1
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
2
|
Shou J, Ma J, Wang X, Li X, Chen S, Kang B, Shaw P. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406191. [PMID: 39558866 PMCID: PMC11727260 DOI: 10.1002/advs.202406191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 11/20/2024]
Abstract
Build-up of free cholesterol (FC) substantially contributes to the development and severity of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the specific mechanism by which FC induces liver injury in NAFLD and propose a novel therapeutic approach using dihydrotanshinone I (DhT). Rather than cholesterol ester (CE), we observed elevated levels of total cholesterol, FC, and alanine transaminase (ALT) in NAFLD patients and high-cholesterol diet-induced NAFLD mice compared to those in healthy controls. The FC level demonstrated a positive correlation with the ALT level in both patients and mice. Mechanistic studies revealed that FC elevated reactive oxygen species level, impaired the function of lysosomes, and disrupted lipophagy process, consequently inducing cell apoptosis. We then found that DhT protected mice on an HCD diet, independent of gut microbiota. DhT functioned as a potent ligand for peroxisome proliferator-activated receptor α (PPARα), stimulating its transcriptional function and enhancing catalase expression to lower reactive oxygen species (ROS) level. Notably, the protective effect of DhT was nullified in mice with hepatic PPARα knockdown. Thus, these findings are the first to report the detrimental role of FC in NAFLD, which could lead to the development of new treatment strategies for NAFLD by leveraging the therapeutic potential of DhT and PPARα pathway.
Collapse
Affiliation(s)
- Jia‐Wen Shou
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| | - Juncai Ma
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Xuchu Wang
- Department of Laboratory Medicinethe Second Affiliated Hospital of Zhejiang UniversityHangzhou310000China
| | - Xiao‐Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Shu‐Cheng Chen
- School of NursingThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Byung‐Ho Kang
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Pang‐Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- School of Life SciencesThe Chinese University of Hong KongHong Kong852852China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| |
Collapse
|
3
|
Farhan F, Raghupathy RK, Baran MR, Wong A, Biswas L, Jiang HR, Craft JA, Shu X. Dysregulation of lipid metabolism in the liver of Tspo knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159566. [PMID: 39349136 DOI: 10.1016/j.bbalip.2024.159566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The translocator protein, TSPO, has been implicated in a wide range of cellular processes exerted from its position in the outer mitochondrial membrane from where it influences lipid metabolism and mitochondrial oxidative activity. Understanding how this protein regulates a profusion of processes requires further elucidation and to that end we have examined lipid metabolism and used an RNAseq strategy to compare transcript abundance in wildtype and Tspo knockout (KO) mouse liver. The levels of cholesterol, triglyceride and phospholipid were significantly elevated in the KO mouse liver. The expression of cholesterol homeostasis genes was markedly downregulated. Determination of the differential expression revealed that many genes were either up- or downregulated in the KO animals. However, a striking observation within the results was a decrease of transcripts for protein degradation proteins in KO animals while protease inhibitors were enriched. When the entire abundance data-set was analysed with CEMiTool, and revealed a module of proteins that were under-represented in the KO animals. These could subsequently be formed into a network comprising three interlinked clusters at the centre of which were proteins of cytoplasmic ribosomes with gene ontology terms suggesting impairment to translation. The largest cluster was dominated by proteins of lipid metabolism but also contained disparate systems of iron metabolism and behaviour. The third cluster was dominated by proteins of the electron transport chain and oxidative phosphorylation. These findings suggest that TSPO contributes to lipid metabolism, detoxification of active oxygen species and oxidative phosphorylation, and regulates mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Fahad Farhan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Rakesh Kotapati Raghupathy
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Michal R Baran
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Aileen Wong
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, United Kingdom
| | - John A Craft
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
4
|
Lee NY, Koo JH. Longitudinal evaluation of liver stiffness reveals hepatic cholesterol as the determinant of fibrosis progression in mice. Life Sci 2024; 358:123201. [PMID: 39486617 DOI: 10.1016/j.lfs.2024.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
AIMS The metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately 30 % of the global population. While excessive consumption of dietary fat induces steatosis, it does not develop fibrosis, indicating that additional factors are required as "second hits" for further progression of MASLD. Here, based on shear wave elastography, we compared the longitudinal patterns of fibrogenesis induced by different diets and show the crucial role of cholesterol accumulation in fibrosis progression. MATERIALS AND METHODS Mice were fed chow, high-fat (HFD), high-fat high-cholesterol (HFHCD), choline-deficient, L-amino acid-defined high-fat (CDAHFD), or 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine diets over 12 weeks. KEY FINDINGS Mice fed with HFD gained significant amounts of body weight but did not show an increase in liver stiffness. In contrast, the addition of cholesterol in the same diet robustly induced liver stiffening starting from the first week, which was comparable to the CDAHFD-induced fibrosis model. Longitudinal tracking of liver stiffness revealed a two-step progression of fibrosis after prolonged feeding of HFHCD and CDAHFD, likely due to cellular cholesterol accumulation over a certain threshold after the transition point. Biochemical analyses suggested the critical role of both total and hepatic cholesterol accumulation in liver fibrosis development. SIGNIFICANCE Collectively, our results underscore the significance of cholesterol in liver fibrosis development, also highlighting the benefit of monitoring liver stiffness to understand the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Na Young Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Calabrese FM, Aloisio Caruso E, De Nunzio V, Celano G, Pinto G, Cofano M, Sallustio S, Iacobellis I, Apa CA, Santamaria M, Calasso M, Giannelli G, De Angelis M, Notarnicola M. Metataxonomics and Metabolomics Profiles in Metabolic Dysfunction-Associated Fatty Liver Disease Patients on a "Navelina" Orange-Enriched Diet. Nutrients 2024; 16:3543. [PMID: 39458536 PMCID: PMC11510614 DOI: 10.3390/nu16203543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic dysfunction-associated fatty liver disease (MAFLD) is currently the most common cause of chronic liver disease. Systemic inflammatory status and peripheral metabolic symptoms in the clinical picture have an impact on gut commensal bacteria. METHODS Our designed clinical trial was based on a cohort of patients with MAFLD whose diet included the daily consumption of 400 g of "Navelina" oranges for 28 days, compared with a control group of patients with the same pathologic conditions whose diet did not include the consumption of oranges and other foods containing similar nutrients/micronutrients. We used 16S metataxonomics and GC/MS analyses to identify taxa and urine/fecal VOCs, respectively. RESULTS A set of micronutrients from the diet were inspected, and some specific fatty acids were identified as the main contributors in terms of cluster sample separation. Metataxonomics and metabolomics profiles were obtained, and a stringent statistical approach allowed for the identification of significant taxa/VOCs, which emerged from pairwise group comparisons in both fecal and urine samples. CONCLUSIONS In conclusion, a set of taxa/VOCs can be directly referred to as a marker of dysbiosis status and other comorbidities that, together, make up the pathologic burden associated with MAFLD. The investigated variables can be a target of therapeutic strategies.
Collapse
Affiliation(s)
- Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (S.S.); (I.I.); (C.A.A.); (M.S.); (M.C.); (M.D.A.)
| | - Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (E.A.C.); (V.D.N.); (G.P.); (M.C.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (E.A.C.); (V.D.N.); (G.P.); (M.C.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (S.S.); (I.I.); (C.A.A.); (M.S.); (M.C.); (M.D.A.)
| | - Giuliano Pinto
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (E.A.C.); (V.D.N.); (G.P.); (M.C.)
| | - Miriam Cofano
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (E.A.C.); (V.D.N.); (G.P.); (M.C.)
| | - Stefano Sallustio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (S.S.); (I.I.); (C.A.A.); (M.S.); (M.C.); (M.D.A.)
| | - Ilaria Iacobellis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (S.S.); (I.I.); (C.A.A.); (M.S.); (M.C.); (M.D.A.)
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (S.S.); (I.I.); (C.A.A.); (M.S.); (M.C.); (M.D.A.)
| | - Monica Santamaria
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (S.S.); (I.I.); (C.A.A.); (M.S.); (M.C.); (M.D.A.)
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (S.S.); (I.I.); (C.A.A.); (M.S.); (M.C.); (M.D.A.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (S.S.); (I.I.); (C.A.A.); (M.S.); (M.C.); (M.D.A.)
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (E.A.C.); (V.D.N.); (G.P.); (M.C.)
| |
Collapse
|
6
|
Notarnicola M, Tutino V, De Nunzio V, Cisternino AM, Cofano M, Donghia R, Giannuzzi V, Zappimbulso M, Milella RA, Giannelli G, Fontana L. Daily Orange Consumption Reduces Hepatic Steatosis Prevalence in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: Exploratory Outcomes of a Randomized Clinical Trial. Nutrients 2024; 16:3191. [PMID: 39339791 PMCID: PMC11435367 DOI: 10.3390/nu16183191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Consumption of flavonoid-rich orange juice has been shown to reduce adiposity and liver steatosis in murine models of diet-induced obesity. However, little is known about the effects of whole orange intake, independent of body weight changes, on liver function and steatosis in individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). The goal is to understand the direct impact of orange consumption on metabolic health. Methods: Sixty-two men and women aged 30-65 with MASLD (Controlled Attenuation Parameter, (CAP) > 275 dB/m) were randomly assigned to consume either 400 g of whole oranges or non-citrus fruits daily for 4 weeks. Baseline evaluations included medical assessments, blood tests, and body composition. Liver health was assessed using transient elastography (FibroScan®) for steatosis and fibrosis, conducted by blinded personnel. This clinical trial was registered at ClinicalTrials.gov (NCT05558592). Results: After 4 weeks of orange supplementation, liver steatosis decreased in the treatment group, with 70.9% showing steatosis compared to 100% in controls (p < 0.004), indicating a 30% reduction in liver disease prevalence. There were no significant changes in fibrosis or plasma liver enzymes, though plasma gamma glutaril transferase (GGT) levels decreased significantly. Body weight, waist circumference, body composition, lipid profile, fasting glucose, insulin, and C-reactive protein levels remained unchanged. Dietary analysis revealed no change in caloric intake, but vitamins C, A, thiamine, and riboflavin increased in the orange group. Conclusions: Our findings suggest that phytochemical-rich foods, especially whole fruits like oranges, may enhance liver function as an adjunct treatment for MASLD. The notable reduction in liver steatosis prevalence occurred independently of body weight changes. Further studies are needed to investigate the long-term effects of orange supplementation on steatosis and fibrosis progression and to identify the specific bioactive compounds and mechanisms involved.
