1
|
Malhotra V. The pathways of secretory cargo export at the endoplasmic reticulum. Nat Commun 2025; 16:2138. [PMID: 40032897 PMCID: PMC11876584 DOI: 10.1038/s41467-025-57408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Palade's original model proposed that secretory cargo is transported between stable compartments via vesicles. However, recent findings challenge this view, suggesting that secretory pathway compartments are dynamic, with cargo itself dictating whether transfer occurs via vesicles or through the continuity and maturation of compartmental structures. At the heart of this process is TANGO1, a key component of a molecular machine that works in concert with COPII proteins to construct export routes tailored to the size and quantity of secretory cargo.
Collapse
Affiliation(s)
- Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
2
|
Mo JH, Zhai C, Jung K, Li Y, Yan Y, Dong MQ, Mak HY. A distant TANGO1 family member promotes vitellogenin export from the ER in C. elegans. iScience 2025; 28:111860. [PMID: 39981517 PMCID: PMC11841073 DOI: 10.1016/j.isci.2025.111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Vitellogenin is thought to share a common ancestor with human apolipoprotein B (ApoB) for systemic lipid transport. In Caenorhabditis elegans, although a general route for inter-tissue vitellogenin transport has been described, the full mechanism that underlies its intracellular trafficking within the intestine remains obscure. In humans, the TANGO1 family of proteins generates membrane carriers to accommodate bulky ApoB-containing lipoprotein particles for their endoplasmic reticulum (ER) export. TANGO1 orthologs have hitherto been discovered in most metazoans, except nematodes. Here, we report the C. elegans TNGL-1 as a mediator of vitellogenin export from the ER. Depletion of TNGL-1 causes the retention of vitellogenin in the ER lumen. Furthermore, the TNGL-1 C-terminal unstructured domain and its luminal globular domain are required for its proper localization and cargo engagement, respectively. Our findings support TNGL-1 as a distant TANGO1 family member and point to the universal requirement of TANGO1-based mechanisms for the secretion of specific metazoan proteins.
Collapse
Affiliation(s)
- Jimmy H. Mo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chao Zhai
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Kwangsek Jung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yan Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
3
|
Zayas GA, Rodriguez E, Hernandez A, Rezende FM, Mateescu RG. Breed of origin analysis in genome-wide association studies: enhancing SNP-based insights into production traits in a commercial Brangus population. BMC Genomics 2024; 25:654. [PMID: 38956457 PMCID: PMC11218112 DOI: 10.1186/s12864-024-10465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics. Moreover, the consideration of BOA becomes particularly significant when evaluating dominance effects contributing to heterosis in crossbred populations. BOA provides a more comprehensive measure of heterosis due to its ability to differentiate the distinct genetic contributions originating from each parent breed. This detailed understanding of genetic effects is essential for making informed breeding decisions to optimize the benefits of heterosis in composite breeds like Brangus. OBJECTIVE This study aims to identify quantitative trait loci (QTL) influencing HCW and MARB by utilizing SNP and BOA information, incorporating additive, dominance, and overdominance effects within a multi-generational Brangus commercial herd. METHODS We analyzed phenotypic data from 1,066 genotyped Brangus steers. BOA inference was performed using LAMP-LD software using Angus and Brahman reference sets. SNP-based and BOA-based GWAS were then conducted considering additive, dominance, and overdominance models. RESULTS The study identified numerous QTLs for HCW and MARB. A notable QTL for HCW was associated to the SGCB gene, pivotal for muscle growth, and was identified solely in the BOA GWAS. Several BOA GWAS QTLs exhibited a dominance effect underscoring their importance in estimating heterosis. CONCLUSIONS Our findings demonstrate that SNP-based methods may not detect all genetic variation affecting economically important traits in composite breeds. BOA inclusion in genomic evaluations is crucial for identifying genetic regions contributing to trait variation and for understanding the dominance value underpinning heterosis. By considering BOA, we gain a deeper understanding of genetic interactions and heterosis, which is integral to advancing breeding programs. The incorporation of BOA is recommended for comprehensive genomic evaluations to optimize trait improvements in crossbred cattle populations.
Collapse
Affiliation(s)
- Gabriel A Zayas
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| | - Eduardo Rodriguez
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Aakilah Hernandez
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Fernanda M Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Raote I, Rosendahl AH, Häkkinen HM, Vibe C, Küçükaylak I, Sawant M, Keufgens L, Frommelt P, Halwas K, Broadbent K, Cunquero M, Castro G, Villemeur M, Nüchel J, Bornikoel A, Dam B, Zirmire RK, Kiran R, Carolis C, Andilla J, Loza-Alvarez P, Ruprecht V, Jamora C, Campelo F, Krüger M, Hammerschmidt M, Eckes B, Neundorf I, Krieg T, Malhotra V. TANGO1 inhibitors reduce collagen secretion and limit tissue scarring. Nat Commun 2024; 15:3302. [PMID: 38658535 PMCID: PMC11043333 DOI: 10.1038/s41467-024-47004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain.
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| | - Ann-Helen Rosendahl
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Hanna-Maria Häkkinen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Carina Vibe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, Barcelona, Spain
| | - Ismail Küçükaylak
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Lena Keufgens
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pia Frommelt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kai Halwas
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Katrina Broadbent
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Marina Cunquero
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gustavo Castro
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marie Villemeur
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Julian Nüchel
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Anna Bornikoel
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Binita Dam
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Ravindra K Zirmire
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Ravi Kiran
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg, Lluis Companys 23, Barcelona, Spain
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany.
