1
|
Costa ADSD, Vadym K, Park K. Engineered endothelium model enables recapitulation of vascular function and early atherosclerosis development. Biomaterials 2025; 314:122889. [PMID: 39423515 DOI: 10.1016/j.biomaterials.2024.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Human health relies heavily on the vascular endothelium. Here, we propose a novel engineered endothelium model (EEM), which recapitulated both normal vascular function and pathology. An artificial basement membrane (aBM), where porous polyvinyl alcohol hydrogel was securely integrated with human fibroblast-derived, decellularized extracellular matrix on both sides was fabricated first and followed by endothelial cells (ECs) and pericytes (PCs) adhesion, respectively. Our EEM formed robust adherens junction (VE-cad) and built an impermeable barrier with time, along with the nitric oxide (NO) secretion. In our EEM, ECs and PCs interacted each other via aBM and led to hemoglobin alpha 1 (Hb-α1) development, which was involved in NO control and was strongly interconnected with VE-cad as well. A resilient property of EEM under inflammatory milieu was also confirmed by VE-cad and barrier recovery with time. In particular interest, foam cells formation, a hallmark of atherosclerotic initiation was successfully recapitulated in our EEM, where a series of sequential events were confirmed: human monocytes adhesion, transendothelial migration, and oxidized low-density lipoprotein uptake by macrophages. Collectively, our EEM is excellent in recapitulating not only normal endothelium but early pathologic one, thereby enabling EEM to be a physiologically relevant model for vascular study and disease modeling.
Collapse
Affiliation(s)
| | - Kopych Vadym
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Li W, Huang Y, Liu J, Zhou Y, Sun H, Fan Y, Liu F. Defective macrophage efferocytosis in advanced atherosclerotic plaque and mitochondrial therapy. Life Sci 2024; 359:123204. [PMID: 39491771 DOI: 10.1016/j.lfs.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease primarily affecting large and medium-sized arterial vessels, characterized by lipoprotein disorders, intimal thickening, smooth muscle cell proliferation, and the formation of vulnerable plaques. Macrophages (MΦs) play a vital role in the inflammatory response throughout all stages of atherosclerotic development and are considered significant therapeutic targets. In early lesions, macrophage efferocytosis rapidly eliminates harmful cells. However, impaired efferocytosis in advanced plaques perpetuates the inflammatory microenvironment of AS. Defective efferocytosis has emerged as a key factor in atherosclerotic pathogenesis and the progression to severe cardiovascular disease. Herein, this review probes into investigate the potential mechanisms at the cellular, molecular, and organelle levels underlying defective macrophage efferocytosis in advanced lesion plaques. In the inflammatory microenvironments of AS with interactions among diverse inflammatory immune cells, impaired macrophage efferocytosis is strongly linked to multiple factors, such as a lower absolute number of phagocytes, the aberrant expression of crucial molecules, and impaired mitochondrial energy provision in phagocytes. Thus, focusing on molecular targets to enhance macrophage efferocytosis or targeting mitochondrial therapy to restore macrophage metabolism homeostasis has emerged as a potential strategy to mitigate the progression of advanced atherosclerotic plaque, providing various treatment options.
Collapse
Affiliation(s)
- Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
3
|
Savla SR, Bhatt LK. Exploration of anti-atherosclerotic activity of 1,8-cineole through network pharmacology, molecular docking, and in vivo efficacy studies in high-fat-diet-induced atherosclerosis in hamsters. Mol Divers 2024:10.1007/s11030-024-11015-3. [PMID: 39463214 DOI: 10.1007/s11030-024-11015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
The anti-atherogenic potential of liver X receptors (LXRs) has been attributed to their inhibitory role in macrophage-mediated inflammation and promotion of reverse cholesterol transport. This study aimed to evaluate the efficacy of an LXR agonist, 1,8-cineole (Eucalyptol), in atherosclerosis through network pharmacology, molecular docking, and in vivo efficacy studies in high-fat-diet-induced atherosclerosis in hamsters. Network pharmacology analysis was performed by identifying potential targets of 1,8-Cineole and atherosclerosis, followed by the construction of component-target-disease and protein-protein interaction networks. Gene Ontology and KEGG pathway enrichment analysis of targets were performed. The top 5 targets were selected for molecular docking studies. Atherosclerosis was induced in male Golden Syrian hamsters, and the results of network pharmacology were verified. Fifty-one overlapped targets were identified for 1,8-cineole and atherosclerosis. In the protein-protein interaction studies, the top 5 ranked proteins were PPARG, FXR, ABCA-1, ABCG1, and LXRΑ. KEGG pathway analysis and molecular docking showed that ABCA-1 and LXRΑ were correlated in atherosclerosis. Animal studies showed amelioration of atherosclerotic lesions in the aorta of animals treated with 1,8-cineole compared to disease control aortas. A dose-dependent attenuation in ABCA-1 levels and inflammatory markers was observed in animals treated with 1,8-cineole, comparable to its levels in normal animals. In conclusion, 1,8-cineole showed anti-atherosclerotic effects in Golden Syrian hamsters via LXRΑ-induced ABCA-1 overexpression.
Collapse
Affiliation(s)
- Shreya R Savla
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
4
|
Saheki T, Imachi H, Fukunaga K, Sato S, Kobayashi T, Yoshimura T, Saheki N, Murao K. NMDA Suppresses Pancreatic ABCA1 Expression through the MEK/ERK/LXR Pathway in Pancreatic Beta Cells. Nutrients 2024; 16:2865. [PMID: 39275180 PMCID: PMC11396903 DOI: 10.3390/nu16172865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Dysfunction or loss of pancreatic β cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is associated with pancreatic β cell lipotoxicity, resulting in abnormal insulin synthesis and secretion. Increased glutamate release can cause glucotoxicity in β cells, though the detailed mechanisms remain unclear. This study investigated the effect of N-methyl-D-aspartic acid (NMDA) on ABCA1 expression in INS-1 cells and primary pancreatic islets to elucidate the signaling mechanisms that suppress insulin secretion. Using Western blotting, microscopy, and biochemical analyses, we found that NMDA activated the mitogen-activated protein kinase (MEK)-dependent pathway, suppressing ABCA1 protein and mRNA expression. The MEK-specific inhibitor PD98059 restored ABCA1 promoter activity, indicating the involvement of the extracellular signal-regulated kinase (MEK/ERK) pathway. Furthermore, we identified the liver X receptor (LXR) as an effector transcription factor in NMDA regulation of ABCA1 transcription. NMDA treatment increased cholesterol and triglyceride levels while decreasing insulin secretion, even under high-glucose conditions. These effects were abrogated by treatment with PD98059. This study reveals that NMDA suppresses ABCA1 expression via the MEK/ERK/LXR pathway, providing new insights into the pathological suppression of insulin secretion in pancreatic β cells and emphasizing the importance of investigating the role of NMDA in β cell dysfunction.
Collapse
Affiliation(s)
- Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun 761-0793, Japan; (H.I.); (K.F.); (S.S.); (T.K.); (T.Y.); (N.S.); (K.M.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang Y, Zeng M, Zhang X, Yu Q, Wang L, Zeng W, Wang Y, Suo Y, Jiang X. Tiaogan daozhuo formula attenuates atherosclerosis via activating AMPK -PPARγ-LXRα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117814. [PMID: 38286155 DOI: 10.1016/j.jep.2024.117814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tiaogan Daozhuo Formula (TGDZF) is a common formulation against atherosclerosis, however, there is limited understanding of its therapeutic mechanism. AIM OF THIS STUDY To examine the effectiveness of TGDZF in the treatment of atherosclerosis and to explore its mechanisms. MATERIALS AND METHODS In ApoE-/- mice, atherosclerosis was induced by a high-fat diet for 12 weeks and treated with TGDZF at different doses. The efficacy of TGDZF in alleviating atherosclerosis was evaluated by small animal ultrasound and histological methods. Lipid levels were measured by biochemical methods. The capacity of cholesterol efflux was tested with a cholesterol efflux assay in peritoneal macrophage, and the expression of AMPKα1, PPARγ, LXRα, and ABCA1 was examined at mRNA and protein levels. Meanwhile, RAW264.7-derived macrophages were induced into foam cells by ox-LDL, and different doses of TGDZF-conducting serum were administered. Similarly, we examined differences in intracellular lipid accumulation, cholesterol efflux rate, and AMPKα1, PPARγ, LXRα, and ABCA1 levels following drug intervention. Finally, changes in the downstream molecules were evaluated following the inhibition of AMPK by compound C or PPARγ silencing by small interfering RNA. RESULTS TGDZF administration reduced aortic plaque area and lipid accumulation in aortic plaque and hepatocytes, and improved the serum lipid profiles of ApoE-/- mice. Further study revealed that its efficacy was accompanied by an increase in cholesterol efflux rate and the expression of PPARγ, LXRα, and ABCA1 mRNA and protein, as well as the promotion of AMPKα1 phosphorylation. Moreover, similar results were caused by the intervention of TGDZF-containing serum in vitro experiments. Inhibition of AMPK and PPARγ partially blocked the regulatory effect of TGDZF, respectively. CONCLUSIONS TGDZF alleviated atherosclerosis and promoted cholesterol efflux from macrophages by activating the AMPK-PPARγ-LXRα-ABCA1 pathway.
Collapse
Affiliation(s)
- Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Qun Yu
- School of Preclinical Medicine, Zunyi Medical University, Guizhou, China.
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Wenyun Zeng
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China.
| | - Yijing Wang
- School of Nursing, Tianjin University of Chinese Medicine, Tianjin, China.