Collapse
Affiliation(s)
- Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.T.); (V.D.N.); (M.C.)
| | - Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.T.); (V.D.N.); (M.C.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.T.); (V.D.N.); (M.C.)
| | - Anna Maria Cisternino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Miriam Cofano
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.T.); (V.D.N.); (M.C.)
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Vito Giannuzzi
- Unit of Gastroenterology, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.G.); (M.Z.)
| | - Marianna Zappimbulso
- Unit of Gastroenterology, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.G.); (M.Z.)
| | | | - Gianluigi Giannelli
- Scientific Direction National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Luigi Fontana
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
7
|
Fu Y, Hua Y, Alam N, Liu E. Progress in the Study of Animal Models of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:3120. [PMID: 39339720 PMCID: PMC11435380 DOI: 10.3390/nu16183120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been proposed as an alternative term to NAFLD. MASLD is a globally recognized chronic liver disease that poses significant health concerns and is frequently associated with obesity, insulin resistance, and hyperlipidemia. To better understand its pathogenesis and to develop effective treatments, it is essential to establish suitable animal models. Therefore, attempts have been made to establish modelling approaches that are highly similar to human diet, physiology, and pathology to better replicate disease progression. Here, we reviewed the pathogenesis of MASLD disease and summarised the used animal models of MASLD in the last 7 years through the PubMed database. In addition, we have summarised the commonly used animal models of MASLD and describe the advantages and disadvantages of various models of MASLD induction, including genetic models, diet, and chemically induced models, to provide directions for research on the pathogenesis and treatment of MASLD.
Collapse
Affiliation(s)
- Yu Fu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Yuxin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
| | - Naqash Alam
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| |
Collapse
|
8
|
Yuan H, Jung ES, Chae SW, Jung SJ, Daily JW, Park S. Biomarkers for Health Functional Foods in Metabolic Dysfunction-Associated Steatotic Liver Disorder (MASLD) Prevention: An Integrative Analysis of Network Pharmacology, Gut Microbiota, and Multi-Omics. Nutrients 2024; 16:3061. [PMID: 39339660 PMCID: PMC11434757 DOI: 10.3390/nu16183061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disorder (MASLD) is increasingly prevalent globally, highlighting the need for preventive strategies and early interventions. This comprehensive review explores the potential of health functional foods (HFFs) to maintain healthy liver function and prevent MASLD through an integrative analysis of network pharmacology, gut microbiota, and multi-omics approaches. We first examined the biomarkers associated with MASLD, emphasizing the complex interplay of genetic, environmental, and lifestyle factors. We then applied network pharmacology to identify food components with potential beneficial effects on liver health and metabolic function, elucidating their action mechanisms. This review identifies and evaluates strategies for halting or reversing the development of steatotic liver disease in the early stages, as well as biomarkers that can evaluate the success or failure of such strategies. The crucial role of the gut microbiota and its metabolites for MASLD prevention and metabolic homeostasis is discussed. We also cover state-of-the-art omics approaches, including transcriptomics, metabolomics, and integrated multi-omics analyses, in research on preventing MASLD. These advanced technologies provide deeper insights into physiological mechanisms and potential biomarkers for HFF development. The review concludes by proposing an integrated approach for developing HFFs targeting MASLD prevention, considering the Korean regulatory framework. We outline future research directions that bridge the gap between basic science and practical applications in health functional food development. This narrative review provides a foundation for researchers and food industry professionals interested in developing HFFs to support liver health. Emphasis is placed on maintaining metabolic balance and focusing on prevention and early-stage intervention strategies.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - James W. Daily
- Department of R&D, Daily Manufacturing Inc., Rockwell, NC 28138, USA;
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro79bungil, Asan 31499, Republic of Korea
| |
Collapse
|
9
|
Yong Q, Huang C, Chen B, An J, Zheng Y, Zhao L, Peng C, Liu F. Gentiopicroside improves NASH and liver fibrosis by suppressing TLR4 and NLRP3 signaling pathways. Biomed Pharmacother 2024; 177:116952. [PMID: 38917754 DOI: 10.1016/j.biopha.2024.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) and liver fibrosis are progressive conditions associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatocyte pyroptosis and hepatic stellate cell (HSC) activation. Gentiopicroside (GPS) has emerged as a potential treatment for NASH, yet its underlying mechanism remains unclear. AIM To confirm that GPS can improve NASH and liver fibrosis by blocking the NLRP3 signaling pathway STUDY DESIGN: Initially, different animal models were used to study the effects and mechanisms of GPS on NASH and fibrosis. Subsequent in vitro experiments utilized co-cultures and other techniques to delve deeper into its mechanism, followed by validation of the findings in mouse liver tissues. METHODS C57BL/6 mice were fed high-fat, high-cholesterol (HFHC), or methionine-choline-deficient (MCD) diets to induce NASH and fibrosis. RAW264.7 cells and born marrow bone marrow-derived macrophages (BMDMs) were stimulated with LPS and ATP to induce inflammation, then co-cultured with primary hepatocytes and HSCs, treated with GPS, and its efficacy and mechanism were analyzed. RESULTS In vivo, GPS alleviated NASH and liver fibrosis by inhibiting the NLRP3 pathway. In vitro, GPS attenuated inflammation induced by BMDMs by inhibiting TLR4 and NLRP3 signaling pathways, and Co-culture studies suggested that GPS reduced hepatocyte pyroptosis and HSC activation, which was also confirmed in liver tissues CONCLUSION: GPS improves NASH and liver fibrosis by inhibiting the TLR4 and NLRP3 signaling pathways. The specific mechanism may be related to the suppression of macrophage-mediated inflammatory responses, thereby reducing hepatocyte pyroptosis and HSC activation.
Collapse
Affiliation(s)
- Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinqi An
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyuan Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Yadav KK, Boley PA, Khatiwada S, Lee CM, Bhandari M, Kenney SP. Development of fatty liver disease model using high cholesterol and low choline diet in white leghorn chickens. Vet Res Commun 2024; 48:2489-2497. [PMID: 38861204 PMCID: PMC11315703 DOI: 10.1007/s11259-024-10420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which shows similar symptoms as fatty liver hemorrhage syndrome (FLHS) in chickens, is the most common cause of chronic liver disease and cancer in humans. NAFLD patients and FLHS in chickens have demonstrated severe liver disorders when infected by emerging strains of human hepatitis E virus (HEV) and avian HEV, respectively. We sought to develop a fatty liver disease chicken model by altering the diet of 3-week-old white leghorn chickens. The high cholesterol, and low choline (HCLC) diet included 7.6% fat with additional 2% cholesterol and 800 mg/kg choline in comparison to 5.3% fat, and 1,300 mg/kg choline in the regular diet. Our diet induced fatty liver avian model successfully recapitulates the clinical features seen during NAFLD in humans and FLHS in chickens, including hyperlipidemia and hepatic steatosis, as indicated by significantly higher serum triglycerides, serum cholesterol, liver triglycerides, cholesterol, and fatty acids. By developing this chicken model, we expect to provide a platform to explore the role of lipids in the liver pathology linked with viral infections and contribute to the development of prophylactic interventions.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Patricia A Boley
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Saroj Khatiwada
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Carolyn M Lee
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Menuka Bhandari
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Scott P Kenney
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Jang H, Woo H, Corvino O, Kang H, Kim MB, Lee JY, Park YK. Dietary sugar kelp ( Saccharina latissima) consumption did not attenuate atherosclerosis in low-density lipoprotein receptor knockout mice. Food Funct 2024; 15:6684-6691. [PMID: 38819217 DOI: 10.1039/d4fo01037j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We previously demonstrated the beneficial effects of U.S.-grown sugar kelp (Saccharina latissima), a brown seaweed, on reducing serum triglycerides (TG) and total cholesterol (TC) and protecting against inflammation and fibrosis in the adipose tissue of diet-induced obesity mice. In this current study, we aimed to explore whether the dietary consumption of sugar kelp can prevent atherosclerosis using low-density lipoprotein receptor knockout (Ldlr KO) mice fed an atherogenic diet. Eight-week-old male Ldlr KO mice were fed either an atherogenic high-fat/high-cholesterol control (HF/HC) diet or a HF/HC diet supplemented with 6% (w/w) sugar kelp (HF/HC-SK) for 16 weeks. Consumption of sugar kelp significantly increased the body weight gain without altering fat mass and lean mass. Also, there were no significant differences in energy expenditure and physical activities between the groups. The two groups did not show significant differences in serum and hepatic TG and TC levels or the hepatic expression of genes involved in cholesterol and lipid metabolism. Although serum alanine aminotransferase (ALT) activity did not differ significantly between the two groups, there were significant increases in the expression of macrophage markers, including adhesion G protein-coupled receptor E1 and cluster of differentiation 68, as well as tumor necrosis factor alpha in the HF/HC-SK group compared to the HF/HC mice. The consumption of sugar kelp did not elicit a significant effect on the development of aortic lesions. Moreover, lipopolysaccharide-stimulated splenocytes isolated from HF/HC-SK-fed mice showed no significant changes in the mRNA levels of pro-inflammatory genes compared with those from the HF/HC mice. In summary, the consumption of dietary sugar kelp did not elicit anti-atherogenic and hepatoprotective effects in Ldlr KO mice.
Collapse
Affiliation(s)
- Hyungryun Jang
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Olivia Corvino
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| |
Collapse
|
12
|
Caddeo A, Maurotti S, Kovooru L, Romeo S. 3D culture models to study pathophysiology of steatotic liver disease. Atherosclerosis 2024; 393:117544. [PMID: 38677899 DOI: 10.1016/j.atherosclerosis.2024.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Steatotic liver disease (SLD) refers to a spectrum of diseases caused by hepatic lipid accumulation. SLD has emerged as the leading cause of chronic liver disease worldwide. Despite this burden and many years, understanding the pathophysiology of this disease is challenging due to the inaccessibility to human liver specimens. Therefore, cell-based in vitro systems are widely used as models to investigate the pathophysiology of SLD. Culturing hepatic cells in monolayers causes the loss of their hepatocyte-specific phenotype and, consequently, tissue-specific function and architecture. Hence, three-dimensional (3D) culture models allow cells to mimic the in vivo microenvironment and spatial organization of the liver unit. The utilization of 3D in vitro models minimizes the drawbacks of two-dimensional (2D) cultures and aligns with the 3Rs principles to alleviate the number of in vivo experiments. This article provides an overview of liver 3D models highlighting advantages and limitations, and culminates by discussing their applications in pharmaceutical and biomedical research.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy.