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg, Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
5
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Raote I, Saxena S, Malhotra V. Sorting and Export of Proteins at the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:a041258. [PMID: 35940902 PMCID: PMC10153803 DOI: 10.1101/cshperspect.a041258] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in carriers that are formed by the concerted activities of cytoplasmic proteins in the coat protein complex II (COPII). COPII was first described in Saccharomyces cerevisiae and its basic functions are largely conserved throughout eukaryotes. The discovery of the TANGO1 (transport and Golgi organization 1) family of proteins is revealing insights into how cells can adapt COPII proteins to reorganize the ER exit site for the export of the most abundant and bulky molecules, collagens.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Sonashree Saxena
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Barcelona 08010, Spain
| |
Collapse
|
7
|
Arnolds O, Stoll R. Characterization of a fold in TANGO1 evolved from SH3 domains for the export of bulky cargos. Nat Commun 2023; 14:2273. [PMID: 37080980 PMCID: PMC10119292 DOI: 10.1038/s41467-023-37705-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
Bulky cargos like procollagens, apolipoproteins, and mucins exceed the size of conventional COPII vesicles. During evolution a process emerged in metazoans, predominantly governed by the TANGO1 protein family, that organizes cargo at the exit sites of the endoplasmic reticulum and facilitates export by the formation of tunnel-like connections between the ER and Golgi. Hitherto, cargo-recognition appeared to be mediated by an SH3-like domain. Based on structural and dynamic data as well as interaction studies from NMR spectroscopy and microscale thermophoresis presented here, we show that the luminal cargo-recognition domain of TANGO1 adopts a new functional fold for which we suggest the term MOTH (MIA, Otoraplin, TALI/TANGO1 homology) domain. These MOTH domains, as well as an evolutionary intermediate found in invertebrates, constitute a distinct domain family that emerged from SH3 domains and acquired the ability to bind collagen.
Collapse
Affiliation(s)
- Oliver Arnolds
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum, Germany
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum, Germany.
| |
Collapse
|
8
|
James JV, Varghese J, John NM, Deschemin JC, Vaulont S, McKie AT, Jacob M. Insulin resistance and adipose tissue inflammation induced by a high-fat diet are attenuated in the absence of hepcidin. J Nutr Biochem 2023; 111:109175. [PMID: 36223834 DOI: 10.1016/j.jnutbio.2022.109175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Increased body iron stores and inflammation in adipose tissue have been implicated in the pathogenesis of insulin resistance (IR) and type 2 diabetes mellitus. However, the underlying basis of these associations is unclear. To attempt to investigate this, we studied the development of IR and associated inflammation in adipose tissue in the presence of increased body iron stores. Male hepcidin knock-out (Hamp1-/-) mice, which have increased body iron stores, and wild-type (WT) mice were fed a high-fat diet (HFD) for 12 and 24 weeks. Development of IR and metabolic parameters linked to this, insulin signaling in various tissues, and inflammation and iron-related parameters in visceral adipose tissue were studied in these animals. HFD-feeding resulted in impaired glucose tolerance in both genotypes of mice. In response to the HFD for 24 weeks, Hamp1-/- mice gained less body weight and developed less systemic IR than corresponding WT mice. This was associated with less lipid accumulation in the liver and decreased inflammation and lipolysis in the adipose tissue in the knock-out mice, than in the WT animals. Fewer macrophages infiltrated the adipose tissue in the knockout mice than in wild-type mice, with these macrophages exhibiting a predominantly anti-inflammatory (M2-like) phenotype and indirect evidence of a possible lowered intracellular iron content. The absence of hepcidin was thus associated with attenuated inflammation in the adipose tissue and increased whole-body insulin sensitivity, suggesting a role for it in these processes.
Collapse
Affiliation(s)
- Jithu Varghese James
- Department of Biochemistry, Christian Medical College, Vellore, India; Department of Diabetes & Obesity, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore, India
| | | | - Jean-Christophe Deschemin
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Sophie Vaulont
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Andrew Tristan McKie
- Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Molly Jacob
- Department of Biochemistry, Christian Medical College, Vellore, India.
| |
Collapse
|
9
|
Chatterjee S, Choi AJ, Frankel G. A systematic review of Sec24 cargo interactome. Traffic 2021; 22:412-424. [PMID: 34533884 DOI: 10.1111/tra.12817] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023]
Abstract
Endoplasmic reticulum (ER)-to-Golgi trafficking is an essential and highly conserved cellular process. The coat protein complex-II (COPII) arm of the trafficking machinery incorporates a wide array of cargo proteins into vesicles through direct or indirect interactions with Sec24, the principal subunit of the COPII coat. Approximately one-third of all mammalian proteins rely on the COPII-mediated secretory pathway for membrane insertion or secretion. There are four mammalian Sec24 paralogs and three yeast Sec24 paralogs with emerging evidence of paralog-specific cargo interaction motifs. Furthermore, individual paralogs also differ in their affinity for a subset of sorting motifs present on cargo proteins. As with many aspects of protein trafficking, we lack a systematic and thorough understanding of the interaction of Sec24 with cargoes. This systematic review focuses on the current knowledge of cargo binding to both yeast and mammalian Sec24 paralogs and their ER export motifs. The analyses show that Sec24 paralog specificity of cargo (and cargo receptors) range from exclusive paralog dependence or preference to partial redundancy. We also discuss how the Sec24 secretion system is hijacked by viral (eg, VSV-G, Hepatitis B envelope protein) and bacterial (eg, the enteropathogenic Escherichia coli type III secretion system effector NleA/EspI) pathogens.