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
7
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
8
|
Fuentevilla-Álvarez G, Huesca-Gómez C, Paz-Torres YE, González-Moyotl N, Soto ME, García-Valdivia JA, Sámano R, Martínez-Rosas M, Meza-Toledo SE, Gamboa R. Evaluation of the participation of ABCA1 transporter in epicardial and mediastinal adipose tissue from patients with coronary artery disease. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 68:e230188. [PMID: 37988669 PMCID: PMC10916836 DOI: 10.20945/2359-4292-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 11/23/2023]
Abstract
Objective Recent studies have shown a relationship between adipose tissue and coronary artery disease (CAD). The ABCA1 transporter regulates cellular cholesterol content and reverses cholesterol transport. The aim of this study was to determine the relationship between single nucleotide polymorphisms (SNPs) R230C, C-17G, and C-69T and their expression in epicardial and mediastinal adipose tissue in Mexican patients with CAD. Subjects and methods The study included 71 patients with CAD and a control group consisting of 64 patients who underwent heart valve replacement. SNPs were determined using TaqMan probes. mRNA was extracted using TriPure Isolation from epicardial and mediastinal adipose tissue. Quantification and expression analyses were done using RT-qPCR. Results R230C showed a higher frequency of the GG genotype in the CAD group (70.4%) than the control group (57.8%) [OR 0.34, 95% CI (0.14-0.82) p = 0.014]. Similarly, C-17G (rs2740483) showed a statistically significant difference in the CC genotype in the CAD group (63.3%) in comparison to the controls (28.1%) [OR 4.42, 95% CI (2.13-9.16), p = 0.001]. mRNA expression in SNP R230C showed statistically significant overexpression in the AA genotype compared to the GG genotype in CAD patients [11.01 (4.31-15.24) vs. 3.86 (2.47-12.50), p = 0.015]. Conclusion The results suggest that the GG genotype of R230C and CC genotype of C-17G are strongly associated with the development of CAD in Mexican patients. In addition, under-expression of mRNA in the GG genotype in R230C is associated with patients undergoing revascularization.
Collapse
Affiliation(s)
- Giovanny Fuentevilla-Álvarez
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, México
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Claudia Huesca-Gómez
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, México
| | - Yazmín Estela Paz-Torres
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, México
| | - Nadia González-Moyotl
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, México
| | - María Elena Soto
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, México
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, I.A.P. A.B.C.,Mexico City, Mexico
| | | | - Reyna Sámano
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología,Ciudad de México, México
| | - Martín Martínez-Rosas
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, México
| | - Sergio Enrique Meza-Toledo
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Ricardo Gamboa
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, México,
| |
Collapse
|
9
|
Wu D, He H, Chen J, Yao S, Xie H, Jiang W, Lv X, Gao W, Meng L, Yao X. L-carnitine reduces acute lung injury via mitochondria modulation and inflammation control in pulmonary macrophages. Braz J Med Biol Res 2023; 56:e12830. [PMID: 37878885 PMCID: PMC10591484 DOI: 10.1590/1414-431x2023e12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a critical respiratory syndrome with limited effective interventions. Lung macrophages play a critical role in the pathogenesis of abnormal inflammatory response in the syndrome. Recently, impaired fatty acid oxidation (FAO), one of the key lipid metabolic signalings, was found to participate in the onset and development of various lung diseases, including ALI/ARDS. Lipid/fatty acid contents within mouse lungs were quantified using the Oil Red O staining. The protective effect of FAO activator L-carnitine (Lca, 50, 500, or 5 mg/mL) was evaluated by cell counting kit 8 (CCK-8) assay, real-time quantitative PCR (qPCR), ELISA, immunoblotting, fluorescence imaging, and fluorescence plate reader detection in lipopolysaccharide (LPS) (100 ng/mL)-stimulated THP-1-derived macrophages. The in vivo efficacy of Lca (300 mg/kg) was determined in a 10 mg/kg LPS-induced ALI mouse model. We found for the first time that lipid accumulation in pulmonary macrophages was significantly increased in a classical ALI murine model, which indicated disrupted FAO induced by LPS. Lca showed potent anti-inflammatory and antioxidative effects on THP-1 derived macrophages upon LPS stimulation. Mechanistically, Lca was able to maintain FAO, mitochondrial activity, and ameliorate mitochondrial dynamics. In the LPS-induced ALI mouse model, we further discovered that Lca inhibited neutrophilic inflammation and decreased diffuse damage, which might be due to the preservation of mitochondrial homeostasis. These results broadened our understanding of ALI/ARDS pathogenesis and provided a promising drug candidate for this syndrome.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou, Nanjing, China
| | - Haiyan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Jinliang Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Sumei Yao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Haiqin Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Wenyan Jiang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Xuedong Lv
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Jimo, Shanghai, China
| | - Linlin Meng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Jimo, Shanghai, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou, Nanjing, China
| |
Collapse
|
10
|
Yang XF, Shang DJ. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis. Cell Biol Int 2023; 47:1469-1487. [PMID: 37369936 DOI: 10.1002/cbin.12065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease events are the result of functional and structural abnormalities in the arteries and heart. Atherosclerosis is the main cause and pathological basis of cardiovascular diseases. Atherosclerosis is a multifactorial disease associated with dyslipidemia, inflammation, and oxidative stress, among which dyslipidemia and chronic inflammation occur in all processes. Under the influence of lipoproteins, the arterial intima causes inflammation, necrosis, fibrosis, and calcification, leading to plaque formation in specific parts of the artery, which further develops into plaque rupture and secondary thrombosis. Foam cell formation from macrophages is an early event in the development of atherosclerosis. Lipid uptake causes a vascular inflammatory response, and persistent inflammatory infiltration in the lesion area further promotes the development of the disease. Inhibition of macrophage differentiation into foam cell and reduction of the level of proinflammatory factors in macrophages can effectively alleviate the occurrence and development of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that plays an important antiatherosclerotic role by regulating triglyceride metabolism, lipid uptake, cholesterol efflux, macrophage polarity, and inhibiting inflammatory signaling pathways. In addition, PPARγ shifts its binding to ligands and co-activators or co-repressors of transcription of target genes through posttranslational modification, thereby affecting the regulation of its downstream target genes. Many ligand agonists have also been developed targeting PPARγ. In this review, we summarized the role of PPARγ in lipid metabolism and inflammation in development of atherosclerosis, the posttranslational regulatory mechanism of PPARγ, and further discusses the value of PPARγ as an antiatherosclerosis target.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
11
|
Esobi IC, Oladosu O, Echesabal-Chen J, Powell RR, Bruce T, Stamatikos A. miR-33a Expression Attenuates ABCA1-Dependent Cholesterol Efflux and Promotes Macrophage-Like Cell Transdifferentiation in Cultured Vascular Smooth Muscle Cells. J Lipids 2023; 2023:8241899. [PMID: 37359759 PMCID: PMC10289877 DOI: 10.1155/2023/8241899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Recent evidence suggests that the majority of cholesterol-laden cells found in atherosclerotic lesions are vascular smooth muscle cells (VSMC) that have transdifferentiated into macrophage-like cells (MLC). Furthermore, cholesterol-laden MLC of VSMC origin have demonstrated impaired ABCA1-dependent cholesterol efflux, but it is poorly understood why this occurs. A possible mechanism which may at least partially be attributed to cholesterol-laden MLC demonstrating attenuated ABCA1-dependent cholesterol efflux is a miR-33a expression, as a primary function of this microRNA is to silence ABCA1 expression, but this has yet to be rigorously investigated. Therefore, the VSMC line MOVAS cells were used to generate miR-33a knockout (KO) MOVAS cells, and we used KO and wild-type (WT) MOVAS cells to delineate any possible proatherogenic role of miR-33a expression in VSMC. When WT and KO MOVAS cells were cholesterol-loaded to convert into MLC, this resulted in the WT MOVAS cells to exhibit impaired ABCA1-dependent cholesterol efflux. In the cholesterol-loaded WT MOVAS MLC, we also observed a delayed restoration of the VSMC phenotype when these cells were exposed to the ABCA1 cholesterol acceptor, apoAI. These results imply that miR-33a expression in VSMC drives atherosclerosis by triggering MLC transdifferentiation via attenuated ABCA1-dependent cholesterol efflux.
Collapse
Affiliation(s)
- Ikechukwu C. Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olanrewaju Oladosu
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Rhonda R. Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
12
|
Quercetin alleviates atherosclerosis by suppressing oxidized LDL-induced senescence in plaque macrophage via inhibiting the p38MAPK/p16 pathway. J Nutr Biochem 2023; 116:109314. [PMID: 36924853 DOI: 10.1016/j.jnutbio.2023.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023]
Abstract
Quercetin is a widely known and biologically active phytochemical and exerts therapeutic effects against atherosclerosis. The removal of senescent plaque macrophages effectively slows the progression of atherosclerosis and decreases the plaque burden. Still, whether quercetin alleviates atherosclerosis by inhibiting the senescence of plaque macrophages, including the potential mechanisms, remains unclear. ApoE-/- mice were fed with a normal chow diet or high-fat diet (HFD) supplemented or not with quercetin (100 mg/kg of body weight) for 16 weeks. An accumulation of senescent macrophages was observed in the plaque-rich aortic tissues from the mice with HFD, but quercetin supplementation effectively reduced the amount of senescent plaque macrophage, inhibited the secretion of key senescence-associated secretory phenotype (SASP) factors, and alleviated atherosclerosis by inhibiting p38MAPK phosphorylation and p16 expression. In vitro, SB203580 (a specific inhibitor of p38 MAPK) significantly inhibited oxidized low-density lipoprotein (ox-LDL)-induced senescence in mouse RAW264.7 macrophages, as evidenced by decreased senescence-associated markers (SA-β-gal staining positive cells and p16 expression). Furthermore, quercetin not only effectively reversed ox-LDL-induced senescence in RAW264.7 cells but also decreased the mRNA levels of several key SASP factors by suppressing p38 MAPK phosphorylation and p16 expression. The p38 MAPK agonist asiatic acid reversed the effects of quercetin. In conclusion, these findings indicate that quercetin suppresses ox-LDL-induced senescence in plaque macrophage and attenuates atherosclerosis by inhibiting the p38 MAPK/p16 pathway. This study elucidates the mechanisms of quercetin against atherosclerosis and supports quercetin as a nutraceutical for the management of atherosclerosis.