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Lohitesh Kovooru
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
13
|
Nofal AE, AboShabaan HS, Fadda WA, Ereba RE, Elsharkawy SM, Hathout HM. L-carnitine and Ginkgo biloba Supplementation In Vivo Ameliorates HCD-Induced Steatohepatitis and Dyslipidemia by Regulating Hepatic Metabolism. Cells 2024; 13:732. [PMID: 38727268 PMCID: PMC11083725 DOI: 10.3390/cells13090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Treatment strategies for steatohepatitis are of special interest given the high prevalence of obesity and fatty liver disease worldwide. This study aimed to investigate the potential therapeutic mechanism of L-carnitine (LC) and Ginkgo biloba leaf extract (GB) supplementation in ameliorating the adverse effects of hyperlipidemia and hepatosteatosis induced by a high-cholesterol diet (HCD) in an animal model. The study involved 50 rats divided into five groups, including a control group, a group receiving only an HCD, and three groups receiving an HCD along with either LC (300 mg LC/kg bw), GB (100 mg GB/kg bw), or both. After eight weeks, various parameters related to lipid and glucose metabolism, antioxidant capacity, histopathology, immune reactivity, and liver ultrastructure were measured. LC + GB supplementation reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, glucose, insulin, HOMA-IR, alanine transaminase, and aspartate transaminase levels and increased high-density lipoprotein cholesterol levels compared with those in the HCD group. Additionally, treatment with both supplements improved antioxidant ability and reduced lipid peroxidation. The histological examination confirmed that the combination therapy reduced liver steatosis and fibrosis while also improving the appearance of cell organelles in the ultrastructural hepatocytes. Finally, the immunohistochemical analysis indicated that cotreatment with LC + GB upregulated the immune expression of GLP-1 and β-Cat in liver sections that were similar to those of the control animals. Mono-treatment with LC or GB alone substantially but not completely protected the liver tissue, while the combined use of LC and GB may be more effective in treating liver damage caused by high cholesterol than either supplement alone by regulating hepatic oxidative stress and the protein expression of GLP-1 and β-Cat.
Collapse
Affiliation(s)
- Amany E. Nofal
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Hind S. AboShabaan
- Clinical Pathology Department, National Liver Institute Hospital, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Walaa A. Fadda
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Rafik E. Ereba
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cario 11511, Egypt;
| | | | - Heba M. Hathout
- Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt
| |
Collapse
|
14
|
Yang CR, Lin WJ, Shen PC, Liao PY, Dai YC, Hung YC, Lai HC, Mehmood S, Cheng WC, Ma WL. Phenotypic and metabolomic characteristics of mouse models of metabolic associated steatohepatitis. Biomark Res 2024; 12:6. [PMID: 38195587 PMCID: PMC10777576 DOI: 10.1186/s40364-023-00555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Metabolic associated steatohepatitis (MASH) is metabolic disease that may progress to cirrhosis and hepatocellular carcinoma. Mouse models of diet-induced MASH, which is characterized by the high levels of fats, sugars, and cholesterol in diets, are commonly used in research. However, mouse models accurately reflecting the progression of MASH in humans remain to be established. Studies have explored the potential use of serological metabolites as biomarkers of MASH severity in relation to human MASH. METHODS We performed a comparative analysis of three mouse models of diet-induced MASH in terms of phenotypic and metabolomic characteristics; MASH was induced using different diets: a high-fat diet; a Western diet; and a high-fat, high-cholesterol diet. Liver cirrhosis was diagnosed using standard clinical approaches (e.g., METAVIR score, hyaluronan level, and collagen deposition level). Mouse serum samples were subjected to nuclear magnetic resonance spectroscopy-based metabolomic profiling followed by bioinformatic analyses. Metabolomic analysis of a retrospective cohort of patients with hepatocellular carcinoma was performed; the corresponding cirrhosis scores were also evaluated. RESULTS Using clinically relevant quantitative diagnostic methods, the severity of MASH was evaluated. Regarding metabolomics, the number of lipoprotein metabolites increased with both diet and MASH progression. Notably, the levels of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) significantly increased with fibrosis progression. During the development of diet-induced MASH in mice, the strongest upregulation of expression was noted for VLDL receptor. Metabolomic analysis of a retrospective cohort of patients with cirrhosis indicated lipoproteins (e.g., VLDL and LDL) as predominant biomarkers of cirrhosis. CONCLUSIONS Our findings provide insight into the pathophysiology and metabolomics of experimental MASH and its relevance to human MASH. The observed upregulation of lipoprotein expression reveals a feedforward mechanism for MASH development that may be targeted for the development of noninvasive diagnosis.
Collapse
Affiliation(s)
- Cian-Ru Yang
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Jen Lin
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Chun Shen
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Yin Liao
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Chang Dai
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Yao-Ching Hung
- Department of Gynecology and Obstetrics, Asia University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shiraz Mehmood
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Wen-Lung Ma
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
Kothari V, Savard C, Tang J, Lee SP, Subramanian S, Wang S, den Hartigh LJ, Bornfeldt KE, Ioannou GN. sTREM2 is a plasma biomarker for human NASH and promotes hepatocyte lipid accumulation. Hepatol Commun 2023; 7:e0265. [PMID: 37820278 PMCID: PMC10578746 DOI: 10.1097/hc9.0000000000000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Pathogenetic mechanisms of the progression of NAFL to advanced NASH coupled with potential noninvasive biomarkers and novel therapeutic targets are active areas of investigation. The recent finding that increased plasma levels of a protein shed by myeloid cells -soluble Triggering Receptor Expressed on Myeloid cells 2 (sTREM2) -may be a biomarker for NASH has received much interest. We aimed to test sTREM2 as a biomarker for human NASH and investigate the role of sTREM2 in the pathogenesis of NASH. METHODS We conducted studies in both humans (comparing patients with NASH vs. NAFL) and in mice (comparing different mouse models of NASH) involving measurements of TREM2 gene and protein expression levels in the liver as well as circulating sTREM2 levels in plasma. We investigated the pathogenetic role of sTREM2 in hepatic steatosis using primary hepatocytes and bone marrow derived macrophages. RESULTS RNA sequencing analysis of livers from patients with NASH or NAFL as well as livers from 2 mouse models of NASH revealed elevated TREM2 expression in patients/mice with NASH as compared with NAFL. Plasma levels of sTREM2 were significantly higher in a well-characterized cohort of patients with biopsy-proven NASH versus NAFL (area under receiver-operating curve 0.807). Mechanistic studies revealed that cocultures of primary hepatocytes and macrophages with an impaired ability to shed sTREM2 resulted in reduced hepatocyte lipid droplet formation on palmitate stimulation, an effect that was counteracted by the addition of exogenous sTREM2 chimeric protein. Conversely, exogenous sTREM2 chimeric protein increased lipid droplet formation, triglyceride content, and expression of the lipid transporter CD36 in hepatocytes. Furthermore, inhibition of CD36 markedly attenuated sTREM2-induced lipid droplet formation in mouse primary hepatocytes. CONCLUSIONS Elevated levels of sTREM2 due to TREM2 shedding may directly contribute to the pathogenesis of NAFLD by promoting hepatocyte lipid accumulation, as well as serving as a biomarker for distinguishing patients with NASH versus NAFL. Further investigation of sTREM2 as a clinically useful diagnostic biomarker and of the therapeutic effects of targeting sTREM2 in NASH is warranted.
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Christopher Savard
- Department of Medicine, Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Jingjing Tang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Sum P. Lee
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Karin E. Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George N. Ioannou
- Department of Medicine, Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| |
Collapse
|
16
|
Moragrega AB, Gruevska A, Fuster-Martínez I, Benedicto AM, Tosca J, Montón C, Victor VM, Esplugues JV, Blas-García A, Apostolova N. Anti-inflammatory and immunomodulating effects of rilpivirine: Relevance for the therapeutics of chronic liver disease. Biomed Pharmacother 2023; 167:115537. [PMID: 37738799 DOI: 10.1016/j.biopha.2023.115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease (CLD) worldwide and inflammation is key to its progression/resolution. As we have previously described that rilpivirine (RPV) is hepatoprotective in murine models of CLD, here we determine the molecular mechanisms involved, focusing on its anti-inflammatory and immunomodulating properties. They were evaluated in vitro (human hepatic cell lines of the major hepatic cell types), in vivo (liver samples from a murine nutritional model of NAFLD) and ex vivo (peripheral blood mononuclear cells -PBMC- from patients with CLD). Transcriptomic analysis of liver samples from NAFLD mice showed RPV down-regulated biological processes associated with the inflammatory response (NF-κB/IκB signaling and mitogen-activated protein kinase -MAPK- activity) and leukocyte chemotaxis and migration. We observed a decrease in Adgre1 and Ccr2 expression and in the number of CCR2 + cells in the periportal areas of RPV-treated NAFLD mice. This RPV-induced effect on the CCL2/CCR2 axis was confirmed in vitro. A similar result was also obtained with CXCL10/IP10, one of the main chemokines in the liver. RPV also diminished activation of MAP kinases p38 and JNK. In addition, RPV inhibited the NLRP3 inflammasome pathway in vitro, decreasing NLRP3 protein expression, caspase-1 activation and IL-1β gene expression. RPV was also proven anti-inflammatory in PBMC from patients with CLD treated ex vivo. In conclusion, beyond its well-described role in antiretroviral therapy, RPV manifests anti-inflammatory and immunoregulatory effects, a finding that could be of great relevance for the search of novel targets or repositioning strategies for CLD.