Collapse
Affiliation(s)
- Sharanya Chatterjee
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Ana Jeemin Choi
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
10
|
Raote I, Saxena S, Campelo F, Malhotra V. TANGO1 marshals the early secretory pathway for cargo export. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183700. [PMID: 34293283 DOI: 10.1016/j.bbamem.2021.183700] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
TANGO1 protein facilitates the endoplasmic reticulum (ER) export of large cargoes that cannot be accommodated in 60 nm transport vesicles. It assembles into a ring in the plane of the ER membrane to create a distinct domain. Its lumenal portion collects and sorts folded cargoes while its cytoplasmic domains collar COPII coats, recruit retrograde COPI-coated membranes that fuse within the TANGO1 ring, thus opening a tunnel for cargo transfer from the ER into a growing export conduit. This mode of cargo transfer bypasses the need for vesicular intermediates and is used to export the most abundant and bulky cargoes. The evolution of TANGO1 and its activities defines the difference between yeast and animal early secretory pathways.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.
| | - Sonashree Saxena
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
11
|
Abstract
Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.
Collapse
Affiliation(s)
- Shinya Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,JT Biohistory Research Hall, Osaka, 569-1125, Japan
| |
Collapse
|
12
|
Clark EM, Link BA. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis. Mol Biol Cell 2021; 32:391-401. [PMID: 33439675 PMCID: PMC8098853 DOI: 10.1091/mbc.e20-11-0745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Coat protein complex II (COPII) factors mediate cargo export from the endoplasmic reticulum (ER), but bulky collagens and lipoproteins are too large for traditional COPII vesicles. Mammalian CTAGE5 and TANGO1 have been well characterized individually as specialized cargo receptors at the ER that function with COPII coats to facilitate trafficking of bulky cargoes. Here, we present a genetic interaction study in zebrafish of deletions in ctage5, tango1, or both to investigate their distinct and complementary potential functions. We found that Ctage5 and Tango1 have different roles related to organogenesis, collagen versus lipoprotein trafficking, stress-pathway activation, and survival. While disruption of both ctage5 and tango1 compounded phenotype severity, mutation of either factor alone revealed novel tissue-specific defects in the building of heart, muscle, lens, and intestine, in addition to previously described roles in the development of neural and cartilage tissues. Together, our results demonstrate that Ctage5 and Tango1 have overlapping functions, but also suggest divergent roles in tissue development and homeostasis.
Collapse
Affiliation(s)
- Eric M. Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
13
|
Abstract
The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; ,
| | - V Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
14
|
Development of insulin resistance preceded major changes in iron homeostasis in mice fed a high-fat diet. J Nutr Biochem 2020; 84:108441. [PMID: 32629238 PMCID: PMC7115812 DOI: 10.1016/j.jnutbio.2020.108441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/10/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) have been associated with dysregulation of iron metabolism. The basis for this association is not completely understood. To attempt to investigate this, we studied temporal associations between onset of insulin resistance (IR) and dysregulated iron homeostasis, in a mouse model of T2DM. Male C57Bl/6 mice (aged 8 weeks) were fed a high-fat diet (HFD; 60% energy from fat) or a control diet (CD; 10% energy from fat) for 4, 8, 12, 16, 20 and 24 weeks. Development of IR was documented, and various metabolic, inflammatory and iron-related parameters were studied in these mice. HFD-feeding induced weight gain, hepato-steatosis and IR in the mice. Onset of IR occurred from 12 weeks onwards. Hepatic iron stores progressively declined from 16 weeks onwards. Accompanying changes included a decrease in hepatic hepcidin (Hamp1) mRNA expression and serum hepcidin levels and an increase in iron content in the epididymal white adipose tissue (eWAT). Iron content in the liver negatively correlated with that in the eWAT. Factors known to regulate hepatic Hamp1 expression (such as serum iron levels, systemic inflammation, and bone marrow-derived erythroid regulators) were not affected by HFD-feeding. In conclusion, the results show that the onset of IR in HFD-fed mice preceded dysregulation of iron homeostasis, evidence of which were found both in the liver and visceral adipose tissue.
Collapse
|
15
|
Simon J, Nuñez-García M, Fernández-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gómez-Santos B, Buqué X, Lopitz-Otsoa F, Goikoetxea-Usandizaga N, Serrano-Macia M, Rodriguez-Agudo R, Bizkarguenaga M, Zubiete-Franco I, Gutiérrez-de Juan V, Cabrera D, Alonso C, Iruzubieta P, Romero-Gomez M, van Liempd S, Castro A, Nogueiras R, Varela-Rey M, Falcón-Pérez JM, Villa E, Crespo J, Lu SC, Mato JM, Aspichueta P, Delgado TC, Martínez-Chantar ML. Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. Cell Metab 2020; 31:605-622.e10. [PMID: 32084378 PMCID: PMC7259377 DOI: 10.1016/j.cmet.2020.01.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/05/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by the accumulation of hepatic fat in an inflammatory/fibrotic background. Herein, we show that the hepatic high-activity glutaminase 1 isoform (GLS1) is overexpressed in NASH. Importantly, GLS1 inhibition reduces lipid content in choline and/or methionine deprivation-induced steatotic mouse primary hepatocytes, in human hepatocyte cell lines, and in NASH mouse livers. We suggest that under these circumstances, defective glutamine fueling of anaplerotic mitochondrial metabolism and concomitant reduction of oxidative stress promotes a reprogramming of serine metabolism, wherein serine is shifted from the generation of the antioxidant glutathione and channeled to provide one-carbon units to regenerate the methionine cycle. The restored methionine cycle can induce phosphatidylcholine synthesis from the phosphatidylethanolamine N-methyltransferase-mediated and CDP-choline pathways as well as by base-exchange reactions between phospholipids, thereby restoring hepatic phosphatidylcholine content and very-low-density lipoprotein export. Overall, we provide evidence that hepatic GLS1 targeting is a valuable therapeutic approach in NASH.