Collapse
|
13
|
Grbić E, Gorkič N, Pleskovič A, Ljuca F, Gasparini M, Mrđa B, Cilenšek I, Fras Z, Petrovič D. Association between the rs2279238 of the Liver X receptor alpha gene polymorphism and advanced carotid atherosclerosis in the Slovenian cohort. Gene 2022; 840:146764. [PMID: 35907563 DOI: 10.1016/j.gene.2022.146764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Liver X receptor alpha (LXRA) plays important role in cholesterol and lipid homeostasis and lipid metabolism; moreover, it has been investigated as a candidate gene in a number of conditions, including onset and progression of atherosclerosis. We hypothesized that the LXRA gene rs2279238 polymorphism may be associated with the onset and progression of carotid atherosclerosis in the Slovenian cohort. METHODS 783 unrelated Slovenian patients were included in this cross-sectional case-control study: 308 patients in the group of cases with severe internal carotid artery (ICA) stenosis (> 75%) and 475 patients with hemodynamically insignificant ICA stenosis (<50%) in the control group. Medical records were used to acquire patient laboratory and clinical data. The TaqMan SNP Genotyping assay was used to genotype the rs2279238 polymorphism. RESULTS Between the case and control groups, we identified a statistically significant variation in genotype distribution (p=0.04), but not in allele frequency (p=0.13) of the LXRA gene polymorphism rs2279238. The results, also show that there is a statistically significant association (p=0.04) between the two genetic models (codominant and recessive) of the LXRA gene rs2279238 polymorphism and carotid atherosclerosis. CONCLUSION In the Slovenian cohort, we found a significant association between the TT genotype of rs2279238 and advanced carotid artery disease, suggesting that this polymorphism might be a genetic risk factor for ICA atherosclerosis.
Collapse
Affiliation(s)
- Emin Grbić
- Department of Physiology, Faculty of Medicine, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Nataša Gorkič
- International Center for Cardiovascular Diseases MC Medicor d.d, Izola, Slovenia
| | - Aleš Pleskovič
- Department of Cardiology, Division of Medicine, University Medical Centre of Ljubljana, Ljubljana, Slovenia
| | - Farid Ljuca
- Department of Physiology, Faculty of Medicine, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Mladen Gasparini
- Department of Vascular Surgery, General Hospital Izola, Izola, Slovenia
| | - Božidar Mrđa
- Department of Vascular Surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Ines Cilenšek
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Zlatko Fras
- Department of Cardiology, Division of Medicine, University Medical Centre of Ljubljana, Ljubljana, Slovenia; Division of Medicine, Centre for Preventive Cardiology, Division of Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1525, Ljubljana, Slovenia; Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia; International Center for Cardiovascular Diseases MC Medicor d.d, Izola, Slovenia.
| |
Collapse
|
14
|
Ma L, Vidana Gamage HE, Tiwari S, Han C, Henn MA, Krawczynska N, Dibaeinia P, Koelwyn GJ, Das Gupta A, Bautista Rivas RO, Wright CL, Xu F, Moore KJ, Sinha S, Nelson ER. The Liver X Receptor Is Selectively Modulated to Differentially Alter Female Mammary Metastasis-associated Myeloid Cells. Endocrinology 2022; 163:bqac072. [PMID: 35569056 PMCID: PMC9188661 DOI: 10.1210/endocr/bqac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/19/2022]
Abstract
Dysregulation of cholesterol homeostasis is associated with many diseases such as cardiovascular disease and cancer. Liver X receptors (LXRs) are major upstream regulators of cholesterol homeostasis and are activated by endogenous cholesterol metabolites such as 27-hydroxycholesterol (27HC). LXRs and various LXR ligands such as 27HC have been described to influence several extra-hepatic biological systems. However, disparate reports of LXR function have emerged, especially with respect to immunology and cancer biology. This would suggest that, similar to steroid nuclear receptors, the LXRs can be selectively modulated by different ligands. Here, we use RNA-sequencing of macrophages and single-cell RNA-sequencing of immune cells from metastasis-bearing murine lungs to provide evidence that LXR satisfies the 2 principles of selective nuclear receptor modulation: (1) different LXR ligands result in overlapping but distinct gene expression profiles within the same cell type, and (2) the same LXR ligands differentially regulate gene expression in a highly context-specific manner, depending on the cell or tissue type. The concept that the LXRs can be selectively modulated provides the foundation for developing precision pharmacology LXR ligands that are tailored to promote those activities that are desirable (proimmune), but at the same time minimizing harmful side effects (such as elevated triglyceride levels).
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Srishti Tiwari
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chaeyeon Han
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Graeme J Koelwyn
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rafael Ovidio Bautista Rivas
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chris L Wright
- Roy J. Carver Biotechnology Center DNA Services, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Fangxiu Xu
- Roy J. Carver Biotechnology Center DNA Services, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10032, USA
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
16
|
Yang S, Jia J, Liu Y, Li Z, Li Z, Zhang Z, Zhou B, Luan Y, Huang Y, Peng Y, Han T, Xu Y, He Y, Zheng H. Genetic variations in ABCA1/G1 associated with plasma lipid levels and risk of ischemic stroke. Gene 2022; 823:146343. [PMID: 35219812 DOI: 10.1016/j.gene.2022.146343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND ATP binding cassette transporters ABCA1 and ABCG1 play a crucial role in cholesterol efflux and reverse cholesterol transport (RCT), thereby rendering ischemic stroke (IS) susceptibility. Variants of ABCA1/G1 have been implicated in etiology of IS. This study aimed to investigate the association between single-nucleotide polymorphisms (SNPs) of ABCA1/G1 with plasma lipid variability and the risk of IS in Chinese Han Population. METHODS Totally 249 IS patients and 226 healthy controls were enrolled and 10 SNPs of ABCA1/G1 were screened for genotyping by kompetitive allele-specific polymerase chain reaction (KASP) and validated by sanger sequencing. The logistic regression analysis was performed to identify risk alleles of IS and appropriate genetic model. The genetic risk scores (GRS) and predicted risks for all individuals was computed. Based on different plasma lipid levels, we applied stratified analyses for subgroups. Linkage disequilibrium (LD) test was used to explore different functional haplotype combinations. Association between specific allele or genotype of the SNPs of ABCA1/G1 and plasma lipid or lipoproteins levels were also investigated. RESULTS Besides total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), significant differences of clinical data were observed between IS and control group. The rare GG genotype frequencies of rs4149338 on ABCA1 was higher in IS patients than those in controls (11.4%, 4.6%, respectively, P = 0.037). Frequencies of rs57137919 on ABCG1 for rare AA genotype was lower in IS group than those in control group (4.6%, 13.3%, respectively, P = 0.030). GRS showed ability to discriminate IS patients and controls (AUC = 0.633, P < 0.001). Haplotype A-A (rs4149339-rs4149338) was correlated with reduced risk of IS (P = 0.023). Association analysis showed that subjects with rare AA genotype of rs57137919 had the lowest LDL-C levels while rare GG genotype of rs4149338 had lower TC level than those with AA genotype. The mRNA expression of ABCG1 was higher in IS patients, especially in the patients with frequent GG genotype of rs57137919, and was positively correlated with higher ABCG1 expression level and plasma LDL-C level. CONCLUSIONS Polymorphisms of ABCA1/G1 associated with varieties of plasma lipid levels and risk of IS.
