1
|
Mognol GP, Ghebremedhin A, Varner JA. Targeting PI3Kγ in cancer. Trends Cancer 2025; 11:462-474. [PMID: 39947962 DOI: 10.1016/j.trecan.2025.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 05/16/2025]
Abstract
The phosphoinositide 3-kinases (PI3Ks) have been the focus of a significant body of cancer research since their discovery nearly 40 years ago. These lipid kinases are now known to play central roles in cancer cell proliferation, survival, migration, metabolism, and immunity and serve as the target of numerous investigational and approved therapeutics. One of these kinases, the unique class IB PI3Kγ, which is highly expressed in myeloid lineage cells and myeloid leukemias, plays prominent roles in tumor immune suppression. Inhibition of this kinase has promoted improved antitumor immune responses in recent solid tumor preclinical studies and clinical trials. New studies also identify this kinase as a driver of acute myeloid leukemia self-renewal and as a new target for the treatment of aggressive leukemias.
Collapse
Affiliation(s)
- Giuliana P Mognol
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0819, USA
| | - Anghesom Ghebremedhin
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0819, USA
| | - Judith A Varner
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0819, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093-0819, USA.
| |
Collapse
|
2
|
Chen X, Kang Y, Tang C, Zhang L, Guo L. TLR4 promotes smooth muscle cell-derived foam cells formation by inducing receptor-independent macropinocytosis. Biosci Biotechnol Biochem 2024; 89:22-32. [PMID: 39455413 DOI: 10.1093/bbb/zbae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Foam cells are primarily formed through scavenger receptors that mediate the uptake of various modified low-density lipoproteins (LDL) into cells. In addition to the receptor-dependent pathway, macropinocytosis is an essential nonreceptor endocytic pathway for vascular smooth muscle cells (VSMCs) to take up lipids. However, the molecular mechanisms underlying this process remain unclear. Primary cultured VSMCs were stimulated with 200 ng/mL lipopolysaccharide (LPS) and 200 µg/mL native LDL (nLDL). We observed a significant increase in Toll-like receptor 4 (TLR4) protein expression and a significant activation of macropinocytosis, which correlated with the highest uptake of nLDL and intracellular lipid deposition in WT VSMCs. However, macropinocytosis was inhibited and lipid accumulation decreased after treatment with macropinocytosis inhibitors and Syk inhibitors in WT VSMCs. Consistently, TLR4 knockout significantly suppressed macropinocytosis and lipid droplets accumulation in VSMCs. Taken together, our findings suggest a critical role of TLR4/Syk signaling in promoting receptor-independent macropinocytosis leading to VSMC-derived foam cells formation.
Collapse
MESH Headings
- Toll-Like Receptor 4/metabolism
- Pinocytosis/drug effects
- Animals
- Foam Cells/metabolism
- Foam Cells/cytology
- Foam Cells/drug effects
- Syk Kinase/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Signal Transduction
- Lipopolysaccharides/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Mice
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Cells, Cultured
- Mice, Knockout
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xue Chen
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Yulai Kang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Chunhua Tang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Lili Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Lu Guo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Xiong Y, Liu S, Liu Y, Zhao J, Sun J, Li Y, Pan B, Wang W. PI3Kγ promotes neutrophil extracellular trap formation by noncanonical pyroptosis in abdominal aortic aneurysm. JCI Insight 2024; 9:e183237. [PMID: 39024551 PMCID: PMC11343590 DOI: 10.1172/jci.insight.183237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is one of the most life-threatening cardiovascular diseases; however, effective drug treatments are still lacking. The formation of neutrophil extracellular traps (NETs) has been shown to be a crucial trigger of AAA, and identifying upstream regulatory targets is thus key to discovering therapeutic agents for AAA. We revealed that phosphoinositide-3-kinase γ (PI3Kγ) acted as an upstream regulatory molecule and that PI3Kγ inhibition reduced NET formation and aortic wall inflammation, thereby markedly ameliorating AAA. However, the mechanism of NET formation regulated by PI3Kγ remains unclear. In this study, we showed that PI3Kγ deficiency inactivated the noncanonical pyroptosis pathway, which suppressed downstream NET formation. In addition, PI3Kγ regulation of noncanonical pyroptosis was dependent on cyclic AMP/protein kinase A signaling. These results clarify the molecular mechanism and crosstalk between PI3Kγ and NETosis in the development of AAA, potentially facilitating the discovery of therapeutic options for AAA.
Collapse
Affiliation(s)
- Yacheng Xiong
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiani Zhao
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jinjian Sun
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Baihong Pan
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Petrina M, Alothaimeen T, Bouzeineddine NZ, Trus E, Banete A, Gee K, Basta S. Granulocyte macrophage colony stimulating factor exerts dominant effects over macrophage colony stimulating factor during macrophage differentiation in vitro to induce an inflammatory phenotype. Inflamm Res 2024; 73:253-262. [PMID: 38158446 DOI: 10.1007/s00011-023-01834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Macrophages (Mφ) can exist along a spectrum of phenotypes that include pro-inflammatory (M1) or anti-inflammatory (M2) immune cells. Mφ colony stimulating factor (M-CSF) and granulocyte Mφ colony stimulating factor (GM-CSF) are cytokines important in hematopoiesis, polarization and activation of Mφ. METHODS AND RESULTS To gain a greater understanding of the relationship between GM-CSF and M-CSF, we investigated an in vitro model of differentiation to determine if GM-CSF and M-CSF can antagonize each other, in terms of Mφ phenotype and functions. We determined that Mφ cultured in mixed M-CSF: GM-CSF ratios exhibit M1-like GM-CSF-treated macrophage phenotype when the ratios of the two cytokines are 1:1 in culture. Moreover, GM-CSF is dominant over M-CSF in influencing Mφ production of proinflammatory cytokines such as IL-6, TNFα, and IL-12p40, and the anti-inflammatory cytokine IL-10. CONCLUSIONS Our data established that GM-CSF is more dominant over M-CSF, triggering the Mφ to become pro-inflammatory cells. These findings provide insight into how GM-CSF can influence Mφ activation with implications in inflammatory diseases where the Mφ status can play a significant role in supporting the inflammatory conditions.
Collapse
Affiliation(s)
- Maria Petrina
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Torki Alothaimeen
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Evan Trus
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada.
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
5
|
Lanahan SM, Wymann MP, Lucas CL. The role of PI3Kγ in the immune system: new insights and translational implications. Nat Rev Immunol 2022; 22:687-700. [PMID: 35322259 PMCID: PMC9922156 DOI: 10.1038/s41577-022-00701-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Over the past two decades, new insights have positioned phosphoinositide 3-kinase-γ (PI3Kγ) as a context-dependent modulator of immunity and inflammation. Recent advances in protein structure determination and drug development have allowed for generation of highly specific PI3Kγ inhibitors, with the first now in clinical trials for several oncology indications. Recently, a monogenic immune disorder caused by PI3Kγ deficiency was discovered in humans and modelled in mice. Human inactivated PI3Kγ syndrome confirms the immunomodulatory roles of PI3Kγ and strengthens newly defined roles of this molecule in modulating inflammatory cytokine release in macrophages. Here, we review the functions of PI3Kγ in the immune system and discuss how our understanding of its potential as a therapeutic target has evolved.
