1
|
Pérez-Medina C, Fisher EA, Fayad ZA, Mulder WJM, Teunissen AJP. Radiolabeling lipoproteins to study and manage disease. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07281-4. [PMID: 40293448 DOI: 10.1007/s00259-025-07281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Lipoproteins are endogenous nanoparticles with essential roles in lipid transport and inflammation. Lipoproteins are also valuable in diagnosing and treating disease. For instance, certain lipoproteins are overexpressed in patients with atherosclerotic cardiovascular disease, and reconstituted lipoproteins have been extensively used for drug delivery. Radiolabeling has proven an especially powerful approach for studying and therapeutically exploiting lipoproteins. This review details how radiochemistry and nuclear imaging can facilitate the study of lipoproteins in health and disease. Among other topics, we discuss approaches for radiolabeling lipoproteins and detail how these have helped advance our understanding of lipoprotein biology and the diagnosis and treatment of diseases, including atherosclerosis, cancer, and hypercholesteremia. METHODS We performed an extensive literature search on all peer-reviewed studies involving radiolabeled lipoproteins and selected representative examples to provide a high-level overview of the most important discoveries and technological advancements. RESULTS More than 200 peer-reviewed papers involved radiolabeled lipoproteins, spanning mechanistic, diagnostic, and therapeutic studies across a wide range of diseases. CONCLUSION Radiolabeling has been critical in advancing our understanding of lipoprotein biology and leveraging these nanomaterials for diagnosing and treating disease.
Collapse
Affiliation(s)
| | - Edward A Fisher
- Department of Medicine (Cardiology), New York University Grossman School of Medicine, New York, NY, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Rodriguez A, Yu M, Phoo MT, Holinstat M, Schwendeman A. Antiplatelet Effects of DMPC-Based Synthetic High-Density Lipoproteins: Exploring Particle Structure and Noncholesterol Efflux Mechanisms. Mol Pharm 2025; 22:1305-1317. [PMID: 39888835 DOI: 10.1021/acs.molpharmaceut.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Platelet activation is a key factor in the development of cardiovascular diseases. High-density lipoprotein (HDL) is known for its cardioprotective activities including antithrombotic actions. While HDL mimetics have been explored for their potential to regulate thrombosis, their influence on platelet activity remains unclear. This study explores the capacity of synthetic HDL (sHDL) to modulate platelet function and investigates the underlying mechanisms. We examined the effects of sHDL, formulated with various ApoA1 mimetic peptides (18A, 5A, and 22A) and full-length ApoA1 protein, all complexed with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), on platelet function. DMPC-based sHDL demonstrated pronounced antiplatelet effects across all formulations. Comparison with DMPC micelles showed that all sHDL molecules were more effective, highlighting the crucial role of the protein-phospholipid complex in reducing platelet reactivity. Further analysis revealed that DMPC sHDL dose-dependently inhibited various platelet functions, including aggregation, integrin activation, α-granule secretion, protein kinase C (PKC) activation, and platelet spreading. Mechanistic studies demonstrated that DMPC sHDL's antiplatelet effects are not entirely dependent on cholesterol efflux, despite effectively reducing total platelet cholesterol. Furthermore, sHDL's activity was found to be independent of scavenger receptor BI (SR-BI). Notably, inhibition of the CD36 receptor markedly attenuated sHDL's antiplatelet activity and uptake, suggesting a novel mechanism distinct from that of native HDL. In summary, DMPC sHDL modulates platelet function through a synergistic action between protein and phospholipid components, primarily via CD36 receptor engagement. These insights pave the way for novel antiplatelet therapies utilizing sHDL's distinct properties.
Collapse
Affiliation(s)
- Antonela Rodriguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, Michigan 48109, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, Michigan 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Luo Z, Lv L. Impacts of CD36 Variants on Plasma Lipid Levels and the Risk of Early-Onset Coronary Artery Disease: A Systematic Review and Meta-Analysis. Cardiovasc Ther 2025; 2025:8098173. [PMID: 40040886 PMCID: PMC11879577 DOI: 10.1155/cdr/8098173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Background: Recent studies have indicated that cluster of differentiation 36 (CD36) is closely linked to dyslipidemia and early-onset coronary artery disease (EOCAD). This study is aimed at investigating the impacts of CD36 gene variants on lipid profiles and EOCAD risk. Methods: PubMed, Cochrane Library, Central, CINAHL, and ClinicalTrials.gov were searched until June 15, 2024. Results: In total, 25 studies (11,494 individuals) were included for the analysis. The A allele carriers of the rs1761667 variant had higher high-density lipoprotein cholesterol (HDL-C) levels and higher EOCAD risk than noncarriers. In contrast, the G allele carriers of the rs1049673 and rs3211956 variants had lower low-density lipoprotein cholesterol (LDL-C) levels and lower EOCAD risk than noncarriers. Subgroup analysis indicated that the antiatherosclerotic impact and reduced EOCAD risk were primarily observed in Chinese with rs1049673 and rs3211956. Conclusions: The rs1761667, rs1049673, and rs3211956 variants of the CD36 gene have significant impacts on lipid levels and may serve as genetic markers for the risk of EOCAD primarily in Chinese. The impacts of CD36 variants on EOCAD risk are mediated, at least partly, by dyslipidemia. Genetic screening of CD36 gene variants may be helpful for early intervention or prevention of EOCAD in individuals with high risk factors.
Collapse
Affiliation(s)
- Zhi Luo
- Department of Cardiology, Suining Central Hospital, Suining, Sichuan, China
| | - Lingwei Lv
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Diaz L, Bielczyk-Maczynska E. High-density lipoprotein cholesterol: how studying the 'good cholesterol' could improve cardiovascular health. Open Biol 2025; 15:240372. [PMID: 39965658 PMCID: PMC11835495 DOI: 10.1098/rsob.240372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
High cholesterol levels are associated with an increased risk of cardiovascular disease, specifically atherosclerosis, a leading cause of death worldwide. Atherosclerosis occurs when cholesterol and fat build up in plaques along blood vessel walls, restricting blood flow and preventing nutrients and oxygen from diffusing in and out of the bloodstream. High-density lipoprotein cholesterol (HDL) particles prevent the build-up of such plaques, removing excess cholesterol from the peripheral tissues and delivering it to the liver, where it can be removed from the body. This pathway is known as reverse cholesterol transport (RCT). Because HDL plays a key role in preventing plaque buildup, understanding how this molecule and RCT function in the body could help us develop much-needed new atherosclerosis therapies and prevention strategies. However, HDL metabolism is complex, and research on HDL has been less favoured than research investigating a much better-understood molecule, low-density lipoprotein cholesterol, as a treatment target. More specifically, the receptors involved in the process of taking up HDL within the liver and their relationships to one another, along with the mechanism of whole, or holoparticle uptake of HDL remain to be clarified. In this review, we discuss several outstanding mysteries in HDL metabolism, consider why previous clinical trials to improve cardiovascular health by modulating HDL levels have been unsuccessful and argue that understanding HDL metabolism is essential for crafting interventions to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Lucy Diaz
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ewa Bielczyk-Maczynska
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- The Institute for Diabetes, Obesity, and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Kim LY, Kim JY, Yoo JJ, Kim SG, Kim YS. Tenofovir Disoproxil Fumarate Versus Entecavir: Effects on Lipid Profiles and Cardiovascular Outcomes in People Living With Chronic Hepatitis B. J Med Virol 2025; 97:e70187. [PMID: 39868849 DOI: 10.1002/jmv.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
While entecavir (ETV) and tenofovir disoproxil fumarate (TDF) effectively manage chronic hepatitis B, their long-term effects on lipid metabolism and cardiovascular outcomes remain unclear. This study compares the impact of ETV, TDF, and treatment-naïve (control group) on hyperlipidemia and major adverse cardiac events (MACE) in people living with chronic hepatitis B (PLWHB). We used claim data from the South Korean National Health Insurance Service. Propensity score matching was used to account for confounding factors. The 5-year cumulative incidence of dyslipidemia was 7.10% for TDF, 12.17% for ETV, and 18.55% for the control group, with incidence rates per 1000 person-years of 14.5, 25.5, and 38.9, respectively. TDF showed a significantly lower risk of dyslipidemia compared to ETV (IRR: 0.56, p < 0.001) and the control group, which was confirmed in Cox regression analysis (HR: 0.392 vs. control, p < 0.001). For MACE, the 5-year cumulative incidence was 9.11% for TDF, 10.98% for ETV, and 12.32% for the control group, with incidence rates per 1000 person-years of 18.4, 22.5, and 24.8, respectively. TDF demonstrated a reduced risk compared to ETV (IRR: 0.817, p < 0.001), which was similarly supported by Cox regression analysis (HR: 0.728 vs. control, p < 0.001). In conclusion, TDF not only reduces the risk of hyperlipidemia but is also associated with a reduced risk of MACE compared to ETV or treatment-naive group in PLWHB.
Collapse
Affiliation(s)
- Log Young Kim
- Department of Big DATA Strategy, National Health Insurance Service, Wonju, Bucheon, South Korea
| | - Jae Young Kim
- Department of Internal Medicine, Soonchunhyang University School of Medicine, Asan, Bucheon, South Korea
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Young-Seok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| |
Collapse
|
6
|
Rodriguez A, Yang C, Gan W, Karlinsey K, Zhou B, Rich SS, Taylor KD, Guo X, Rotter JI, Johnson WC, Cornell E, Tracy RP, Durda JP, Gerszten RE, Clish CB, Blackwell T, Papanicolaou GJ, Lin H, Raffield LM, Vargas JD, Vasan R, Manichaikul A. Soluble Immune Checkpoint Protein and Lipid Network Associations with All-Cause Mortality Risk: Trans-Omics for Precision Medicine (TOPMed) Program. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.08.25320225. [PMID: 39830278 PMCID: PMC11741490 DOI: 10.1101/2025.01.08.25320225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Adverse cardiovascular events are emerging with the use of immune checkpoint therapies in oncology. Using datasets in the Trans-Omics for Precision Medicine program (Multi-Ethnic Study of Atherosclerosis, Jackson Heart Study [JHS], and Framingham Heart Study), we examined the association of immune checkpoint plasma proteins with each other, their associated protein network with high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and the association of HDL-C- and LDL-C-associated protein networks with all-cause mortality risk. Plasma levels of LAG3 and HAVCR2 showed statistically significant associations with mortality risk. Colocalization analysis using genome wide-association studies of HDL-C or LDL-C and protein quantitative trait loci from JHS and the Atherosclerosis Risk in Communities identified TFF3 rs60467699 and CD36 rs3211938 variants as significantly colocalized with HDL-C; in contrast, none colocalized with LDL-C. The measurement of plasma LAG3, HAVCR2, and associated proteins plus targeted genotyping may identify patients at increased mortality risk.