Collapse
Affiliation(s)
- Shangdong Yang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Jia
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Liu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Li
- Department of Medical Laboratory, Henan Provincial Chest Hospital, Zhengzhou 450008, China
| | - Zhihao Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaojing Zhang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Baixue Zhou
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Luan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanyang Huang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Peng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianyi Han
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Xu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying He
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Hong Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Kim SY, Jeong SJ, Park JH, Cho W, Ahn YH, Choi YH, Oh GT, Silverstein RL, Park YM. Plasma Membrane Localization of CD36 Requires Vimentin Phosphorylation; A Mechanism by Which Macrophage Vimentin Promotes Atherosclerosis. Front Cardiovasc Med 2022; 9:792717. [PMID: 35656400 PMCID: PMC9152264 DOI: 10.3389/fcvm.2022.792717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin is a type III intermediate filament protein expressed in cells of mesenchymal origin. Vimentin has been thought to function mainly as a structural protein and roles of vimentin in other cellular processes have not been extensively studied. Our current study aims to reveal functions of vimentin in macrophage foam cell formation, the critical stage of atherosclerosis. We demonstrated that vimentin null (Vim -/ - ) mouse peritoneal macrophages take up less oxidized LDL (oxLDL) than vimentin wild type (Vim +/+) macrophages. Despite less uptake of oxLDL in Vim -/ - macrophages, Vim +/+ and Vim -/ - macrophages did not show difference in expression of CD36 known to mediate oxLDL uptake. However, CD36 localized in plasma membrane was 50% less in Vim -/ - macrophages than in Vim +/+ macrophages. OxLDL/CD36 interaction induced protein kinase A (PKA)-mediated vimentin (Ser72) phosphorylation. Cd36 -/ - macrophages did not exhibit vimentin phosphorylation (Ser72) in response to oxLDL. Experiments using phospho-mimetic mutation of vimentin revealed that macrophages with aspartate-substituted vimentin (V72D) showed more oxLDL uptake and membrane CD36. LDL receptor null (Ldlr -/ - ) mice reconstituted with Vim -/ - bone marrow fed a western diet for 15 weeks showed 43% less atherosclerotic lesion formation than Ldlr -/ - mice with Vim +/+ bone marrow. In addition, Apoe -/ -Vim- / - (double null) mice fed a western diet for 15 weeks also showed 57% less atherosclerotic lesion formation than Apoe -/ - and Vim +/+mice. We concluded that oxLDL via CD36 induces PKA-mediated phosphorylation of vimentin (Ser72) and phosphorylated vimentin (Ser72) directs CD36 trafficking to plasma membrane in macrophages. This study reveals a function of vimentin in CD36 trafficking and macrophage foam cell formation and may guide to establish a new strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Se-Jin Jeong
- Department of Life Sciences, Immune and Vascular Cell Network Research Center, National Creative Initiatives, Ewha Womans University, Seoul, South Korea
| | - Ji-Hae Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Wonkyoung Cho
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Youn-Hee Choi
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Immune and Vascular Cell Network Research Center, National Creative Initiatives, Ewha Womans University, Seoul, South Korea
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Young Mi Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
18
|
Gao J, Jung M, Williams RT, Hui D, Russell AJ, Naim AJ, Kamili A, Clifton M, Bongers A, Mayoh C, Ho G, Scott CL, Jessup W, Haber M, Norris MD, Henderson MJ. Suppression of the ABCA1 Cholesterol Transporter Impairs the Growth and Migration of Epithelial Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14081878. [PMID: 35454786 PMCID: PMC9029800 DOI: 10.3390/cancers14081878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer (EOC) is the most lethal gynaecological cancer. Over 80% of cases have already spread at diagnosis, and these patients face a five-year survival rate of 35%. EOC cells often spread to the greater omentum, an abdominal fat pad. Here, EOC cells take-up cholesterols. Excessive amounts of cholesterol are lethal; thus, we proposed that the ABCA1 cholesterol transporter exports cholesterol from serous EOC cells to maintain cholesterol balance. Indeed, we found that reducing the level of ABCA1 could suppress serous EOC growth in two-dimensional as well as three-dimensional cell culture and also hindered their migration, a key process required for cancer spread. We also identified drugs that impair EOC cell growth by inhibiting cholesterol export. Our data demonstrate that disrupting the cholesterol balance by targeting ABCA1 may be an effective treatment strategy for EOC patients. Abstract Background: Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy with over 80% of cases already disseminated at diagnosis and facing a dismal five-year survival rate of 35%. EOC cells often spread to the greater omentum where they take-up cholesterol. Excessive amounts of cholesterol can be cytocidal, suggesting that cholesterol efflux through transporters may be important to maintain homeostasis, and this may explain the observation that high expression of the ATP-binding cassette A1 (ABCA1) cholesterol transporter has been associated with poor outcome in EOC patients. Methods: ABCA1 expression was silenced in EOC cells to investigate the effect of inhibiting cholesterol efflux on EOC biology through growth and migration assays, three-dimensional spheroid culture and cholesterol quantification. Results: ABCA1 suppression significantly reduced the growth, motility and colony formation of EOC cell lines as well as the size of EOC spheroids, whilst stimulating expression of ABCA1 reversed these effects. In serous EOC cells, ABCA1 suppression induced accumulation of cholesterol. Lowering cholesterol levels using methyl-B-cyclodextrin rescued the effect of ABCA1 suppression, restoring EOC growth. Furthermore, we identified FDA-approved agents that induced cholesterol accumulation and elicited cytocidal effects in EOC cells. Conclusions: Our data demonstrate the importance of ABCA1 in maintaining cholesterol balance and malignant properties in EOC cells, highlighting its potential as a therapeutic target for this disease.
Collapse
Affiliation(s)
- Jixuan Gao
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- Telomere Length Regulation Unit, Children’s Medical Research Institute, Westmead, NSW 2145, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence:
| | - MoonSun Jung
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rebekka T. Williams
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Danica Hui
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Amanda J. Russell
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrea J. Naim
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Alvin Kamili
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Molly Clifton
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Angelika Bongers
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Chelsea Mayoh
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Gwo Ho
- Australia Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (G.H.); (C.L.S.)
| | - Clare L. Scott
- Australia Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (G.H.); (C.L.S.)
| | - Wendy Jessup
- ANZAC Research Institute, Concord, Sydney, NSW 2139, Australia;
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Murray D. Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michelle J. Henderson
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | | |
Collapse
|
19
|
Wang Y, Yang H, Su X, Cao A, Chen F, Chen P, Yan F, Hu H. SREBP2 promotes the viability, proliferation, and migration and inhibits apoptosis in TGF-β1-induced airway smooth muscle cells by regulating TLR2/NF-κB/NFATc1/ABCA1 regulatory network. Bioengineered 2022; 13:3137-3147. [PMID: 35037821 PMCID: PMC8973716 DOI: 10.1080/21655979.2022.2026550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asthma is a respiratory disease with complex pathogenesis. Sterol-responsive element-binding proteins 2 (SREBP2) was found to bind to promoter sequences of ABCA1 to suppress ABCA1 promoter activity. This study aimed to explore the expression level of SREBP2 and ATP-binding cassette transporter A1 (ABCA1), and their effects on the development of airway smooth muscle cells (ASMCs) in asthma. ASMCs were treated with different concentrations of TGF-β1 (0, 0.5, 1, 5 and 10 ng/mL). Short hairpin SREBP2 (shSREBP2), SREBP2, shABCA1 or ABCA1 were transfected into ASMCs. Cell viability, proliferation, apoptosis, migration, and the expression of SREBP2, ABCA1 and related pathway proteins were detected by MTT assay, Brdu staining, flow cytometer, Transwell assay, qRT-PCR, and Western blotting, respectively. The results showed that TGF-β1 increased the viability, proliferation, migration and inhibited apoptosis in ASMCs. Moreover, TGF-β1 also decreased the expression of ABCA1, cleaved caspase-3, cleaved PARP, E-cadherin, and increased the expression of vimentin, TLR2, p-p65 and NFATc1. SREBP2 knockdown alleviated these TGF-β1-induced changes. SREBP2 overexpression inhibited ABCA1 expression and apoptosis, and promoted cell migration and the expression of TLR2, p-p65, NFATc1 in ASMCs. ABCA1 overexpression alleviated these SREBP2-induced promoting and inhibition effects. In conclusion, SREBP2 activates TLR2/NF-κB/NFATc1 regulatory network and promotes TGF-β1-induced cell movement through inhibiting ABCA1 expression.
Collapse
Affiliation(s)
- Yuebin Wang
- Department of Respiratory and Critical Care Medicine, Chengdu Third People's Hospital, Chengdu, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xian Su
- Department of Respiratory and Critical Care Medicine, Chengdu Third People's Hospital, Chengdu, China
| | - Anqiang Cao
- Department of Cardiothoracic Surgery, Meishan People's Hospital, Meishan, China
| | - Feng Chen
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, Chengdu, China
| | - Peng Chen
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, Chengdu, China
| | - Fangtao Yan
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, Chengdu, China
| | - Huirong Hu
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, Chengdu, China
| |
Collapse
|
20
|
Cheng J, Cai W, Zong S, Yu Y, Wei F. Metabolite transporters as regulators of macrophage polarization. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:13-25. [PMID: 34851450 DOI: 10.1007/s00210-021-02173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are myeloid immune cells, present in virtually all tissues which exhibit considerable functional plasticity and diversity. Macrophages are often subdivided into two distinct subsets described as classically activated (M1) and alternatively activated (M2) macrophages. It has recently emerged that metabolites regulate the polarization and function of macrophages by altering metabolic pathways. These metabolites often cannot freely pass the cell membrane and are therefore transported by the corresponding metabolite transporters. Here, we reviewed how glucose, glutamate, lactate, fatty acid, and amino acid transporters are involved in the regulation of macrophage polarization. Understanding the interactions among metabolites, metabolite transporters, and macrophage function under physiological and pathological conditions may provide further insights for novel drug targets for the treatment of macrophage-associated diseases. In Brief Recent studies have shown that the polarization and function of macrophages are regulated by metabolites, most of which cannot pass freely through biofilms. Therefore, metabolite transporters required for the uptake of metabolites have emerged seen as important regulators of macrophage polarization and may represent novel drug targets for the treatment of macrophage-associated diseases. Here, we summarize the role of metabolite transporters as regulators of macrophage polarization.
Collapse
Affiliation(s)
- Jingwen Cheng
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Weiwei Cai
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Shiye Zong
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China. .,Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, 2600 Donghai Avenue, Bengbu, 233030, Anhui, China.
| |
Collapse
|
21
|
Kotlyarov S, Bulgakov A. Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells 2021; 10:2978. [PMID: 34831201 PMCID: PMC8616072 DOI: 10.3390/cells10112978] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently among the most common liver diseases. Unfavorable data on the epidemiology of metabolic syndrome and obesity have increased the attention of clinicians and researchers to the problem of NAFLD. The research results allow us to emphasize the systemicity and multifactoriality of the pathogenesis of liver parenchyma lesion. At the same time, many aspects of its classification, etiology, and pathogenesis remain controversial. Local and systemic metabolic disorders are also a part of the pathogenesis of chronic obstructive pulmonary disease and can influence its course. The present article analyzes the metabolic pathways mediating the links of impaired lipid metabolism in NAFLD and chronic obstructive pulmonary disease (COPD). Free fatty acids, cholesterol, and ceramides are involved in key metabolic and inflammatory pathways underlying the pathogenesis of both diseases. Moreover, inflammation and lipid metabolism demonstrate close links in the comorbid course of NAFLD and COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia;
| | | |
Collapse
|
22
|
Tang J, Rakshit M, Chua HM, Darwitan A, Nguyen LTH, Muktabar A, Venkatraman S, Ng KW. Liposome interaction with macrophages and foam cells for atherosclerosis treatment: effects of size, surface charge and lipid composition. NANOTECHNOLOGY 2021; 32:505105. [PMID: 34536952 DOI: 10.1088/1361-6528/ac2810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Liposomes are potential drug carriers for atherosclerosis therapy due to low immunogenicity and ease of surface modifications that allow them to have prolonged circulation half-life and specifically target atherosclerotic sites to increase uptake efficiency. However, the effects of their size, charge, and lipid compositions on macrophage and foam cell behaviour are not fully understood. In this study, liposomes of different sizes (60 nm, 100 nm and 180 nm), charges (-40 mV, -20 mV, neutral, +15 mV and +30 mV) and lipid compositions (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, L-a-phosphatidylcholine, and egg sphingomyelin) were synthesized, characterized and exposed to macrophages and foam cells. Compared to 100 nm neutral 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes, flow cytometry and confocal imaging indicated that cationic liposomes and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DSPC) liposomes were internalized more by both macrophages and foam cells. Through endocytosis inhibition, phagocytosis and clathrin-mediated endocytosis were identified as the dominant mechanisms of uptake. Anionic and DSPC liposomes induced more cholesterol efflux capacity in foam cells. These results provide a guide for the optimal size, charge, and lipid composition of liposomes as drug carriers for atherosclerosis treatment.