Collapse
Affiliation(s)
- Stephen M Lanahan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Chen K, Henn D, Sivaraj D, Bonham CA, Griffin M, Kussie HC, Padmanabhan J, Trotsyuk AA, Wan DC, Januszyk M, Longaker MT, Gurtner GC. Mechanical Strain Drives Myeloid Cell Differentiation Toward Proinflammatory Subpopulations. Adv Wound Care (New Rochelle) 2022; 11:466-478. [PMID: 34278820 PMCID: PMC9805866 DOI: 10.1089/wound.2021.0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: After injury, humans and other mammals heal by forming fibrotic scar tissue with diminished function, and this healing process involves the dynamic interplay between resident cells within the skin and cells recruited from the circulation. Recent studies have provided mounting evidence that external mechanical forces stimulate intracellular signaling pathways to drive fibrotic processes. Innovation: While most studies have focused on studying mechanotransduction in fibroblasts, recent data suggest that mechanical stimulation may also shape the behavior of immune cells, referred to as "mechano-immunomodulation." However, the effect of mechanical strain on myeloid cell recruitment and differentiation remains poorly understood and has never been investigated at the single-cell level. Approach: In this study, we utilized a three-dimensional (3D) in vitro culture system that permits the precise manipulation of mechanical strain applied to cells. We cultured myeloid cells and used single-cell RNA-sequencing to interrogate the effects of strain on myeloid differentiation and transcriptional programming. Results: Our data indicate that myeloid cells are indeed mechanoresponsive, with mechanical stress influencing myeloid differentiation. Mechanical strain also upregulated a cascade of inflammatory chemokines, most notably from the Ccl family. Conclusion: Further understanding of how mechanical stress affects myeloid cells in conjunction with other cell types in the complicated, multicellular milieu of wound healing may lead to novel insights and therapies for the treatment of fibrosis.
Collapse
Affiliation(s)
- Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hudson C. Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Artem A. Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Li L, Zhao Y, Hu Y, Wang X, Jin Q, Zhao Y. Recombinant EGFL7 Mitigated Pressure Overload-Induced Cardiac Remodeling by Blocking PI3K γ /AKT/ NFκB Signaling in Macrophages. Front Pharmacol 2022; 13:858118. [PMID: 35721105 PMCID: PMC9200063 DOI: 10.3389/fphar.2022.858118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation and endothelial dysfunction play an essential role in heart failure (HF). Epidermal growth factor-like protein 7 (EGFL7) is upregulated during pathological hypoxia and exerts a protective role. However, it is unclear whether there is a link between abnormal EGFL7 expression and inflammation in overload stress-induced heart failure. Our results showed that EGFL7 transiently increased during the early 4 weeks of TAC and in hypertensive patients without heart failure. However, it decreased to the basal line in the heart tissue 8 weeks post-transverse aortic constriction (TAC) or hypertensive patients with heart failure. Knockdown of EGFL7 with siRNA in vivo accelerated cardiac dysfunction, fibrosis, and macrophage infiltration 4 weeks after TAC. Deletion of macrophages in siRNA-EGFL7-TAC mice rescued that pathological phenotype. In vitro research revealed the mechanism. PI3K γ /AKT/N FκB signaling in macrophages was activated by the supernatant from endothelial cells stimulated by siRNA-EGFL7+phenylephrine. More macrophages adhered to endothelial cells, but pretreatment of macrophages with PI3Kγ inhibitors decreased the adhesion of macrophages to endothelial cells. Ultimately, treatment with recombinant rmEGFL7 rescued cardiac dysfunction and macrophage infiltration in siRNA-EGFL7-TAC mice. In conclusion, EGFL7 is a potential inhibitor of macrophage adhesion to mouse aortic endothelial cells. The downregulation of EGFL7 combined with increased macrophage infiltration further promoted cardiac dysfunction under pressure overload stress. Mechanistically, EGFL7 reduced endothelial cell adhesion molecule expression and inhibited the PI3K γ /AKT/NF κ B signaling pathway in macrophages.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhao
- Department of Geriatrics, 960 Hospital of PLA(The General Hospital of Jinan Command), Jinan, China
| | - Ying Hu
- Department of Cardiology, Liao Cheng People’s Hospital, Liao Cheng, China
| | - Xiaohui Wang
- Department of Medical Records, Heze Municipal Hospital, Heze, China
| | - Qun Jin
- Department of Geriatrics, 960 Hospital of PLA(The General Hospital of Jinan Command), Jinan, China
| | - Ying Zhao
- Department of Geriatrics, 960 Hospital of PLA(The General Hospital of Jinan Command), Jinan, China
| |
Collapse
|
8
|
Qian H, Zhou T, Fu Y, Guo M, Yang W, Zhang D, Fang W, Yao M, Shi H, Chai C, Cheng W, Ding S, Chen T. Self-assembled tetrahedral framework nucleic acid mediates tumor-associated macrophage reprogramming and restores antitumor immunity. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:763-773. [PMID: 35116188 PMCID: PMC8783116 DOI: 10.1016/j.omtn.2021.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in depleting or repolarizing tumor-associated macrophages (TAMs) to generate a proinflammatory effect. However, TAMs usually display an immunosuppressive M2-like phenotype in the tumor microenvironment. Apparently, developing a macrophage-targeting delivery system with immunomodulatory agents is urgent. In this study, an efficient siRNA and CpG ODNs delivery system (CpG-siRNA-tFNA) was prepared with nucleic acid stepwise self-assembled. The tFNA composed of CpG ODNs and siRNA showed a higher stability and an enhanced cellular uptake efficiency. Moreover, the CpG-siRNA-tFNA effectively reprogrammed TAMs toward M1 phenotype polarization with increased proinflammatory cytokine secretion and NF-κB signal pathway activation, which triggers dramatic antitumor immune responses. Additionally, the CpG-siRNA-tFNA exhibited superior antitumor efficacy in a breast cancer xenograft mouse model without obvious systemic side effects. Taken together, CpG-siRNA-tFNA displayed greatly antitumor effect by facilitating TAM polarization toward M1 phenotypes in favor of immunotherapy. Hence, we have developed an efficient therapeutic strategy with immunomodulatory agents for clinical applications.