Collapse
Affiliation(s)
- Angela B Moragrega
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Aleksandra Gruevska
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Isabel Fuster-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Ana M Benedicto
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| | - Joan Tosca
- Departmento de Medicina Digestiva, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Cristina Montón
- Departmento de Medicina Digestiva, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Victor M Victor
- FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ana Blas-García
- FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| |
Collapse
|
17
|
Lee YK, Park JE, Lee M, Mifflin R, Xu Y, Novak R, Zhang Y, Hardwick JP. Deletion of hepatic small heterodimer partner ameliorates development of nonalcoholic steatohepatitis in mice. J Lipid Res 2023; 64:100454. [PMID: 37827334 PMCID: PMC10665942 DOI: 10.1016/j.jlr.2023.100454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Small heterodimer partner (SHP, Nr0b2) is an orphan nuclear receptor that regulates bile acid, lipid, and glucose metabolism. Shp-/- mice are resistant to diet-induced obesity and hepatic steatosis. In this study, we explored the potential role of SHP in the development of nonalcoholic steatohepatitis (NASH). A 6-month Western diet (WD) regimen was used to induce NASH. Shp deletion protected mice from NASH progression by inhibiting inflammatory and fibrotic genes, oxidative stress, and macrophage infiltration. WD feeding disrupted the ultrastructure of hepatic mitochondria in WT mice but not in Shp-/- mice. In ApoE-/- mice, Shp deletion also effectively ameliorated hepatic inflammation after a 1 week WD regimen without an apparent antisteatotic effect. Moreover, Shp-/- mice resisted fibrogenesis induced by a methionine- and choline-deficient diet. Notably, the observed protection against NASH was recapitulated in liver-specific Shp-/- mice fed either the WD or methionine- and choline-deficient diet. Hepatic cholesterol was consistently reduced in the studied mouse models with Shp deletion. Our data suggest that Shp deficiency ameliorates NASH development likely by modulating hepatic cholesterol metabolism and inflammation.
Collapse
Affiliation(s)
- Yoon-Kwang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Jung Eun Park
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mikang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ryan Mifflin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yang Xu
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Robert Novak
- Department of Pathology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
18
|
Zhang XL, Hollander CM, Khan MY, D'silva M, Ma H, Yang X, Bai R, Keeter CK, Galkina EV, Nadler JL, Stanton PK. Myeloid cell deficiency of the inflammatory transcription factor Stat4 protects long-term synaptic plasticity from the effects of a high-fat, high-cholesterol diet. Commun Biol 2023; 6:967. [PMID: 37783748 PMCID: PMC10545833 DOI: 10.1038/s42003-023-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's and Parkinson's. The cytokine interleukin-12 activates signal transducer and activator of transcription 4 (Stat4), and consumption of a high-fat, high-cholesterol diet (HFD-C) and Stat4 activity are associated with inflammation, atherosclerosis, and a diabetic metabolic phenotype. In studies of in vitro hippocampal slices from control Stat4fl/flLdlr-/- mice fed a HFD-C diabetogenic diet, we show that Schaffer collateral-CA1 synapses exhibited larger reductions in activity-dependent, long-term potentiation (LTP) of synaptic transmission, compared to mice fed a standard diet. Glucose tolerance and insulin sensitivity shifts produced by HFD-C diet were reduced in Stat4ΔLysMLdlr-/- mice compared to Stat4fl/flLdlr-/- controls. Stat4ΔLysMLdlr-/- mice, which lack Stat4 under control of the LysMCre promoter, were resistant to HFD-C induced impairments in LTP. In contrast, Schaffer collateral-CA1 synapses in Stat4ΔLysMLdlr-/- mice fed the HFD-C diet showed larger LTP than control Stat4fl/flLdlr-/- mice. Expression of a number of neuroinflammatory and synaptic plasticity genes was reduced by HFD-C diet in control mice, and less affected by HFD-C diet in Stat4ΔLysMLdlr-/- mice. These data suggest that suppression of Stat4 activation may protect against effects of Western diet on cognition, type 2 diabetes, and reduce risk of Alzheimer's disease and other neurodegenerative disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Callie M Hollander
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Mohammad Yasir Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Haoqin Ma
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Xinyuan Yang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Robin Bai
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Coles K Keeter
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Elena V Galkina
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
- ACOS-Research VA Northern California Health Care System, Sacramento, CA, 95655, USA
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
19
|
Li Y, Zhang L, Jiao J, Ding Q, Li Y, Zhao Z, Luo J, Chen Y, Ruan X, Zhao L. Hepatocyte CD36 protects mice from NASH diet-induced liver injury and fibrosis via blocking N1ICD production. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166800. [PMID: 37423141 DOI: 10.1016/j.bbadis.2023.166800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND & AIMS Fatty acid translocase CD36 (CD36/FAT) is a widely expressed membrane protein with multiple immuno-metabolic functions. Genetic CD36 deficiency is associated with increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD) in patients. Liver fibrosis severity mainly affects the prognosis in patients with MAFLD, but the role of hepatocyte CD36 in liver fibrosis of MAFLD remains unclear. METHODS A high-fat high-cholesterol diet and a high-fat diet with high-fructose drinking water were used to induce nonalcoholic steatohepatitis (NASH) in hepatocyte-specific CD36 knockout (CD36LKO) and CD36flox/flox (LWT) mice. Human hepG2 cell line was used to investigate the role of CD36 in regulating Notch pathway in vitro. RESULTS Compared to LWT mice, CD36LKO mice were susceptible to NASH diet-induced liver injury and fibrosis. The analysis of RNA-sequencing data revealed that Notch pathway was activated in CD36LKO mice. LY3039478, an inhibitor of γ-secretase, inhibited Notch1 protein S3 cleavage and Notch1 intracellular domain (N1ICD) production, alleviating liver injury and fibrosis in CD36LKO mice livers. Likewise, both LY3039478 and knockdown of Notch1 inhibited the CD36KO-induced increase of N1ICD production, causing the decrease of fibrogenic markers in CD36KO HepG2 cells. Mechanistically, CD36 formed a complex with Notch1 and γ-secretase in lipid rafts, and hence CD36 anchored Notch1 in lipid rafts domains and blocked Notch1/γ-secretase interaction, inhibiting γ-secretase-mediated cleavage of Notch1 and the production of N1ICD. CONCLUSIONS Hepatocyte CD36 plays a key role in protecting mice from diet-induced liver injury and fibrosis, which may provide a potential therapeutic strategy for preventing liver fibrogenesis in MAFLD.
Collapse
Affiliation(s)
- Yuqi Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Linkun Zhang
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Junkui Jiao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Qiuying Ding
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Yanping Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Zhibo Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Jinfeng Luo
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Xiongzhong Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | - Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
20
|
Luo K, Chen Y, Fang S, Wang S, Wu Z, Li H. Study on inflammation and fibrogenesis in MAFLD from 2000 to 2022: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1231520. [PMID: 37720529 PMCID: PMC10500306 DOI: 10.3389/fendo.2023.1231520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic inflammation and fibrosis are significant factors in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). In this study, we conducted a bibliometric analysis of publications on inflammation and fibrogenesis in MAFLD, with a focus on reporting publication trends. Our findings indicate that the USA and China are the most productive countries in the field, with the University of California San Diego being the most productive institution. Over the past 23 years, Prof. Diehl AM has published 25 articles that significantly contributed to the research community. Notably, the research focus of the field has shifted from morbid obesity and adiponectin to metabolic syndrome, genetics, and microbiome. Our study provides a comprehensive and objective summary of the historical characteristics of research on inflammation and fibrogenesis in MAFLD, which will be of interest to scientific researchers in this field.
Collapse
Affiliation(s)
- Kuanhong Luo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzheng Fang
- College of Art and Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Siqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixin Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
22
|
Cho KH, Kim JE, Bahuguna A, Kang DJ. Long-Term Supplementation of Ozonated Sunflower Oil Improves Dyslipidemia and Hepatic Inflammation in Hyperlipidemic Zebrafish: Suppression of Oxidative Stress and Inflammation against Carboxymethyllysine Toxicity. Antioxidants (Basel) 2023; 12:1240. [PMID: 37371970 DOI: 10.3390/antiox12061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Ozonated sunflower oil (OSO) is a well-known functional oil with antioxidant, antimicrobial, anti-allergic, and skin-moisturizing properties. However, studies on the effects of OSO on high-cholesterol diet (HCD)-induced metabolic disorders have been scarce. In the current study, we aimed to determine the anti-inflammatory effects of OSO on lipid metabolism in adult hypercholesterolemic zebrafish and its embryos. Microinjection of OSO (final 2%, 10 nL) into zebrafish embryos under the presence of carboxymethyllysine (CML, 500 ng) protected acute embryo death up to 61% survival, while sunflower oil (final 2%) showed much less protection at around 42% survival. The microinjection of OSO was more effective than SO to inhibit reactive oxygen species (ROS) production and apoptosis in the CML induced embryo toxicity. Intraperitoneal injection of OSO under the presence of CML protected acute death from CML-induced neurotoxicity with improved hepatic inflammation, less detection of ROS and interleukin (IL)-6, and lowering blood total cholesterol (TC) and triglyceride (TG), while the SO-injected group did not protect the CML-toxicity. Long-term supplementation of OSO (final 20%, wt/wt) with HCD for 6 months resulted in higher survivability than the HCD alone group or HCD + SO group (final 20%, wt/wt) with significant lowering of plasma TC and TG levels. The HCD + OSO group showed the least hepatic inflammation, fatty liver change, ROS, and IL-6 production. In conclusion, short-term treatment of OSO by injection exhibited potent anti-inflammatory activity against acute neurotoxicity of CML in zebrafish and their embryo. Long-term supplementation of OSO in the diet also revealed the highest survivability and blood lipid-lowering effect through potent antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
- LipoLab, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ji-Eun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ashutosh Bahuguna
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Dae-Jin Kang
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| |
Collapse
|
23
|
Rivas-Domínguez A, Mohamed-Mohamed H, Jimenez-Palomares M, García-Morales V, Martinez-Lopez L, Orta ML, Ramos-Rodriguez JJ, Bermudez-Pulgarin B. Metabolic Disturbance of High-Saturated Fatty Acid Diet in Cognitive Preservation. Int J Mol Sci 2023; 24:ijms24098042. [PMID: 37175748 PMCID: PMC10178694 DOI: 10.3390/ijms24098042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Aging continues to be the main cause of the development of Alzheimer's, although it has been described that certain chronic inflammatory pathologies can negatively influence the progress of dementia, including obesity and hyperlipidemia. In this sense, previous studies have shown a relationship between low-density lipoprotein receptor (LDLR) and the amyloid-beta (Aβ) binding activity, one of the main neuropathological features of Alzheimer's disease (AD). LDLR is involved in several processes, including lipid transport, regulation of inflammatory response and lipid metabolism. From this perspective, LDLR-/- mice are a widely accepted animal model for the study of pathologies associated with alterations in lipid metabolism, such as familial hypercholesterolemia, cardiovascular diseases, metabolic syndrome, or early cognitive decline. In this context, we induced hyperlipidemia in LDLR-/- mice after feeding with a high-saturated fatty acid diet (HFD) for 44 weeks. LDLR-/--HFD mice exhibited obesity, hypertriglyceridemia, higher glucose levels, and early hepatic steatosis. In addition, HFD increased plasmatic APOE and ubiquitin 60S levels. These proteins are related to neuronal integrity and health maintenance. In agreement, we detected mild cognitive dysfunctions in mice fed with HFD, whereas LDLR-/--HFD mice showed a more severe and evident affectation. Our data suggest central nervous system dysfunction is associated with a well-established metabolic syndrome. As a late consequence, metabolic syndrome boots many behavioral and pathological alterations recognized in dementia, supporting that the control of metabolic parameters could improve cognitive preservation and prognosis.
