Collapse
Affiliation(s)
- Kavi Bharathi Ramaiah
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Indhu Suresh
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Sai Subramanian
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
24
|
Muhammad W, Liang M, Wang B, Xie J, Ahmed W, Gao C. NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo. Biomacromolecules 2025; 26:528-540. [PMID: 39729531 DOI: 10.1021/acs.biomac.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
N-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI. The NAC-grafted polymer nanoparticles (NPT@NPs) were prepared as a drug delivery system, which could effectively scavenge free radicals and reduce inflammation in vitro. The administration of NPT@NPs exhibited notable efficacy in ameliorating pulmonary edema, attenuating the presence of inflammatory cells, suppressing myeloperoxidase expression, diminishing the levels of pro-inflammatory cytokines, and reversing cell apoptosis in an ALI model induced by lipopolysaccharide (LPS). The NPT@NPs demonstrated significantly better efficacy compared to the free NAC in mitigating the deleterious effects of LPS on pulmonary tissue, thereby providing more effective protection against pulmonary inflammation.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Liang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Feješ A, Šebeková K, Borbélyová V. Pathophysiological Role of Neutrophil Extracellular Traps in Diet-Induced Obesity and Metabolic Syndrome in Animal Models. Nutrients 2025; 17:241. [PMID: 39861371 PMCID: PMC11768048 DOI: 10.3390/nu17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation. Neutrophils are first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are web-like DNA structures of nuclear or mitochondrial DNA associated with cytosolic antimicrobial proteins. The primary function of NETosis is preventing the dissemination of pathogens. However, neutrophils may occasionally misidentify host molecules as danger-associated molecular patterns, triggering NET formation. This can lead to further recruitment of neutrophils, resulting in propagation and a vicious cycle of persistent systemic inflammation. This scenario may occur when neutrophils infiltrate expanded obese adipose tissue. Thus, NETosis is implicated in the pathophysiology of autoimmune and metabolic disorders, including obesity. This review explores the role of NETosis in obesity and two obesity-associated conditions-hypertension and liver steatosis. With the rising prevalence of obesity driving research into its pathophysiology, particularly through diet-induced obesity models in rodents, we discuss insights gained from both human and animal studies. Additionally, we highlight the potential offered by rodent models and the opportunities presented by genetically modified mouse strains for advancing our understanding of obesity-related inflammation.
Collapse
Affiliation(s)
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia; (A.F.); (V.B.)
| | | |
Collapse
|
26
|
Magaji UF, Koroglu P, Coremen M, Bulan OK, Sacan O, Yanardag R. Effects of Moringa oleifera extract on biochemical and histological parameters of sodium valproate induced lungs damage. J Mol Histol 2024; 56:56. [PMID: 39725714 DOI: 10.1007/s10735-024-10345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Sodium valproate- a salt of valproic acid (VPA), is an anticonvulsant used in the treatment of epilepsy and a range of psychiatric conditions that include panic attacks, anxiety, post-traumatic stress, migraine and bipolar disorder etc. VPA can cause direct damage to many tissues due to accumulation of toxic metabolites. Nowadays, phytochemicals are amongst the best options for the treatment of diseases. Moringa oleifera is a popular plant in the tropics owing to its numerous pharmacological and phytochemical properties such as antiproliferative, hepatoprotective, anti-inflammatory, and cardioprotective effects. In the present study, the protective effects of Moringa ethanol extract on oxidative lung damage caused by VPA was assessed biochemically and histologically. Sprague Dawley female rats were divided into 4 groups: Control, Moringa extract (M), sodium valproate (V), and sodium valproate + Moringa extract (V + M). Doses of sodium valproate and Moringa extract (dissolved in physiological saline) were given at 500 mg/kg b.w. and 300 mg/kg b.w. for 15 days, respectively. The rats were sacrificed on the 16th day, lung tissues collected biochemical parameters (glutathione level, antioxidant enzyme activities, oxidative stress biomarker and inflammatory proteins) and histopathological findings obtained from the study indicated increased damage in lung tissue of the valproate administered group. The damage was prevented/decreased upon administration of Moringa to the valproate rats. The present findings revealed that Moringa extract had a protective and therapeutic effect against VPA induced lung damage. Moringa extract demonstrated an ameliorative effect on histopathological and biochemical parameters in valproate induced lung damage.
Collapse
Affiliation(s)
- Umar Faruk Magaji
- Faculty of Engineering, Department of Chemistry, Istanbul University- Cerrahpaşa, Avcilar, Istanbul, Türkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Kebbi State, Birnin Kebbi, Nigeria
| | - Pınar Koroglu
- Faculty of Medicine, Department of Histology and Embryology, Haliç University, Istanbul, Türkiye
| | - Melis Coremen
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, Türkiye, Türkiye
| | - Omur Karabulut Bulan
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, Türkiye, Türkiye
| | - Ozlem Sacan
- Faculty of Engineering, Department of Chemistry, Istanbul University- Cerrahpaşa, Avcilar, Istanbul, Türkiye
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University- Cerrahpaşa, Avcilar, Istanbul, Türkiye.
| |
Collapse
|
27
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. The Roles of Oxidative Stress and Red Blood Cells in the Pathology of the Varicose Vein. Int J Mol Sci 2024; 25:13400. [PMID: 39769165 PMCID: PMC11678264 DOI: 10.3390/ijms252413400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This review discusses sources of reactive oxygen species, enzymatic antioxidant systems, and low molecular weight antioxidants. We present the pathology of varicose veins (VVs), including factors such as hypoxia, inflammation, dysfunctional endothelial cells, risk factors in varicose veins, the role of RBCs in venous thrombus formation, the influence of reactive oxygen species (ROS) and RBCs on VV pathology, and the role of hemoglobin in the damage of particles and macromolecules in VVs. This review discusses the production of ROS, enzymatic and nonenzymatic antioxidants, the pathogenesis of varicose veins as a pathology based on hypoxia, inflammation, and oxidative stress, as well as the participation of red blood cells in the pathology of varicose veins.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.P.); (K.G.)