Collapse
Affiliation(s)
- Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yixin Fu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Minkang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
9
|
Borsari C, Wymann MP. Targeting Phosphoinositide 3-Kinase - Five Decades of Chemical Space Exploration. Chimia (Aarau) 2021; 75:1037-1044. [PMID: 34920774 DOI: 10.2533/chimia.2021.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland;,
| |
Collapse
|
10
|
Henn D, Chen K, Fehlmann T, Trotsyuk AA, Sivaraj D, Maan ZN, Bonham CA, Barrera JA, Mays CJ, Greco AH, Moortgat Illouz SE, Lin JQ, Steele SR, Foster DS, Padmanabhan J, Momeni A, Nguyen D, Wan DC, Kneser U, Januszyk M, Keller A, Longaker MT, Gurtner GC. Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2 + macrophages. SCIENCE ADVANCES 2021; 7:eabi4528. [PMID: 34851663 PMCID: PMC8635426 DOI: 10.1126/sciadv.abi4528] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/09/2021] [Indexed: 05/07/2023]
Abstract
Skin allo- and xenotransplantation are the standard treatment for major burns when donor sites for autografts are not available. The relationship between the immune response to foreign grafts and their impact on wound healing has not been fully elucidated. Here, we investigated changes in collagen architecture after xenogeneic implantation of human biologic scaffolds. We show that collagen deposition in response to the implantation of human split-thickness skin grafts (hSTSGs) containing live cells recapitulates normal skin architecture, whereas human acellular dermal matrix (ADM) grafts led to a fibrotic collagen deposition. We show that macrophage differentiation in response to hSTSG implantation is driven toward regenerative Trem2+ subpopulations and found that hydrogel delivery of these cells significantly accelerated wound closure. Our study identifies the preclinical therapeutic potential of Trem2+ macrophages to mitigate fibrosis and promote wound healing, providing a novel effective strategy to develop advanced cell therapies for complex wounds.
Collapse
Affiliation(s)
- Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Artem A. Trotsyuk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Dharshan Sivaraj
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Zeshaan N. Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Clark A. Bonham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Janos A. Barrera
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Chyna J. Mays
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Autumn H. Greco
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Sylvia E. Moortgat Illouz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - John Qian Lin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Sydney R. Steele
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Deshka S. Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Jagannath Padmanabhan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Dung Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Belyaeva VS, Stepenko YV, Lyubimov II, Kulikov AL, Tietze AA, Kochkarova IS, Martynova OV, Pokopeyko ON, Krupen’kina LA, Nagikh AS, Pokrovskiy VM, Patrakhanov EA, Belashova AV, Lebedev PR, Gureeva AV. Non-hematopoietic erythropoietin-derived peptides for atheroprotection and treatment of cardiovascular diseases. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.58891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relevance: Cardiovascular diseases continue to be the leading cause of premature adult death.Lipid profile and atherogenesis: Dislipidaemia leads to subsequent lipid accumulation and migration of immunocompetent cells into the vessel intima. Macrophages accumulate cholesterol forming foam cells – the morphological substrate of atherosclerosis in its initial stage.Inflammation and atherogenesis: Pro-inflammatory factors provoke oxidative stress, vascular wall damage and foam cells formation.Endothelial and mitochondrial dysfunction in the development of atherosclerosis: Endothelial mitochondria are some of the organelles most sensitive to oxidative stress. Damaged mitochondria produce excess superoxide and H2O2, which are the main factors of intracellular damage, further increasing endothelial dysfunction.Short non-hematopoietic erythropoietin-based peptides as innovative atheroprotectors: Research in recent decades has shown that erythropoietin has a high cytoprotective activity, which is mainly associated with exposure to the mitochondrial link and has been confirmed in various experimental models. There is also a short-chain derivative, the 11-amino acid pyroglutamate helix B surface peptide (PHBSP), which selectively binds to the erythropoietin heterodymic receptor and reproduces its cytoprotective properties. This indicates the promising use of short-chain derivatives of erythropoietin for the treatment and prevention of atherosclerotic vascular injury. In the future, it is planned to study the PHBSP derivatives, the modification of which consists in adding RGD and PGP tripeptides with antiaggregant properties to the original 11-member peptide.
Collapse
|
12
|
Liu Y, Wang L, Liu J, Xie X, Hu H, Luo F. Anticancer Effects of ACT001 via NF-κB Suppression in Murine Triple-Negative Breast Cancer Cell Line 4T1. Cancer Manag Res 2020; 12:5131-5139. [PMID: 32617021 PMCID: PMC7326172 DOI: 10.2147/cmar.s244748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE ACT001 is a novel sesquiterpene lactone derivative with anticancer effects, including the reversal of tamoxifen resistance in estrogen receptor-positive breast cancer cells. However, few studies have investigated the anticancer effects of ACT001 in triple-negative breast cancer (TNBC), a highly aggressive cancer with a poor prognosis. This study aimed to investigate the effects of ACT001 on TNBC and the potential mechanism underlying these effects. MATERIALS AND METHODS The anticancer effects of ACT001 on the murine TNBC cell line 4T1 were evaluated by Cell Counting Kit-8 assay, animal experiments, TUNEL staining, flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay, and Western blotting analysis. RESULTS ACT001 induced apoptosis in 4T1 cells by upregulating B cell lymphoma 2-associated X protein expression. Moreover, ACT001 markedly decreased levels of secretory granulocyte-macrophage colony stimulating factor (GM-CSF) in 4T1 tumors, decreased the number of myeloid-derived suppressor cells (MDSCs), and reduced angiogenesis. Furthermore, GM-CSF promoted angiogenesis and the proliferation of MDSCs in a dose-dependent manner. Finally, ACT001 suppressed phospho-NF-κB and IκB-α levels in 4T1 cells, thereby further decreasing GM-CSF levels. CONCLUSION Our results suggest that ACT001 exerts its anticancer effects by inducing apoptosis in murine TNBC cell line 4T1 and regulates the tumor microenvironment by attenuating angiogenesis and accumulation of MDSCs in 4T1 tumors. The underlying mechanism may involve the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Yanyang Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Li Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Jiewei Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Xiaoxiao Xie
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Haoyue Hu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| |
Collapse
|
13
|
Su X, Peng D. New insight into sortilin in controlling lipid metabolism and the risk of atherogenesis. Biol Rev Camb Philos Soc 2020; 95:232-243. [PMID: 31625271 DOI: 10.1111/brv.12561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