Collapse
|
7
|
Yoo J, Jung EA, Kim SG, Kim YS, Kim MJ. Risk of dyslipidaemia in people living with HIV who are taking tenofovir alafenamide: a systematic review and meta-analysis. J Int AIDS Soc 2024; 27:e26358. [PMID: 39301685 PMCID: PMC11413498 DOI: 10.1002/jia2.26358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Among many antiretroviral drugs, tenofovir alafenamide is used extensively in combination regimens of tenofovir/emtricitabine or tenofovir/emtricitabine/bictegravir. However, concerns have arisen about the potential of tenofovir alafenamide to exacerbate hyperlipidaemia. This meta-analysis evaluates the relationship between tenofovir alafenamide use and lipid-profile alterations in people living with HIV. METHODS We searched PubMed, Ovid MEDLINE, EMBASE and the Cochrane Library to identify studies on changes in cholesterol levels (e.g. total cholesterol, low-density and high-density lipoprotein cholesterol, and triglycerides) in people living with HIV who received treatment with a regimen containing tenofovir alafenamide (data collected 31 March 2023, review completed 30 July 2023). Potential risk factors for worsening lipid profile during treatment with tenofovir alafenamide were also evaluated. RESULTS Sixty-five studies involving 39,713 people living with HIV were selected. Significant increases in total cholesterol, low-density and high-density lipoprotein cholesterol, and triglycerides were observed after treatment with tenofovir alafenamide. Specifically, low-density lipoprotein cholesterol (+12.31 mg/dl) and total cholesterol (+18.86 mg/dl) increased markedly from the third month of tenofovir alafenamide use, with significant elevations observed across all time points up to 36 months. Comparatively, tenofovir alafenamide regimens resulted in higher lipid levels than tenofovir disoproxil fumarate regimens at 12 months of use. Notably, discontinuation of the tenofovir alafenamide regimen led to significant decreases in low-density lipoprotein cholesterol (-9.31 mg/dl) and total cholesterol (-8.91 mg/dl). Additionally, tenofovir alafenamide use was associated with increased bodyweight (+1.38 kg; 95% confidence interval: 0.92-1.84), which became more pronounced over time. Meta-regression analysis identified young age, male sex and low body mass index as risk factors for worsening cholesterol levels in individuals treated with tenofovir alafenamide. CONCLUSIONS Tenofovir alafenamide use in people living with HIV is associated with significant alterations in lipid profile.
Collapse
Affiliation(s)
- Jeong‐Ju Yoo
- Department of Internal MedicineSoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Eun Ae Jung
- Department of Medical LibrarySoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Sang Gyune Kim
- Department of Internal MedicineSoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Young Seok Kim
- Department of Internal MedicineSoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Min Jae Kim
- Department of Infectious DiseasesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| |
Collapse
|
8
|
Harrison SP, Baumgarten SF, Chollet ME, Stavik B, Bhattacharya A, Almaas R, Sullivan GJ. Parenteral nutrition emulsion inhibits CYP3A4 in an iPSC derived liver organoids testing platform. J Pediatr Gastroenterol Nutr 2024; 78:1047-1058. [PMID: 38529852 DOI: 10.1002/jpn3.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.
Collapse
Affiliation(s)
- Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira F Baumgarten
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria E Chollet
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Benedicte Stavik
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Anindita Bhattacharya
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Franzago M, Borrelli P, Di Nicola M, Stuppia L, Vitacolonna E. Genetic Variants in CD36 Involved in Fat Taste Perception: Association with Anthropometric and Clinical Parameters in Overweight and Obese Subjects Affected by Type 2 Diabetes or Dysglycemia-A Pilot Study. Nutrients 2023; 15:4656. [PMID: 37960309 PMCID: PMC10647499 DOI: 10.3390/nu15214656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity and overweight represent a growing health problem worldwide. Genes regulating the intake and metabolism of different nutrients can positively or negatively influence the efficacy of nutritional interventions against obesity and its complications. The aim of this study was to assess changes in anthropometric and clinical parameters and the adherence to a Mediterranean diet (MedDiet) over time in relation to nutrigenetic variants in overweight or obese subjects affected by Type 2 Diabetes (T2D) or dysglycemia, who were included in a nutritional program. A total of 23 subjects were included in this study. Clinical parameters, physical activity levels, and the adherence to a MedDiet were evaluated at baseline, at 6 (T6), and at 12 months (T12) during and after a diet/lifestyle intervention. In a single blood sample from each subject, rs1984112 (A>G) and rs1761667 (G>A) in CD36; rs7950226 (G>A) in BMAL1; and rs1801260 (A>G), rs4864548 (A>G), and rs3736544 (G>A) in CLOCK were genotyped with Real-Time PCR. Significant associations were observed between CD36 rs1761667 and weight (p = 0.025), hip circumference (p = 0.042), triglycerides (p = 0.047), and HbA1c (p = 0.012) at baseline. Moreover, the genotype AA in CD36 rs1761667 was significantly associated with a lower BMI when compared to G carriers at baseline, at T6, and also at T12. In addition, subjects with the AA genotype at CD36 rs1984112 had significantly lower levels of HbA1c (p = 0.027) than the GG and AG genotypes at baseline. These results show that variants in CD36 can have an impact on anthropometric and clinical parameters in overweight or obese subjects affected by T2D or dysglycemia, and that it might influence the success of the diet/lifestyle intervention.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| | - Paola Borrelli
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
10
|
Hwang EG, Jung EA, Yoo JJ, Kim SG, Kim YS. Risk of dyslipidemia in chronic hepatitis B patients taking tenofovir alafenamide: a systematic review and meta-analysis. Hepatol Int 2023; 17:860-869. [PMID: 37099248 DOI: 10.1007/s12072-023-10528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/18/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND The aim of this study was to demonstrate how tenofovir alafenamide (TAF) and other hepatitis B treatment drugs differentially impact lipid profiles in chronic hepatitis B patients. METHODS We searched PubMed, Ovid MEDLINE, EMBASE, and the Cochrane Library to identify studies on the changes in cholesterol level in hepatitis B patients who underwent TAF therapy. The changes in lipid profiles (e.g., HDL-c, LDL-c, total cholesterol [TC], and triglyceride [TG]) were compared between the TAF treatment group and the baseline, other nucleoside analogs (NAs), and tenofovir disoproxil fumarate (TDF)-only treatment groups. In addition, risk factors for worsening cholesterol level when treated with TAF were examined. RESULTS Twelve studies involving 6,127 patients were selected. After 6 months of TAF treatment, LDL-c, TC, and TG were increased by 5.69 mg/dL, 7.89 mg/dL, and 9.25 mg/dL, respectively, from the baseline level. In particular, with the treatment of TAF, levels of LDL, TC, and TG rose by 8.71 mg/dL, 18.34 mg/dL, and 13.68 mg/dL, respectively, showing a greater deterioration of cholesterol when the TAF treatment was implemented compared to other NAs (e.g., TDF or entecavir). When TAF was compared to TDF, LDL-c, TC, and TG worsened with a mean difference of 14.52 mg/dL, 23.72 mg/dL, and 14.25 mg/dL, respectively. As a result of a meta-regression analysis, risk factors for worsening lipid profiles were found to be treatment-experienced, previous diabetes, and hypertension. CONCLUSIONS TAF continues to worsen lipid profiles including LDL-c, TC, and TG after 6 months of use compared to the other NAs.
Collapse
Affiliation(s)
- Eui Gwon Hwang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyaung University College of Medicine, Bucheon, Republic of Korea
| | - Eun-Ae Jung
- Department of Medical Library, Soonchunhyang University Bucheon Hospital, Soonchunhyaung University College of Medicine, Bucheon, Republic of Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyaung University College of Medicine, Bucheon, Republic of Korea.
- Department of Gastroenterology and Hepatology, Digestive Research Center and Liver Clinic, Soonchunhyang Bucheon Hospital, 170 Jomaruro Wonmigu, Bucheonsi Gyeonggido, 14584, Republic of Korea.
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyaung University College of Medicine, Bucheon, Republic of Korea
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyaung University College of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
11
|
Li Y, Huang X, Yang G, Xu K, Yin Y, Brecchia G, Yin J. CD36 favours fat sensing and transport to govern lipid metabolism. Prog Lipid Res 2022; 88:101193. [PMID: 36055468 DOI: 10.1016/j.plipres.2022.101193] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
CD36, located on the cell membrane, transports fatty acids in response to dietary fat. It is a critical fatty acid sensor and regulator of lipid metabolism. The interaction between CD36 and lipid dysmetabolism and obesity has been identified in various models and human studies. Nevertheless, the mechanisms by which CD36 regulates lipid metabolism and the role of CD36 in metabolic diseases remain obscure. Here, we summarize the latest research on the role of membrane CD36 in fat metabolism, with emphasis on CD36-mediated fat sensing and transport. This review also critically discusses the factors affecting the regulation of CD36-mediated fat dysfunction. Finally, we review previous clinical evidence of CD36 in metabolic diseases and consider the path forward.