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.P.); (K.G.)
| |
Collapse
|
28
|
Liu L, Zhang Y, Tang XR, Jia GB, Zhou S, Yue GL, He CS. Effect of emodin on acute lung injury: a meta-analysis of preclinical trials. BMC Pulm Med 2024; 24:596. [PMID: 39623403 PMCID: PMC11613585 DOI: 10.1186/s12890-024-03406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Emodin has protective effects on acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). This meta-analysis intended to illustrate the efficacy of emodin on ALI/ARDS animal models. METHODS Relevant preclinical studies were searched on PubMed, EMBASE, and Web of Science. Standardized mean differences (SMDs) with corresponding confidence intervals (CIs) were used to compare lung injury scores, lung wet-to-dry weight ratios (W/D), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-18, PaO2, and PaCO2 between the treatment and control groups. The article quality was appraised using the SYRCLE tool. RESULTS Twenty one studies published between 2014 and 2023 were enrolled. Compared with the control group, emodin significantly reduced lung injury scores (SMD: -3.63; 95% CI: -4.36, -2.90; p < 0.00001), W/D ratios (SMD: -3.23; 95% CI: -4.29, -2.16; p < 0.00001), and MPO levels (SMD: -2.96; 95% CI: -3.92, -1.99; p < 0.00001). Furthermore, emodin downregulated TNF-α (SMD: -3.04; 95% CI: -3.62, -2.47; p < 0.00001), IL-1β (SMD: -3.76; 95% CI: -4.65, -2.87; p < 0.00001), IL-6 (SMD: -3.19; 95% CI: -3.95, -2.43; p < 0.00001), and IL-18 levels (SMD: -4.83; 95% CI: -6.10, -3.57; p < 0.00001). Emodin improved gas exchange dysfunction, increased PaO2 (SMD: 3.76; 95% CI: 2.41, 5.11; p < 0.00001), and decreased PaCO2 (SMD: -3.83; 95% CI: -4.90, -2.76; p < 0.00001). Sensitivity analyses and stratified analyses were conducted for outcome measures with heterogeneity. CONCLUSIONS Emodin treatment can effectively reduce the severity of ALI in animal models. Additional animal investigations and clinical trials involving human subjects are imperative.
Collapse
Affiliation(s)
- Lei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 610000, China
- Department of Respiratory and Critical Care Medicine, Chongqing Hospital of Traditional Chinese Medicine, Jiangbei Chongqing, 400000, China
| | - Yu Zhang
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital of Renshou County, Meishan Sichuan, 620500, China
| | - Xiao-Ren Tang
- Department of Traditional Chinese Medicine, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Bishan Chongqing, 404000, China
| | - Guo-Bing Jia
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 610000, China
| | - Shan Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 610000, China
| | - Guo-Long Yue
- Department of Respiratory and Critical Care Medicine, Chongqing Hospital of Traditional Chinese Medicine, Jiangbei Chongqing, 400000, China
| | - Cheng-Shi He
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 610000, China.
| |
Collapse
|
29
|
Wu L, Liu X, Liu B, Guan Q, Guo M, Li Y, Fei H, Li Y, Yang Q, Shan Y, Du J, Li Y. Enriched detection nanoparticles for hypochlorite prepared by electrostatic spray, applied to tumor imaging, antibacterial and antiviral. CHEMICAL ENGINEERING JOURNAL 2024; 502:157990. [DOI: 10.1016/j.cej.2024.157990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
31
|
Edström D, Niroomand A, Stenlo M, Broberg E, Hirdman G, Ghaidan H, Hyllén S, Pierre L, Olm F, Lindstedt S. Amniotic fluid-derived mesenchymal stem cells reduce inflammation and improve lung function following transplantation in a porcine model. J Heart Lung Transplant 2024; 43:2018-2030. [PMID: 39182800 DOI: 10.1016/j.healun.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Lung transplantation is hindered by low donor lung utilization rates. Infectious complications are reasons to decline donor grafts due to fear of post-transplant primary graft dysfunction. Mesenchymal stem cells are a promising therapy currently investigated in treating lung injury. Full-term amniotic fluid-derived lung-specific mesenchymal stem cell treatment may regenerate damaged lungs. These cells have previously demonstrated inflammatory mediation in other respiratory diseases, and we hypothesized that treatment would improve donor lung quality and postoperative outcomes. METHODS In a transplantation model, donor pigs were stratified to either the treated or the nontreated group. Acute respiratory distress syndrome was induced in donor pigs and harvested lungs were placed on ex vivo lung perfusion (EVLP) before transplantation. Treatment consisted of 3 doses of 2 × 106 cells/kg: one during EVLP and 2 after transplantation. Donors and recipients were assessed on clinically relevant parameters and recipients were followed for 3 days before evaluation for primary graft dysfunction (PGD). RESULTS Repeated injection of the cell treatment showed reductions in inflammation seen through lowered immune cell counts, reduced histology signs of inflammation, and decreased cytokines in the plasma and bronchoalveolar lavage fluid. Treated recipients showed improved pulmonary function, including increased PaO2/FiO2 ratios and reduced incidence of PGD. CONCLUSIONS Repeated injection of lung-specific cell treatment during EVLP and post transplant was associated with improved function of previously damaged lungs. Cell treatment may be considered as a potential therapy to increase the number of lungs available for transplantation and the improvement of postoperative outcomes.