15
|
Doodnauth SA, Grinstein S, Maxson ME. Constitutive and stimulated macropinocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180147. [PMID: 30967001 DOI: 10.1098/rstb.2018.0147] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macrophages respond to several stimuli by forming florid membrane ruffles that lead to fluid uptake by macropinocytosis. This type of induced macropinocytosis, executed by a variety of non-malignant and malignant cells, is initiated by transmembrane receptors and is involved in nutrient acquisition and mTOR signalling. However, macrophages also perform a unique type of constitutive ruffling and macropinocytosis that is dependent on the presence of extracellular calcium. Calcium-sensing receptors are responsible for this activity. This distinct form of macropinocytosis enables macrophages to continuously sample their microenvironment for antigenic molecules and for pathogen- and danger-associated molecular patterns, as part of their immune surveillance functions. Interestingly, even within the monocyte lineage, there are differences in macropinocytic ability that reflect the polarized functional roles of distinct macrophage subsets. This review discusses the shared and distinct features of both induced and constitutive macropinocytosis displayed by the macrophage lineage and their roles in physiology, immunity and pathophysiology. In particular, we analyse the role of macropinocytosis in the uptake of modified low-density lipoprotein (LDL) and its contribution to foam cell and atherosclerotic plaque formation. We propose a combined role of scavenger receptors and constitutive macropinocytosis in oxidized LDL uptake, a process we have termed 'receptor-assisted macropinocytosis'. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Sasha A Doodnauth
- 1 Princess Margaret Cancer Center, University Health Network , Toronto, ON , Canada M5G 1L7.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada M5G 1L7
| | - Sergio Grinstein
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4.,4 Department of Biochemistry, University of Toronto , 1 King's Circle, Toronto, ON , Canada M5S 1A8.,5 Keenan Research Centre of the Li Ka Shing Knowledge Institute , St. Michael's Hospital, 290 Victoria Street, Toronto, ON , Canada M5C 1N8
| | - Michelle E Maxson
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4
| |
Collapse
|
16
|
Yang Y, Ren G, Wang Z, Wang B. Human cytomegalovirus IE2 protein regulates macrophage-mediated immune escape by upregulating GRB2 expression in UL122 genetically modified mice. Biosci Trends 2020; 13:502-509. [PMID: 31866613 DOI: 10.5582/bst.2019.01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although cytomegalovirus (HCMV) infection is asymptomatic in healthy individuals, the virus can remain latent for many years due to its ability to evade host immune surveillance. However, reactivation of HCMV can lead to life-threatening disease. Recent studies have shown that HCMV infection mediates immune escape by regulating macrophage activity, although the role of the HCMV-encoded IE2 protein is unclear. A ul122 transgenic mouse model was created to stably expresses the IE2 protein, and the proportion of M1 and M2 macrophage populations in their spleen and bone marrow was compared to that in wild-type controls. In addition, the phagocytic function of the macrophages was evaluated in terms of neutral red dye uptake. Spleen and bone marrow macrophages in IE2-expressing mice were mainly of the M2 phenotype and displayed enhanced phagocytic function compared to that in control mice. The relative levels of expression of macrophage-related GRB2 and of IL-4, IFN-γ, IL-13, and TNF-α were also analyzed in the spleen and bone marrow of the two groups. The IE2-expressing mice had increased expression of GRB2 and increased expression of the M2-related cytokines IL-4 and IL-13. Taken together, the current results suggest that HCMV IE2 polarizes the host macrophages to the M2 type via a GRB2/IL-4-related pathway, which enables long-term survival of the virus in the host.
Collapse
Affiliation(s)
- Yanan Yang
- Department of Special Medicine, Qingdao University College of Medicine, Qingdao, China
| | - Guohua Ren
- Dermatology, Heze Municipal Hospital, Heze, China
| | - Zhifei Wang
- Department of Pathogen Biology, Qingdao University College of Medicine, Qingdao, China
| | - Bin Wang
- Department of Special Medicine, Qingdao University College of Medicine, Qingdao, China
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Lipoprotein-induced intracellular lipid accumulation (foam cell formation) is a trigger of atherogenesis at the subendothelial arterial cell level. The purpose of this review is to describe the recent data related to the possible mechanisms of LDL-induced formation of lipid-laden foam cells and their role in the onset and development of atherosclerotic lesion. RECENT FINDINGS The most interesting current studies are related to the factors affecting foam cell formation. SUMMARY The phenomenon of lipid accumulation in cultured cells became the basis for creating a cellular test system that has already been successfully applied for development of drugs possessing direct antiatherosclerotic activity, and then the efficacy of these drugs was demonstrated in clinical studies. Moreover, this test system could be used for diagnostic assessing lipoproteins atherogenicity.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Laboratory of Angiopatology, Institute of General Pathology and Pathophysiology
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| |
Collapse
|
18
|
Systematic RNA-interference in primary human monocyte-derived macrophages: A high-throughput platform to study foam cell formation. Sci Rep 2018; 8:10516. [PMID: 30002403 PMCID: PMC6043567 DOI: 10.1038/s41598-018-28790-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophage-derived foam cells are key regulators of atherogenesis. They accumulate in atherosclerotic plaques and support inflammatory processes by producing cytokines and chemokines. Identifying factors that regulate macrophage lipid uptake may reveal therapeutic targets for coronary artery disease (CAD). Here, we establish a high-throughput screening workflow to systematically identify genes that impact the uptake of DiI-labeled low-density lipoprotein (LDL) into monocyte-derived primary human macrophages. For this, monocytes isolated from peripheral blood were seeded onto 384-well plates, solid-phase transfected with siRNAs, differentiated in vitro into macrophages, and LDL-uptake per cell was measured by automated microscopy and quantitative image analysis. We applied this workflow to study how silencing of 89 genes impacts LDL-uptake into cells from 16 patients with CAD and 16 age-matched controls. Silencing of four novel genes (APOC1, CMTM6, FABP4, WBP5) reduced macrophage LDL-uptake. Additionally, knockdown of the chemokine receptor CXCR4 reduced LDL-uptake, most likely through a G-protein coupled mechanism that involves the CXCR4 ligand macrophage-induced factor (MIF), but is independent of CXCL12. We introduce a high-throughput strategy to systematically study gene function directly in primary CAD-patient cells. Our results propose a function for the MIF/CXCR4 signaling pathway, as well as several novel candidate genes impacting lipid uptake into human macrophages.