Collapse
Affiliation(s)
| | - Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain
| | | | - Victoria García-Morales
- Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11003 Cádiz, Spain
| | | | - Manuel Luis Orta
- Department of Cellular Biology, University of Seville, 41009 Seville, Spain
| | - Juan José Ramos-Rodriguez
- Department of Physiology, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain
| | | |
Collapse
|
24
|
Ma DW, Ha J, Yoon KS, Kang I, Choi TG, Kim SS. Innate Immune System in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:2068. [PMID: 37432213 DOI: 10.3390/nu15092068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by lipid accumulation in hepatocytes with low alcohol consumption. The development of sterile inflammation, which occurs in response to a range of cellular stressors or injuries, has been identified as a major contributor to the pathogenesis of NAFLD. Recent studies of the pathogenesis of NAFLD reported the newly developed roles of damage-associated molecular patterns (DAMPs). These molecules activate pattern recognition receptors (PRRs), which are placed in the infiltrated neutrophils, dendritic cells, monocytes, or Kupffer cells. DAMPs cause the activation of PRRs, which triggers a number of immunological responses, including the generation of cytokines that promote inflammation and the localization of immune cells to the site of the damage. This review provides a comprehensive overview of the impact of DAMPs and PRRs on the development of NAFLD.
Collapse
Affiliation(s)
- Dae Won Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
25
|
Thompson D, Mahmood S, Morrice N, Kamli-Salino S, Dekeryte R, Hoffmann PA, Doherty MK, Whitfield PD, Delibegović M, Mody N. Fenretinide inhibits obesity and fatty liver disease but induces Smpd3 to increase serum ceramides and worsen atherosclerosis in LDLR -/- mice. Sci Rep 2023; 13:3937. [PMID: 36894641 PMCID: PMC9998859 DOI: 10.1038/s41598-023-30759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Fenretinide is a synthetic retinoid that can prevent obesity and improve insulin sensitivity in mice by directly altering retinol/retinoic acid homeostasis and inhibiting excess ceramide biosynthesis. We determined the effects of Fenretinide on LDLR-/- mice fed high-fat/high-cholesterol diet ± Fenretinide, a model of atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Fenretinide prevented obesity, improved insulin sensitivity and completely inhibited hepatic triglyceride accumulation, ballooning and steatosis. Moreover, Fenretinide decreased the expression of hepatic genes driving NAFLD, inflammation and fibrosis e.g. Hsd17b13, Cd68 and Col1a1. The mechanisms of Fenretinide's beneficial effects in association with decreased adiposity were mediated by inhibition of ceramide synthesis, via hepatic DES1 protein, leading to increased dihydroceramide precursors. However, Fenretinide treatment in LDLR-/- mice enhanced circulating triglycerides and worsened aortic plaque formation. Interestingly, Fenretinide led to a fourfold increase in hepatic sphingomyelinase Smpd3 expression, via a retinoic acid-mediated mechanism and a further increase in circulating ceramide levels, linking induction of ceramide generation via sphingomyelin hydrolysis to a novel mechanism of increased atherosclerosis. Thus, despite beneficial metabolic effects, Fenretinide treatment may under certain circumstances enhance the development of atherosclerosis. However, targeting both DES1 and Smpd3 may be a novel, more potent therapeutic approach for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Dawn Thompson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Shehroz Mahmood
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Nicola Morrice
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sarah Kamli-Salino
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Ruta Dekeryte
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Philip A Hoffmann
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mary K Doherty
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Philip D Whitfield
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Mirela Delibegović
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Nimesh Mody
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
26
|
Yahoo N, Dudek M, Knolle P, Heikenwälder M. Role of immune responses for development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J Hepatol 2023:S0168-8278(23)00165-4. [PMID: 36893854 DOI: 10.1016/j.jhep.2023.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
The liver is the central metabolic organ of the body regulating energy and lipid metabolism and at the same time has potent immunological functions. Overwhelming the metabolic capacity of the liver by obesity and sedentary lifestyle leads to hepatic lipid accumulation, chronic necro-inflammation, enhanced mitochondrial/ER-stress and development of non-alcoholic fatty liver disease (NAFLD), with its pathologic form nonalcoholic steatohepatitis (NASH). Based on knowledge on pathophysiological mechanisms, specifically targeting metabolic diseases to prevent or slow down progression of NAFLD to liver cancer will become possible. Genetic/environmental factors contribute to development of NASH and liver cancer progression. The complex pathophysiology of NAFLD-NASH is reflected by environmental factors, particularly the gut microbiome and its metabolic products. NAFLD-associated HCC occurs in most of the cases in the context of a chronically inflamed liver and cirrhosis. Recognition of environmental alarmins or metabolites derived from the gut microbiota and the metabolically injured liver create a strong inflammatory milieu supported by innate and adaptive immunity. Several recent studies indicate that the chronic hepatic microenvironment of steatosis induces auto-aggressive CD8+CXCR6+PD1+ T cells secreting TNF and upregulating FasL to eliminate parenchymal and non-parenchymal cells in an antigen independent manner. This promotes chronic liver damage and a pro-tumorigenic environment. CD8+CXCR6+PD1+ T cells possess an exhausted, hyperactivated, resident phenotype and trigger NASH to HCC transition, and might be responsible for a less efficient treatment response to immune-check-point inhibitors - in particular atezolizumab/bevacizumab. Here, we provide an overview of NASH-related inflammation/pathogenesis focusing on new discoveries on the role of T cells in NASH-immunopathology and therapy response. This review discusses preventive measures to halt disease progression to liver cancer and therapeutic strategies to manage NASH-HCC patients.
Collapse
Affiliation(s)
- Neda Yahoo
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; The M3 Research Institute, Karl Eberhards Universitaet Tübingen, Medizinische Fakultät, Otfried-Müller-Straße 37, 72076 Tübingen.
| |
Collapse
|
27
|
Griffett K, Burris TP. Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases. Front Med (Lausanne) 2023; 10:1102469. [PMID: 36817797 PMCID: PMC9932051 DOI: 10.3389/fmed.2023.1102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Activation of LXR activity by synthetic agonists has been the focus of many drug discovery efforts with a focus on treatment of dyslipidemia and atherosclerosis. Many agonists have been developed, but all have been hindered due to their ability to efficaciously stimulate de novo lipogenesis. Here, we review the development of LXR inverse agonists that were originally optimized for their ability to enable recruitment of corepressors leading to silencing of genes that drive de novo lipogenesis. Such compounds have efficacy in animal models of MAFLD, dyslipidemia, and cancer. Several classes of LXR inverse agonists have been identified and one is now in clinical trials for treatment of severe dyslipidemia.
Collapse
Affiliation(s)
- Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Thomas P. Burris
- The University of Florida Genetics Institute, Gainesville, FL, United States,*Correspondence: Thomas P. Burris,
| |
Collapse
|
28
|
Structural Characterization and Anti-Nonalcoholic Fatty Liver Effect of High-Sulfated Ulva pertusa Polysaccharide. Pharmaceuticals (Basel) 2022; 16:ph16010062. [PMID: 36678559 PMCID: PMC9865482 DOI: 10.3390/ph16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main structure of HU was elucidated using FT-IR and NMR (13C, 1H, COSY, HSQC, HMBC). The anti-NAFLD activity of HU was explored using the high-fat diet mouse model to detect indicators of blood lipid and liver function and observe the pathologic changes in epididymal fat and the liver. Results showed that HU had these main structural fragments: →4)-β-D-Glcp(1→4)-α-L-Rhap2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp(1→; →4)-α-L-IdopA3S(1→4)-α-L-Rhap3S(1→; →4)-β-D-GlcpA(1→3)-α-L-Rhap(1→; →4)-α-L-IdopA3S(1→4)-β-D-Glcp3Me(1→; →4)-β-D-Xylp2,3S(1→4)-α-L-IdopA3S(1→; and →4)-β-D-Xylp(1→4)-α-L-IdopA3S(1→. Treatment results indicated that HU markedly decreased levels of TC, LDL-C, TG, and AST. Furthermore, lipid droplets in the liver were reduced, and the abnormal enlargement of epididymal fat cells was suppressed. Thus, HU appears to have a protective effect on the development of NAFLD.
Collapse
|
29
|
Flessa CM, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, Kaltsas G, Kassi E, Randeva HS. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci 2022; 23:15791. [PMID: 36555433 PMCID: PMC9780957 DOI: 10.3390/ijms232415791] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health and Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Bianca M. Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Lianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
30
|
Baiges-Gaya G, Rodríguez-Tomàs E, Castañé H, Jiménez-Franco A, Amigó N, Camps J, Joven J. Combining Dietary Intervention with Metformin Treatment Enhances Non-Alcoholic Steatohepatitis Remission in Mice Fed a High-Fat High-Sucrose Diet. Biomolecules 2022; 12:biom12121787. [PMID: 36551216 PMCID: PMC9775246 DOI: 10.3390/biom12121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are serious health concerns for which lifestyle interventions are the only effective first-line treatment. Dietary interventions are effective in body weight reduction, but not in improving insulin sensitivity and hepatic lipid mobilization. Conversely, metformin increases insulin sensitivity and promotes the inhibition of de novo hepatic lipogenesis. In this study, we evaluated the metformin effectiveness in NASH prevention and treatment, when combined with dietary intervention in male mice fed a high-fat high-sucrose diet (HFHSD). Eighty 5-week-old C57BL/6J male mice were fed a chow or HFHSD diet and sacrificed at 20 or 40 weeks. The HFHSD-fed mice developed NASH after 20 weeks. Lipoprotein and lipidomic analyses showed that the changes associated with diet were not prevented by metformin administration. HFHSD-fed mice subject to dietary intervention combined with metformin showed a 19.6% body weight reduction compared to 9.8% in those mice subjected to dietary intervention alone. Lower hepatic steatosis scores were induced. We conclude that metformin should not be considered a preventive option for NAFLD, but it is effective in the treatment of this disorder when combined with dietary intervention.