Collapse
Affiliation(s)
- Jinkai Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Anastasia Darwitan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Aristo Muktabar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Subbu Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, United States of America
| |
Collapse
|
23
|
Goodrich JM, Calkins MM, Caban-Martinez AJ, Stueckle T, Grant C, Calafat AM, Nematollahi A, Jung AM, Graber JM, Jenkins T, Slitt AL, Dewald A, Botelho JC, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Burgess JL. Per- and polyfluoroalkyl substances, epigenetic age and DNA methylation: a cross-sectional study of firefighters. Epigenomics 2021; 13:1619-1636. [PMID: 34670402 PMCID: PMC8549684 DOI: 10.2217/epi-2021-0225] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Per- and polyfluoroalkyl substances (PFASs) are persistent chemicals that firefighters encounter. Epigenetic modifications, including DNA methylation, could serve as PFASs toxicity biomarkers. Methods: With a sample size of 197 firefighters, we quantified the serum concentrations of nine PFASs, blood leukocyte DNA methylation and epigenetic age indicators via the EPIC array. We examined the associations between PFASs with epigenetic age, site- and region-specific DNA methylation, adjusting for confounders. Results: Perfluorohexane sulfonate, perfluorooctanoate (PFOA) and the sum of branched isomers of perfluorooctane sulfonate (Sm-PFOS) were associated with accelerated epigenetic age. Branched PFOA, linear PFOS, perfluorononanoate, perfluorodecanoate and perfluoroundecanoate were associated with differentially methylated loci and regions. Conclusion: PFASs concentrations are associated with accelerated epigenetic age and locus-specific DNA methylation. The implications for PFASs toxicity merit further investigation.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Miriam M Calkins
- National Institute for Occupational Safety & Health, Centers for Disease Control & Prevention, Cincinnati, OH 45226, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Todd Stueckle
- National Institute for Occupational Safety & Health, Centers for Disease Control & Prevention, Morgantown, WV 26505, USA
| | - Casey Grant
- Fire Protection Research Foundation, Quincy, MA 02169, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control & Prevention, Atlanta, GA 30341, USA
| | - Amy Nematollahi
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Alesia M Jung
- Department of Epidemiology & Biostatistics, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Judith M Graber
- Department of Biostatistics & Epidemiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Timothy Jenkins
- Department of Cell Biology & Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Angela L Slitt
- Department of Biomedical Sciences, University of Rhode Island College of Pharmacy, Kingston, RI 02881, USA
| | - Alisa Dewald
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control & Prevention, Atlanta, GA 30341, USA
| | - Shawn Beitel
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Sally Littau
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA 92602, USA
| | | | - Jefferey L Burgess
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| |
Collapse
|
24
|
Kotlyarov S, Kotlyarova A. Bioinformatic Analysis of ABCA1 Gene Expression in Smoking and Chronic Obstructive Pulmonary Disease. MEMBRANES 2021; 11:674. [PMID: 34564491 PMCID: PMC8464760 DOI: 10.3390/membranes11090674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
UNLABELLED Smoking is a key modifiable risk factor for developing the chronic obstructive pulmonary disease (COPD). When smoking, many processes, including the reverse transport of cholesterol mediated by the ATP binding cassette transporter A1 (ABCA1) protein are disrupted in the lungs. Changes in the cholesterol content in the lipid rafts of plasma membranes can modulate the function of transmembrane proteins localized in them. It is believed that this mechanism participates in increasing the inflammation in COPD. METHODS Bioinformatic analysis of datasets from Gene Expression Omnibus (GEO) was carried out. Gene expression data from datasets of alveolar macrophages and the epithelium of the respiratory tract in smokers and COPD patients compared with non-smokers were used for the analysis. To evaluate differentially expressed genes, bioinformatic analysis was performed in comparison groups using the limma package in R (v. 4.0.2), and the GEO2R and Phantasus tools (v. 1.11.0). RESULTS The conducted bioinformatic analysis showed changes in the expression of the ABCA1 gene associated with smoking. In the alveolar macrophages of smokers, the expression levels of ABCA1 were lower than in non-smokers. At the same time, in most of the airway epithelial datasets, gene expression did not show any difference between the groups of smokers and non-smokers. In addition, it was shown that the expression of ABCA1 in the epithelial cells of the trachea and large bronchi is higher than in small bronchi. CONCLUSIONS The conducted bioinformatic analysis showed that smoking can influence the expression of the ABCA1 gene, thereby modulating lipid transport processes in macrophages, which are part of the mechanisms of inflammation development.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
25
|
Abstract
Dyslipidemias are a group of diseases, which are characterized by abnormal blood concentrations of cholesterol, triglycerides and/or low-density lipoprotein-cholesterol (LDL-c). Dyslipidemia is a determinant condition for the progress of an atherosclerotic plaque formation. The resulting atherogenicity is due to at least two mechanisms: first, to the accumulation in the plasma of lipid particles that have the capacity to alter the function of the endothelium and deposit at the atheromatous plaque, and second, at an insufficient concentration of multifactorial type of high density lipoprotein-cholesterol (HDL-c), whose function is to protect against the development of atherosclerosis. Its highest prevalence is encountered among individuals with diabetes, hypertension or overweight. Hyperlipidemia is one of the main predisposing factors for the development of cardiovascular disease. Hyperlipidemia can be the result of a genetic condition, the secondary expression of a primary process or the consequence of exogenous factors (food, cultural, socio-economic, etc.), all of which lead to the elevation of plasma lipid levels. The objective of this study was to carry out an analysis of the genes involved in the development of dyslipidemias that lead to cardiovascular disease with special emphasis on the proprotein convertase subtilin/kexin type 9 (PCSK9) gene. The PCSK9 gene participates in the development of primary dyslipidemias, mainly familial hypercholesterolemia, currently the pharmacological treatment of choice to reduce LDL-c are statins, however, it has been observed that these have been insufficient to eliminate cardiovascular risk, especially in subjects with primary forms of hypercholesterolemia related to genetic mutations, or statin intolerance.
Collapse
|
26
|
Im Y, Gwon M, Yun J. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr 2021; 9:3269-3279. [PMID: 34136191 PMCID: PMC8194743 DOI: 10.1002/fsn3.2293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulation of cholesterol-laden macrophage foam cells characteristic of early stage atherosclerotic lesions. Phenethyl isothiocyanate (PEITC) is a naturally occurring isothiocyanate found in cruciferous vegetables that has reported a variety of activities including antioxidant and anti-inflammatory properties. However, the protective effect of PEITC on foam cell formation and its precise mechanism is not yet clear. Therefore, we investigated whether PEITC suppresses foam cell formation and regulates the expression of genes related to lipid accumulation, cholesterol efflux, and inflammation in THP-1 derived-macrophages. We exposed THP-1 derived-macrophages to oxidized low-density lipoprotein (ox-LDL) (20 μg/mL) and lipopolysaccharide (LPS) (500 ng/ml) to mimic foam cell formation. Here, PEITC downregulated the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), cluster of differentiation 36 (CD36), scavenger receptor A1 (SR-A1), and nuclear factor-κB (NF-κB), while upregulated ATP binding cassette subfamily A member 1 (ABCA1)/liver-X-receptor α (LXR-α)/peroxisome proliferator-activated receptor gamma (PPARγ) and sirtuin 1 (SIRT1) expression compared to co-treated with ox-LDL and LPS. Taken together, PEITC, at least in part, inhibits foam cell formation and reduces lipid accumulation in foam cells. Therefore, we suggest that PEITC may be a potential candidate for the treatment and prevention of vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Young‐Sun Im
- Department of Food and NutritionChonnam National UniversityGwangjuKorea
| | - Min‐Hee Gwon
- Nutrition Education MajorGraduate School of EducationChonnam National UniversityGwangjuKorea
| | - Jung‐Mi Yun
- Department of Food and NutritionChonnam National UniversityGwangjuKorea
| |
Collapse
|
27
|
Tsui PF, Chern CY, Lien CF, Lin FY, Tsai CS, Tsai MC, Lin CS. An octimibate derivative, Oxa17, enhances cholesterol efflux and exerts anti-inflammatory and atheroprotective effects in experimental atherosclerosis. Biochem Pharmacol 2021; 188:114581. [PMID: 33895158 DOI: 10.1016/j.bcp.2021.114581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs), associated with vascular inflammation and lipid dysregulation, are responsible for high morbidity and mortality rates globally. For ASCVD treatment, cholesterol efflux plays an atheroprotective role in ameliorating inflammation and lipid dysregulation. To develop a multidisciplinary agent for promoting cholesterol efflux, octimibate derivatives were screened and investigated for the expression of ATP-binding cassette transporter A1 (ABCA1). Western blotting and qPCR analysis were conducted to determine the molecular mechanism associated with ABCA1 expression in THP-1 macrophages; results revealed that Oxa17, an octimibate derivative, enhanced ABCA1 expression through liver X receptors alpha (LXRα) activation but not through the microRNA pathway. We also investigated the role of Oxa17 in high-fat diet (HFD)-fed mice used as an in vivo atherosclerosis-prone model. In ldlr-/- mice, Oxa17 increased plasma high-density lipoprotein (HDL) and reduced plaque formation in the aorta. Plaque stability improved via reduction of macrophage accumulation and via narrowing of the necrotic core size under Oxa17 treatment. Our study demonstrates that Oxa17 is a novel and potential agent for ASCVD treatment with atheroprotective and anti-inflammatory properties.