Collapse
|
19
|
Lai HY, Hsu LW, Tsai HH, Lo YC, Yang SH, Liu PY, Wang JM. CCAAT/enhancer-binding protein delta promotes intracellular lipid accumulation in M1 macrophages of vascular lesions. Cardiovasc Res 2018; 113:1376-1388. [PMID: 28859294 DOI: 10.1093/cvr/cvx134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/09/2017] [Indexed: 12/15/2022] Open
Abstract
Aims Lipid homeostasis is reprogrammed in the presence of inflammation, which results in excessive lipid accumulation in macrophages, and leads to the formation of lipid-laden foam cells. We aimed to link an inflammation-responsive transcription factor CCAAT/enhancer-binding protein delta (CEBPD) with polarized macrophages and dissect its contribution to lipid accumulation. Methods and results We found that CEBPD protein colocalized with macrophages in human and mouse (C57BL/6, Apoe-/-) atherosclerotic plaques and that Cebpd deficiency in bone marrow cells suppressed atherosclerotic lesions in hyperlipidemic Apoe-/- mice. CEBPD was responsive to modified low-density lipoprotein (LDL) via the p38MAPK/CREB pathway, and it promoted lipid accumulation in M1 macrophages but not in M2 macrophages. CEBPD up-regulated pentraxin 3 (PTX3), which promoted the macropinocytosis of LDL, and down-regulated ATP-binding cassette subfamily A member 1 (ABCA1), which impaired the intracellular cholesterol efflux in M1 macrophages. We further found that simvastatin (a HMG-CoA reductase inhibitor) could target CEBPD to block lipid accumulation in a manner not directly related to its cholesterol-lowering effect in M1 macrophages. Conclusion This study underscores how CEBPD functions at the junction of inflammation and lipid accumulation in M1 macrophages. Therefore, CEBPD-mediated lipid accumulation in M1 macrophages could represent a new therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Wei Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Molecular Inflammation Research, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Anzinger JJ, Jin X, Palmer CS, Dagur P, Barthwal MK, Kruth HS. Measurement of Aortic Cell Fluid-Phase Pinocytosis in vivo by Flow Cytometry. J Vasc Res 2017; 54:195-199. [PMID: 28618422 DOI: 10.1159/000475934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Fluid-phase pinocytosis is a receptor-independent mechanism of endocytosis that occurs in all mammalian cells and may be a mechanism for the uptake of LDL by macrophages. As there are currently no methods for the measurement of fluid-phase pinocytosis by individual aortic cells in vivo, we sought to identify a suitable method. METHODS ApoE-/- mice were retro-orbitally injected with AngioSPARK fluorescent nanoparticles specifically designed to not interact with cells. After 24 h, mice were sacrificed, and the aortas were isolated and then digested to analyze aortic cell uptake of AngioSPARK by flow cytometry. RESULTS CD11b-expressing aortic macrophages from mice injected with AngioSPARK showed high levels of fluid-phase pinocytosis compared to aortic cells not expressing CD11b (4,393.7 vs. 408.3 mean fluorescence intensity [MFI], respectively). CONCLUSION This new technique allows for the measurement of fluid-phase pinocytosis by aortic cells in vivo, making it possible to examine the cell-signaling molecules and drugs that affect this process. Published by S. Karger AG, Basel.
Collapse
Affiliation(s)
- Joshua J Anzinger
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
21
|
Verescakova H, Ambrozova G, Kubala L, Perecko T, Koudelka A, Vasicek O, Rudolph TK, Klinke A, Woodcock SR, Freeman BA, Pekarova M. Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages. Free Radic Biol Med 2017; 104:10-19. [PMID: 28063941 PMCID: PMC5329068 DOI: 10.1016/j.freeradbiomed.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
Many diseases accompanied by chronic inflammation are connected with dysregulated activation of macrophage subpopulations. Recently, we reported that nitro-fatty acids (NO2-FAs), products of metabolic and inflammatory reactions of nitric oxide and nitrite, modulate macrophage and other immune cell functions. Bone marrow cell suspensions were isolated from mice and supplemented with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in combination with NO2-OA for different times. RAW 264.7 macrophages were used for short-term (1-5min) experiments. We discovered that NO2-OA reduces cell numbers, cell colony formation, and proliferation of macrophages differentiated with colony-stimulating factors (CSFs), all in the absence of toxicity. In a case of GM-CSF-induced bone marrow-derived macrophages (BMMs), NO2-OA acts via downregulation of signal transducer and activator of transcription 5 and extracellular signal-regulated kinase (ERK) activation. In the case of M-CSF-induced BMMs, NO2-OA decreases activation of M-CSFR and activation of related PI3K and ERK. Additionally, NO2-OA also attenuates activation of BMMs. In aggregate, we demonstrate that NO2-OA regulates the process of macrophage differentiation and that NO2-FAs represent a promising therapeutic tool in the treatment of inflammatory pathologies linked with increased accumulation of macrophages in inflamed tissues.
Collapse
Affiliation(s)
- Hana Verescakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia
| | - Tomas Perecko
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia
| | - Adolf Koudelka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia; Department of Animal Physiology and Immunology, Masaryk University, Brno, Czechia
| | - Ondrej Vasicek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia
| | - Tanja K Rudolph
- Heart Centre, University Hospital of Cologne, Cologne, Germany
| | - Anna Klinke
- International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia; Heart Centre, University Hospital of Cologne, Cologne, Germany
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michaela Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia.
| |
Collapse
|
22
|
Liu Y, Tu L, Wang L, Long J, Wang J, Wang Y, Luo F, Cao D. The accumulation of macrophages attenuates the effect of recombinant human endostatin on lung cancer. Onco Targets Ther 2016; 9:6581-6595. [PMID: 27822063 PMCID: PMC5087788 DOI: 10.2147/ott.s114389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Although anti-angiogenic therapy is widely applied clinically, its efficacy has been less than expected. Screening for regulatory factors and sensitive indicators to define the effectiveness of these drugs is required. Through a retrospective study of clinical data, we found that patients with a higher peripheral monocyte-to-lymphocyte ratio (MLR) obtained less benefit from recombinant human endostatin (rhES, Endostar®), an anti-angiogenic drug, in lung cancer. Because MLR is positively correlated with macrophage count in tumors, this result suggests that macrophages may influence the effectiveness of rhES therapy in lung cancer. Methods Clinical data from 72 lung cancer patients treated with rhES were collected. Animal study, flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay, Western blot analysis, and transwell migration assays were carried on Lewis lung carcinoma (LLC) cells, bone marrow-derived macrophages, macrophage cell line RAW264.7, and ANA-1 cells. Results Clinical data showed that compared with the baseline MLR before rhES treatment, patients with progressive disease had higher MLRs than those of patients with partial response. Experimental results showed that more macrophages were recruited in the LLC tumors after rhES treatment and the majority of them displayed an M2-like phenotype. rhES aggravated hypoxia and the inflammatory response in the tumor microenvironment. Hypoxia promoted the expression of CCL2 by endothelial and fibroblast cells, which could induce macrophages recruitment, and increased levels of inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) skewed macrophage polarization toward the M2-like phenotype. Hypoxia or inflammation cytokine-treated macrophages enhanced the progression of LLC in vitro and in vivo. Conclusion We found rhES could aggravate hypoxia and the inflammatory response in the tumor microenvironment. These changes were favorable for macrophage accumulation, and skewed their polarization toward the M2-like phenotype which could help LLC to escape from the anti-angiogenic therapy. Thus, these data indicate the accumulation of macrophages in the tumor microenvironment may adversely affect the efficacy of rhES on lung cancer.