Collapse
Affiliation(s)
- Jorge Simon
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Maitane Nuñez-García
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Lucía Barbier-Torres
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Xabier Buqué
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Macia
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Rubén Rodriguez-Agudo
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Imanol Zubiete-Franco
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez-de Juan
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Diana Cabrera
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | | | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; Clinical and Traslational Digestive Research Group, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Manuel Romero-Gomez
- Unit for the Clinical Management of Digestive Diseases, Hospital Universitario Virgen del Rocío, CIBERehd, University of Seville, 41013 Seville, Spain
| | - Sebastiaan van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | | | - Ruben Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Galician Agency of Innovation (GAIN), Xunta de Galicia, 15782 Santiago de Compostela, Spain
| | - Marta Varela-Rey
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Juan Manuel Falcón-Pérez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; Clinical and Traslational Digestive Research Group, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Jose M Mato
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
16
|
Enhanced insulin signaling and its downstream effects in iron-overloaded primary hepatocytes from hepcidin knock-out mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118621. [DOI: 10.1016/j.bbamcr.2019.118621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
|
17
|
Arbesú M, Pons M. Integrating disorder in globular multidomain proteins: Fuzzy sensors and the role of SH3 domains. Arch Biochem Biophys 2019; 677:108161. [PMID: 31678340 DOI: 10.1016/j.abb.2019.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins represent about one third of eukaryotic proteins. An additional third correspond to proteins containing folded domains as well as large intrinsically disordered regions (IDR). While IDRs may represent functionally autonomous domains, in some instances it has become clear that they provide a new layer of regulation for the activity displayed by the folded domains. The sensitivity of the conformational ensembles defining the properties of IDR to small changes in the cellular environment and the capacity to modulate this response through post-translational modifications makes IDR ideal sensors enabling continuous, integrative responses to complex cellular inputs. Folded domains (FD), on the other hand, are ideal effectors, e.g. by catalyzing enzymatic reactions or participating in binary on/off switches. In this perspective review we discuss the possible role of intramolecular fuzzy complexes to integrate the very different dynamic scales of IDR and FD, inspired on the recent observations of such dynamic complexes in Src family kinases, and we explore the possible general role of the SH3 domains connecting IDRs and FD.
Collapse
Affiliation(s)
- Miguel Arbesú
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
18
|
Pujar S, O'Leary NA, Farrell CM, Loveland JE, Mudge JM, Wallin C, Girón CG, Diekhans M, Barnes I, Bennett R, Berry AE, Cox E, Davidson C, Goldfarb T, Gonzalez JM, Hunt T, Jackson J, Joardar V, Kay MP, Kodali VK, Martin FJ, McAndrews M, McGarvey KM, Murphy M, Rajput B, Rangwala SH, Riddick LD, Seal RL, Suner MM, Webb D, Zhu S, Aken BL, Bruford EA, Bult CJ, Frankish A, Murphy T, Pruitt KD. Consensus coding sequence (CCDS) database: a standardized set of human and mouse protein-coding regions supported by expert curation. Nucleic Acids Res 2019; 46:D221-D228. [PMID: 29126148 PMCID: PMC5753299 DOI: 10.1093/nar/gkx1031] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community.
Collapse
Affiliation(s)
- Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Nuala A O'Leary
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Catherine M Farrell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jane E Loveland
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Craig Wallin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Carlos G Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mark Diekhans
- University of California Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - If Barnes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ruth Bennett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew E Berry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eric Cox
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tamara Goldfarb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jose M Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John Jackson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Vinita Joardar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mike P Kay
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Monica McAndrews
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Kelly M McGarvey
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Bhanu Rajput
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sanjida H Rangwala
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lillian D Riddick
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ruth L Seal
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Marie-Marthe Suner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sophia Zhu
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Bronwen L Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carol J Bult
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Terence Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
19
|
Zhang F, Wang Y, Wang T, Yao L, Lam SM, Huang X, Fan J, Wang Q, Liu L, Jiang Y, Zhang H, Shi L, Yu M, Shui G, Wang Y, Gao F, Zhang X, Xu Z. cTAGE5/MEA6 plays a critical role in neuronal cellular components trafficking and brain development. Proc Natl Acad Sci U S A 2018; 115:E9449-E9458. [PMID: 30224460 PMCID: PMC6176567 DOI: 10.1073/pnas.1804083115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Normal neural development is essential for the formation of neuronal networks and brain function. Cutaneous T cell lymphoma-associated antigen 5 (cTAGE5)/meningioma expressed antigen 6 (MEA6) plays a critical role in the secretion of proteins. However, its roles in the transport of nonsecretory cellular components and in brain development remain unknown. Here, we show that cTAGE5/MEA6 is important for brain development and function. Conditional knockout of cTAGE5/MEA6 in the brain leads to severe defects in neural development, including deficits in dendrite outgrowth and branching, spine formation and maintenance, astrocyte activation, and abnormal behaviors. We reveal that loss of cTAGE5/MEA6 affects the interaction between the coat protein complex II (COPII) components, SAR1 and SEC23, leading to persistent activation of SAR1 and defects in COPII vesicle formation and transport from the endoplasmic reticulum to the Golgi, as well as disturbed trafficking of membrane components in neurons. These defects affect not only the transport of materials required for the development of dendrites and spines but also the signaling pathways required for neuronal development. Because mutations in cTAGE5/MEA6 have been found in patients with Fahr's disease, our study potentially also provides insight into the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Tao Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875 Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Junwan Fan
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Qin Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yisheng Jiang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Hongsheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Mei Yu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875 Beijing, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China;
- University of Chinese Academy of Sciences, 100101 Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
| |
Collapse
|
20
|
Sasahira T, Bosserhoff AK, Kirita T. The importance of melanoma inhibitory activity gene family in the tumor progression of oral cancer. Pathol Int 2018; 68:278-286. [PMID: 29655307 DOI: 10.1111/pin.12672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/14/2018] [Indexed: 01/14/2023]
Abstract
Oral squamous cell carcinoma has a high potential for locoregional invasion and nodal metastasis. Consequently, early detection of such malignancies is of immense importance. The melanoma inhibitory activity (MIA) gene family comprises MIA, MIA2, transport and Golgi organization protein 1 (TANGO), and otoraplin (OTOR). These members of the MIA gene family have a highly conserved Src homology 3 (SH3)-like structure. Although the molecules of this family share 34-45% amino acid homology and 47-59% cDNA sequence homology, those members, excluding OTOR, play different tumor-associated functions. MIA has a pivotal role in the progression and metastasis of melanoma; MIA2 and TANGO have been suggested to possess tumor-suppressive functions; and OTOR is uniquely expressed in cochlea of the inner ear. Therefore, the definite functions of the MIA gene family in cancer cells remain unclear. Since the members of the MIA gene family are secreted proteins, these molecules might be useful tumor markers that can be detected in the body fluids, including serum and saliva. In this review, we described the molecular biological functions of the MIA gene family in oral cancer.