Collapse
Affiliation(s)
- Dag Edström
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, New York
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
32
|
Singh P, Singh LK. Myeloperoxidase enzyme-catalyzed breakdown of zero-dimension carbon quantum dots. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1493288. [PMID: 39669902 PMCID: PMC11634592 DOI: 10.3389/fmedt.2024.1493288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Carbon quantum dots (CQDs) have shown considerable interest in multiple fields including bioimaging, biosensing, photocatalysis, ion sensing, heavy metal detection, and therapy due to highly tunable photoluminescence and good photostability. Apart from having optical properties CQDs offer several advantages such as low toxicity, environmental friendliness, affordability, and simple synthesis methods. Furthermore, by modifying their surface and functionality, it's possible to precisely control their physical and chemical characteristics. Nevertheless, the growing utilization of carbon-based nanomaterials (CNMs) requires thorough examination of their potential toxicity and long-term impacts on human health and biological systems. In this study, carbon quantum dots (CQDs) were synthesized via a microwave-assisted method using citric acid and urea as precursors, resulting in an average particle diameter of 10.73 nm. The CQDs were further characterized using SEM and FTIR analysis. The CQDs exhibited an excitation wavelength of 320 nm, displaying an emission peak at 430 nm. The enzymatic biodegradation of CQDs by human myeloperoxidase enzyme has been thoroughly investigated here. It is very crucial to understand how these carbon quantum dots interact with the innate immune system that plays a vital role in recognizing and clearing foreign particles. Human myeloperoxidase (MPO), a key enzyme highly expressed in neutrophil granulocytes during inflammatory responses, has been shown to facilitate the biodegradation of carbon quantum dots and various carbon-based nanomaterials through oxidative processes. As a member of the peroxidase family, MPO produces hypochlorous acid (HOCl) and a range of reactive intermediates to eliminate pathogens. Consequently, the study of the biodegradability of CQDs within biological systems is essential for accelerating technological advancements. Here, we have assessed breakdown of CQDs through an oxidative process facilitated by a myeloperoxidase (MPO)-based peroxide system. The human MPO enzyme acted as a catalyst for the CQD degradation, and the addition of hydrogen peroxide (H2O2) and sodium chloride (NaCl) was found to accelerate the reaction.
Collapse
Affiliation(s)
| | - Lalit Kumar Singh
- Department of Biochemical Engineering, School of Chemical Engineering, Harcourt Butler Technical University, Kanpur, India
| |
Collapse
|
33
|
Jin L, Jiang Q, Huang H, Zhou X. Topical histone deacetylase inhibitor remetinostat improves IMQ-induced psoriatic dermatitis via suppressing dendritic cell maturation and keratinocyte differentiation and inflammation. Eur J Pharmacol 2024; 983:177011. [PMID: 39304110 DOI: 10.1016/j.ejphar.2024.177011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation of keratinocytes and infiltration of immune cells. Although psoriasis has entered the era of biological treatment, there is still a need to explore more effective therapeutic targets and drugs due to the presence of resistance and adverse reactions to biologics. Remetinostat, an HDAC inhibitor, can maintain its potency within the skin with minimal systemic effects, making it a promising topical medication for treating psoriasis. But its effectiveness in treating psoriasis has not been evaluated. In this study, the topical application of remetinostat significantly improved psoriasiform inflammation in an imiquimod-induced mice model by inhibiting CD86 expression of CD11C+I-A/I-E+ dendritic cells (DCs) in the skin. Moreover, remetinostat could dampen the maturation and activation of bone marrow-derived DCs in vitro, as well as the expression of psoriasis-related inflammatory mediators by keratinocytes. In addition, remetinostat could promote keratinocyte differentiation without affecting its proliferation. Our findings demonstrate that remetinostat improves psoriasis by inhibiting the maturation and activation of DCs and the differentiation and inflammation of keratinocytes, which may facilitate the potential application of remetinostat in anti-psoriasis therapy.