Collapse
Affiliation(s)
- Yanyang Liu
- Department of Medical Oncology, Lung Cancer Center
| | - Li Tu
- Department of Medical Oncology, Lung Cancer Center
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center
| | - Jianlin Long
- Department of Medical Oncology, Lung Cancer Center
| | - Jiantao Wang
- Department of Medical Oncology, Lung Cancer Center
| | - Yuyi Wang
- Department of Medical Oncology, Lung Cancer Center
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
23
|
Yamaguchi R, Yamamoto T, Sakamoto A, Ishimaru Y, Narahara S, Sugiuchi H, Yamaguchi Y. Roles of myeloperoxidase and GAPDH in interferon-gamma production of GM-CSF-dependent macrophages. Heliyon 2016; 2:e00080. [PMID: 27441256 PMCID: PMC4945965 DOI: 10.1016/j.heliyon.2016.e00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 01/12/2023] Open
Abstract
Interferon (IFN)-gamma is highly expressed in atherosclerotic lesions and may have an important role in atherogenesis. Myeloperoxidase (MPO), the most abundant protein in neutrophils, is a marker of plaque vulnerability and a possible bridge between inflammation and cardiovascular disease. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has also been implicated in the pathogenesis of atherosclerosis. The present study investigated the role of neutrophil activation in atherosclerosis. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IFN-gamma protein by GM-CSF-dependent-macrophages was investigated by enzyme-linked immunosorbent assay after stimulation with MPO. GM-CSF enhanced macrophage expression of the mannose receptor (CD206), which is involved in MPO uptake. MPO increased IFN-gamma production by GM-CSF-dependent macrophages in a concentration-dependent manner. Pretreatment of macrophages with small interfering RNA (siRNA) for CD206 or extracellular signal-regulated kinase (ERK)-2 attenuated IFN-gamma production, while siRNA for ERK-1 did not. GAPDH is known to bind to adenylate/uridylate (AU)-rich elements of RNA and may influence IFN-gamma protein expression by binding to the AU-rich element of IFN-gamma mRNA. Interestingly, pretreatment with siRNA for GAPDH significantly reduced IFN-gamma production by macrophages, while it did not affect TF protein expression. In conclusion, MPO upregulates IFN-gamma production by GM-CSF-dependent-macrophages via the CD206/ERK-2 signaling pathway, while silencing GAPDH reduces IFN-gamma production.
Collapse
Affiliation(s)
- Rui Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
- Graduate School of Medical Science, Kumamoto University Medical School, Kumamoto, Japan
| | - Takatoshi Yamamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Arisa Sakamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Yasuji Ishimaru
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Shinji Narahara
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Hiroyuki Sugiuchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Yasuo Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
- Corresponding author at: Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861–5598, Japan.
| |
Collapse
|
24
|
Kächele M, Hennige AM, Machann J, Hieronimus A, Lamprinou A, Machicao F, Schick F, Fritsche A, Stefan N, Nürnberg B, Häring HU, Staiger H. Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers. PLoS One 2015; 10:e0144494. [PMID: 26658747 PMCID: PMC4675530 DOI: 10.1371/journal.pone.0144494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/19/2015] [Indexed: 01/22/2023] Open
Abstract
Objective Phosphoinositide 3-kinase γ (PI3Kγ) is a G-protein-coupled receptor-activated lipid kinase mainly expressed in leukocytes and cells of the cardiovascular system. PI3Kγ plays an important signaling role in inflammatory processes. Since subclinical inflammation is a hallmark of atherosclerosis, obesity-related insulin resistance, and pancreatic β-cell failure, we asked whether common genetic variation in the PI3Kγ gene (PIK3CG) contributes to body fat content/distribution, serum adipokine/cytokine concentrations, alterations in plasma lipid profiles, insulin sensitivity, insulin release, and glucose homeostasis. Study Design Using a tagging single nucleotide polymorphism (SNP) approach, we analyzed genotype-phenotype associations in 2,068 German subjects genotyped for 10 PIK3CG SNPs and characterized by oral glucose tolerance tests. In subgroups, data from hyperinsulinaemic-euglycaemic clamps, magnetic resonance spectroscopy of the liver, whole-body magnetic resonance imaging, and intravenous glucose tolerance tests were available, and peripheral blood mononuclear cells (PBMCs) were used for gene expression analysis. Results After appropriate adjustment, none of the PIK3CG tagging SNPs was significantly associated with body fat content/distribution, adipokine/cytokine concentrations, insulin sensitivity, insulin secretion, or blood glucose concentrations (p>0.0127, all; Bonferroni-corrected α-level: 0.0051). However, six non-linked SNPs displayed at least nominal associations with plasma HDL-cholesterol concentrations, two of them (rs4288294 and rs116697954) reaching the level of study-wide significance (p = 0.0003 and p = 0.0004, respectively). More precisely, rs4288294 and rs116697954 influenced HDL2-, but not HDL3-, cholesterol. With respect to the SNPs’ in vivo functionality, rs4288294 was significantly associated with PIK3CG mRNA expression in PBMCs. Conclusions We could demonstrate that common genetic variation in the PIK3CG locus, possibly via altered PIK3CG gene expression, determines plasma HDL-cholesterol concentrations. Since HDL2-, but not HDL3-, cholesterol is influenced by PIK3CG variants, PI3Kγ may play a role in HDL clearance rather than in HDL biogenesis. Even though the molecular pathways connecting PI3Kγ and HDL metabolism remain to be further elucidated, this finding could add a novel aspect to the pathophysiological role of PI3Kγ in atherogenesis.
Collapse
Affiliation(s)
- Martin Kächele
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Anita M. Hennige
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Anja Hieronimus
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Apostolia Lamprinou
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Fausto Machicao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Fritz Schick
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Nutritional and Preventive Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Bernd Nürnberg
- Department of Experimental and Clinical Pharmacology and Toxicology, Division of Pharmacology and Experimental Therapy, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Harald Staiger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- * E-mail:
| |
Collapse
|
25
|
Lim JP, Gosavi P, Mintern JD, Ross EM, Gleeson PA. Sorting nexin 5 selectively regulates dorsal-ruffle-mediated macropinocytosis in primary macrophages. J Cell Sci 2015; 128:4407-19. [PMID: 26459636 DOI: 10.1242/jcs.174359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/05/2015] [Indexed: 02/01/2023] Open
Abstract
The regulation of macropinocytosis, a specialised endocytosis pathway, is important for immune cell function. However, it is not known whether the biogenesis of macropinosomes involves one or more distinct pathways. We previously identified sorting nexin 5 (SNX5) as a regulator of macropinocytosis in macrophages. Here, we show that bone-marrow-derived macrophages from SNX5-knockout mice had a 60-70% reduction in macropinocytic uptake of dextran or ovalbumin, whereas phagocytosis and retrograde transport from the plasma membrane to the Golgi was unaffected. In contrast, deficiency of SNX5 had no effect on macropinocytosis or antigen presentation by dendritic cells. Activation of macrophages with CSF-1 resulted in a localisation of SNX5 to actin-rich ruffles in a manner dependent on receptor tyrosine kinases. SNX5-deficient macrophages showed a dramatic reduction in ruffling on the dorsal surface following CSF-1 receptor activation, whereas peripheral ruffling and cell migration were unaffected. We demonstrate that SNX5 is acting upstream of actin polymerisation following CSF-1 receptor activation. Overall, our findings reveal the important contribution of dorsal ruffing to receptor-activated macropinocytosis in primary macrophages and show that SNX5 selectively regulates macropinosomes derived from the dorsal ruffles.