Collapse
Affiliation(s)
- Yunxia Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 26900 Lodi, Italy
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China.
| |
Collapse
|
12
|
Decoding Functional High-Density Lipoprotein Particle Surfaceome Interactions. Int J Mol Sci 2022; 23:ijms23169506. [PMID: 36012766 PMCID: PMC9409371 DOI: 10.3390/ijms23169506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
High-density lipoprotein (HDL) is a mixture of complex particles mediating reverse cholesterol transport (RCT) and several cytoprotective activities. Despite its relevance for human health, many aspects of HDL-mediated lipid trafficking and cellular signaling remain elusive at the molecular level. During HDL’s journey throughout the body, its functions are mediated through interactions with cell surface receptors on different cell types. To characterize and better understand the functional interplay between HDL particles and tissue, we analyzed the surfaceome-residing receptor neighborhoods with which HDL potentially interacts. We applied a combination of chemoproteomic technologies including automated cell surface capturing (auto-CSC) and HATRIC-based ligand–receptor capturing (HATRIC-LRC) on four different cellular model systems mimicking tissues relevant for RCT. The surfaceome analysis of EA.hy926, HEPG2, foam cells, and human aortic endothelial cells (HAECs) revealed the main currently known HDL receptor scavenger receptor B1 (SCRB1), as well as 155 shared cell surface receptors representing potential HDL interaction candidates. Since vascular endothelial growth factor A (VEGF-A) was recently found as a regulatory factor of transendothelial transport of HDL, we next analyzed the VEGF-modulated surfaceome of HAEC using the auto-CSC technology. VEGF-A treatment led to the remodeling of the surfaceome of HAEC cells, including the previously reported higher surfaceome abundance of SCRB1. In total, 165 additional receptors were found on HAEC upon VEGF-A treatment representing SCRB1 co-regulated receptors potentially involved in HDL function. Using the HATRIC-LRC technology on human endothelial cells, we specifically aimed for the identification of other bona fide (co-)receptors of HDL beyond SCRB1. HATRIC-LRC enabled, next to SCRB1, the identification of the receptor tyrosine-protein kinase Mer (MERTK). Through RNA interference, we revealed its contribution to endothelial HDL binding and uptake. Furthermore, subsequent proximity ligation assays (PLAs) demonstrated the spatial vicinity of MERTK and SCRB1 on the endothelial cell surface. The data shown provide direct evidence for a complex and dynamic HDL receptome and that receptor nanoscale organization may influence binding and uptake of HDL.
Collapse
|
13
|
Strahlhofer-Augsten M, Schliefsteiner C, Cvitic S, George M, Lang-Olip I, Hirschmugl B, Marsche G, Lang U, Novakovic B, Saffery R, Desoye G, Wadsack C. The Distinct Role of the HDL Receptor SR-BI in Cholesterol Homeostasis of Human Placental Arterial and Venous Endothelial Cells. Int J Mol Sci 2022; 23:ijms23105364. [PMID: 35628180 PMCID: PMC9141204 DOI: 10.3390/ijms23105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
As opposed to adults, high-density lipoprotein (HDL) is the main cholesterol carrying lipoprotein in fetal circulation. The major HDL receptor, scavenger receptor class B type I (SR-BI), contributes to local cholesterol homeostasis. Arterial endothelial cells (ECA) from human placenta are enriched with cholesterol compared to venous endothelial cells (ECV). Moreover, umbilical venous and arterial plasma cholesterol levels differ markedly. We tested the hypothesis that the uptake of HDL-cholesteryl esters differs between ECA and ECV because of the differential expression of SR-BI. We aimed to identify the key regulators underlying these differences and the functional consequences. Immunohistochemistry was used for visualization of SR-BI in situ. ECA and ECV were isolated from the chorionic plate of human placenta and used for RT-qPCR, Western Blot, and HDL uptake assays with 3H- and 125I-labeled HDL. DNA was extracted for the methylation profiling of the SR-BI promoter. SR-BI regulation was studied by exposing ECA and ECV to differential oxygen concentrations or shear stress. Our results show elevated SR-BI expression and protein abundance in ECA compared to ECV in situ and in vitro. Immunohistochemistry demonstrated that SR-BI is mainly expressed on the apical side of placental endothelial cells in situ, allowing interaction with mature HDL circulating in the fetal blood. This was functionally linked to a higher increase of selective cholesterol ester uptake from fetal HDL in ECA than in ECV, and resulted in increased cholesterol availability in ECA. SR-BI expression on ECV tended to decrease with shear stress, which, together with heterogeneous immunostaining, suggests that SR-BI expression is locally regulated in the placental vasculature. In addition, hypomethylation of several CpG sites within the SR-BI promoter region might contribute to differential expression of SR-BI between chorionic arteries and veins. Therefore, SR-BI contributes to a local cholesterol homeostasis in ECA and ECV of the human feto-placental vasculature.
Collapse
Affiliation(s)
- Manuela Strahlhofer-Augsten
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
- BioBank Graz, Medical University of Graz, 8036 Graz, Austria
| | - Carolin Schliefsteiner
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
| | - Silvija Cvitic
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Meekha George
- Otto Loewi Research Center, Division of Pathophysiology and Immunology, Medical University of Graz, 8010 Graz, Austria;
| | - Ingrid Lang-Olip
- Gottfried Schatz Research Center, Divison of Cell Biology, Histology and Embryology, Medical University of Graz, 8036 Graz, Austria;
| | - Birgit Hirschmugl
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria;
| | - Uwe Lang
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (B.N.); (R.S.)
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (B.N.); (R.S.)
| | - Gernot Desoye
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
| | - Christian Wadsack
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
- Correspondence:
| |
Collapse
|
14
|
Yazdanpanah Z, Mozaffari-Khosravi H, Mirzaei M, Sheikhha MH, Salehi-Abargouei A. A systematic review and meta-analysis on the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors in adults. Sci Rep 2022; 12:5916. [PMID: 35396566 PMCID: PMC8993862 DOI: 10.1038/s41598-022-09908-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
The cluster of differentiation 36 (CD36) is one of the main receptors implicated in the pathogenesis of the cardiovascular disease. This study aimed to assess the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors including body mass index (BMI), waist circumference (WC), total cholesterol (TC), triglyceride, HDL-C, LDL-C, blood pressure and fasting blood glucose (FBG). PubMed, EMBASE, Scopus, web of science, and Google Scholar were searched up to December 2021. Subgroup and meta-regression analyses were conducted to explore sources of heterogeneity. Eighteen eligible studies (6317 participants) were included in the study. In the overall analysis, a significant association was found between rs1761667 polymorphism of CD36 and TG in allelic (p < 0.001), recessive (p = 0.001) and homozygous (p = 0.006) models. A relationship between this polymorphism and HDL-C and FBG level was observed in the recessive genetic model. In the subgroup analysis, the A allele was associated with impaired lipid profiles (TC, LDL-C and HDL-C) in the Asian population. The influences of health status, design of the study, confounders, and other sources of heterogeneity should be considered when interpreting present findings. Cohort studies with large sample size and in different ethnicities are needed to confirm the relationship between rs1761667 SNP and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Zeinab Yazdanpanah
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, PO Code 8915173160, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, PO Code 8915173160, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Mirzaei
- Yazd Cardiovascular Research Centre, Non-Communicable Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Sheikhha
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, PO Code 8915173160, Iran.
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
15
|
Luquero A, Vilahur G, Casani L, Badimon L, Borrell-Pages M. Differential cholesterol uptake in liver cells: A role for PCSK9. FASEB J 2022; 36:e22291. [PMID: 35344222 DOI: 10.1096/fj.202101660rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022]
Abstract
The clearance of low-density lipoprotein (LDL) particles from the circulation is regulated by the LDL receptor (LDLR) and proprotein convertase subtilisin/kexin 9 (PCSK9) interaction. Its disruption reduces blood cholesterol levels and delays atherosclerosis progression. Whether other members of the LDLR superfamily are in vivo targets of PCSK9 has been poorly explored. The aim of this work was to study the interaction between PCSK9 and members of the LDLR superfamily in the regulation of liver cholesterol homeostasis in an in vivo low-density lipoprotein receptor related protein 5 (LRP5) deficient mice model challenged with high-fat diet. Our results show that Wt and Lrp5-/- mice fed a hypercholesterolemic diet (HC) have increased cholesterol ester accumulation and decreased liver LDLR and LRP5 gene and protein expression. Very low-density lipoprotein receptor (VLDLR), LRP6, LRP2, and LRP1 expression levels were analyzed in liver samples and show that they do not participate in Lrp5-/- liver cholesterol uptake. Immunoprecipitation experiments show that LRP5 forms a complex with PCSK9 in liver-specific fat-storing stellate cells but not in structural HepG2 cells. Hepatic stellate cells silenced for LRP5 and/or PCSK9 expression and challenged with lipids show reduced cholesterol ester accumulation, indicating that both proteins are involved in lipid processing in the liver. Our results indicate that cholesterol esters accumulate in livers of Wt mice in a LDLR-family-members dependent manner as VLDLR, LRP2, and LRP6 show increased expression in HC mice. However, this increase is lost in livers of Lrp5-/- mice, where scavenger receptors are involved in cholesterol uptake. PCSK9 expression is strongly downregulated in mice livers after HC feeding. However PCSK9 and LRP5 bind in the cytoplasm of fat storing liver cells, indicating that this PCSK9-LRP5 interaction is cell-type specific and that both proteins contribute to lipid uptake.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain
| | - Laura Casani
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain
| |
Collapse
|
16
|
Suzuki K, Suda G, Yamamoto Y, Abiko S, Kinoshita K, Miyamoto S, Sugiura R, Kimura M, Maehara O, Yamada R, Kitagataya T, Shigesawa T, Ohara M, Kawagishi N, Nakai M, Sho T, Natsuizaka M, Morikawa K, Ogawa K, Sakamoto N. Effect of switching from tenofovir disoproxil fumarate to tenofovir alafenamide on lipid profiles in patients with hepatitis B. PLoS One 2022; 17:e0261760. [PMID: 35051189 PMCID: PMC8775237 DOI: 10.1371/journal.pone.0261760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
For long-term treatment of hepatitis B virus (HBV) infection, switching from tenofovir-disoproxil-fumarate (TDF) to tenofovir-alafenamide (TAF) may prevent renal dysfunction and bone loss. However, the precise effects of this switch on the blood lipid profile remain to be clarified. This is an important issue as TDF is known to have effects on both low- and high-density lipids. Therefore, our retrospective multi-center study aimed to evaluate the effects of switching from TDF to TAF on the lipid profile of patients with HBV infection. Samples were obtained prior to the switch from TDF to TAF and at 6-12 months after TAF initiation. In some cases, additional samples obtained pre- and post-TDF administration were available for analysis. Serum cholesterol levels, including oxidized-low-density lipoprotein (LDL) and non-high-density lipoprotein-cholesterol (HDL-c), and the rate of dyslipidemia, according to the NCEP-ATP III lipid risk classification, were analyzed. The data from 69 patients were analyzed, including 33 patients with pre- and post-TDF-initiation serum samples. Total cholesterol (T-chol), HDL-c, LDL-c, non-HDL-c, and oxidized LDL levels increased significantly after switching to TAF. With regard to sequential changes pre- to post-TAF, TDF was associated with significantly lower serum T-chol, HDL-c, and oxidized LDL-c levels, with T-chol, HDL-c, LDL-c, and oxidized LDL-c levels increasing significantly after the switch. The switch from TDF to TAF was also associated with an increase in the rate of dyslipidemia, from 33% to 39%, with an increase in the rate of severe dyslipidemia of 1.4% and 5.8%, based on T-chol and LDL-c levels. Of note, no cases of severe dyslipidemia were detected pre-TAF treatment. As oxidized LDL-c and non-HDL-c are strongly associated with atherosclerosis development, careful monitoring of lipid is needed after switching from TDF to TAF in this clinical population.