Collapse
Affiliation(s)
- Gerard Baiges-Gaya
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Helena Castañé
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Andrea Jiménez-Franco
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
| | - Núria Amigó
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Biosfer Teslab, 43201 Reus, Spain
| | - Jordi Camps
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
- Correspondence: (J.C.); (J.J.)
| | - Jorge Joven
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, 43003 Tarragona, Spain
- Correspondence: (J.C.); (J.J.)
| |
Collapse
|
31
|
Lu Z, Li Y, Li AJ, Syn WK, Wank SA, Lopes-Virella MF, Huang Y. Loss of GPR40 in LDL receptor-deficient mice exacerbates high-fat diet-induced hyperlipidemia and nonalcoholic steatohepatitis. PLoS One 2022; 17:e0277251. [PMID: 36331958 PMCID: PMC9635748 DOI: 10.1371/journal.pone.0277251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
GPR40, a G protein-coupled receptor for free fatty acids (FFAs), is considered as a therapeutic target for type 2 diabetes mellitus (T2DM) since GPR40 activation in pancreatic beta cells enhances glucose-stimulated insulin secretion. Nonalcoholic fatty liver disease (NAFLD) is a common complication of T2DM or metabolic syndrome (MetS). However, the role of GPR40 in NAFLD associated with T2DM or MetS has not been well established. Given that it is known that cholesterol and FFAs are critically involved in the pathogenesis of nonalcoholic steatohepatitis (NASH) and LDL receptor (LDLR)-deficient mice are a good animal model for human hyperlipidemia including high cholesterol and FFAs, we generated GPR40 and LDLR double knockout (KO) mice in this study to determine the effect of GPR40 KO on hyperlipidemia-promoted NASH. We showed that GPR40 KO increased plasma levels of cholesterol and FFAs in high-fat diet (HFD)-fed LDLR-deficient mice. We also showed that GPR40 KO exacerbated HFD-induced hepatic steatosis, inflammation and fibrosis. Further study demonstrated that GPR40 KO led to upregulation of hepatic CD36 and genes involved in lipogenesis, fatty acid oxidation, fibrosis and inflammation. Finally, our in vitro mechanistic studies showed that while CD36 was involved in upregulation of proinflammatory molecules in macrophages by palmitic acid (PA) and lipopolysaccharide (LPS), GPR40 activation in macrophages exerts anti-inflammatory effects. Taken together, this study demonstrated for the first time that loss of GPR40 in LDLR-deficient mice exacerbated HFD-induced hyperlipidemia, hepatic steatosis, inflammation and fibrosis potentially through a CD36-dependent mechanism, suggesting that GPR40 may play a beneficial role in hyperlipidemia-associated NASH in LDLR-deficient mice.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Leioa, Spain
| | - Stephen A. Wank
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Fibrogenic Pathways in Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD). Int J Mol Sci 2022; 23:ijms23136996. [PMID: 35805998 PMCID: PMC9266719 DOI: 10.3390/ijms23136996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD), recently also re-defined as metabolic dysfunction associated fatty liver disease (MAFLD), is rapidly increasing, affecting ~25% of the world population. MALFD/NAFLD represents a spectrum of liver pathologies including the more benign hepatic steatosis and the more advanced non-alcoholic steatohepatitis (NASH). NASH is associated with enhanced risk for liver fibrosis and progression to cirrhosis and hepatocellular carcinoma. Hepatic stellate cells (HSC) activation underlies NASH-related fibrosis. Here, we discuss the profibrogenic pathways, which lead to HSC activation and fibrogenesis, with a particular focus on the intercellular hepatocyte–HSC and macrophage–HSC crosstalk.
Collapse
|
33
|
Characterization and Roles of Membrane Lipids in Fatty Liver Disease. MEMBRANES 2022; 12:membranes12040410. [PMID: 35448380 PMCID: PMC9025760 DOI: 10.3390/membranes12040410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.
Collapse
|
34
|
Shaker ME. The contribution of sterile inflammation to the fatty liver disease and the potential therapies. Biomed Pharmacother 2022; 148:112789. [PMID: 35272137 DOI: 10.1016/j.biopha.2022.112789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022] Open
Abstract
Hepatic inflammation is prevalent in several metabolic liver diseases. Recent scientific advances about the pathogenesis of metabolic liver diseases showed an emerging role of several damage-associated molecular patterns (DAMPs), including DNA, high-mobility group box 1 (HMGB1), ATP and uric acid. For these DAMPs to induce inflammation, they should stimulate pattern recognition receptors (PRRs), which are located in the hepatic immune cells like resident Kupffer cells, infiltrated neutrophils, monocytes or dendritic cells. As a consequence, proinflammatory cytokines like interleukins (ILs)-1β and 18 alongside tumor necrosis factor (TNF)-α are overproduced and released, leading to pronounced hepatic inflammation and cellular death. This review highlights the contribution of these DAMPs and PRRs in the settings of alcoholic and nonalcoholic steatohepatitis. The review also summarizes the therapeutic usefulness of targeting NLR family pyrin domain containing 3 (NLRP3)-inflammasome, Toll-like receptors (TLRs) 4 and 9, IL-1 receptor (IL-1R), caspase 1, uric acid and GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) in these hepatic inflammatory disorders.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| |
Collapse
|
35
|
Ioannou GN, Lee SP, Linsley PS, Gersuk V, Yeh MM, Chen Y, Peng Y, Dutta M, Mascarinas G, Molla B, Cui JY, Savard C. Pcsk9 Deletion Promotes Murine Nonalcoholic Steatohepatitis and Hepatic Carcinogenesis: Role of Cholesterol. Hepatol Commun 2022; 6:780-794. [PMID: 34816633 PMCID: PMC8948564 DOI: 10.1002/hep4.1858] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (Pcsk9) binds to hepatic low-density lipoprotein receptor (LDLR) and induces its internalization and degradation. Pcsk9 inhibition increases LDLR expression by hepatocytes, which causes increased uptake of circulating LDL, thereby reducing plasma LDL-cholesterol. However, by increasing the uptake of LDL by the liver, Pcsk9 inhibition increases the exposure of the liver to cholesterol, which may result in higher risk of steatohepatitis and ever carcinogenesis. We compared Pcsk9-/- knockout (KO) mice and appropriate wild-type (WT) controls of the same strain assigned to a high-fat (15%, wt/wt) diet for 9 months supplemented with 0.25%, 0.5%, or 0.75% dietary cholesterol. Pcsk9 KO mice on a high-fat, high-cholesterol diet exhibited higher levels of hepatic free cholesterol loading and hepatic cholesterol crystallization than their WT counterparts. Pcsk9 KO mice developed crown-like structures of macrophages surrounding cholesterol crystal-containing lipid droplets and hepatocytes, exhibited higher levels of apoptosis, and developed significantly more hepatic inflammation and fibrosis consistent with fibrosing steatohepatitis, including 5-fold and 11-fold more fibrosis at 0.5% and 0.75% dietary cholesterol, respectively. When injected with diethylnitrosamine, a hepatic carcinogen, early-in-life Pcsk9 KO mice were more likely to develop liver cancer than WT mice. Conclusion: Pcsk9 KO mice on high-cholesterol diets developed increased hepatic free cholesterol and cholesterol crystals and fibrosing steatohepatitis with a higher predisposition to liver cancer compared with WT mice. Future studies should evaluate whether patients on long-term treatment with anti-PSCK9 monoclonal antibodies are at increased risk of hepatic steatosis, steatohepatitis or liver cancer, while accounting for concurrent use of statins.
Collapse
Affiliation(s)
- George N. Ioannou
- Division of GastroenterologyDepartment of MedicineVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Division of GastroenterologyDepartment of MedicineUniversity of WashingtonSeattleWAUSA
- Research and DevelopmentVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
| | - Sum P. Lee
- Division of GastroenterologyDepartment of MedicineUniversity of WashingtonSeattleWAUSA
| | | | - Vivian Gersuk
- Systems ImmunologyBenaroya Research InstituteSeattleWAUSA
| | - Matthew M. Yeh
- Division of GastroenterologyDepartment of MedicineUniversity of WashingtonSeattleWAUSA
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWAUSA
| | - Yen‐Ying Chen
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWAUSA
- Department of Pathology and Laboratory MedicineSchool of MedicineTaipei Veterans General HospitalNational Yang‐Ming UniversityTaipeiTaiwan
- Present address:
Department of PathologyShuang Ho Hospital and School of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yi‐Jen Peng
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWAUSA
- Department of PathologyTri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| | - Moumita Dutta
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Gabby Mascarinas
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Bruk Molla
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Christopher Savard
- Division of GastroenterologyDepartment of MedicineVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Division of GastroenterologyDepartment of MedicineUniversity of WashingtonSeattleWAUSA
- Research and DevelopmentVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
| |
Collapse
|
36
|
Cho Y, Rhee H, Kim YE, Lee M, Lee BW, Kang ES, Cha BS, Choi JY, Lee YH. Ezetimibe combination therapy with statin for non-alcoholic fatty liver disease: an open-label randomized controlled trial (ESSENTIAL study). BMC Med 2022; 20:93. [PMID: 35307033 PMCID: PMC8935785 DOI: 10.1186/s12916-022-02288-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The effect of ezetimibe, Niemann-Pick C1-like 1 inhibitor, on liver fat is not clearly elucidated. Our primary objective was to evaluate the efficacy of ezetimibe plus rosuvastatin versus rosuvastatin monotherapy to reduce liver fat using magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) in patients with non-alcoholic fatty liver disease (NAFLD). METHODS A randomized controlled, open-label trial of 70 participants with NAFLD confirmed by ultrasound who were assigned to receive either ezetimibe 10 mg plus rosuvastatin 5 mg daily or rosuvastatin 5 mg for up to 24 weeks. The liver fat change was measured as average values in each of nine liver segments by MRI-PDFF. Magnetic resonance elastography (MRE) was used to measure liver fibrosis change. RESULTS Combination therapy significantly reduced liver fat compared with monotherapy by MRI-PDFF (mean difference: 3.2%; p = 0.020). There were significant reductions from baseline to study completion by MRI-PDFF for both the combination and monotherapy groups, respectively (18.1 to 12.3%; p < 0.001 and 15.0 to 12.4%; p = 0.003). Individuals with higher body mass index, type 2 diabetes, insulin resistance, and severe liver fibrosis were likely to be good responders to treatment with ezetimibe. MRE-derived change in liver fibrosis was not significantly different (both groups, p > 0.05). Controlled attenuation parameter (CAP) by transient elastography was significantly reduced in the combination group (321 to 287 dB/m; p = 0.018), but not in the monotherapy group (323 to 311 dB/m; p = 0.104). CONCLUSIONS Ezetimibe and rosuvastatin were found to be safe to treat participants with NAFLD. Furthermore, ezetimibe combined with rosuvastatin significantly reduced liver fat in this population. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov (registration number: NCT03434613 ).