Collapse
Affiliation(s)
- Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Anja Katrin Bosserhoff
- Institute for Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
21
|
Raote I, Ortega-Bellido M, Santos AJ, Foresti O, Zhang C, Garcia-Parajo MF, Campelo F, Malhotra V. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife 2018. [PMID: 29513218 PMCID: PMC5851698 DOI: 10.7554/elife.32723] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collagen export from the endoplasmic reticulum (ER) requires TANGO1, COPII coats, and retrograde fusion of ERGIC membranes. How do these components come together to produce a transport carrier commensurate with the bulky cargo collagen? TANGO1 is known to form a ring that corrals COPII coats, and we show here how this ring or fence is assembled. Our data reveal that a TANGO1 ring is organized by its radial interaction with COPII, and lateral interactions with cTAGE5, TANGO1-short or itself. Of particular interest is the finding that TANGO1 recruits ERGIC membranes for collagen export via the NRZ (NBAS/RINT1/ZW10) tether complex. Therefore, TANGO1 couples retrograde membrane flow to anterograde cargo transport. Without the NRZ complex, the TANGO1 ring does not assemble, suggesting its role in nucleating or stabilising this process. Thus, coordinated capture of COPII coats, cTAGE5, TANGO1-short, and tethers by TANGO1 assembles a collagen export machine at the ER.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Ortega-Bellido
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - António Jm Santos
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Chong Zhang
- SIMBIOsys Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
22
|
Saito K, Maeda M, Katada T. Regulation of the Sar1 GTPase Cycle Is Necessary for Large Cargo Secretion from the Endoplasmic Reticulum. Front Cell Dev Biol 2017; 5:75. [PMID: 28879181 PMCID: PMC5572378 DOI: 10.3389/fcell.2017.00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
Proteins synthesized within the endoplasmic reticulum (ER) are transported to the Golgi via coat protein complex II (COPII)-coated vesicles. The formation of COPII-coated vesicles is regulated by the GTPase cycle of Sar1. Activated Sar1 is recruited to ER membranes and forms a pre-budding complex with cargoes and the inner-coat complex. The outer-coat complex then stimulates Sar1 inactivation and completes vesicle formation. The mechanisms of forming transport carriers are well-conserved among species; however, in mammalian cells, several cargo molecules such as collagen, and chylomicrons are too large to be accommodated in conventional COPII-coated vesicles. Thus, special cargo-receptor complexes are required for their export from the ER. cTAGE5/TANGO1 complexes and their isoforms have been identified as cargo receptors for these macromolecules. Recent reports suggest that the cTAGE5/TANGO1 complex interacts with the GEF and the GAP of Sar1 and tightly regulates its GTPase cycle to accomplish large cargo secretion.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| |
Collapse
|
23
|
Gluchowski NL, Becuwe M, Walther TC, Farese RV. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 2017; 14:343-355. [PMID: 28428634 PMCID: PMC6319657 DOI: 10.1038/nrgastro.2017.32] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids during times of energy excess and serve as an energy reservoir during deprivation. Many prevalent metabolic diseases, such as the metabolic syndrome or obesity, often result in abnormal lipid accumulation in lipid droplets in the liver, also called hepatic steatosis. Obesity-related steatosis, or NAFLD in particular, is a major public health concern worldwide and is frequently associated with insulin resistance and type 2 diabetes mellitus. Here, we review the latest insights into the biology of lipid droplets and their role in maintaining lipid homeostasis in the liver. We also offer a perspective of liver diseases that feature lipid accumulation in these lipid storage organelles, which include NAFLD and viral hepatitis. Although clinical applications of this knowledge are just beginning, we highlight new opportunities for identifying molecular targets for treating hepatic steatosis and steatohepatitis.