Collapse
Affiliation(s)
- Kazuharu Suzuki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
- Department of Gastroenterology, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
- * E-mail:
| | - Yoshiya Yamamoto
- Department of Gastroenterology, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Satoshi Abiko
- Department of Gastroenterology, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Kenji Kinoshita
- Department of Gastroenterology, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Shuichi Miyamoto
- Department of Gastroenterology, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Ryo Sugiura
- Department of Gastroenterology, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Osamu Maehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Ren Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Taku Shigesawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
17
|
Iso-O N, Komatsuya K, Tokumasu F, Isoo N, Ishigaki T, Yasui H, Yotsuyanagi H, Hara M, Kita K. Malaria Parasites Hijack Host Receptors From Exosomes to Capture Lipoproteins. Front Cell Dev Biol 2021; 9:749153. [PMID: 34858976 PMCID: PMC8631964 DOI: 10.3389/fcell.2021.749153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria parasites cannot multiply in host erythrocytes without cholesterol because they lack complete sterol biosynthesis systems. This suggests parasitized red blood cells (pRBCs) need to capture host sterols, but its mechanism remains unknown. Here we identified a novel high-density lipoprotein (HDL)-delivery pathway operating in blood-stage Plasmodium. In parasitized mouse plasma, exosomes positive for scavenger receptor CD36 and platelet-specific CD41 increased. These CDs were detected in pRBCs and internal parasites. A low molecular antagonist for scavenger receptors, BLT-1, blocked HDL uptake to pRBCs and suppressed Plasmodium growth in vitro. Furthermore, platelet-derived exosomes were internalized in pRBCs. Thus, we presume CD36 is delivered to malaria parasites from platelets by exosomes, which enables parasites to steal HDL for cholesterol supply. Cholesterol needs to cross three membranes (RBC, parasitophorous vacuole and parasite’s plasma membranes) to reach parasite, but our findings can explain the first step of sterol uptake by intracellular parasites.
Collapse
Affiliation(s)
- Naoyuki Iso-O
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of 4th Internal Medicine, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fuyuki Tokumasu
- Department of Lipidomics, The University of Tokyo, Tokyo, Japan.,Department of Cellular Architecture Studies, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Noriko Isoo
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomohiro Ishigaki
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yasui
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Masumi Hara
- Department of 4th Internal Medicine, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Choi Y, Song MJ, Jung WJ, Jeong H, Park S, Yang B, Lee EC, Joo JS, Choi D, Koo SH, Kim EK, Nam KT, Kim HP. Liver-Specific Deletion of Mouse CTCF Leads to Hepatic Steatosis via Augmented PPARγ Signaling. Cell Mol Gastroenterol Hepatol 2021; 12:1761-1787. [PMID: 34358714 PMCID: PMC8551791 DOI: 10.1016/j.jcmgh.2021.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The liver is the major organ for metabolizing lipids, and malfunction of the liver leads to various diseases. Nonalcoholic fatty liver disease is rapidly becoming a major health concern worldwide and is characterized by abnormal retention of excess lipids in the liver. CCCTC-binding factor (CTCF) is a highly conserved zinc finger protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. Here, we sought to determine the physiological role of CTCF in hepatic lipid metabolism. METHODS We generated liver-specific, CTCF-ablated and/or CD36 whole-body knockout mice. Overexpression or knockdown of peroxisome proliferator-activated receptor (PPAR)γ in the liver was achieved using adenovirus. Mice were examined for development of hepatic steatosis and inflammation. RNA sequencing was performed to identify genes affected by CTCF depletion. Genome-wide occupancy of H3K27 acetylation, PPARγ, and CTCF were analyzed by chromatin immunoprecipitation sequencing. Genome-wide chromatin interactions were analyzed by in situ Hi-C. RESULTS Liver-specific, CTCF-deficient mice developed hepatic steatosis and inflammation when fed a standard chow diet. Global analysis of the transcriptome and enhancer landscape revealed that CTCF-depleted liver showed enhanced accumulation of PPARγ in the nucleus, which leads to increased expression of its downstream target genes, including fat storage-related gene CD36, which is involved in the lipid metabolic process. Hepatic steatosis developed in liver-specific, CTCF-deficient mice was ameliorated by repression of PPARγ via pharmacologic blockade or adenovirus-mediated knockdown, but hardly rescued by additional knockout of CD36. CONCLUSIONS Our data indicate that liver-specific deletion of CTCF leads to hepatosteatosis through augmented PPARγ DNA-binding activity, which up-regulates its downstream target genes associated with the lipid metabolic process.
Collapse
Affiliation(s)
- Yeeun Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea
| | - Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea
| | - Woong-Jae Jung
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Department of Bioinformatics, Graduate School of Soongsil University, Seoul, Korea
| | - Haengdueng Jeong
- Brain Korea 21 Plus Project for Medical Science, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seokjae Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Bobae Yang
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea
| | - Eun-Chong Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea
| | - Jung-Sik Joo
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea
| | - Dahee Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Ki Taek Nam
- Brain Korea 21 Plus Project for Medical Science, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea.
| |
Collapse
|
19
|
Đukanović N, Obradović S, Zdravković M, Đurašević S, Stojković M, Tosti T, Jasnić N, Đorđević J, Todorović Z. Lipids and Antiplatelet Therapy: Important Considerations and Future Perspectives. Int J Mol Sci 2021; 22:3180. [PMID: 33804754 PMCID: PMC8003871 DOI: 10.3390/ijms22063180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Lipids play an essential role in platelet functions. It is known that polyunsaturated fatty acids play a role in increasing platelet reactivity and that the prothrombotic phenotype plays a crucial role in the occurrence of major adverse cardiovascular events. The ongoing increase in cardiovascular diseases' incidence emphasizes the importance of research linking lipids and platelet function. In particular, the rebound phenomenon that accompanies discontinuation of clopidogrel in patients receiving dual antiplatelet therapy has been associated with changes in the lipid profile. Our many years of research underline the importance of reduced HDL values for the risk of such a rebound effect and the occurrence of thromboembolic events. Lipids are otherwise a heterogeneous group of molecules, and their signaling molecules are not deposited but formed "on-demand" in the cell. On the other hand, exosomes transmit lipid signals between cells, and the profile of such changes can be monitored by lipidomics. Changes in the lipid profile are organ-specific and may indicate new drug action targets.
Collapse
Affiliation(s)
- Nina Đukanović
- High Medical School Milutin Milanković, Crnotravska 27, 11000 Belgrade, Serbia;
| | - Slobodan Obradović
- Clinic of Emergency Medicine, Military Medical Academy, University of Defence, Crnotravska 27, 11000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 27, 11000 Belgrade, Serbia
| | - Marija Zdravković
- Dr Subotića 8, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (M.S.)
- Dr Žorža Matea bb, University Medical Centre “Bežanijska kosa”, 11070 Belgrade, Serbia
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia; (S.Ð.); (N.J.); (J.Ð.)
| | - Maja Stojković
- Dr Subotića 8, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (M.S.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia; (S.Ð.); (N.J.); (J.Ð.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia; (S.Ð.); (N.J.); (J.Ð.)
| | - Zoran Todorović
- Dr Subotića 8, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (M.S.)
| |
Collapse
|
20
|
Berger JM, Moon YA. Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content. Mol Cells 2021; 44:116-125. [PMID: 33658436 PMCID: PMC7941001 DOI: 10.14348/molcells.2021.2147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/17/2020] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMGCoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.