Collapse
Affiliation(s)
- Liping Jin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huining Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Long Y, Liu J, Ju Z, Qi F, Tang W, Yan S, Dai F, Zhang S, Zhou B. Two-Photon Cellular and Intravital Imaging of Hypochlorous Acid by Fluorescent Probes That Exhibit a Synergistic Excited-State Intramolecular Proton Transfer-Intramolecular Charge Transfer Mechanism Enabling Near-Infrared Emission with a Large Stokes Shift. Anal Chem 2024; 96:18104-18112. [PMID: 39485156 DOI: 10.1021/acs.analchem.4c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To develop highly effective molecular tools for intravital imaging of hypochlorous acid (HOCl), in this study, we initially designed two-photon hybrid fluorophores, SDP and P-SDP, by conjugating the classical dye 2-(2'-hydroxyphenyl)benzothiazole with the two-photon hydroxylphenyl-butadienylpyridinium fluorophore. The designed fluorophores exhibit a synergistic interaction between excited-state intramolecular proton transfer and intramolecular charge transfer mechanisms, enabling near-infrared (NIR) emission and significant Stokes shifts. Subsequently, using these fluorophores, we developed two HOCl fluorescent probes, SDP-SN and P-SDP-SN, by further incorporating N,N-dimethylthiocarbamate as a specific recognition group for HOCl. Toward HOCl, both SDP-SN and P-SDP-SN demonstrate an ultrafast response (less than 3 s), NIR emission at wavelengths of 714 and 682 nm, and remarkable Stokes shifts of 303 and 271 nm, respectively. Leveraging these advantages in conjunction with their ability to cross the blood-brain barrier, the probes find successful application in two-photon cellular and intravital imaging of HOCl. This includes visualizing endogenous generation of HOCl in cellular models related to inflammation, hyperglycemia, and ferroptosis, as well as mapping in vivo generation of HOCl within the brain and abdominal cavity using a murine model of systemic inflammation.
Collapse
Affiliation(s)
- Ying Long
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
- School of Nationality Educators, Qinghai Normal University, Xining, Qinghai 810016, China
| | - Junru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhenghua Ju
- Center of Analysis and Testing of Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fujian Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Wei Tang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shuai Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| |
Collapse
|
35
|
Liu F, Liu L, Wei P, Yi T. A reactive oxygen species-triggerable theranostic prodrug system. J Control Release 2024; 376:961-971. [PMID: 39476874 DOI: 10.1016/j.jconrel.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/09/2024]
Abstract
Abnormally elevated levels of reactive oxygen species (ROS) are considered one of the characteristics of tumors and have been extensively employed in the construction of tumor-activated prodrugs. However, ideal ROS-activated molecular triggers that possess high sensitivity and easy functionalization for tailoring specific prodrugs, remain scarce. In this work, we developed a highly reactive oxygen species (hROS, such as •OH, ONOO- and HOCl)-responsive molecular trigger (namely FDROS-4) through the conjunction of methylene blue (MB) and 2, 6-bis (hydroxymethyl) aniline via urea bond, integrating imaging and therapeutic functions. FDROS-4 could be readily modified as multifunctional prodrugs and efficiently activated by hROS, leading to the release of near-infrared emissive MB and parent drugs. By using chlorambucil as a model drug and incorporating varying numbers of galactose as liver-targeting ligands, we designed and synthesized a series of prodrugs named FDROS-6, FDROS-7, and FDROS-8. The optimal prodrug, FDROS-7, could self-assemble into monocomponent nanoparticles, exhibiting enhanced biocompatibility and therapeutic efficacy compared to the parent drug. This hROS-activated molecular trigger holds promise for the development of stimulus-responsive prodrugs in chemotherapy.
Collapse
Affiliation(s)
- Feiyang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning 530004, China
| | - Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
36
|
Striesow J, Nasri Z, von Woedtke T, Bekeschus S, Wende K. Epilipidomics reveals lipid fatty acid and headgroup modification in gas plasma-oxidized biomembranes. Redox Biol 2024; 77:103343. [PMID: 39366067 PMCID: PMC11483335 DOI: 10.1016/j.redox.2024.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Lipids, possessing unsaturated fatty acid chains and polar regions with nucleophilic heteroatoms, represent suitable oxidation targets for autologous and heterologous reactive species. Lipid peroxidation products (LPPs) are highly heterogeneous, including hydroperoxides, alkenals, chlorination, or glycation. Accordingly, delineation of lipid targets, species type, resulting products, and oxidation level remains challenging. To this end, liposomal biomimetic models incorporating a phosphatidylcholine, -ethanolamine, and a sphingomyelin were used to deconvolute effects on a single lipid scale to predict potential modification product outcomes. To introduce oxidative modifications, gas plasma technology, a powerful pro-oxidant tool to promote LPP formation by forming highly abundant reactive species in the gas and liquid phases, was employed to liposomes. The plasma parameters (gas type/combination) were modified to modulate the resulting species-profile and LPP formation by enriching specific reactive species types over others. HR-LC-MS (Münzel and et al., 2017) [2] was employed for LPP identification. Moreover, the heavy oxygen isotope 18O was used to trace O2-incorporation into LPPs, providing first information on the plasma-mediated lipid peroxidation mechanism. We found that combination of lipid class and gas composition predetermined the type of attack: admixture of O2 to the plasma and the presence of nitrogen atoms with free electrons in the molecule lead to chlorination of the amide bond and headgroup. Here, atomic oxygen driven formation of hypochlorite is the major reactive species. In contrast, POPC yields mainly to LPPs with oxidation of the oleic acid tail, especially truncations, epoxidation, and hydroperoxide formation. Here, singlet oxygen is assumingly the major driver. 18O labelling revealed that gas phase derived reactive species are dominantly incorporated into the LPPs, supporting previous findings on gas-liquid interface chemistry. In summary, we here provided the first insights into gas plasma-mediated lipid peroxidation, which, employed in more complex cell and tissue models, may support identifying mechanisms of actions in plasma medicine.