Collapse
Affiliation(s)
- Pi-Fen Tsui
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chiayi University, Chiayi City 60004, Taiwan
| | - Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Research Institute and Departments of Internal Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan; Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chin-Sheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
28
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
29
|
Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls. Neural Regen Res 2021; 16:223-233. [PMID: 32859768 PMCID: PMC7896239 DOI: 10.4103/1673-5374.290878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Various inflammatory stimuli are able to modify or even "re-program" the mitochondrial metabolism that results in generation of reactive oxygen species. In noncommunicable chronic diseases such as atherosclerosis and other cardiovascular pathologies, type 2 diabetes and metabolic syndrome, these modifications become systemic and are characterized by chronic inflammation and, in particular, "neuroinflammation" in the central nervous system. The processes associated with chronic inflammation are frequently grouped into "vicious circles" which are able to stimulate each other constantly amplifying the pathological events. These circles are evidently observed in Alzheimer's disease, atherosclerosis, type 2 diabetes, metabolic syndrome and, possibly, other associated pathologies. Furthermore, chronic inflammation in peripheral tissues is frequently concomitant to Alzheimer's disease. This is supposedly associated with some common genetic polymorphisms, for example, Apolipoprotein-E ε4 allele carriers with Alzheimer's disease can also develop atherosclerosis. Notably, in the transgenic mice expressing the recombinant mitochondria targeted catalase, that removes hydrogen peroxide from mitochondria, demonstrates the significant pathology amelioration and health improvements. In addition, the beneficial effects of some natural products from the xanthophyll family, astaxanthin and fucoxanthin, which are able to target the reactive oxygen species at cellular or mitochondrial membranes, have been demonstrated in both animal and human studies. We propose that the normalization of mitochondrial functions could play a key role in the treatment of neurodegenerative disorders and other noncommunicable diseases associated with chronic inflammation in ageing. Furthermore, some prospective drugs based on mitochondria targeted catalase or xanthophylls could be used as an effective treatment of these pathologies, especially at early stages of their development.
Collapse
Affiliation(s)
| | | | | | - Vasily V. Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
30
|
Xu (许艳妮) Y, Liu (刘畅) C, Han (韩小婉) X, Jia (贾晓健) X, Li (李永臻) Y, Liu (刘超) C, Li (李霓) N, Liu (刘伦铭) L, Liu (刘鹏) P, Jiang (姜新海) X, Wang (王伟志) W, Wang (王潇) X, Li (李依宁) Y, Chen (陈明珠) M, Luo (罗金雀) J, Zuo (左璇) X, Han (韩江雪) J, Wang (王丽) L, Du (杜郁) Y, Xu (徐扬) Y, Jiang (蒋建东) JD, Hong (洪斌) B, Si (司书毅) S. E17241 as a Novel ABCA1 (ATP-Binding Cassette Transporter A1) Upregulator Ameliorates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2021; 41:e284-e298. [PMID: 33441025 DOI: 10.1161/atvbaha.120.314156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yanni Xu (许艳妮)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Chang Liu (刘畅)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Xiaowan Han (韩小婉)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.).,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS&PUMC, Beijing, China (X.H., N.L., J.-D.J.)
| | - Xiaojian Jia (贾晓健)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Yongzhen Li (李永臻)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Chao Liu (刘超)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Ni Li (李霓)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.).,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS&PUMC, Beijing, China (X.H., N.L., J.-D.J.)
| | - Lunming Liu (刘伦铭)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Peng Liu (刘鹏)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Xinhai Jiang (姜新海)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Weizhi Wang (王伟志)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Xiao Wang (王潇)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Yining Li (李依宁)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Mingzhu Chen (陈明珠)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Jinque Luo (罗金雀)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Xuan Zuo (左璇)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Jiangxue Han (韩江雪)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Li Wang (王丽)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Yu Du (杜郁)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Yang Xu (徐扬)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Jian-Dong Jiang (蒋建东)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.).,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS&PUMC, Beijing, China (X.H., N.L., J.-D.J.)
| | - Bin Hong (洪斌)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| | - Shuyi Si (司书毅)
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China (Y.X., C.L., X.H., X. Jia, Y.L., C.L., N.L., L.L., P.L., X. Jiang, W.W., X.W., Y.L., M.C., J.L., X.Z., J.H., L.W., Y.D., Y.X., J.-D.J., B.H., S.S.)
| |
Collapse
|
31
|
Gwon MH, Im YS, Seo AR, Kim KY, Moon HR, Yun JM. Phenethyl Isothiocyanate Protects against High Fat/Cholesterol Diet-Induced Obesity and Atherosclerosis in C57BL/6 Mice. Nutrients 2020; 12:nu12123657. [PMID: 33261070 PMCID: PMC7761196 DOI: 10.3390/nu12123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
This study concerns obesity-related atherosclerosis, hyperlipidemia, and chronic inflammation. We studied the anti-obesity and anti-atherosclerosis effects of phenethyl isothiocyanate (PEITC) and explored their underlying mechanisms. We established an animal model of high fat/cholesterol-induced obesity in C57BL/6 mice fed for 13 weeks. We divided the mice into five groups: control (CON), high fat/cholesterol (HFCD), HFCD with 3 mg/kg/day gallic acid (HFCD + G), and HFCD with PEITC (30 and 75 mg/kg/day; HFCD + P30 and P75). The body weight, total cholesterol, and triglyceride were significantly lower in the HFCD + P75 group than in the HFCD group. Hepatic lipid accumulation and atherosclerotic plaque formation in the aorta were significantly lower in both HFCD + PEITC groups than in the HFCD group, as revealed by hematoxylin and eosin (H&E) staining. To elucidate the mechanism, we identified the expression of genes related to inflammation, reverse cholesterol transport, and lipid accumulation pathway in the liver. The expression levels of peroxisome proliferator activated receptor gamma (PPARγ), liver-X-receptor α (LXR-α), and ATP binding cassette subfamily A member 1 (ABCA1) were increased, while those of scavenger receptor A (SR-A1), cluster of differentiation 36 (CD36), and nuclear factor-kappa B (NF-κB) were decreased in the HFCD + P75 group compared with those in the HFCD group. Moreover, PEITC modulated H3K9 and H3K27 acetylation, H3K4 dimethylation, and H3K27 di-/trimethylation in the HFCD + P75 group. We, therefore, suggest that supplementation with PEITC may be a potential candidate for the treatment and prevention of atherosclerosis and obesity.
Collapse
Affiliation(s)
- Min-Hee Gwon
- Nutrition Education Major, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Sun Im
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - A-Reum Seo
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Kyoung Yun Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
- Correspondence: ; Tel.: +82-62-530-1332
| |
Collapse
|
32
|
He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and - independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21:250. [PMID: 32977800 PMCID: PMC7519545 DOI: 10.1186/s12931-020-01515-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the ATP binding cassette transporter A1 (ABCA1) in maintaining cellular lipid homeostasis in cardiovascular disease is well established. More recently, the important beneficial role played by ABCA1 in modulating pathogenic disease mechanisms, such as inflammation, in a broad range of chronic conditions has been realised. These studies position ABCA1 as a potential therapeutic target in a diverse range of diseases where inflammation is an underlying cause. Chronic respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) are driven by inflammation, and as such, there is now a growing recognition that we need a greater understanding of the signaling pathways responsible for regulation of ABCA1 expression in this clinical context. While the signaling pathways responsible for cholesterol-mediated ABCA1 expression have been clearly delineated through decades of studies in the atherosclerosis field, and thus far appear to be translatable to the respiratory field, less is known about the cholesterol-independent signaling pathways that can modulate ABCA1 expression in inflammatory lung disease. This review will identify the various signaling pathways and ligands that are associated with the regulation of ABCA1 expression and may be exploited in future as therapeutic targets in the setting of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
33
|
Kiaie N, Gorabi AM, Penson PE, Watts G, Johnston TP, Banach M, Sahebkar A. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today 2020; 25:58-72. [PMID: 31525463 DOI: 10.1016/j.drudis.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
The consequences of atherosclerotic cardiovascular disease (ASCVD) include myocardial infarction, ischemic stroke, and angina pectoris, which are major causes of mortality and morbidity worldwide. Despite current therapeutic strategies to reduce risk, patients still experience the consequences of ASCVD. Consequently, a current goal is to enhance visualization of early atherosclerotic lesions to improve residual ASCVD risk. The uses of liposomes, in the context of ASCVD, can include as contrast agents for imaging techniques, as well as for the delivery of antiatherosclerotic drugs, genes, and cells to established sites of plaque. Additionally, liposomes have a role as vaccine adjuvants against mediators of atherosclerosis. Here. we review the scientific and clinical evidence relating to the use of liposomes in the diagnosis and management of ASCVD.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gerald Watts
- Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MI, USA
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
35
|
Zhao TY, Lei S, Huang L, Wang YN, Wang XN, Zhou PP, Xu XJ, Zhang L, Xu LW, Yang L. Associations of Genetic Variations in ABCA1 and Lifestyle Factors with Coronary Artery Disease in a Southern Chinese Population with Dyslipidemia: A Nested Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050786. [PMID: 30836684 PMCID: PMC6427557 DOI: 10.3390/ijerph16050786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/06/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023]
Abstract
Coronary artery disease has become a major health concern over the past several decades. We aimed to explore the association of single nucleotide polymorphisms (SNPs) in the ATP-binding cassette subfamily A member 1 (ABCA1) and lifestyle factors with coronary artery disease (CAD) in dyslipidemia. This nested case-control study included 173 patients with CAD and 500 matched control individuals (1:3, case: control) from a district in southern China. We collected medical reports, lifestyle details, and blood samples of individuals with dyslipidemia and used the polymerase chain reaction-ligase detection reaction method to genotype the SNPs. The CC genotype of the additive and recessive models of rs4149339, together with regular intake of fried foods or dessert, increased the risk of CAD (adjusted odd ratio (OR) = 1.91, p = 0.030; adjusted OR = 1.97, p = 0.017; adjusted OR = 1.80, p = 0.002; adjusted OR = 1.98, p = 0.001). The AT + AA genotype of the dominant model of rs4743763 and moderate/heavy physical activity reduced the risk of CAD (adjusted OR = 0.66, p = 0.030; adjusted OR = 0.44, p = 0.001). The CT + CC genotype of the dominant model of rs2472386 reduced the risk of CAD only in males (adjusted OR = 0.36, p = 0.001). The interaction between rs4149339 and rs4743763 of ABCA1 and haplotype CTT (comprising rs4149339, rs4743763, and rs2472386) appeared to increase the risk of CAD (relative excess risk due to interaction (RERI) = 3.19, p = 0.045; OR = 1.49, p = 0.019). Polymorphisms of rs4149339, rs4743763 and rs2472386 in ABCA1 and three lifestyle factors (physical activity, fried food intake, and dessert intake) were associated with CAD in people with dyslipidemia in southern China. These results provide the theoretical basis for gene screening and the prevention of chronic cardiovascular diseases.