Collapse
Affiliation(s)
- Jean-Mathieu Berger
- Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon 22212, Korea
| |
Collapse
|
21
|
Suzuki K, Suda G, Yamamoto Y, Furuya K, Baba M, Nakamura A, Miyoshi H, Kimura M, Maehara O, Yamada R, Kitagataya T, Yamamoto K, Shigesawa T, Nakamura A, Ohara M, Kawagishi N, Nakai M, Sho T, Natsuizaka M, Morikawa K, Ogawa K, Ohnishi S, Sakamoto N. Tenofovir-disoproxil-fumarate modulates lipid metabolism via hepatic CD36/PPAR-alpha activation in hepatitis B virus infection. J Gastroenterol 2021; 56:168-180. [PMID: 33211179 DOI: 10.1007/s00535-020-01750-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/02/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Entecavir and tenofovir-disoproxil-fumarate are first-line nucleos(t)ide analogs (NA) for treatment of hepatitis B virus (HBV) infections; however, their long-term administration can impact extrahepatic organs. Herein, we sought to examine the effect of NA on lipid metabolism while also characterizing the associated mechanism. METHODS A retrospective study was performed on HBV patients administered entecavir or tenofovir-disoproxil-fumarate. Patient clinical information, as well as their preserved serum samples obtained at baseline and 6-12 months after treatment initiation, were analyzed. A 1:1 propensity score matching was applied to the assignment of tenofovir-disoproxil-fumarate or entecavir treatment. Changes in serum cholesterol, including oxidized-LDL, were analyzed. Subsequently, in vitro analysis elucidated the mechanism associated with the effect of NAs on lipid metabolism. RESULTS Administration of tenofovir-disoproxil-fumarate, not entecavir, to chronic HBV patients, decreased serum cholesterol levels, including non-HDL and oxidized-LDL, which are strongly associated with arteriosclerosis. In vitro analysis revealed that tenofovir-disoproxil-fumarate reduced supernatant cholesterol, and upregulated the scavenger receptor, CD36, in hepatocytes. Meanwhile, silencing of hepatic CD36 increased supernatant cholesterol and negated the cholesterol-reducing effect of tenofovir-disoproxil-fumarate in HepG2-cells. Reporter, microarray, and RT-PCR analyses further revealed that tenofovir-disoproxil-fumarate treatment activates PPAR-α-mediated signaling, and upregulates PPAR-α target genes, including CPT1 and CD36. Alternatively, silencing of PPAR-α reversed the effects of tenofovir-disoproxil-fumarate on CD36. CONCLUSIONS Tenofovir-disoproxil-fumarate modulates lipid metabolism by upregulating hepatic CD36 via PPAR-α activation. Since dyslipidemia could be associated with arteriosclerosis and hepatocarcinogenesis, these discoveries provide novel insights into anti-HBV therapies, as well as the associated extrahepatic effects of NA.
Collapse
Affiliation(s)
- Kazuharu Suzuki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yoshiya Yamamoto
- Department of Gastroenterology, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Ken Furuya
- Department of Gastroenterology, JCHO Hokkaido Hospital, Hokkaido, Japan
| | - Masaru Baba
- Department of Gastroenterology, JCHO Hokkaido Hospital, Hokkaido, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hideaki Miyoshi
- Division of Diabetes and Obesity, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Osamu Maehara
- Department of Gastroenterology, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Ren Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Taku Shigesawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akihisa Nakamura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | | |
Collapse
|
22
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
23
|
Vitamin D Status of Mice Deficient in Scavenger Receptor Class B Type 1, Cluster Determinant 36 and ATP-Binding Cassette Proteins G5/G8. Nutrients 2020; 12:nu12082169. [PMID: 32707802 PMCID: PMC7469065 DOI: 10.3390/nu12082169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Classical lipid transporters are suggested to modulate cellular vitamin D uptake. This study investigated the vitamin D levels in serum and tissues of mice deficient in SR-B1 (Srb1-/-), CD36 (Cd36-/-) and ABC-G5/G8 (Abcg5/g8-/-) and compared them with corresponding wild-type (WT) mice. All mice received triple-deuterated vitamin D3 (vitamin D3-d3) for six weeks. All knockout mice vs. WT mice showed specific alterations in their vitamin D concentrations. Srb1-/- mice had higher levels of vitamin D3-d3 in the serum, adipose tissue, kidney and heart, whereas liver levels of vitamin D3-d3 remained unaffected. Additionally, Srb1-/- mice had lower levels of deuterated 25-hydroxyvitamin D3 (25(OH)D3-d3) in the serum, liver and kidney compared to WT mice. In contrast, Cd36-/- and WT mice did not differ in the serum and tissue levels of vitamin D3-d3, but Cd36-/- vs. WT mice were characterized by lower levels of 25(OH)D3-d3 in the serum, liver and kidney. Finally, Abcg5/g8-/- mice tended to have higher levels of vitamin D3-d3 in the serum and liver. Major alterations in Abcg5/g8-/- mice were notably higher levels of 25(OH)D3-d3 in the serum and kidney, accompanied by a higher hepatic mRNA abundance of Cyp27a1 hydroxylase. To conclude, the current data emphasize the significant role of lipid transporters in the uptake, tissue distribution and activation of vitamin D.
Collapse
|
24
|
Pandey E, Nour AS, Harris EN. Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Front Physiol 2020; 11:873. [PMID: 32848838 PMCID: PMC7396565 DOI: 10.3389/fphys.2020.00873] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the most abundant non-parenchymal cells lining the sinusoidal capillaries of the hepatic system. LSECs are characterized with numerous fenestrae and lack basement membrane as well as a diaphragm. These unique morphological characteristics of LSECs makes them the most permeable endothelial cells of the mammalian vasculature and aid in regulating flow of macromolecules and small lipid-based structures between sinusoidal blood and parenchymal cells. LSECs have a very high endocytic capacity aided by scavenger receptors (SR), such as SR-A, SR-B (SR-B1 and CD-36), SR-E (Lox-1 and mannose receptors), and SR-H (Stabilins). Other high-affinity receptors for mediating endocytosis include the FcγRIIb, which assist in the antibody-mediated removal of immune complexes. Complemented with intense lysosomal activity, LSECs play a vital role in the uptake and degradation of many blood borne waste macromolecules and small (<280 nm) colloids. Currently, seven Toll-like receptors have been investigated in LSECs, which are involved in the recognition and clearance of pathogen-associated molecular pattern (PAMPs) as well as damage associated molecular pattern (DAMP). Along with other SRs, LSECs play an essential role in maintaining lipid homeostasis with the low-density lipoprotein receptor-related protein-1 (LRP-1), in juxtaposition with hepatocytes. LSECs co-express two surface lectins called L-Specific Intercellular adhesion molecule-3 Grabbing Non-integrin Receptor (L-SIGN) and liver sinusoidal endothelial cell lectin (LSECtin). LSECs also express several adhesion molecules which are involved in the recruitment of leukocytes at the site of inflammation. Here, we review these cell surface receptors as well as other components expressed by LSECs and their functions in the maintenance of liver homeostasis. We further discuss receptor expression and activity and dysregulation associated with the initiation and progression of many liver diseases, such as hepatocellular carcinoma, liver fibrosis, and cirrhosis, alcoholic and non-alcoholic fatty liver diseases and pseudocapillarization with aging.
Collapse
Affiliation(s)
- Ekta Pandey
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| | - Aiah S Nour
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| | - Edward N Harris
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| |
Collapse
|
25
|
Syed SN, Frank AC, Raue R, Brüne B. MicroRNA-A Tumor Trojan Horse for Tumor-Associated Macrophages. Cells 2019; 8:E1482. [PMID: 31766495 PMCID: PMC6953083 DOI: 10.3390/cells8121482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
26
|
Frank AC, Ebersberger S, Fink AF, Lampe S, Weigert A, Schmid T, Ebersberger I, Syed SN, Brüne B. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun 2019; 10:1135. [PMID: 30850595 PMCID: PMC6408494 DOI: 10.1038/s41467-019-08989-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/09/2019] [Indexed: 01/01/2023] Open
Abstract
Tumor-immune cell interactions shape the immune cell phenotype, with microRNAs (miRs) being crucial components of this crosstalk. How they are transferred and how they affect their target landscape, especially in tumor-associated macrophages (TAMs), is largely unknown. Here we report that breast cancer cells have a high constitutive expression of miR-375, which is released as a non-exosome entity during apoptosis. Deep sequencing of the miRome pointed to enhanced accumulation of miR-375 in TAMs, facilitated by the uptake of tumor-derived miR-375 via CD36. In macrophages, miR-375 directly targets TNS3 and PXN to enhance macrophage migration and infiltration into tumor spheroids and in tumors of a xenograft mouse model. In tumor cells, miR-375 regulates CCL2 expression to increase recruitment of macrophages. Our study provides evidence for miR transfer from tumor cells to TAMs and identifies miR-375 as a crucial regulator of phagocyte infiltration and the subsequent development of a tumor-promoting microenvironment. The mode of miRNA transfer between tumour-immune cells is usually via exosomes. Here, the authors show that an alternative mode of transfer whereby miR-375 from apoptotic tumour cells can be transferred to tumour-associated macrophages via CD36 receptor, which induces macrophage migration and infiltration to the tumours.
Collapse
Affiliation(s)
- Ann-Christin Frank
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | | | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Sebastian Lampe
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-University Frankfurt, Max-von-Laue Strasse 13, 60438, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre Frankfurt (BIK-F), Frankfurt, 60325, Germany
| | - Shahzad Nawaz Syed
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Research Consortium (DKTK), Partner Site, Frankfurt, 60590, Germany.
| |
Collapse
|
27
|
LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling. Basic Res Cardiol 2018; 113:40. [PMID: 30132266 PMCID: PMC6105266 DOI: 10.1007/s00395-018-0699-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Sex differences in heart failure development following myocardial infarction (MI) are not fully understood. We hypothesized that differential MI signaling could explain variations in outcomes. Analysis of the mouse heart attack research tool 1.0 (422 mice; young = 5.4 ± 0.1; old = 23.3 ± 0.1 months of age) was used to dissect MI signaling pathways, which was validated in a new cohort of mice (4.8 ± 0.2 months of age); and substantiated in humans. Plasma collected at visit 2 from the MI subset of the Jackson Heart Study (JHS; a community-based study consisting of middle aged and older adults of African ancestry) underwent glycoproteomics grouped by outcome: (1) heart failure hospitalization after visit 2 (n = 3 men/12 women) and (2) without hospitalization through 2012 (n = 24 men/21 women). Compared to young male mice, the infarct region of young females had fewer, but more efficient tissue clearing neutrophils with reduced pro-inflammatory gene expression. Apolipoprotein (Apo) F, which acts upstream of the liver X receptors/retinoid X receptor (LXR/RXR) pathway, was elevated in the day 7 infarcts of old mice compared to young controls and was increased in both men and women with heart failure. In vitro, Apo F stimulated CD36 and peroxisome proliferator-activated receptor (PPAR)γ activation in male neutrophils to turn off NF-κB activation and stimulate LXR/RXR signaling to initiate resolution. Female neutrophils were desensitized to Apo F and instead relied on thrombospondin-1 stimulation of CD36 to upregulate AMP-activated protein kinase, resulting in an overall better wound healing strategy. With age, female mice were desensitized to LXR/RXR signaling, resulting in enhanced interleukin-6 activation, a finding replicated in the JHS community cohort. This is the first report to uncover sex differences in post-MI neutrophil signaling that yielded better outcomes in young females and worse outcomes with age.