Collapse
Affiliation(s)
- Johanna Striesow
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Zahra Nasri
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
37
|
Singh E, Gupta A, Singh P, Jain M, Muthukumaran J, Singh RP, Singh AK. Exploring mammalian heme peroxidases: A comprehensive review on the structure and function of myeloperoxidase, lactoperoxidase, eosinophil peroxidase, thyroid peroxidase and peroxidasin. Arch Biochem Biophys 2024; 761:110155. [PMID: 39278306 DOI: 10.1016/j.abb.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The peroxidase family of enzymes is a ubiquitous cluster of enzymes primarily responsible for the oxidation of organic and inorganic substrates. The mammalian heme peroxidase subfamily is characterized by a covalently linked heme prosthetic group which plays a key role in the oxidation of halides and psuedohalides into their respective hypohalous acid and hypothiocyanous acid under the influence of H2O2 as substrate. The members of the heme peroxidase family include Lactoperoxidase (LPO), Eosinophil peroxidase (EPO), Myeloperoxidase (MPO), Thyroid peroxidase (TPO) and Peroxidasin (PXDN). The biological activity of LPO, MPO and EPO pertains to antibacterial, antifungal and antiviral while TPO is involved in the biosynthesis of the thyroid hormone and PXDN helps maintain the ECM. While these enzymes play several immunomodulatory roles, aberrations in their activity have been implicated in diseases such as myocardial infarction, asthma and Alzheimer's amongst others. The sequence and structural similarities amongst the members of the family are strikingly high while the substrate specificities and subcellular locations vary. Hence, it becomes important to provide a consortium of information regarding the members to study their biochemical, pathological and clinical function.
Collapse
Affiliation(s)
- Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Ayushi Gupta
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Pratyaksha Singh
- School of Biotechnology, Gautam Buddha University, P.C. 201312, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Rashmi Prabha Singh
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| |
Collapse
|
38
|
de Brum GF, Bochi GV. Are Advanced Oxidation Protein Products (AOPPs) Levels Altered in Neuropsychiatric Disorders? An Integrative Review. Mol Neurobiol 2024; 61:9043-9059. [PMID: 38580854 DOI: 10.1007/s12035-024-04122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Neuropsychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) are considered a public health problem since it interferes in personal relationships and at work. The pathophysiological mechanisms of these mental disorders are still not completely understood. The variety and heterogeneity of symptoms, as well as the absence of biomarkers, make the diagnosis, prognosis, and treatment of these disorders difficult. However, oxidative stress appears to play a role in the pathophysiology of these diseases. In this context, advanced oxidation protein products (AOPPs) are considered a biomarker of protein oxidative damage and have been associated with neuroinflammatory diseases. In patients with neuropsychiatric disorders, increased levels of AOPPs were associated with the severity of symptoms and decreased quality of life. Thus, the objective of this integrative review is to investigate and discuss the relationship between AOPPs levels and MDD, BD, and SZ. Different databases were consulted and approximately 112 scientific articles were found relating AOPPs and psychiatric disorders. In the majority of studies, the blood levels of AOPPs were increased in MDD, BD, and SZ and associated with the severity of the disorders. Although the association of this marker with the risk of developing one of these mental disorders is more uncertain, some studies have suggested this relationship. Of the twenty-four studies highlighted, only four did not find significant differences in AOPPs levels in patients with the disorders mentioned. In summary, it may be suggested that the assessment of AOPPs levels can be a useful tool in the evaluation of neuropsychiatric disorders, at least for prognostic evaluation. However, the role of this biomarker in the pathophysiology of mental disorders is still unclear, as well as whether reducing its levels represents a potential therapeutic strategy.
Collapse
Affiliation(s)
- Gerson Fernandes de Brum
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
39
|
Downs CJ, Sobolewski ME. The Promise of a Pointillist Perspective for Comparative Immunology. Physiology (Bethesda) 2024; 39:0. [PMID: 38808754 PMCID: PMC11573282 DOI: 10.1152/physiol.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Most studies in comparative immunology involve investigations into the detailed mechanisms of the immune system of a nonmodel organism. Although this approach has been insightful, it has promoted a deep understanding of only a handful of species, thus inhibiting the recognition of broad taxonomic patterns. Here, we call for investigating the immune defenses of numerous species within a pointillist framework, that is, the meticulous, targeted collection of data from dozens of species and investigation of broad patterns of organismal, ecological, and evolutionary forces shaping those patterns. Without understanding basic immunological patterns across species, we are limited in our ability to extrapolate and/or translate our findings to other organisms, including humans. We illustrate this point by focusing predominantly on the biological scaling literature with some integrations of the pace of life literature, as these perspectives have been the most developed within this framework. We also highlight how the more traditional approach in comparative immunology works synergistically with a pointillist approach, with each approach feeding back into the other. We conclude that the pointillist approach promises to illuminate comprehensive theories about the immune system and enhance predictions in a wide variety of domains, including host-parasite dynamics and disease ecology.