Collapse
Affiliation(s)
- Nina L. Gluchowski
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Boston Children’s Hospital Department of Gastroenterology, Hepatology and Nutrition, 300 Longwood Avenue Boston, Massachusetts 02115, USA
| | - Michel Becuwe
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Tobias C. Walther
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Robert V. Farese
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Wang Y, Liu L, Zhang H, Fan J, Zhang F, Yu M, Shi L, Yang L, Lam SM, Wang H, Chen X, Wang Y, Gao F, Shui G, Xu Z. Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Res 2016; 26:787-804. [PMID: 27311593 DOI: 10.1038/cr.2016.75] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022] Open
Abstract
Lipid accumulation, which may be caused by the disturbance in very low density lipoprotein (VLDL) secretion in the liver, can lead to fatty liver disease. VLDL is synthesized in endoplasmic reticulum (ER) and transported to Golgi apparatus for secretion into plasma. However, the underlying molecular mechanism for VLDL transport is still poorly understood. Here we show that hepatocyte-specific deletion of meningioma-expressed antigen 6 (Mea6)/cutaneous T cell lymphoma-associated antigen 5C (cTAGE5C) leads to severe fatty liver and hypolipemia in mice. Quantitative lipidomic and proteomic analyses indicate that Mea6/cTAGE5 deletion impairs the secretion of different types of lipids and proteins, including VLDL, from the liver. Moreover, we demonstrate that Mea6/cTAGE5 interacts with components of the ER coat protein complex II (COPII) which, when depleted, also cause lipid accumulation in hepatocytes. Our findings not only reveal several novel factors that regulate lipid transport, but also provide evidence that Mea6 plays a critical role in lipid transportation through the coordinated regulation of the COPII machinery.
Collapse
Affiliation(s)
- Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hongsheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Junwan Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Yu
- School of Life Science, Shandong University, Jinan 250100, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaowei Chen
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
25
|
Abstract
An unsolved mystery in cell biology is how unusually large secretory cargoes are exported from the endoplasmic reticulum. In this issue, Santos et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201603072) report the function of a Mia2/cTAGE5 transcript fusion, named TALI, in the endoplasmic reticulum export of chylomicrons and very low-density lipoproteins, but not collagen XII.
Collapse
Affiliation(s)
- Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
26
|
Santos AJM, Nogueira C, Ortega-Bellido M, Malhotra V. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J Cell Biol 2016; 213:343-54. [PMID: 27138255 PMCID: PMC4862334 DOI: 10.1083/jcb.201603072] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Santos et al. show that TANGO1 and a TANGO1-like protein, TALI, bind each other and function together as receptors to export bulky ApoB-containing lipid particles from the endoplasmic reticulum. However, TANGO1-mediated export of bulky collagens by the same cells is TALI independent. Procollagens, pre-chylomicrons, and pre–very low-density lipoproteins (pre-VLDLs) are too big to fit into conventional COPII-coated vesicles, so how are these bulky cargoes exported from the endoplasmic reticulum (ER)? We have shown that TANGO1 located at the ER exit site is necessary for procollagen export. We report a role for TANGO1 and TANGO1-like (TALI), a chimeric protein resulting from fusion of MIA2 and cTAGE5 gene products, in the export of pre-chylomicrons and pre-VLDLs from the ER. TANGO1 binds TALI, and both interact with apolipoprotein B (ApoB) and are necessary for the recruitment of ApoB-containing lipid particles to ER exit sites for their subsequent export. Although export of ApoB requires the function of both TANGO1 and TALI, the export of procollagen XII by the same cells requires only TANGO1. These findings reveal a general role for TANGO1 in the export of bulky cargoes from the ER and identify a specific requirement for TALI in assisting TANGO1 to export bulky lipid particles.
Collapse
Affiliation(s)
- António J M Santos
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Cristina Nogueira
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Maria Ortega-Bellido
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
27
|
Abstract
Collagens are secreted into the extracellular space where they assemble into a large complex protein network to form basement membrane and extracellular matrix. Collagens are therefore essential for cell attachment, tissue organization and the overall survival of all multicellular organisms. Collagens are synthesized in the endoplasmic reticulum (ER) but they are too big to fit into a conventional coat protein complex II (COPII) transport carrier of 60-90 nm average diameter. How are these molecules exported from the ER and then transported along the secretory pathway? We describe here the involvement of special packing machinery composed of hetero oligomers of transport and Golgi organization 1 (TANGO1) and cutaneous T-cell lymphoma-associated antigen 5 (cTAGE5) in the export of procollagen VII from the ER.
Collapse
|
28
|
Abstract
COPII vesicles mediate export of secretory cargo from the endoplasmic reticulum (ER). However, a standard COPII vesicle with a diameter of 60-90 nm is too small to export collagens that are composed of rigid triple helices of up to 400 nm in length. How do cells pack and secrete such bulky molecules? This issue is fundamentally important, as collagens constitute approximately 25% of our dry body weight and are essential for almost all cell-cell interactions. Recently, a potential mechanism for the biogenesis of mega-transport carriers was identified, involving packing collagens and increasing the size of COPII coats. Packing is mediated by TANGO1, which binds procollagen VII in the lumen and interacts with the COPII proteins Sec23/Sec24 on the cytoplasmic side of the ER. Cullin3, an E3 ligase, and its specific adaptor protein, KLHL12, ubiquitinate Sec31, which could increase the size of COPII coats. Recruitment of these proteins and their specific interactors into COPII-mediated vesicle biogenesis may be all that is needed for the export of bulky collagens from the ER. Nonetheless, we present an alternative pathway in which TANGO1 and COPII cooperate to export collagens without generating a mega-transport carrier.