Collapse
|
28
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Lee SX, Heine M, Schlein C, Ramakrishnan R, Liu J, Belnavis G, Haimi I, Fischer AW, Ginsberg HN, Heeren J, Rinninger F, Haeusler RA. FoxO transcription factors are required for hepatic HDL cholesterol clearance. J Clin Invest 2018; 128:1615-1626. [PMID: 29408809 DOI: 10.1172/jci94230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance and type 2 diabetes are associated with low levels of high-density lipoprotein cholesterol (HDL-C). The insulin-repressible FoxO transcription factors are potential mediators of the effect of insulin on HDL-C. FoxOs mediate a substantial portion of insulin-regulated transcription, and poor FoxO repression is thought to contribute to the excessive glucose production in diabetes. In this work, we show that mice with liver-specific triple FoxO knockout (L-FoxO1,3,4), which are known to have reduced hepatic glucose production, also have increased HDL-C. This was associated with decreased expression of the HDL-C clearance factors scavenger receptor class B type I (SR-BI) and hepatic lipase and defective selective uptake of HDL cholesteryl ester by the liver. The phenotype could be rescued by re-expression of SR-BI. These findings demonstrate that hepatic FoxOs are required for cholesterol homeostasis and HDL-mediated reverse cholesterol transport to the liver.
Collapse
Affiliation(s)
- Samuel X Lee
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Rajasekhar Ramakrishnan
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jing Liu
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Gabriella Belnavis
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Ido Haimi
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Henry N Ginsberg
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Franz Rinninger
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Internal Medicine III, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
30
|
Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr Res Rev 2018; 31:153-163. [DOI: 10.1017/s0954422417000269] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractIt has been established that ingestion of a high-fat diet increases the blood levels of lipopolysaccharides (LPS) from Gram-negative bacteria in the gut. Obesity is characterised by low-grade systemic and adipose tissue inflammation. This is suggested to be implicated in the metabolic syndrome and obesity. In the present review, we hypothesise that LPS directly and indirectly participates in the inflammatory reaction in adipose tissue during obesity. The experimental evidence shows that LPS is involved in the transition of macrophages from the M2 to the M1 phenotype. In addition, LPS inside adipocytes may activate caspase-4/5/11. This may induce a highly inflammatory type of programmed cell death (i.e. pyroptosis), which also occurs after infection with intracellular pathogens. Lipoproteins with or without LPS are taken up by adipocytes. Large adipocytes are more metabolically active and potentially more exposed to LPS than small adipocytes are. Thus, LPS might be involved in defining the adipocyte death size and the formation of crown-like structures. The adipocyte death size is reached when the intracellular concentration of LPS initiates pyroptosis. The mechanistic details remain to be elucidated, but the observations indicate that adipocytes are stimulated to cell death by processes that involve LPS from the gut microbiota. There is a complex interplay between the composition of the diet and microbiota. This influences the amount of LPS that is translocated from the gut. In particular, the lipid content of a meal may correlate with the amount of LPS built in to chylomicrons.
Collapse
|
31
|
Dewey FE, Murray MF, Overton JD, Habegger L, Leader JB, Fetterolf SN, O'Dushlaine C, Van Hout CV, Staples J, Gonzaga-Jauregui C, Metpally R, Pendergrass SA, Giovanni MA, Kirchner HL, Balasubramanian S, Abul-Husn NS, Hartzel DN, Lavage DR, Kost KA, Packer JS, Lopez AE, Penn J, Mukherjee S, Gosalia N, Kanagaraj M, Li AH, Mitnaul LJ, Adams LJ, Person TN, Praveen K, Marcketta A, Lebo MS, Austin-Tse CA, Mason-Suares HM, Bruse S, Mellis S, Phillips R, Stahl N, Murphy A, Economides A, Skelding KA, Still CD, Elmore JR, Borecki IB, Yancopoulos GD, Davis FD, Faucett WA, Gottesman O, Ritchie MD, Shuldiner AR, Reid JG, Ledbetter DH, Baras A, Carey DJ. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 2017; 354:354/6319/aaf6814. [PMID: 28008009 DOI: 10.1126/science.aaf6814] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/16/2016] [Indexed: 11/02/2022]
Abstract
The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System couples high-throughput sequencing to an integrated health care system using longitudinal electronic health records (EHRs). We sequenced the exomes of 50,726 adult participants in the DiscovEHR study to identify ~4.2 million rare single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in a loss of gene function. Linking these data to EHR-derived clinical phenotypes, we find clinical associations supporting therapeutic targets, including genes encoding drug targets for lipid lowering, and identify previously unidentified rare alleles associated with lipid levels and other blood level traits. About 3.5% of individuals harbor deleterious variants in 76 clinically actionable genes. The DiscovEHR data set provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Korey A Kost
- Geisinger Health System, Danville, PA 17822, USA
| | | | | | - John Penn
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | | | | | | - Matthew S Lebo
- Laboratory for Molecular Medicine, Cambridge, MA 02139, USA
| | | | | | | | - Scott Mellis
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Neil Stahl
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | | |
Collapse
|
32
|
Wen SY, Velmurugan BK, Day CH, Shen CY, Chun LC, Tsai YC, Lin YM, Chen RJ, Kuo CH, Huang CY. High density lipoprotein (HDL) reverses palmitic acid induced energy metabolism imbalance by switching CD36 and GLUT4 signaling pathways in cardiomyocyte. J Cell Physiol 2017; 232:3020-3029. [PMID: 28500736 DOI: 10.1002/jcp.26007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 01/16/2023]
Abstract
In our previous study palmitic acid (PA) induced lipotoxicity and switches energy metabolism from CD36 to GLUT4 in H9c2 cells. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. Therefore, we in the present study investigated whether HDL can reverse PA induced lipotoxicity in H9c2 cardiomyoblast cells. In this study, we treated H9c2 cells with PA to create a hyperlipidemia model in vitro and analyzed for CD36 and GLUT4 metabolic pathway proteins. CD36 metabolic pathway proteins (phospho-AMPK, SIRT1, PGC1α, PPARα, CPT1β, and CD36) were decreased by high PA (150 and 200 μg/μl) concentration. Interestingly, expression of GLUT4 metabolic pathway proteins (p-PI3K and pAKT) were increased at low concentration (50 μg/μl) and decreased at high PA concentration. Whereas, phospho-PKCζ, GLUT4 and PDH proteins expression was increased in a dose dependent manner. PA treated H9c2 cells were treated with HDL and analyzed for cell viability. Results showed that HDL treatment induced cell proliferation efficiency in PA treated cells. In addition, HDL reversed the metabolic effects of PA: CD36 translocation was increased and reduced GLUT4 translocation, but HDL treatment significantly increased CD36 metabolic pathway proteins and reduced GLUT4 pathway proteins. Rat neonatal cardiomyocytes showed similar results. In conclusion, HDL reversed palmatic acid-induced lipotoxicity and energy metabolism imbalance in H9c2 cardiomyoblast cells and in neonatal rat cardiomyocyte cells.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan.,Center for General Education, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | | | | | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Li-Chin Chun
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Yi-Chieh Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biological Science and Technology, Asia University, Taichung, Taiwan
| |
Collapse
|
33
|
Lu Z, Li Y, Brinson CW, Kirkwood KL, Lopes-Virella MF, Huang Y. CD36 is upregulated in mice with periodontitis and metabolic syndrome and involved in macrophage gene upregulation by palmitate. Oral Dis 2017; 23:210-218. [PMID: 27753178 DOI: 10.1111/odi.12596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/30/2016] [Accepted: 10/01/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND We reported that high-fat diet (HFD)-induced metabolic syndrome (MetS) exacerbates lipopolysaccharide (LPS)-stimulated periodontitis and palmitate, the major saturated fatty acid in the HFD, amplified LPS-stimulated gene expression in vitro. As CD36 is a major receptor for fatty acids, we investigated periodontal CD36 expression in mice with periodontitis and MetS, and the role of CD36 in inflammatory gene expression in macrophages stimulated by palmitate. METHODS MetS and periodontitis were induced in mice by HFD and periodontal injection of LPS, respectively. The periodontal CD36 expression and its relationship with alveolar bone loss were studied using immunohistochemistry, real-time PCR, and correlation analysis. The role of CD36 in upregulation of inflammatory mediators by LPS and palmitate in macrophages was assessed using pharmacological inhibitor and small interfering RNA. RESULTS Periodontal CD36 expression was higher in mice with both MetS and periodontitis than that in mice with periodontitis or MetS alone and was correlated with osteoclastogenesis and alveolar bone loss. In vitro studies showed that CD36 expression in macrophages was upregulated by LPS and palmitate, and targeting CD36 attenuated palmitate-enhanced gene expression. CONCLUSION CD36 expression is upregulated in mice with periodontitis and MetS and involved in gene expression in macrophages stimulated by palmitate and LPS.
Collapse
Affiliation(s)
- Z Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Y Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - C W Brinson
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - K L Kirkwood
- Department of Oral Health Science, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - M F Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Y Huang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
34
|
Vega-Badillo J. ALTERACIONES EN LA HOMEOSTASIS DEL COLESTEROL HEPÁTICO Y SUS IMPLICACIONES EN LA ESTEATOHEPATITIS NO ALCOHÓLICA. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2017. [DOI: 10.1016/j.recqb.2016.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Rütti S, Widmann C. Are HDL receptors really located where we think they are in the liver? Curr Opin Lipidol 2016; 27:424-5. [PMID: 27383283 DOI: 10.1097/mol.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sabine Rütti
- Department of Physiology, Lausanne University, Switzerland
| | | |
Collapse
|
36
|
Hersoug LG, Møller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev 2016; 17:297-312. [PMID: 26712364 DOI: 10.1111/obr.12370] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/12/2022]
Abstract
The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD, low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs are transported via lymph to the circulation, where LPS is transferred to other lipoproteins by translocases, preferentially to HDL. LPS increases the SR-BI binding, transcytosis of lipoproteins over the endothelial barrier,and endocytosis in adipocytes. Especially large size adipocytes with high metabolic activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS is involved in the development of obesity as a direct targeting molecule for lipid delivery and storage in adipose tissue.