Collapse
Affiliation(s)
- Cynthia J Downs
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Marissa E Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
40
|
Kurokawa Y, Watanabe S, Yano T, Izumi T, Hidaka N, Yamaguchi T, Tanaka M. Valproic acid alleviates total-body irradiation-induced small intestinal mucositis in mice. Int J Radiat Biol 2024; 100:1642-1649. [PMID: 39437146 DOI: 10.1080/09553002.2024.2418514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Gastrointestinal (GI) injury is one of the serious problems of total-body irradiation (TBI). However, no fundamental treatment for TBI and other radiation-induced GI injury has yet been established. Valproic acid (VPA) administration reduces mortality in mice subjected to total-body irradiation (TBI) with X-rays. This study aimed to evaluate the effects of VPA on GI injury induced by TBI in mice. MATERIALS AND METHODS Mice were subjected to TBI with X-rays to induce GI injury. Changes in survival and weight were observed after VPA administration. The small intestine was then sampled at 0, 1, 3, 7, and 10 d after irradiation for histological and immunohistological evaluation and measurement of myeloperoxidase (MPO) activity and inflammatory cytokine levels (IL-1β). RESULTS VPA (200 and 600 mg/kg) increased survival rate and reduced weight loss in model mice. IL-1β expression 1 d after irradiation was significantly lower in the VPA group than that in the vehicle group. Furthermore, the increase in MPO activity at 3 and 7 d after irradiation was significantly suppressed by VPA administration. Histological examination (hematoxylin and eosin staining) revealed that 600 mg/kg VPA inhibited inflammatory cell infiltration. Immunostaining for the proliferating cell nuclear antigen involved in cell proliferation showed that VPA suppressed the irradiation-induced decrease in cell proliferative capacity. CONCLUSIONS Treatment with VPA in mice with GI injury caused by TBI suppressed inflammatory responses in small intestinal mucosal cells. These results suggest that VPA may be a useful therapeutic agent against TBI-induced small intestinal mucositis.
Collapse
Affiliation(s)
- Yukiro Kurokawa
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Shinichi Watanabe
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Takaaki Yano
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Tomoki Izumi
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Noriaki Hidaka
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
| | - Takumi Yamaguchi
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Mamoru Tanaka
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
| |
Collapse
|
41
|
Vázquez-Mera S, Miguéns-Suárez P, Martelo-Vidal L, Rivas-López S, Uller L, Bravo SB, Domínguez-Arca V, Muñoz X, González-Barcala FJ, Nieto Fontarigo JJ, Salgado FJ. Signature Proteins in Small Extracellular Vesicles of Granulocytes and CD4 + T-Cell Subpopulations Identified by Comparative Proteomic Analysis. Int J Mol Sci 2024; 25:10848. [PMID: 39409176 PMCID: PMC11476868 DOI: 10.3390/ijms251910848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Several studies have described the proteomic profile of different immune cell types, but only a few have also analysed the content of their delivered small extracellular vesicles (sEVs). The aim of the present study was to compare the protein signature of sEVs delivered from granulocytes (i.e., neutrophils and eosinophils) and CD4+ T cells (i.e., TH1, TH2, and TH17) to identify potential biomarkers of the inflammatory profile in chronic inflammatory diseases. Qualitative (DDA) and quantitative (DIA-SWATH) analyses of in vitro-produced sEVs revealed proteome variations depending on the cell source. The main differences were found between granulocyte- and TH cell-derived sEVs, with a higher abundance of antimicrobial proteins (e.g., LCN2, LTF, MPO) in granulocyte-derived sEVs and an enrichment of ribosomal proteins (RPL and RPS proteins) in TH-derived sEVs. Additionally, we found differentially abundant proteins between neutrophil and eosinophil sEVs (e.g., ILF2, LTF, LCN2) and between sEVs from different TH subsets (e.g., ISG15, ITGA4, ITGB2, or NAMPT). A "proof-of-concept" assay was also performed, with TH2 biomarkers ITGA4 and ITGB2 displaying a differential abundance in sEVs from T2high and T2low asthma patients. Thus, our findings highlight the potential use of these sEVs as a source of biomarkers for diseases where the different immune cell subsets studied participate, particularly chronic inflammatory pathologies such as asthma or chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Sara Vázquez-Mera
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Laura Martelo-Vidal
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sara Rivas-López
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden;
| | - Susana B. Bravo
- Proteomic Service, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Vicente Domínguez-Arca
- Biophysics and Interfaces Group, Applied Physics Department, Faculty of Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xavier Muñoz
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08035 Barcelona, Spain;
- Pneumology Service, Hospital Vall d’Hebron Barcelona, 08035 Barcelona, Spain
| | - Francisco J. González-Barcala
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08035 Barcelona, Spain;
- Department of Respiratory Medicine, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan J. Nieto Fontarigo
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden;
| | - Francisco J. Salgado
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
42
|
Peirone S, Tirtei E, Campello A, Parlato C, Guarrera S, Mareschi K, Marini E, Asaftei SD, Bertero L, Papotti M, Priante F, Perrone S, Cereda M, Fagioli F. Impaired neutrophil-mediated cell death drives Ewing's Sarcoma in the background of Down syndrome. Front Oncol 2024; 14:1429833. [PMID: 39421445 PMCID: PMC11484044 DOI: 10.3389/fonc.2024.1429833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Ewing Sarcoma (EWS) has been reported in seven children with Down syndrome (DS). To date, a detailed assessment of this solid tumour in DS patients is yet to be made. Methods Here, we characterise a chemo-resistant mediastinal EWS in a 2-year-old DS child, the youngest ever reported case, by exploiting sequencing approaches. Results The tumour showed a neuroectodermal development driven by the EWSR1-FLI1 fusion. The inherited myeloperoxidase deficiency of the patient caused failure of neutrophil-mediated cell death and promoted genomic instability. Discussion In this context, the tumour underwent genome-wide near haploidisation resulting in a massive overexpression of pro-inflammatory cytokines. Recruitment of defective neutrophils fostered rapid evolution of this EWS.