Collapse
Affiliation(s)
- Tian-Yu Zhao
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
- Medical School, Shihezi University, Shihezi 832000, China.
| | - Song Lei
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
- Medical School, Shihezi University, Shihezi 832000, China.
| | - Liu Huang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| | - Yi-Nan Wang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| | - Xiao-Ni Wang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| | - Ping-Pu Zhou
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| | - Xiao-Jun Xu
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| | - Long Zhang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| | - Liang-Wen Xu
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| | - Lei Yang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| |
Collapse
|
36
|
Yeh YT, Chiang AN, Hsieh SC. Chinese Olive (Canarium album L.) Fruit Extract Attenuates Metabolic Dysfunction in Diabetic Rats. Nutrients 2017; 9:nu9101123. [PMID: 29036927 PMCID: PMC5691739 DOI: 10.3390/nu9101123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia and dysregulation of lipid metabolism play a crucial role in metabolic dysfunction. The aims of present study were to evaluate the ameliorative effect of the ethyl acetate fraction of Chinese olive fruit extract (CO-EtOAc) on high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic rats. CO-EtOAc, rich in gallic acid and ellagic acid, could markedly decreased the body weight and epididymal adipose mass. In addition, CO-EtOAc increased serum HDL-C levels, hepatic GSH levels, and antioxidant enzyme activities; lowered blood glucose, serum levels of total cholesterol (TC), triglycerides (TG), bile acid, and tumor necrosis factor alpha (TNFα); and reduced TC and TG in liver. We further demonstrated that CO-EtOAc mildly suppressed hepatic levels of phosphorylated IRS-1, TNF-α, and IL-6, but enhanced Akt phosphorylation. The possible mechanisms of cholesterol metabolism were assessed by determining the expression of genes involved in cholesterol transportation, biosynthesis, and degradation. It was found that CO-EtOAc not only inhibited mRNA levels of SREBP-2, HMG-CoAR, SR-B1, and CYP7A1 but also increased the expression of genes, such as ABCA1 and LDLR that governed cholesterol efflux and cholesterol uptake. Moreover, the protein expressions of ABCA1 and LDLR were also significantly increased in the liver of rats supplemented with CO-EtOAc. We suggest that Chinese olive fruit may ameliorate metabolic dysfunction in diabetic rats under HFD challenge.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
37
|
Farnaghi S, Crawford R, Xiao Y, Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int J Rheum Dis 2017; 20:131-140. [DOI: 10.1111/1756-185x.13061] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saba Farnaghi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
38
|
Lv O, Wang L, Li J, Ma Q, Zhao W. Effects of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in L-02 human hepatic cells via the PPARγ-ABCA1/CYP7A1 pathway. Food Funct 2016; 7:4976-4983. [DOI: 10.1039/c6fo01261b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PPPs, PC and PEA in different concentrations were found to decrease the total cholesterol (TC) content and increase the total bile acid (TBA) content of a human hepatic cell model, and so possess a lipid-lowering effect.
Collapse
Affiliation(s)
- Ou Lv
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Lifang Wang
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Jianke Li
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization
| | - Qianqian Ma
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Wei Zhao
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
| |
Collapse
|
39
|
The Rexinoids LG100268 and LG101506 Inhibit Inflammation and Suppress Lung Carcinogenesis in A/J Mice. Cancer Prev Res (Phila) 2015; 9:105-14. [DOI: 10.1158/1940-6207.capr-15-0325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022]
|
40
|
Propofol up-regulates expression of ABCA1, ABCG1, and SR-B1 through the PPARγ/LXRα signaling pathway in THP-1 macrophage-derived foam cells. Cardiovasc Pathol 2015; 24:230-5. [DOI: 10.1016/j.carpath.2014.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
|
41
|
Corticotropin-Releasing Hormone (CRH) Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1). PLoS One 2015; 10:e0130587. [PMID: 26110874 PMCID: PMC4481410 DOI: 10.1371/journal.pone.0130587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/22/2015] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis, the major pathology of cardiovascular disease, is caused by multiple factors involving psychological stress. Corticotropin-releasing hormone (CRH), which is released by neurosecretory cells in the hypothalamus, peripheral nerve terminals and epithelial cells, regulates various stress-related responses. Our current study aimed to verify the role of CRH in macrophage foam cell formation, the initial critical stage of atherosclerosis. Our quantitative real-time reverse transcriptase PCR (qRT-PCR), semi-quantitative reverse transcriptase PCR, and Western blot results indicate that CRH down-regulates ATP-binding cassette transporter-1 (ABCA1) and liver X receptor (LXR)-α, a transcription factor for ABCA1, in murine peritoneal macrophages and human monocyte-derived macrophages. Oil-red O (ORO) staining and intracellular cholesterol measurement of macrophages treated with or without oxidized LDL (oxLDL) and with or without CRH (10 nM) in the presence of apolipoprotein A1 (apoA1) revealed that CRH treatment promotes macrophage foam cell formation. The boron-dipyrromethene (BODIPY)-conjugated cholesterol efflux assay showed that CRH treatment reduces macrophage cholesterol efflux. Western blot analysis showed that CRH-induced down-regulation of ABCA1 is dependent on phosphorylation of Akt (Ser473) induced by interaction between CRH and CRH receptor 1(CRHR1). We conclude that activation of this pathway by CRH accelerates macrophage foam cell formation and may promote stress-related atherosclerosis.
Collapse
|
42
|
Li Y, Feng T, Liu P, Liu C, Wang X, Li D, Li N, Chen M, Xu Y, Si S. Optimization of Rutaecarpine as ABCA1 Up-Regulator for Treating Atherosclerosis. ACS Med Chem Lett 2014; 5:884-8. [PMID: 25147608 DOI: 10.1021/ml500131a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a key transporter and receptor in promoting cholesterol efflux, and increasing the expression level of ABCA1 is antiatherogenic. In our previous study, rutaecarpine (RUT) was found to protect ApoE(-/-) mice from developing atherosclerosis through preferentially up-regulating ABCA1 expression. In the present work, a series of RUT derivatives were synthesized and examined as ABCA1 expression up-regulators. Compounds CD1, CD6, and BCD1-2 were found to possess the most potential activity as antiatherosclerotic agents among all compounds tested.
Collapse
Affiliation(s)
- Yongzhen Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Tingting Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Peng Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Chang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Xiao Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Dongsheng Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Ni Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| |
Collapse
|
43
|
Mao M, Lei H, Liu Q, He R, Zuo Z, Zhang N, Zhou C. Lycopene inhibits neointimal hyperplasia through regulating lipid metabolism and suppressing oxidative stress. Mol Med Rep 2014; 10:262-8. [PMID: 24788729 DOI: 10.3892/mmr.2014.2186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/11/2014] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the possible mechanism(s) through which lycopene inhibits neointimal hyperplasia in restenosis models. A total of 32 white rabbits were randomly divided into the following four groups: A sham group, a model group, a model group treated with apocynin and a model group treated with lycopene. Immunohistochemistry and transmission electron microscopy (TEM) were used to detect the carotid structures in these groups. Quantitative polymerase chain reaction (qPCR) and western blot analysis were performed to detect the mRNA and protein expression levels of the proteins involved in cell proliferation and oxidative stress, including anti‑proliferating cell nuclear antigen, extracellular signal-regulated kinase, nicotinamide adenine dinucleotide phosphate oxidase 1, hydroxymethyl glutaric acyl coenzyme A reductase, adenosine triphosphate‑binding cassette transporter A1 and human neutrophil cytochrome b light chain. Immunohistochemistry and TEM indicated that lycopene treatment significantly reduced the intima/media ratios, the accumulation of lipids and the formation of foam cells in carotid plaques in rabbit restenosis models. Furthermore, lycopene regulated the blood lipid levels and suppressed the oxidative stress in these models. In addition, qPCR and western blot analyses revealed that lycopene significantly decreased the expression levels of cell proliferation‑associated proteins, as well as proteins involved in lipid synthesis and transportation. The results suggest that lycopene may regulate lipid metabolism and suppress oxidative stress, and thus, represents a promising therapeutic against neointimal hyperplasia.