Collapse
|
29
|
Saito K, Katada T. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol Life Sci 2015; 72:3709-20. [PMID: 26082182 PMCID: PMC4565863 DOI: 10.1007/s00018-015-1952-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/18/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Cargo proteins exported from the endoplasmic reticulum to the Golgi apparatus are typically transported in coat protein complex II (COPII)-coated vesicles of 60–90 nm diameter. Several cargo molecules including collagens and chylomicrons form structures that are too large to be accommodated by these vesicles, but their secretion still requires COPII proteins. Here, we first review recent progress on large cargo secretions derived especially from animal models and human diseases, which indicate the importance of COPII proteins. We then discuss the recent isolation of specialized factors that modulate the process of COPII-dependent cargo formation to facilitate the exit of large-sized cargoes from the endoplasmic reticulum. Based on these findings, we propose a model that describes the importance of the GTPase cycle for secretion of oversized cargoes. Next, we summarize reports that describe the structures of COPII proteins and how these results provide insight into the mechanism of assembly of the large cargo carriers. Finally, we discuss what issues remain to be solved in the future.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
30
|
Kong B, Wu W, Valkovska N, Jäger C, Hong X, Nitsche U, Friess H, Esposito I, Erkan M, Kleeff J, Michalski CW. A common genetic variation of melanoma inhibitory activity-2 labels a subtype of pancreatic adenocarcinoma with high endoplasmic reticulum stress levels. Sci Rep 2015; 5:8109. [PMID: 25657029 PMCID: PMC4319175 DOI: 10.1038/srep08109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
HNF1 homeobox A (HNF1A)-mediated gene expression constitutes an essential component of the secretory pathway in the exocrine pancreas. Melanoma inhibitory activity 2 (MIA2), a protein facilitating protein secretion, is an HNF1A target. Protein secretion is precisely coordinated by the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) system. Here, we demonstrate that HNFA and MIA2 are expressed in a subset of human PDAC tissues and that HNF1A induced MIA2 in vitro. We identified a common germline variant of MIA2 (c.A617G: p.I141M) associated with a secretory defect of the MIA2 protein in PDAC cells. Patients carrying MIA2I141M survived longer after tumor resection but the survival benefit was restricted to those patients who received adjuvant chemotherapy. The MIA2I141M variant was associated with high expression of ER stress/UPR genes – in particular those of the ERN1/XBP arm – in human PDAC samples. Accordingly, PDAC cell lines expressing the MIA2I141M variant expressed high levels of ERN1 and were more sensitive to gemcitabine. These findings define an interaction between the common MIA2I141M variant and the ER stress/UPR system and specify a subgroup of PDAC patients who are more likely to benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Bo Kong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Weiwei Wu
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | - Carsten Jäger
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Xin Hong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery, Koc School of Medicine, Istanbul, Turkey
| | - Jörg Kleeff
- Department of Surgery, Technische Universität München, Munich, Germany
| | | |
Collapse
|
31
|
Helmering J, Juan T, Li CM, Chhoa M, Baron W, Gyuris T, Richards WG, Turk JR, Lawrence J, Cosgrove PA, Busby J, Kim KW, Kaufman SA, Cummings C, Carlson G, Véniant MM, Lloyd DJ. A mutation in Ampd2 is associated with nephrotic syndrome and hypercholesterolemia in mice. Lipids Health Dis 2014; 13:167. [PMID: 25361754 PMCID: PMC4232700 DOI: 10.1186/1476-511x-13-167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/22/2014] [Indexed: 11/18/2022] Open
Abstract
Background Previously, we identified three loci affecting HDL-cholesterol levels in a screen for ENU-induced mutations in mice and discovered two mutated genes. We sought to identify the third mutated gene and further characterize the mouse phenotype. Methods We engaged, DNA sequencing, gene expression profiling, western blotting, lipoprotein characterization, metabolomics assessment, histology and electron microscopy in mouse tissues. Results We identify the third gene as Ampd2, a liver isoform of AMP Deaminase (Ampd), a central component of energy and purine metabolism pathways. The causative mutation was a guanine-to-thymine transversion resulting in an A341S conversion in Ampd2. Ampd2 homozygous mutant mice exhibit a labile hypercholesterolemia phenotype, peaking around 9 weeks of age (251 mg/dL vs. wildtype control at 138 mg/dL), and was evidenced by marked increases in HDL, VLDL and LDL. In an attempt to determine the molecular connection between Ampd2 dysfunction and hypercholesterolemia, we analyzed hepatic gene expression and found the downregulation of Ldlr, Hmgcs and Insig1 and upregulation of Cyp7A1 genes. Metabolomic analysis confirmed an increase in hepatic AMP levels and a decrease in allantoin levels consistent with Ampd2 deficiency, and increases in campesterol and β-sitosterol. Additionally, nephrotic syndrome was observed in the mutant mice, through proteinuria, kidney histology and effacement and blebbing of podocyte foot processes by electron microscopy. Conclusion In summary we describe the discovery of a novel genetic mouse model of combined transient nephrotic syndrome and hypercholesterolemia, resembling the human disorder. Electronic supplementary material The online version of this article (doi:10.1186/1476-511X-13-167) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David J Lloyd
- Department of Metabolic Disorders, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
32
|
Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. eLife 2014. [PMID: 24842878 DOI: 10.7554/elife.02784.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.DOI: http://dx.doi.org/10.7554/eLife.02784.001.
Collapse
Affiliation(s)
- Cristina Nogueira
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrik Erlmann
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julien Villeneuve
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - António Jm Santos
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emma Martínez-Alonso
- Department of Cellular Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | - Vivek Malhotra
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
33
|
Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. eLife 2014; 3:e02784. [PMID: 24842878 PMCID: PMC4054776 DOI: 10.7554/elife.02784] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.DOI: http://dx.doi.org/10.7554/eLife.02784.001.