Collapse
Affiliation(s)
- Yongin Cho
- Department of Endocrinology and Metabolism, Inha University School of Medicine, Incheon, Republic of Korea.,Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Eun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQH, Sperandio M, Di Ciaula A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int J Mol Sci 2022; 23:1105. [PMID: 35163038 PMCID: PMC8835596 DOI: 10.3390/ijms23031105] [Citation(s) in RCA: 427] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (M.D.A.)
| | - Ilaria Farella
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| | - Elisa Lanza
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Markus Sperandio
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (E.L.); (M.K.); (A.D.C.)
| |
Collapse
|
38
|
Ichimura-Shimizu M, Tsuchiyama Y, Morimoto Y, Matsumoto M, Kobayashi T, Sumida S, Kakimoto T, Oya T, Ogawa H, Yamashita M, Matsuda S, Omagari K, Taira S, Tsuneyama K. A Novel Mouse Model of Nonalcoholic Steatohepatitis Suggests that Liver Fibrosis Initiates around Lipid-Laden Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:31-42. [PMID: 34710382 DOI: 10.1016/j.ajpath.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
While the interaction of cells such as macrophages and hepatic stellate cells is known to be involved in the generation of fibrosis in nonalcoholic steatohepatitis (NASH), the mechanism remains unclear. This study employed a high-fat/cholesterol/cholate (HFCC) diet to generate a model of NASH-related fibrosis to investigate the pathogenesis of fibrosis. Two mouse strains: C57BL/6J, the one susceptible to obesity, and A/J, the one relatively resistant to obesity, developed hepatic histologic features of NASH, including fat deposition, intralobular inflammation, hepatocyte ballooning, and fibrosis, after 9 weeks of HFCC diet. The severity of hepatic inflammation and fibrosis was greater in A/J mice than in the C57BL/6J mice. A/J mice fed HFCC diet exhibited characteristic CD204-positive lipid-laden macrophage aggregation in hepatic parenchyma. Polarized light was used to visualize the Maltese cross, cholesterol crystals within the aggregated macrophages. Fibrosis developed in a ring shape from the periphery of the aggregated macrophages such that the starting point of fibrosis could be visualized histologically. Matrix-assisted laser desorption/ionization mass spectrometry imaging analysis detected a molecule at m/z 772.462, which corresponds to the protonated ion of phosphatidylcholine [P-18:1 (11Z)/18:0] and phosphatidylethanolamine [18:0/20:2 (11Z, 14Z)], in aggregated macrophages adjacent to the fibrotic lesions. In conclusion, the HFCC diet-fed A/J model provides an ideal tool to study fibrogenesis and enables novel insights into the pathophysiology of NASH-related fibrosis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Yosuke Tsuchiyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minoru Matsumoto
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Michiko Yamashita
- Morphological Laboratory Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Katsuhisa Omagari
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
39
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
40
|
Zhou F, Sun X. Cholesterol Metabolism: A Double-Edged Sword in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:762828. [PMID: 34869352 PMCID: PMC8635701 DOI: 10.3389/fcell.2021.762828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a leading cause of cancer-related deaths globally. The rising incidence of metabolic syndrome and its hepatic manifestation, nonalcoholic fatty liver disease (NAFLD), have emerged as the fastest-growing cause of HCC in recent years. Cholesterol, a major lipid component of the cell membrane and lipoprotein particles, is primarily produced and metabolized by the liver. Numerous studies have revealed an increased cholesterol biosynthesis and uptake, reduced cholesterol exportation and excretion in HCC, which all contribute to lipotoxicity, inflammation, and fibrosis, known HCC risk factors. In contrast, some clinical studies have shown that higher cholesterol is associated with a reduced risk of HCC. These contradictory observations imply that the relationship between cholesterol and HCC is far more complex than initially anticipated. Understanding the role of cholesterol and deciphering the underlying molecular events in HCC development is highly relevant to developing new therapies. Here, we discuss the current understanding of cholesterol metabolism in the pathogenesis of NAFLD-associated HCC, and the underlying mechanisms, including the roles of cholesterol in the disruption of normal function of specific cell types and signaling transduction. We also review the clinical progression in evaluating the association of cholesterol with HCC. The therapeutic effects of lowering cholesterol will also be summarized. We also interpret reasons for the contradictory observations from different preclinical and human studies of the roles of cholesterol in HCC, aiming to provide a critical assessment of the potential of cholesterol as a therapeutic target.
Collapse
Affiliation(s)
- Fangli Zhou
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Sun
- Department of Pharmacology, Mays Cancer Center, Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
41
|
Radhakrishnan S, Yeung SF, Ke JY, Antunes MM, Pellizzon MA. Considerations When Choosing High-Fat, High-Fructose, and High-Cholesterol Diets to Induce Experimental Nonalcoholic Fatty Liver Disease in Laboratory Animal Models. Curr Dev Nutr 2021; 5:nzab138. [PMID: 34993389 PMCID: PMC8718327 DOI: 10.1093/cdn/nzab138] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is intricately linked to metabolic disease (including obesity, glucose intolerance, and insulin resistance) and encompasses a spectrum of disorders including steatosis, nonalcoholic steatohepatitis (NASH), and fibrosis. Rodents consuming high-fat (HF; ∼40 kcal% fat including fats containing higher concentrations of saturated and trans fats), high-fructose (HFr), and high-cholesterol (HC) diets display many clinically relevant characteristics of NASH, along with other metabolic disorders. C57BL/6 mice are the most commonly used animal model because they can develop significant metabolic disorders including severe NASH with fibrosis after months of feeding, but other models also are susceptible. The significant number of diets that contain these different factors (i.e., HF, HFr, and HC), either alone or in combination, makes the choice of diet difficult. This methodology review describes the efficacy of these nutrient manipulations on the NAFLD phenotype in mice, rats, guinea pigs, hamsters, and nonhuman primates.
Collapse
Affiliation(s)
| | | | - Jia-Yu Ke
- Research Diets, Inc., New Brunswick, NJ, USA
| | - Maísa M Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
42
|
Sugimoto K, Hosomi R, Yoshida M, Fukunaga K. Dietary Phospholipids Prepared From Scallop Internal Organs Attenuate the Serum and Liver Cholesterol Contents by Enhancing the Expression of Cholesterol Hydroxylase in the Liver of Mice. Front Nutr 2021; 8:761928. [PMID: 34778346 PMCID: PMC8578998 DOI: 10.3389/fnut.2021.761928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we successfully prepared scallop oil (SCO), which contains high levels of phospholipids (PL) and eicosapentaenoic acid (EPA), from the internal organs of the Japanese giant scallop (Patinopecten yessoensis), one of the most important underutilized fishery resources in Japan. The intake of SCO lowers the serum and liver cholesterol contents in mice; however, whether the fatty acids (FA) composition or PL of SCO exhibits any cholesterol-lowering effect remains unknown. To elucidate whether the cholesterol-lowering function is due to FA composition or PL of SCO, and investigate the cholesterol-lowering mechanism by SCO, in the present study, mice were fed SCO's PL fraction (SCO-PL), triglyceride (TG)-type oil with almost the same FA composition as SCO-PL, called SCO's TG fraction (SCO-TG), soybean oil (SOY-TG), and soybean's PL fraction (SOY-PL). Male C57BL/6J mice (5-week-old) were fed high-fat and cholesterol diets containing 3% (w/w) experimental oils (SOY-TG, SOY-PL, SCO-TG, and SCO-PL) for 28 days. The SCO-PL diet significantly decreased the serum and liver cholesterol contents compared with the SOY-TG diet, but the intake of SOY-PL and SCO-TG did not show this effect. This result indicated that the serum and liver cholesterol-lowering effect observed in the SCO intake group was due to the effect of SCO-PL. The cholesterol-lowering effect of SCO-PL was in part related to the promotion of liver cholesterol 7α-hydroxylase (CYP7A1) expression, which is the rate-limiting enzyme for bile acid synthesis. In contrast, the expression levels of the ileum farnesoid X receptor (Fxr) and fibroblast growth factor 15 (Fgf15), which inhibit the expression of liver CYP7A1, were significantly reduced in the SCO-PL group than the SOY-TG group. From these results, the increase in the liver CYP7A1 expression by dietary SCO-PL was in part through the reduction of the ileum Fxr/Fgf15 regulatory pathway. Therefore, this study showed that SCO-PL may be a health-promoting component as it lowers the serum and liver cholesterol contents by increasing the liver CYP7A1 expression, which is not seen in SOY-PL and SCO-TG.
Collapse
Affiliation(s)
- Koki Sugimoto
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Munehiro Yoshida
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Kenji Fukunaga
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|
43
|
Feng C, Liu W, Chen H, Dong W, Yang J. Effect of dark environment on intestinal flora and expression of genes related to liver metabolism in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109100. [PMID: 34174412 DOI: 10.1016/j.cbpc.2021.109100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
To explore the effects of dark environment on intestinal flora and expression of genes related to liver metabolism in zebrafish, a total of 60 zebrafish were fed for 21 days (24 h dark treatments or 14/10 h light/dark cycle), and the influence of dark environment on gut microbes and liver gene expression was studied using sequencing analysis of intestinal flora and liver. The results showed that the body weight of fish was significantly increased in the dark group than that in the control group (P < 0.05). Compared with the control group, dark environment treatment changed the composition of dominant flora, increased the abundance of unconventional bacteria and reduced probiotics in the intestine of zebrafish. Of these, the ratio of Bacteroidetes to Firmicutes in the intestine was reduced. The genome expression of the liver showed significant changes, and liver metabolites were also affected. Meanwhile, dark environment decreased gene expression associated with changes in blood glucose, lipid metabolism and immunization. Dark environment also caused liver steatosis as observed by histological study. This study shows that dark environment treatment has an important impact on liver metabolism and intestinal microbes in zebrafish.