Collapse
Affiliation(s)
- Min Mao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Han Lei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Liu
- Centre for Clinical Research, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rui He
- Department of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, P.R. China
| | - Zhong Zuo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nan Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chao Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
44
|
Vinayagamoorthy N, Hu HJ, Yim SH, Jung SH, Jo J, Jee SH, Chung YJ. New variants including ARG1 polymorphisms associated with C-reactive protein levels identified by genome-wide association and pathway analysis. PLoS One 2014; 9:e95866. [PMID: 24763700 PMCID: PMC3999194 DOI: 10.1371/journal.pone.0095866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/31/2014] [Indexed: 01/04/2023] Open
Abstract
C-reactive protein (CRP) is a general marker of systemic inflammation and cardiovascular disease (CVD). The genetic contribution to differences in CRP levels remains to be explained, especially in non-European populations. Thus, the aim of this study was to identify genetic loci associated with CRP levels in Korean population. We performed genome-wide association studies (GWAS) using SNPs from 8,529 Korean individuals (7,626 for stage 1 and 903 for stage 2). We also performed pathway analysis. We identified a new genetic locus associated with CRP levels upstream of ARG1 gene (top significant SNP: rs9375813, Pmeta = 2.85×10(-8)), which encodes a key enzyme of the urea cycle counteract the effects of nitric oxide, in addition to known CRP (rs7553007, Pmeta = 1.72×10(-16)) and HNF1A loci (rs2259816, Pmeta = 2.90×10(-10)). When we evaluated the associations between the CRP-related SNPs with cardiovascular disease phenotypes, rs9375813 (ARG1) showed a marginal association with hypertension (P = 0.0440). To identify more variants and pathways, we performed pathway analysis and identified six candidate pathways comprised of genes related to inflammatory processes and CVDs (CRP, HNF1A, PCSK6, CD36, and ABCA1). In addition to the previously reported loci (CRP, HNF1A, and IL6) in diverse ethnic groups, we identified novel variants in the ARG1 locus associated with CRP levels in Korean population and a number of interesting genes related to inflammatory processes and CVD through pathway analysis.
Collapse
Affiliation(s)
- Nadimuthu Vinayagamoorthy
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul, Korea
- Department of Microbiology, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Hae-Jin Hu
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul, Korea
- Department of Microbiology, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Seon-Hee Yim
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul, Korea
- Department of Medical Education, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Seung-Hyun Jung
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul, Korea
- Department of Microbiology, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Jaeseong Jo
- Institute of Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Sun Ha Jee
- Institute of Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Yeun-Jun Chung
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul, Korea
- Department of Microbiology, The Catholic University of Korea, College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Liu H, Lin J, Zhu X, Li Y, Fan M, Zhang R, Fang D. Effects of R219K polymorphism of ATP-binding cassette transporter 1 gene on serum lipids ratios induced by a high-carbohydrate and low-fat diet in healthy youth. Biol Res 2014; 47:4. [PMID: 25027185 PMCID: PMC4060374 DOI: 10.1186/0717-6287-47-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022] Open
Abstract
Background Diets are the important players in regulating plasma lipid profiles. And the R219K polymorphism at the gene of ATP-binding cassette transporter 1(ABCA1) was reported to be associated with the profiles. However, no efforts have been made to investigate the changes of lipid profiles after a high-carbohydrate and low-fat diet in different subjects with different genotypes of this polymorphism. This study was to evaluate the effects of ABCA1 R219K polymorphism on serum lipid and apolipoprotein (apo) ratios induced by a high-carbohydrate/low-fat (high-CHO) diet. After a washout diet of 54.1% carbohydrate for 7 days, 56 healthy young subjects (22.89 ± 1.80 years old) were given a high-CHO diet of 70.1% carbohydrate for 6 days. Height, weight, waist circumference, hip circumference, glucose (Glu), triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apoA-1 and apoB-100 were measured on the 1st, 8th and 14th days of this study. Body mass index (BMI), waist-to-hip ratios (WHR), log(TG/HDL-C), TC/HDL-C, LDL-C/HDL-C and apoA-1/apoB-100 were calculated. ABCA1 R219K was analyzed by a PCR-RFLP method. Results The results indicate that the male subjects of all the genotypes had higher WHR than their female counterparts on the 1st, 8th and 14th days of this study. The male K carriers had higher log(TG/HDL-C) and TC/HDL-C than the female carriers on the 1st and 14th days, and higher LDL-C/HDL-C on the 14th day. When compared with that on the 8th day, TC/HDL-C was decreased regardless of the genotypes and genders on the 14th day. Log(TG/HDL-C) was increased in the males with the RR genotype and the female K carriers. Lowered BMI, Glu and LDL-C/HDL-C were found in the male K carriers, but only lowered BMI in the female K carriers and only lowered LDL-C/HDL-C in the females with the RR genotype. Conclusions These results suggest that ABCA1 R219K polymorphism is associated differently in males and females with elevated log(TG/HDL-C) and decreased LDL-C/HDL-C induced by the high-CHO diet.
Collapse
|
46
|
Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats. Br J Nutr 2013; 111:194-200. [DOI: 10.1017/s0007114513002390] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study investigated the potential of a wild blueberry (WB)-enriched diet to improve blood lipid profile and modulate the expression of genes related to lipid homeostasis in obese Zucker rats (OZR), a model of the metabolic syndrome with severe dyslipidaemia. For this purpose, twenty OZR and twenty lean Zucker rats (LZR; controls) were placed either on a control (C) or an 8 % WB diet for 8 weeks. Plasma total cholesterol (TC), HDL-cholesterol and TAG concentrations were determined. The relative expression of six genes involved in lipid metabolism was also determined in both the liver and the abdominal adipose tissue (AAT). Plasma TAG and TC concentrations were significantly lower in the OZR following WB consumption (4228 (sem 471) and 2287 (sem 125) mg/l, respectively) than in those on the C diet (5475 (sem 315) and 2631 (sem 129) mg/l, P< 0·05), while there was no change in HDL-cholesterol concentration. No significant effects were observed for plasma lipids in the LZR. Following WB consumption, the expression of the transcription factors PPARα and PPARγ in the OZR was increased in the AAT, while that of sterol regulatory element-binding protein 1 (SREBP-1) was decreased in the liver and AAT. The expression of fatty acid synthase was significantly decreased in both the liver and AAT and that of ATP-binding cassette transporter 1 was increased in the AAT following WB consumption. In conclusion, WB consumption appears to improve lipid profiles and modulate the expression of key enzymes and transcription factors of lipid metabolism in severely dyslipidaemic rats.
Collapse
|
47
|
Activation of TRPV1 prevents OxLDL-induced lipid accumulation and TNF-α-induced inflammation in macrophages: role of liver X receptor α. Mediators Inflamm 2013; 2013:925171. [PMID: 23878415 PMCID: PMC3710635 DOI: 10.1155/2013/925171] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/26/2013] [Indexed: 11/18/2022] Open
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) is crucial in the pathogenesis of atherosclerosis; yet its role and underlying mechanism in the formation of macrophage foam cells remain unclear. Here, we show increased TRPV1 expression in the area of foamy macrophages in atherosclerotic aortas of apolipoprotein E-deficient mice. Exposure of mouse bone-marrow-derived macrophages to oxidized low-density lipoprotein (oxLDL) upregulated the expression of TRPV1. In addition, oxLDL activated TRPV1 and elicited calcium (Ca2+) influx, which were abrogated by the pharmacological TRPV1 antagonist capsazepine. Furthermore, oxLDL-induced lipid accumulation in macrophages was ameliorated by TRPV1 agonists but exacerbated by TRPV1 antagonist. Treatment with TRPV1 agonists did not affect the internalization of oxLDL but promoted cholesterol efflux by upregulating the efflux ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Moreover, the upregulation of ABC transporters was mainly through liver X receptor α- (LXRα-) dependent regulation of transcription. Moreover, the TNF-α-induced inflammatory response was alleviated by TRPV1 agonists but aggravated by the TRPV1 antagonist and LXRα siRNA in macrophages. Our data suggest that LXRα plays a pivotal role in TRPV1-activation-conferred protection against oxLDL-induced lipid accumulation and TNF-α-induced inflammation in macrophages.
Collapse
|
48
|
Zhang L, Jiang M, Shui Y, Chen Y, Wang Q, Hu W, Ma X, Li X, Liu X, Cao X, Liu M, Duan Y, Han J. DNA topoisomerase II inhibitors induce macrophage ABCA1 expression and cholesterol efflux—An LXR-dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1134-45. [DOI: 10.1016/j.bbalip.2013.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/27/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
49
|
Chang YC, Sheu WHH, Chien YS, Tseng PC, Lee WJ, Chiang AN. Hyperglycemia accelerates ATP-binding cassette transporter A1 degradation via an ERK-dependent pathway in macrophages. J Cell Biochem 2013; 114:1364-73. [DOI: 10.1002/jcb.24478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/05/2012] [Indexed: 11/11/2022]
|
50
|
Li YY, Zhang H, Qin XY, Lu XZ, Yang B, Chen ML. ATP-binding cassette transporter A1 R219K polymorphism and coronary artery disease in Chinese population: a meta-analysis of 5,388 participants. Mol Biol Rep 2012; 39:11031-9. [DOI: 10.1007/s11033-012-2006-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 10/01/2012] [Indexed: 12/21/2022]
|