Collapse
Affiliation(s)
- Serena Peirone
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Elisa Tirtei
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Anna Campello
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
| | - Caterina Parlato
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katia Mareschi
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Elena Marini
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, Turin, Italy
| | - Francesca Priante
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Sarah Perrone
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Matteo Cereda
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Franca Fagioli
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| |
Collapse
|
43
|
Lv X, Min J, Huang J, Wang H, Wei S, Huang C, Dai J, Chen Z, Zhou H, Xu Y, Zhao H, Liu Z, Wang J. Simultaneously Controlling Inflammation and Infection by Smart Nanomedicine Responding to the Inflammatory Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403934. [PMID: 39225387 PMCID: PMC11497003 DOI: 10.1002/advs.202403934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The overactivated immune cells in the infectious lesion may lead to irreversible organ damages under severe infections. However, clinically used immunosuppressive anti-inflammatory drugs will usually disturb immune homeostasis and conversely increase the risk of infections. Regulating the balance between anti-inflammation and anti-infection is thus critical in treating certain infectious diseases. Herein, considering that hydrogen peroxide (H2O2), myeloperoxidase (MPO), and neutrophils are upregulated in the inflammatory microenvironment and closely related to the severity of appendectomy patients, an inflammatory-microenvironment-responsive nanomedicine is designed by using poly(lactic-co-glycolic) acid (PLGA) nanoparticles to load chlorine E6 (Ce6), a photosensitizer, and luminal (Lum), a chemiluminescent agent. The obtained Lum/Ce6@PLGA nanoparticles, being non-toxic within normal physiological environment, can generate cytotoxic single oxygen via bioluminescence resonance energy transfer (BRET) in the inflammatory microenvironment with upregulated H2O2 and MPO, simultaneously killing pathogens and excessive inflammatory immune cells in the lesion, without disturbing immune homeostasis. As evidenced in various clinically relevant bacterial infection models and virus-induced pneumonia, Lum/Ce6@PLGA nanoparticles appeared to be rather effective in controlling both infection and inflammation, resulting in significantly improved animal survival. Therefore, the BRET-based nanoparticles by simultaneously controlling infections and inflammation may be promising nano-therapeutics for treatment of severe infectious diseases.
Collapse
Affiliation(s)
- Xinjing Lv
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Jie Min
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Jie Huang
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Hairong Wang
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Song Wei
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Chenxiao Huang
- Institutes of Biology and Medical SciencesJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouJiangsu215123China
| | - Jianfeng Dai
- Institutes of Biology and Medical SciencesJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouJiangsu215123China
| | - Zhengrong Chen
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Huiting Zhou
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Yunyun Xu
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - He Zhao
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Jian Wang
- Children's Hospital of Soochow UniversityPediatric Research Institute of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
44
|
Geng X, Wang DW, Li H. The pivotal role of neutrophil extracellular traps in cardiovascular diseases: Mechanisms and therapeutic implications. Biomed Pharmacother 2024; 179:117289. [PMID: 39151311 DOI: 10.1016/j.biopha.2024.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.
Collapse
Affiliation(s)
- Xinyu Geng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
45
|
Bahaa MM, Hegazy SK, Maher MM, Bahgat MM, El-Haggar SM. Pentoxifylline in patients with ulcerative colitis treated with mesalamine by modulation of IL-6/STAT3, ZO-1, and S1P pathways: a randomized controlled double-blinded study. Inflammopharmacology 2024; 32:3247-3258. [PMID: 39192162 DOI: 10.1007/s10787-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that lasts a long time and has a variety of causes. AIM The primary aim of this study was to evaluate pentoxifylline's (PTX) essential function in patients with UC. METHODS Fifty-two mild to moderate UC patients who matched the eligibility requirements participated in this clinical study. One gram of mesalamine (t.i.d.) and a placebo were administered to the mesalamine group (n = 26) for a duration of 24 weeks. Mesalamine 1 g t.i.d. and PTX 400 mg two times daily were administered to the PTX group (n = 26) for 24 weeks. A gastroenterologist investigated patients at the start and 6 months after the medication was given to assess disease activity index (DAI) and numeric pain rating scale (NRS). Also, interleukin-6 (IL-6), sphingosine 1 phosphate (S1P), tumor necrosis factor-alpha (TNF-α), and fecal myeloperoxidase (MPO) were measured before and after therapy. Zonula occuldin-1 (ZO-1) and signal transducer and activator of transcription factor-3 (STAT-3) expression was assessed before and after therapy as well as histological assessment. Short Form 36 Health Survey (SF-36), was assessed for each patient before and after 6 months of treatment. RESULTS The PTX group showed statistically lower levels of serum SIP, TNF-α, IL-6, faecal MPO, gene expression of STAT-3, and a significant increase of ZO-1 in comparison with the mesalamine group. DAI and NRS significantly decreased whereas SF-36 significantly increased in the PTX group. CONCLUSION PTX could alleviate inflammation in patients with UC, so it might be promising adjunctive for patients with UC. TRIAL REGISTRATION IDENTIFIER NCT05558761.