Collapse
Affiliation(s)
- L-G Hersoug
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Møller
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Loft
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Scavenger receptor B1, the HDL receptor, is expressed abundantly in liver sinusoidal endothelial cells. Sci Rep 2016; 6:20646. [PMID: 26865459 PMCID: PMC4749959 DOI: 10.1038/srep20646] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/07/2016] [Indexed: 02/08/2023] Open
Abstract
Cholesterol from peripheral tissue, carried by HDL, is metabolized in the liver after uptake by the HDL receptor, SR-B1. Hepatocytes have long been considered the only liver cells expressing SR-B1; however, in this study we describe two disparate immunofluorescence (IF) experiments that suggest otherwise. Using high-resolution confocal microscopy employing ultrathin (120 nm) sections of mouse liver, improving z-axis resolution, we identified the liver sinusoidal endothelial cells (LSEC), marked by FcγRIIb, as the cell within the liver expressing abundant SR-B1. In contrast, the hepatocyte, identified with β-catenin, expressed considerably weaker levels, although optical resolution of SR-B1 was inadequate. Thus, we moved to a different IF strategy, first separating dissociated liver cells by gradient centrifugation into two portions, hepatocytes (parenchymal cells) and LSEC (non-parenchymal cells). Characterizing both portions for the cellular expression of SR-B1 by flow cytometry, we found that LSEC expressed considerable amounts of SR-B1 while in hepatocytes SR-B1 expression was barely perceptible. Assessing mRNA of SR-B1 by real time PCR we found messenger expression in LSEC to be about 5 times higher than in hepatocytes.
Collapse
|
38
|
Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep 2015; 5:14752. [PMID: 26424075 PMCID: PMC4589791 DOI: 10.1038/srep14752] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second-leading cause of cancer-related death worldwide, and the factors influencing HCC progression are poorly understood. Here we reveal that HCC progression via induction of epithelial-mesenchymal transition (EMT) is closely associated with the expression of CD36/fatty acid translocase and elevated free fatty acid (FFA) levels. Although obesity is manifested as elevated FFA levels, the degree of EMT was not associated with the body mass index of the patients, highlighting the specific roles of CD36 and FFA uptake. Treatment of human liver cancer cell lines with FFAs exacerbated the EMT phenotype, whereas chemical inhibition of CD36 mitigated these effects. Furthermore, the Wnt and TGF-β signaling pathways were activated upon FFA treatment, potentially acting as upstream activators of the EMT program. These results provide the first direct evidence associating CD36 and elevated FFAs with HCC progression.
Collapse
Affiliation(s)
- Aritro Nath
- Genetics Program, Michigan State University, 567 Wilson Road, Rm 2240E, East Lansing, Michigan 48824, USA
| | - Irene Li
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, Rm 2215, East Lansing, Michigan 48824, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, USA
| | - Christina Chan
- Genetics Program, Michigan State University, 567 Wilson Road, Rm 2240E, East Lansing, Michigan 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, Rm 2215, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, 428 South Shaw Lane, Rm 2527, East Lansing, Michigan 48824, USA
| |
Collapse
|
39
|
Armstrong SM, Sugiyama MG, Fung KYY, Gao Y, Wang C, Levy AS, Azizi P, Roufaiel M, Zhu SN, Neculai D, Yin C, Bolz SS, Seidah NG, Cybulsky MI, Heit B, Lee WL. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc Res 2015; 108:268-77. [PMID: 26334034 DOI: 10.1093/cvr/cvv218] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/24/2015] [Indexed: 01/16/2023] Open
Abstract
AIMS Retention of low-density lipoprotein (LDL) cholesterol beneath the arterial endothelium initiates an inflammatory response culminating in atherosclerosis. Since the overlying endothelium is healthy and intact early on, it is likely that LDL passes through endothelial cells by transcytosis. However, technical challenges have made confirming this notion and elucidating the mechanisms of transcytosis difficult. We developed a novel assay for measuring LDL transcytosis in real time across coronary endothelial cell monolayers; we used this approach to identify the receptor involved. METHODS AND RESULTS Murine aortas were perfused ex vivo with LDL and dextran of a smaller molecular radius. LDL (but not dextran) accumulated under the endothelium, indicating that LDL transcytosis occurs in intact vessels. We then confirmed that LDL transcytosis occurs in vitro using human coronary artery endothelial cells. An assay was developed to quantify transcytosis of DiI-LDL in real time using total internal reflection fluorescence microscopy. DiI-LDL transcytosis was inhibited by excess unlabelled LDL, while degradation of the LDL receptor by PCSK9 had no effect. Instead, LDL colocalized partially with the scavenger receptor SR-BI and overexpression of SR-BI increased LDL transcytosis; knockdown by siRNA significantly reduced it. Excess HDL, the canonical SR-BI ligand, significantly decreased LDL transcytosis. Aortas from SR-BI-deficient mice were perfused ex vivo with LDL and accumulated significantly less sub-endothelial LDL compared with wild-type littermates. CONCLUSION We developed an assay to quantify LDL transcytosis across endothelial cells and discovered an unexpected role for SR-BI. Elucidating the mechanisms of LDL transcytosis may identify novel targets for the prevention or therapy of atherosclerosis.
Collapse
Affiliation(s)
- Susan M Armstrong
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8 Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Michael G Sugiyama
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Karen Y Y Fung
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Yizhuo Gao
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Changsen Wang
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Andrew S Levy
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Paymon Azizi
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Mark Roufaiel
- Toronto General Research Institute (TGRI), Toronto, Canada
| | - Su-Ning Zhu
- Toronto General Research Institute (TGRI), Toronto, Canada
| | | | - Charles Yin
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Steffen-Sebastian Bolz
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | | | - Myron I Cybulsky
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada Toronto General Research Institute (TGRI), Toronto, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Warren L Lee
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8 Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada Interdepartmental Division of Critical Care Medicine and the Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Di Gioia M, Zanoni I. Toll-like receptor co-receptors as master regulators of the immune response. Mol Immunol 2015; 63:143-52. [DOI: 10.1016/j.molimm.2014.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/24/2014] [Accepted: 05/25/2014] [Indexed: 12/12/2022]
|
41
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
42
|
Goncalves A, Roi S, Nowicki M, Niot I, Reboul E. Cluster-determinant 36 (CD36) impacts on vitamin E postprandial response. Mol Nutr Food Res 2014; 58:2297-306. [PMID: 25174330 DOI: 10.1002/mnfr.201400339] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
SCOPE A single nucleotide polymorphism in the cluster determinant 36 (CD36) gene has recently been associated with plasma α-tocopherol concentration, suggesting a possible role of this protein in vitamin E intestinal absorption or tissue uptake. METHODS AND RESULTS To investigate the involvement of CD36 in vitamin E transport, we first evaluated the effect of CD36 on α- and γ-tocopherol transmembrane uptake and efflux using transfected HEK cells. γ-Tocopherol postprandial response was then assessed in CD36-deficient mice compared with wild-type mice, after the mice had been fully characterized for their α-tocopherol, vitamin A and lipid plasma, and tissue contents. Both α- and γ-tocopherol uptake was significantly increased in cells overexpressing CD36 compared with control cells. Compared with wild-type mice, CD36-deficient mice displayed a significantly decreased cholesterol hepatic concentration, and males exhibited significantly higher triacylglycerol contents in liver, brain, heart, and muscle. Although tissue α-tocopherol concentration after adjustment for lipid content was not modified, γ-tocopherol postprandial response was significantly increased in CD36-deficient mice compared with controls, likely reflecting the postprandial hypertriglyceridemia observed in these mice. CONCLUSION Our findings show for the first time that CD36 participates-directly or indirectly-in vitamin E uptake, and that CD36 effect on postprandial lipid metabolism in turn modifies vitamin E postprandial response.
Collapse
Affiliation(s)
- Aurélie Goncalves
- INRA, UMR 1260, Nutrition, Obesity and Risk of Thrombosis, Marseille, France; INSERM, UMR 1062, Marseille, France; Aix-Marseille Université, Marseille, France
| | | | | | | | | |
Collapse
|
43
|
Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells. PLoS One 2014; 9:e102026. [PMID: 25010412 PMCID: PMC4092120 DOI: 10.1371/journal.pone.0102026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.
Collapse
|
44
|
Rinninger F, Heine M, Singaraja R, Hayden M, Brundert M, Ramakrishnan R, Heeren J. High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice. J Lipid Res 2014; 55:1914-24. [PMID: 24954421 DOI: 10.1194/jlr.m048819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein ((125)I) and in the cholesteryl ester (CE) moiety ([(3)H]). The metabolism of (125)I-/[(3)H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([(3)H]). In contrast, in LDLR(-/-) mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR(-/-) mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR(-/-) mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.
Collapse
Affiliation(s)
- Franz Rinninger
- Department of Medicine, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Roshni Singaraja
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research National University of Singapore, Singapore 117609 Department of Medicine, National University of Singapore, Singapore 117609
| | - Michael Hayden
- Centre for Molecular Medicine and Therapeutics and Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - May Brundert
- Department of Medicine, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Rajasekhar Ramakrishnan
- Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
45
|
van der Stoep M, Korporaal SJA, Van Eck M. High-density lipoprotein as a modulator of platelet and coagulation responses. Cardiovasc Res 2014; 103:362-71. [DOI: 10.1093/cvr/cvu137] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
46
|
Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM, Lambert G, Catherinet C, Prado-Lourenco L, Levin MG, Thacker S, Sethupathy P, Barter PJ, Remaley AT, Rye KA. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun 2014; 5:3292. [PMID: 24576947 DOI: 10.1038/ncomms4292] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/22/2014] [Indexed: 12/24/2022] Open
Abstract
High-density lipoproteins (HDL) have many biological functions, including reducing endothelial activation and adhesion molecule expression. We recently reported that HDL transport and deliver functional microRNAs (miRNA). Here we show that HDL suppresses expression of intercellular adhesion molecule 1 (ICAM-1) through the transfer of miR-223 to endothelial cells. After incubation of endothelial cells with HDL, mature miR-223 levels are significantly increased in endothelial cells and decreased on HDL. However, miR-223 is not transcribed in endothelial cells and is not increased in cells treated with HDL from miR-223(-/-) mice. HDL inhibit ICAM-1 protein levels, but not in cells pretreated with miR-223 inhibitors. ICAM-1 is a direct target of HDL-transferred miR-223 and this is the first example of an extracellular miRNA regulating gene expression in cells where it is not transcribed. Collectively, we demonstrate that HDL's anti-inflammatory properties are conferred, in part, through HDL-miR-223 delivery and translational repression of ICAM-1 in endothelial cells.