Collapse
Affiliation(s)
- Jet Phey Lim
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Justine D Mintern
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ellen M Ross
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
26
|
Lupieri A, Smirnova N, Malet N, Gayral S, Laffargue M. PI3K signaling in arterial diseases: Non redundant functions of the PI3K isoforms. Adv Biol Regul 2015; 59:4-18. [PMID: 26238239 DOI: 10.1016/j.jbior.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Cardiovascular diseases are the most common cause of death around the world. This includes atherosclerosis and the adverse effects of its treatment, such as restenosis and thrombotic complications. The development of these arterial pathologies requires a series of highly-intertwined interactions between immune and arterial cells, leading to specific inflammatory and fibroproliferative cellular responses. In the last few years, the study of phosphoinositide 3-kinase (PI3K) functions has become an attractive area of investigation in the field of arterial diseases, especially since inhibitors of specific PI3K isoforms have been developed. The PI3K family includes 8 members divided into classes I, II or III depending on their substrate specificity. Although some of the different isoforms are responsible for the production of the same 3-phosphoinositides, they each have specific, non-redundant functions as a result of differences in expression levels in different cell types, activation mechanisms and specific subcellular locations. This review will focus on the functions of the different PI3K isoforms that are suspected as having protective or deleterious effects in both the various immune cells and types of cell found in the arterial wall. It will also discuss our current understanding in the context of which PI3K isoform(s) should be targeted for future therapeutic interventions to prevent or treat arterial diseases.
Collapse
Affiliation(s)
- Adrien Lupieri
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Natalia Smirnova
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Nicole Malet
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Stéphanie Gayral
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Muriel Laffargue
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France.
| |
Collapse
|
27
|
Zhang J, Cao J, Ma S, Dong R, Meng W, Ying M, Weng Q, Chen Z, Ma J, Fang Q, He Q, Yang B. Tumor hypoxia enhances Non-Small Cell Lung Cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget 2015; 5:9664-77. [PMID: 25313135 PMCID: PMC4259428 DOI: 10.18632/oncotarget.1856] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypoxia is a common phenomenon occurring in the majority of human tumors and has been proved to play an important role in tumor progression. However, it remains unclear that whether the action of hypoxia on macrophages is a main driving force of hypoxia-mediated aggressive tumor behaviors. In the present study, we observe that high density of M2 macrophages is associated with metastasis in adenocarcinoma Non-Small Cell Lung Cancer (NSCLC) patients. By applying the in vivo hypoxia model, the results suggest that intermittent hypoxia significantly promotes the metastasis of Lewis lung carcinoma (LLC), accompanied with more CD209+ macrophages infiltrated in primary tumor tissue. More intriguingly, by skewing macrophages polarization away from the M1- to a tumor-promoting M2-like phenotype, hypoxia and IL-6 cooperate to enhance the LLC metastasis both in vitro and in vivo. In addition, we also demonstrate that skewing of macrophage M2 polarization by hypoxia relies substantially on activation of ERK signaling. Collectively, these observations unveil a novel tumor hypoxia concept involving the macrophage phenotype shift and provide direct evidence for lung cancer intervention through modulating the phenotype of macrophages.
Collapse
Affiliation(s)
- Jun Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shenglin Ma
- Hangzhou First People's Hospital, Huansha Road, Hangzhou, China. The second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wen Meng
- Hangzhou First People's Hospital, Huansha Road, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zibo Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jian Ma
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingxia Fang
- Zhejiang Provincial People's hospital, Shangtang Road, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Michael DR, Davies TS, Laubertová L, Gallagher H, Ramji DP. The phosphoinositide 3-kinase signaling pathway is involved in the control of modified low-density lipoprotein uptake by human macrophages. Lipids 2015; 50:253-60. [PMID: 25663263 PMCID: PMC4339697 DOI: 10.1007/s11745-015-3993-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/19/2015] [Indexed: 02/05/2023]
Abstract
The transformation of macrophages into lipid-loaded foam cells is a critical early event in the pathogenesis of atherosclerosis. Both receptor-mediated uptake of modified LDL, mediated primarily by scavenger receptors-A (SR-A) and CD36 along with other proteins such as lipoprotein lipase (LPL), and macropinocytosis contribute to macrophage foam cell formation. The signaling pathways that are involved in the control of foam cell formation are not fully understood. In this study, we have investigated the role of phosphoinositide 3-kinase (PI3K) in relation to foam cell formation in human macrophages. The pan PI3K inhibitor LY294002 attenuated the uptake of modified LDL and macropinocytosis, as measured by Lucifer Yellow uptake, by human macrophages. In addition, the expression of SR-A, CD36 and LPL was attenuated by LY294002. The use of isoform-selective PI3K inhibitors showed that PI3K-β, -γ and -δ were all required for the expression of SR-A and CD36 whereas only PI3K-γ was necessary in the case of LPL. These studies reveal a pivotal role of PI3K in the control of macrophage foam cell formation and provide further evidence for their potential as therapeutic target against atherosclerosis.
Collapse
Affiliation(s)
- Daryn R. Michael
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
| | - Thomas S. Davies
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
| | - Lucia Laubertová
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
- Institute of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Malá Hora 4, 036 01 Martin, Slovakia
| | - Hayley Gallagher
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
| | - Dipak P. Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
| |
Collapse
|
29
|
Gayral S, Garnotel R, Castaing-Berthou A, Blaise S, Fougerat A, Berge E, Montheil A, Malet N, Wymann MP, Maurice P, Debelle L, Martiny L, Martinez LO, Pshezhetsky AV, Duca L, Laffargue M. Elastin-derived peptides potentiate atherosclerosis through the immune Neu1-PI3Kγ pathway. Cardiovasc Res 2013; 102:118-27. [PMID: 24357053 DOI: 10.1093/cvr/cvt336] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Elastin is degraded during vascular ageing and its products, elastin-derived peptides (EP), are present in the human blood circulation. EP binds to the elastin receptor complex (ERC) at the cell surface, composed of elastin-binding protein (EBP), a cathepsin A and a neuraminidase 1. Some in vitro functions have clearly been attributed to this binding, but the in vivo implications for arterial diseases have never been clearly investigated. METHODS AND RESULTS Here, we demonstrate that chronic doses of EP injected into mouse models of atherosclerosis increase atherosclerotic plaque size formation. Similar effects were observed following an injection of a VGVAPG peptide, suggesting that the ERC mediates these effects. The absence of phosphoinositide 3-kinase γ (PI3Kγ) in bone marrow-derived cells prevented EP-induced atherosclerosis development, demonstrating that PI3Kγ drive EP-induced arterial lesions. Accordingly, in vitro studies showed that PI3Kγ was required for EP-induced monocyte migration and ROS production and that this effect was dependent upon neuraminidase activity. Finally, we showed that degradation of elastic lamellae in LDLR(-/-) mice fed an atherogenic diet correlated with atherosclerotic plaque formation. At the same time, the absence of the cathepsin A-neuraminidase 1 complex in cells of the haematopoietic lineage abolished atheroma plaque size progression and decreased leucocytes infiltration, clearly demonstrating the role of this complex in atherogenesis and suggesting the involvement of endogenous EP. CONCLUSION Altogether, this work identifies EP as an enhancer of atherogenesis and defines the Neuraminidase 1/PI3Kγ signalling pathway as a key mediator of this function in vitro and in vivo.