Collapse
Affiliation(s)
- Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| | - Maha M Maher
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Internal Medicine Department, Faculty of Medicine, Horus University, New Damietta, Egypt
| | - Monir M Bahgat
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Internal Medicine Department, Faculty of Medicine, Horus University, New Damietta, Egypt
| | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| |
Collapse
|
46
|
Mihlan M, Wissmann S, Gavrilov A, Kaltenbach L, Britz M, Franke K, Hummel B, Imle A, Suzuki R, Stecher M, Glaser KM, Lorentz A, Carmeliet P, Yokomizo T, Hilgendorf I, Sawarkar R, Diz-Muñoz A, Buescher JM, Mittler G, Maurer M, Krause K, Babina M, Erpenbeck L, Frank M, Rambold AS, Lämmermann T. Neutrophil trapping and nexocytosis, mast cell-mediated processes for inflammatory signal relay. Cell 2024; 187:5316-5335.e28. [PMID: 39096902 DOI: 10.1016/j.cell.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| | - Stefanie Wissmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute for Biomechanics, ETH Zürich, Zürich 8092, Switzerland
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Roche Pharma Research and Early Development (pRED), Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center, Basel 4070, Switzerland
| | - Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marie Britz
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manuel Stecher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institut Curie, PSL Research University, INSERM U932, Paris 75005, France
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70593, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Medical Research Council (MRC) Toxicology Unit and Department of Genetics, University of Cambridge, Cambridge CB21QR, UK
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Karoline Krause
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock 18057, Germany; Department Life, Light and Matter, Rostock University, Rostock 18051, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| |
Collapse
|
47
|
Ling Lundström M, Peterson C, Hedin CRH, Bergemalm D, Lampinen M, Magnusson MK, Keita ÅV, Kruse R, Lindqvist CM, Repsilber D, D'Amato M, Hjortswang H, Strid H, Söderholm JD, Öhman L, Venge P, Halfvarson J, Carlson M. Faecal biomarkers for diagnosis and prediction of disease course in treatment-naïve patients with IBD. Aliment Pharmacol Ther 2024; 60:765-777. [PMID: 38997818 DOI: 10.1111/apt.18154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Faecal biomarkers can be used to assess inflammatory bowel disease (IBD). AIM To explore the performance of some promising biomarkers in diagnosing and predicting disease course in IBD. METHODS We included 65 patients with treatment-naïve, new-onset Crohn's disease (CD), 90 with ulcerative colitis (UC), 67 symptomatic controls (SC) and 41 healthy controls (HC) in this prospective observational study. We analysed faecal samples for calprotectin (FC), myeloperoxidase (MPO), human neutrophil lipocalin (HNL), eosinophil cationic protein ECP and eosinophil-derived neurotoxin (EDN) and compared markers among groups. We assessed the diagnostic capability of biomarkers with receiver operating characteristic curves. Clinical disease course was determined for each patient with IBD and analysed the association with biomarkers by logistic regression. RESULTS All markers were elevated at inclusion in patients with IBD compared with HC (p < 0.001) and SC (p < 0.001). FC (AUC 0.85, 95% CI: 0.79-0.89) and MPO (AUC 0.85, 95% CI: 0.80-0.89) showed the highest diagnostic accuracy in distinguishing IBD from SC. The diagnostic ability of biomarkers differed between IBD subtypes with the highest performance for FC and MPO in CD. The diagnostic accuracy was further improved by combining FC and MPO (p = 0.02). Levels of FC, MPO and HNL at inclusion were predictive of an aggressive disease course with MPO showing the strongest association (p = 0.006). CONCLUSIONS This study provides new insight into the diagnostic and prognostic capability of neutrophil and eosinophil biomarkers in IBD and suggests that MPO, alone or in combination with FC, may add to the diagnostic power of faecal biomarkers.
Collapse
Affiliation(s)
- Maria Ling Lundström
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| | - Christer Peterson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Charlotte R H Hedin
- Karolinska Institute, Department of Medicine Solna, Stockholm, Sweden
- Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria Lampinen
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Carl Mårten Lindqvist
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC BioGUNE-BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Henrik Hjortswang
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linkoping, Sweden
| | - Hans Strid
- Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan D Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Surgery, Linköping University, Linköping, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Per Venge
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marie Carlson
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Sajko S, Skeens E, Schinagl A, Ferhat M, Mirkina I, Mayer J, Rossmueller G, Thiele M, Lisi GP. Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies. Redox Biol 2024; 75:103264. [PMID: 38972295 PMCID: PMC11263951 DOI: 10.1016/j.redox.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.
Collapse
Affiliation(s)
- Sara Sajko
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| | | | - Maroua Ferhat
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Irina Mirkina
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research and Development GmbH, Vienna, Austria
| | | | | | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| |
Collapse
|
49
|
Li Y, Chen L, Papadopoulos V. The mitochondrial translocator protein (TSPO, 18 kDa): A key multifunctional molecule in liver diseases. Biochimie 2024; 224:91-103. [PMID: 38065288 DOI: 10.1016/j.biochi.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 08/23/2024]
Abstract
Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved and tryptophan-rich 169-amino-acid protein located on the outer mitochondrial membrane. TSPO plays a crucial role in various fundamental physiological functions and cellular processes. Its expression is altered in pathological conditions, thus rendering TSPO a potential tool for diagnostic imaging and an appealing therapeutic target. The investigation of synthetic TSPO ligands as both agonists and antagonists has provided valuable insights into the regulatory mechanisms and functional properties of TSPO. Recently, accumulating evidence has highlighted the significance of TSPO in liver diseases. However, a comprehensive summary of TSPO function in the normal liver and diverse liver diseases is lacking. This review aims to provide an overview of recent advances in understanding TSPO function in both normal liver cells and various liver diseases, with a particular emphasis on its involvement in liver fibrosis and inflammation and addresses the existing knowledge gaps in the field that require further investigation.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
50
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|