Collapse
Affiliation(s)
- Fatiha Tabet
- 1] Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales 2052, Australia [2] Lipid Research Group, The Heart Research Institute, New South Wales 2042, Australia [3] Faculty of Medicine, University of Sydney, Sydney New South Wales 2006, Australia [4]
| | - Kasey C Vickers
- 1] National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814-9692, USA [2] Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA [3]
| | - Luisa F Cuesta Torres
- 1] Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales 2052, Australia [2] Lipid Research Group, The Heart Research Institute, New South Wales 2042, Australia
| | - Carrie B Wiese
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Bassem M Shoucri
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814-9692, USA
| | - Gilles Lambert
- Université de Nantes, Faculté de Médecine, Laboratoire Inserm U957, Nantes, France
| | - Claire Catherinet
- Lipid Research Group, The Heart Research Institute, New South Wales 2042, Australia
| | - Leonel Prado-Lourenco
- Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael G Levin
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814-9692, USA
| | - Seth Thacker
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814-9692, USA
| | - Praveen Sethupathy
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | - Philip J Barter
- 1] Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales 2052, Australia [2] Lipid Research Group, The Heart Research Institute, New South Wales 2042, Australia [3] Faculty of Medicine, University of Sydney, Sydney New South Wales 2006, Australia
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814-9692, USA
| | - Kerry-Anne Rye
- 1] Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales 2052, Australia [2] Lipid Research Group, The Heart Research Institute, New South Wales 2042, Australia [3] Faculty of Medicine, University of Sydney, Sydney New South Wales 2006, Australia
| |
Collapse
|
47
|
Martineau C, Martin-Falstrault L, Brissette L, Moreau R. The atherogenic Scarb1 null mouse model shows a high bone mass phenotype. Am J Physiol Endocrinol Metab 2014; 306:E48-57. [PMID: 24253048 PMCID: PMC3920004 DOI: 10.1152/ajpendo.00421.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Scavenger receptor class B, type I (SR-BI), the Scarb1 gene product, is a receptor associated with cholesteryl ester uptake from high-density lipoproteins (HDL), which drives cholesterol movement from peripheral tissues toward the liver for excretion, and, consequently, Scarb1 null mice are prone to atherosclerosis. Because studies have linked atherosclerosis incidence with osteoporosis, we characterized the bone metabolism in these mice. Bone morphometry was assessed through microcomputed tomography and histology. Marrow stromal cells (MSCs) were used to characterize influence of endogenous SR-BI in cell functions. Total and HDL-associated cholesterol in null mice were increased by 32-60%, correlating with its role in lipoprotein metabolism. Distal metaphyses from 2- and 4-mo-old null mice showed correspondingly 46 and 37% higher bone volume fraction associated with a higher number of trabeculae. Histomorphometric analyses in 2-mo-old null male mice revealed 1.42-fold greater osteoblast surface, 1.37-fold higher percent mineralizing surface, and 1.69-fold enhanced bone formation rate. In vitro assays for MSCs from null mice revealed 37% higher proliferation rate, 48% more alkaline phosphatase activity, 70% greater mineralization potential and a 2-fold osterix (Sp7) expression, yet a 0.5-fold decrease in caveolin-1 (Cav1) expression. Selective uptake levels of HDL-associated cholesteryl oleate and estradiol were similar between MSC from wild-type and Scarb1 null mice, suggesting that its contribution to this process is not its main role in these cells. However, Scarb1 knockout stunted the HDL-dependent regulation of Cav1 genic expression. Scarb1 null mice are not prone to osteoporosis but show higher bone mass associated with enhanced bone formation.
Collapse
Affiliation(s)
- Corine Martineau
- Laboratoire du Métabolisme Osseux, BioMed, Université du Québec à Montréal, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada; and
| | | | | | | |
Collapse
|
48
|
Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36 (CD36). PLoS One 2013; 8:e77701. [PMID: 24204923 PMCID: PMC3808405 DOI: 10.1371/journal.pone.0077701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/12/2013] [Indexed: 12/02/2022] Open
Abstract
Bone tissue is continuously remodeled by bone cells and maintenance of its mass relies on the balance between the processes of resorption and formation. We have reported the expression of numerous scavenger receptors, namely scavenger receptor (SR) class B type I and II (SR-BI and SR-BII), and CD36, in bone-forming osteoblasts but their physiological roles in bone metabolism are still unknown. To unravel the role of CD36 in bone metabolism, we determined the bone phenotype of CD36 knockout (CD36KO) mice and characterized the cell functions of osteoblasts lacking CD36. Weights of CD36KO mice were significantly lower than corresponding wild-type (WT) mice, yet no significant difference was found in femoral nor tibial length between CD36KO and WT mice. Analysis of bone architecture by micro-computed tomography revealed a low bone mass phenotype in CD36KO mice of both genders. Femoral trabecular bone from 1 to 6 month-old CD36KO mice showed lower bone volume, higher trabecular separation and reduced trabeculae number compared to WT mice; similar alterations were noticed for lumbar vertebrae. Plasma levels of osteocalcin (OCN) and N-terminal propeptide of type I procollagen (PINP), two known markers of bone formation, were significantly lower in CD36KO mice than in WT mice, whereas plasma levels of bone resorption markers were similar. Accordingly, histology highlighted lower osteoblast perimeter and reduced bone formation rate. In vitro functional characterization of bone marrow stromal cells and osteoblasts isolated from CD36KO mice showed reduced cell culture expansion and survival, lower gene expression of osteoblastic Runt-related transcription factor 2 (Runx2) and osterix (Osx), as well as bone sialoprotein (BSP) and osteocalcin (OCN). Our results indicate that CD36 is mandatory for adequate bone metabolism, playing a role in osteoblast functions ensuring adequate bone formation.
Collapse
|
49
|
Bacon S, Kyithar MP, Schmid J, Costa Pozza A, Handberg A, Byrne MM. Circulating CD36 is reduced in HNF1A-MODY carriers. PLoS One 2013; 8:e74577. [PMID: 24069322 PMCID: PMC3771933 DOI: 10.1371/journal.pone.0074577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/05/2013] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Premature atherosclerosis is a significant cause of morbidity and mortality in type 2 diabetes mellitus. Maturity onset diabetes of the young (MODY) accounts for approximately 2% of all diabetes, with mutations in the transcription factor; hepatocyte nuclear factor 1 alpha (HNF1A) accounting for the majority of MODY cases. There is somewhat limited data available on the prevalence of macrovascular disease in HNF1A-MODY carriers with diabetes. Marked insulin resistance and the associated dyslipidaemia are not clinical features of HNF1A-MODY carriers. The scavenger protein CD36 has been shown to play a substantial role in the pathogenesis of atherosclerosis, largely through its interaction with oxidised LDL. Higher levels of monocyte CD36 and plasma CD36(sCD36) are seen to cluster with insulin resistance and diabetes. The aim of this study was to determine levels of sCD36 in participants with HNF1A-MODY diabetes and to compare them with unaffected normoglycaemic family members and participants with type 2 diabetes mellitus. METHODS We recruited 37 participants with HNF1A-MODY diabetes and compared levels of sCD36 with BMI-matched participants with type 2 diabetes mellitus and normoglycaemic HNF1A-MODY negative family controls. Levels of sCD36 were correlated with phenotypic and biochemical parameters. RESULTS HNF1A-MODY participants were lean, normotensive, with higher HDL and lower triglyceride levels when compared to controls and participants with type 2 diabetes mellitus. sCD36 was also significantly lower in HNF1A-MODY participants when compared to both the normoglycaemic family controls and to lean participants with type 2 diabetes mellitus. CONCLUSION In conclusion, sCD36 is significantly lower in lean participants with HNF1A-MODY diabetes when compared to weight-matched normoglycaemic familial HNF1A-MODY negative controls and to lean participants with type 2 diabetes mellitus. Lower levels of this pro-atherogenic marker may result from the higher HDL component in the lipid profile of HNF1A-MODY participants.
Collapse
Affiliation(s)
- Siobhan Bacon
- Department of Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ma P. Kyithar
- Department of Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jasmin Schmid
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andre Costa Pozza
- Department of Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Maria M. Byrne
- Department of Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
- * E-mail:
| |
Collapse
|
50
|
Röhrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1626-33. [PMID: 23939397 PMCID: PMC3795453 DOI: 10.1016/j.bbalip.2013.07.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022]
Abstract
HDL removes excess cholesterol from peripheral tissues and delivers it to the liver and steroidogenic tissues via selective lipid uptake without catabolism of the HDL particle itself. In addition, endocytosis of HDL holo-particles has been debated for nearly 40years. However, neither the connection between HDL endocytosis and selective lipid uptake, nor the physiological relevance of HDL uptake has been delineated clearly. This review will focus on HDL endocytosis and resecretion and its relation to cholesterol transfer. We will discuss the role of HDL endocytosis in maintaining cholesterol homeostasis in tissues and cell types involved in atherosclerosis, focusing on liver, macrophages and endothelium. We will critically summarize the current knowledge on the receptors mediating HDL endocytosis including SR-BI, F1-ATPase and CD36 and on intracellular HDL transport routes. Dependent on the tissue, HDL is either resecreted (retro-endocytosis) or degraded after endocytosis. Finally, findings on HDL transcytosis across the endothelial barrier will be summarized. We suggest that HDL endocytosis and resecretion is a rather redundant pathway under physiologic conditions. In case of disturbed lipid metabolism, however, HDL retro-endocytosis represents an alternative pathway that enables tissues to maintain cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Clemens Röhrl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|