Collapse
Affiliation(s)
- Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wuyun Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; School of Animal Science, Mongolian State University of Agriculture, Bayangol, Ulaanbaatar, Mongolia
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
44
|
Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab 2021; 33:1911-1925. [PMID: 34562355 DOI: 10.1016/j.cmet.2021.09.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
High levels of cholesterol are generally considered to be associated with atherosclerosis. In the past two decades, however, a number of studies have shown that excess cholesterol accumulation in various tissues and organs plays a critical role in the pathogenesis of multiple diseases. Here, we summarize the effects of excess cholesterol on disease pathogenesis, including liver diseases, diabetes, chronic kidney disease, Alzheimer's disease, osteoporosis, osteoarthritis, pituitary-thyroid axis dysfunction, immune disorders, and COVID-19, while proposing that excess cholesterol-induced toxicity is ubiquitous. We believe this concept will help broaden the appreciation of the toxic effect of excess cholesterol, and thus potentially expand the therapeutic use of cholesterol-lowering medications.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China.
| |
Collapse
|
45
|
Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN. Role of Cholesterol-Associated Steatohepatitis in the Development of NASH. Hepatol Commun 2021; 6:12-35. [PMID: 34558856 PMCID: PMC8710790 DOI: 10.1002/hep4.1801] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related cirrhosis in the United States and globally highlights the need to better understand the mechanisms causing progression of hepatic steatosis to fibrosing steatohepatitis and cirrhosis in a small proportion of patients with NAFLD. Accumulating evidence suggests that lipotoxicity mediated by hepatic free cholesterol (FC) overload is a mechanistic driver for necroinflammation and fibrosis, characteristic of nonalcoholic steatohepatitis (NASH), in many animal models and also in some patients with NASH. Diet, lifestyle, obesity, key genetic polymorphisms, and hyperinsulinemia secondary to insulin resistance are pivotal drivers leading to aberrant cholesterol signaling, which leads to accumulation of FC within hepatocytes. FC overload in hepatocytes can lead to ER stress, mitochondrial dysfunction, development of toxic oxysterols, and cholesterol crystallization in lipid droplets, which in turn lead to hepatocyte apoptosis, necrosis, or pyroptosis. Activation of Kupffer cells and hepatic stellate cells by hepatocyte signaling and cholesterol loading contributes to this inflammation and leads to hepatic fibrosis. Cholesterol accumulation in hepatocytes can be readily prevented or reversed by statins. Observational studies suggest that use of statins in NASH not only decreases the substantially increased cardiovascular risk, but may ameliorate liver pathology. Conclusion: Hepatic FC loading may result in cholesterol-associated steatohepatitis and play an important role in the development and progression of NASH. Statins appear to provide significant benefit in preventing progression to NASH and NASH-cirrhosis. Randomized controlled trials are needed to demonstrate whether statins or statin/ezetimibe combination can effectively reverse steatohepatitis and liver fibrosis in patients with NASH.
Collapse
Affiliation(s)
- Christian L Horn
- Division of Gastroenterology and Hepatology, Department of Medicine, San Antonio Military Medical Center, Fort Sam Houston, TX, USA
| | - Amilcar L Morales
- Division of Gastroenterology and Hepatology, Department of Medicine, San Antonio Military Medical Center, Fort Sam Houston, TX, USA
| | - Christopher Savard
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA.,Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Geoffrey C Farrell
- Liver Research Group, ANU Medical School, Australian National University at the Canberra Hospital, Garran, ACT, Australia
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA.,Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
46
|
White Button Mushroom Extracts Modulate Hepatic Fibrosis Progression, Inflammation, and Oxidative Stress In Vitro and in LDLR-/- Mice. Foods 2021; 10:foods10081788. [PMID: 34441565 PMCID: PMC8392037 DOI: 10.3390/foods10081788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Liver fibrosis can be caused by non-alcoholic steatohepatitis (NASH), among other conditions. We performed a study to analyze the effects of a nontoxic, water-soluble extract of the edible mushroom Agaricus bisporus (AB) as a potential inhibitor of fibrosis progression in vitro using human hepatic stellate cell (LX2) cultures and in vivo in LDLR-/- mice. Treatment of LX2 cells with the AB extract reduced the levels of fibrotic and oxidative-related markers and increased the levels of GATA4 expression. In LDLR-/- mice with high-fat diet (HFD)-induced liver fibrosis and inflammation, the progression of fibrosis, oxidative stress, inflammation, and apoptosis were prevented by AB extract treatment. Moreover, in the mouse model, AB extract could exert an antiatherogenic effect. These data suggest that AB mushroom extract seems to exert protective effects by alleviating inflammation and oxidative stress during the progression of liver fibrosis, possibly due to a decrease in Toll-like receptor 4 (TLR4) expression and a reduction in Nod-like receptor protein 3 (NLRP3) inflammasome activation. In addition, we observed a potential atheroprotective effect in our mouse model.
Collapse
|
47
|
Hayashi Y, Lee-Okada HC, Nakamura E, Tada N, Yokomizo T, Fujiwara Y, Ichi I. Ablation of fatty acid desaturase 2 (FADS2) exacerbates hepatic triacylglycerol and cholesterol accumulation in polyunsaturated fatty acid-depleted mice. FEBS Lett 2021; 595:1920-1932. [PMID: 34008174 DOI: 10.1002/1873-3468.14134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Deficiency of polyunsaturated fatty acids (PUFAs) is known to induce hepatic steatosis. However, it is not clearly understood which type of PUFA is responsible for the worsening of steatosis. This study observed a marked accumulation of hepatic triacylglycerol and cholesterol in fatty acid desaturase 2 knockout (FADS2-/- ) mice lacking both C18 and ≥ C20 PUFAs that were fed a PUFA-depleted diet. Hepatic triacylglycerol accumulation was associated with enhanced sterol regulatory element-binding protein (SREBP)-1-dependent lipogenesis and decreased triacylglycerol secretion into the plasma via very-low-density lipoprotein (VLDL). Furthermore, upregulation of cholesterol synthesis contributed to increased hepatic cholesterol content in FADS2-/- mice. These results suggest that ≥ C20 PUFAs synthesized by FADS2 are important in regulating hepatic triacylglycerol and cholesterol accumulation during PUFA deficiency.
Collapse
Affiliation(s)
- Yuri Hayashi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Tada
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Fujiwara
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan.,Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| | - Ikuyo Ichi
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan.,Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
48
|
Lin CW, Huang TW, Peng YJ, Lin YY, Mersmann HJ, Ding ST. A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poult Sci 2021; 100:100869. [PMID: 33516481 PMCID: PMC7936157 DOI: 10.1016/j.psj.2020.11.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver diseases, common metabolic diseases in chickens, can lead to a decrease in egg production and sudden death of chickens. To solve problems caused by the diseases, reliable chicken models of fatty liver disease are required. To generate chicken models of fatty liver, 7-week-old ISA female chickens were fed with a control diet (17% protein, 5.3% fat, and 1,300 mg/kg choline), a low protein and high fat diet (LPHF, 13% protein, 9.1% fat, and 1,300 mg/kg choline), a high cholesterol with low choline diet (CLC, 17% protein, 7.6% fat with additional 2% cholesterol, and 800 mg/kg choline), a low protein, high fat, high cholesterol, and low choline diet (LPHFCLC, 13% protein, 12.6% fat with additional 2% cholesterol, and 800 mg/kg choline) for 4 wk. Our data showed that the CLC and LPHFCLC diets induced hyperlipidemia. Histological examination and the content of hepatic lipids indicated that the CLC and LPHFCLC diets induced hepatic steatosis. Plasma dipeptidyl peptidase 4, a biomarker of fatty liver diseases in laying hens, increased in chickens fed with the CLC or LPHFCLC diets. Hepatic ballooning and immune infiltration were observed in these livers accompanied by elevated interleukin 1 beta and lipopolysaccharide induced tumor necrosis factor mRNAs suggesting that the CLC and LPHFCLC diets also caused steatohepatitis in these livers. These diets also induced hepatic steatosis in Plymouth Rock chickens. Thus, the CLC and LPHFCLC diets can be used to generate models for fatty liver diseases in different strains of chickens. In ISA chickens fed with the CLC diet, peroxisome proliferator-activated receptor γ, sterol regulatory element binding transcription factor 1, and fatty acid synthase mRNAs increased in the livers, suggesting that lipogenesis was enhanced by the CLC treatment. Our data show that treatment with CLC or LPHFCLC for 4 wk induces fatty liver disease in chickens. These diets can be utilized to rapidly generate chicken models for fatty liver research.
Collapse
Affiliation(s)
- Chiao-Wei Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 10617; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Ting-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Yu-Ju Peng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Harry John Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Shih-Torng Ding
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 10617; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617.
| |
Collapse
|
49
|
Mehmood A, Zhao L, Wang Y, Pan F, Hao S, Zhang H, Iftikhar A, Usman M. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review. Food Res Int 2021; 142:110180. [PMID: 33773656 DOI: 10.1016/j.foodres.2021.110180] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity, and cardiovascular diseases. It is characterized by the accumulation of triglycerides in the hepatocytes in the absence of alcohol consumption. The prevalence of NAFLD has abruptly increased worldwide, with no effective treatment yet available. Anthocyanins (ACNs) belong to the flavonoid subclass of polyphenols, are commonly present in various edible plants, and possess a broad array of health-promoting properties. ACNs have been shown to have strong potential to combat NAFLD. We critically assessed the literature regarding the pharmacological mechanisms and biopharmaceutical features of the action of ACNs on NAFLD in humans and animal models. We found that ACNs ameliorate NAFLD by improving lipid and glucose metabolism, increasing antioxidant and anti-inflammatory activities, and regulating gut microbiota dysbiosis. In conclusion, ACNs have potential to attenuate NAFLD. However, further mechanistic studies are required to confirm these beneficial impacts of ACNs on NAFLD.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Fei Pan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuai Hao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huimin Zhang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
50
|
Leng YR, Zhang MH, Luo JG, Zhang H. Pathogenesis of NASH and Promising Natural Products. Chin J Nat Med 2021; 19:12-27. [PMID: 33516448 DOI: 10.1016/s1875-5364(21)60002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. The mechanism of the diaease progression, which is lacking effective therapy, remains obsure. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary. Currently, an increasing number of studies have focused on natural constituents from medicinal plants which have been emerged as a new hope for NASH. This review summarized the pathogenesis of NASH, animal models commonly used, and the promising targets for therapeutics. We also reviewed the natural constituents as potential NASH therapeutic agents.
Collapse
Affiliation(s)
- Ying-Rong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Hui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|