Collapse
Affiliation(s)
- Cristina Nogueira
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrik Erlmann
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julien Villeneuve
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - António Jm Santos
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emma Martínez-Alonso
- Department of Cellular Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | - Vivek Malhotra
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
34
|
Binder E, Bermúdez-Silva FJ, Elie M, Leste-Lasserre T, Belluomo I, Clark S, Duchampt A, Mithieux G, Cota D. Leucine supplementation modulates fuel substrates utilization and glucose metabolism in previously obese mice. Obesity (Silver Spring) 2014; 22:713-20. [PMID: 23894080 DOI: 10.1002/oby.20578] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/04/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE High-protein diets favor weight loss and its maintenance. Whether these effects might be recapitulated by certain amino acids is unknown. Therefore, the impact of leucine supplementation on energy balance and associated metabolic changes in diet-induced obese (DIO) mice during and after weight loss was investigated. METHODS DIO C57BL/6J mice were fed a normocaloric diet to induce weight loss while receiving or not the amino acid leucine in drinking water. Body weight, food intake, body composition, energy expenditure, glucose tolerance, insulin, and leptin sensitivity were evaluated. Q-PCR analysis was performed on muscle, brown and white adipose tissues. RESULTS DIO mice decreased body weight and fat mass in response to chow, but supplementation with leucine did not affect these parameters. During weight maintenance, mice supplemented with leucine had improved glucose tolerance, increased leptin sensitivity, and lower respiratory quotient. The latter was associated with changes in the expression of several genes modulating fatty acid metabolism and mitochondrial activity in the epididymal white and the brown adipose tissues, but not muscle. CONCLUSIONS Leucine supplementation might represent an adjuvant beneficial nutritional therapy during weight loss and maintenance, because it improves lipid and glucose metabolism and restores leptin sensitivity in previously obese animals.
Collapse
Affiliation(s)
- Elke Binder
- NeuroCentre Magendie, INSERM, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France; NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux, U862, Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Binder E, Bermúdez-Silva FJ, André C, Elie M, Romero-Zerbo SY, Leste-Lasserre T, Belluomo L, Duchampt A, Clark S, Aubert A, Mezzullo M, Fanelli F, Pagotto U, Layé S, Mithieux G, Cota D. Leucine supplementation protects from insulin resistance by regulating adiposity levels. PLoS One 2013; 8:e74705. [PMID: 24086364 PMCID: PMC3783457 DOI: 10.1371/journal.pone.0074705] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/02/2013] [Indexed: 02/01/2023] Open
Abstract
Background Leucine supplementation might have therapeutic potential in preventing diet-induced obesity and improving insulin sensitivity. However, the underlying mechanisms are at present unclear. Additionally, it is unclear whether leucine supplementation might be equally efficacious once obesity has developed. Methodology/Principal Findings Male C57BL/6J mice were fed chow or a high-fat diet (HFD), supplemented or not with leucine for 17 weeks. Another group of HFD-fed mice (HFD-pairfat group) was food restricted in order to reach an adiposity level comparable to that of HFD-Leu mice. Finally, a third group of mice was exposed to HFD for 12 weeks before being chronically supplemented with leucine. Leucine supplementation in HFD-fed mice decreased body weight and fat mass by increasing energy expenditure, fatty acid oxidation and locomotor activity in vivo. The decreased adiposity in HFD-Leu mice was associated with increased expression of uncoupling protein 3 (UCP-3) in the brown adipose tissue, better insulin sensitivity, increased intestinal gluconeogenesis and preservation of islets of Langerhans histomorphology and function. HFD-pairfat mice had a comparable improvement in insulin sensitivity, without changes in islets physiology or intestinal gluconeogenesis. Remarkably, both HFD-Leu and HFD-pairfat mice had decreased hepatic lipid content, which likely helped improve insulin sensitivity. In contrast, when leucine was supplemented to already obese animals, no changes in body weight, body composition or glucose metabolism were observed. Conclusions/Significance These findings suggest that leucine improves insulin sensitivity in HFD-fed mice by primarily decreasing adiposity, rather than directly acting on peripheral target organs. However, beneficial effects of leucine on intestinal gluconeogenesis and islets of Langerhans's physiology might help prevent type 2 diabetes development. Differently, metabolic benefit of leucine supplementation is lacking in already obese animals, a phenomenon possibly related to the extent of the obesity before starting the supplementation.
Collapse
Affiliation(s)
- Elke Binder
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| | - Francisco J. Bermúdez-Silva
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- IBIMA-Hospital Carlos Haya, Laboratorio de Investigación, Malaga, Spain
| | - Caroline André
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| | - Melissa Elie
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| | - Silvana Y. Romero-Zerbo
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- IBIMA-Hospital Carlos Haya, Laboratorio de Investigación, Malaga, Spain
| | - Thierry Leste-Lasserre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| | - llaria Belluomo
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| | - Adeline Duchampt
- INSERM, U855, Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| | - Samantha Clark
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| | - Agnes Aubert
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France
| | - Marco Mezzullo
- Endocrinology Unit and Centro di Ricerca Biomedica Applicata, Department of Clinical Medicine, S.Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Flaminia Fanelli
- Endocrinology Unit and Centro di Ricerca Biomedica Applicata, Department of Clinical Medicine, S.Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Uberto Pagotto
- Endocrinology Unit and Centro di Ricerca Biomedica Applicata, Department of Clinical Medicine, S.Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France
| | - Gilles Mithieux
- INSERM, U855, Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
- Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|