Collapse
Affiliation(s)
- Stephanie Gayral
- INSERM UMR 1048, I2MC, Bât. L3, 1 av Jean-Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barthwal MK, Anzinger JJ, Xu Q, Bohnacker T, Wymann MP, Kruth HS. Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation. PLoS One 2013; 8:e58054. [PMID: 23536783 PMCID: PMC3594233 DOI: 10.1371/journal.pone.0058054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 01/31/2013] [Indexed: 12/21/2022] Open
Abstract
During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as contributing to uptake. However, Pak1, Rac1, and Src-family kinases, which mediate fluid-phase pinocytosis in certain other cell types, were unnecessary. In conclusion, our findings provide evidence that targeting those components mediating macrophage macropinocytosis with inhibitors may be an effective strategy to limit macrophage accumulation of LDL-derived cholesterol in arteries.
Collapse
Affiliation(s)
- Manoj K. Barthwal
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua J. Anzinger
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qing Xu
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Bohnacker
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Howard S. Kruth
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
PI3Ks are signaling enzymes engaged by different types of membrane receptors and activated in cardiovascular diseases such as hypertension, atherosclerosis, thrombosis and heart failure. Studies performed on genetically modified animals have provided proof-of-concept that general or isoform-specific blockade of these enzymes can modify disease development and progression. Hence, therapeutic inhibition of PI3Ks with novel pharmacological compounds constitutes a promising area of drug development. In particular, inhibitors of PI3Ks have the potential to reduce blood pressure, restrain the development of atherosclerosis and/or stabilize atherosclerotic plaques, blunt platelet aggregation, prevent left ventricular remodeling and preserve myocardial contractility in heart failure. This review summarizes the rationale of PI3K inhibition in the most prevalent cardiovascular diseases, and the available data on the therapeutic effects of PI3K inhibitors in their preclinical models. Implications for future drug development and human therapy are also discussed.
Collapse
|
32
|
Foster JG, Blunt MD, Carter E, Ward SG. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 2012; 64:1027-54. [PMID: 23023033 DOI: 10.1124/pr.110.004051] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phosphoinositide 3-kinase/mammalian target of rapamycin/protein kinase B (PI3K/mTOR/Akt) signaling pathway is central to a plethora of cellular mechanisms in a wide variety of cells including leukocytes. Perturbation of this signaling cascade is implicated in inflammatory and autoimmune disorders as well as hematological malignancies. Proteins within the PI3K/mTOR/Akt pathway therefore represent attractive targets for therapeutic intervention. There has been a remarkable evolution of PI3K inhibitors in the past 20 years from the early chemical tool compounds to drugs that are showing promise as anticancer agents in clinical trials. The use of animal models and pharmacological tools has expanded our knowledge about the contribution of individual class I PI3K isoforms to immune cell function. In addition, class II and III PI3K isoforms are emerging as nonredundant regulators of immune cell signaling revealing potentially novel targets for disease treatment. Further complexity is added to the PI3K/mTOR/Akt pathway by a number of novel signaling inputs and feedback mechanisms. These can present either caveats or opportunities for novel drug targets. Here, we consider recent advances in 1) our understanding of the contribution of individual PI3K isoforms to immune cell function and their relevance to inflammatory/autoimmune diseases as well as lymphoma and 2) development of small molecules with which to inhibit the PI3K pathway. We also consider whether manipulating other proximal elements of the PI3K signaling cascade (such as class II and III PI3Ks or lipid phosphatases) are likely to be successful in fighting off different immune diseases.
Collapse
Affiliation(s)
- John G Foster
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
33
|
Lim JP, Teasdale RD, Gleeson PA. SNX5 is essential for efficient macropinocytosis and antigen processing in primary macrophages. Biol Open 2012; 1:904-14. [PMID: 23213485 PMCID: PMC3507233 DOI: 10.1242/bio.20122204] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/19/2012] [Indexed: 12/14/2022] Open
Abstract
Macropinocytosis mediates the bulk endocytosis of solute molecules, nutrients and antigens. As this endocytic pathway is considered important in functions associated with immune responses, the molecular mechanisms regulating this pathway in immune cells is of particular significance. However, the regulators of macropinocytosis in primary cells remain poorly defined. Members of the sorting nexin (SNX) family have been implicated in macropinosome biogenesis in cultured cells and here we have analyzed the role of two SNX family members, SNX1 and its binding partner SNX5, in macropinocytosis of mouse primary macrophages. We show that endogenous SNX1 and SNX5 are localised to newly-formed macropinosomes in primary mouse macrophages and, moreover, demonstrate that SNX5 plays an essential role in macropinosome biogenesis. Depletion of SNX5 in bone marrow-derived macrophages dramatically decreased both the number and size of macropinosomes. Depletion of SNX5 also resulted in dramatic reduction in uptake and processing of soluble ovalbumin in macrophages, indicating that the majority of antigen uptake and delivery to late endosomes is via macropinocytosis. By contrast, the absence of SNX1 had no effect on endogenous SNX5 localisation and macropinosome biogenesis using macrophages from SNX1 knockout mice. Therefore, SNX5 can function independently of SNX1 and is a modulator of macropinocytosis that influences the uptake and processing of soluble antigen in primary mouse macrophages.
Collapse
Affiliation(s)
- Jet Phey Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria 3010 , Australia
| | | | | |
Collapse
|
34
|
Meyer JM, Ji A, Cai L, van der Westhuyzen DR. High-capacity selective uptake of cholesteryl ester from native LDL during macrophage foam cell formation. J Lipid Res 2012; 53:2081-2091. [PMID: 22833685 PMCID: PMC3435541 DOI: 10.1194/jlr.m026534] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.
Collapse
Affiliation(s)
- Jason M Meyer
- Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | - Ailing Ji
- Department of Veterans Affairs Medical Center, Lexington, KY 40502; Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536; Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536
| | - Lei Cai
- Department of Veterans Affairs Medical Center, Lexington, KY 40502; Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536; Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536
| | - Deneys R van der Westhuyzen
- Department of Veterans Affairs Medical Center, Lexington, KY 40502; Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536; Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536.
| |
Collapse
|
35
|
Kruth HS. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Curr Opin Lipidol 2011; 22:386-93. [PMID: 21881499 PMCID: PMC4174540 DOI: 10.1097/mol.0b013e32834adadb] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Because early findings indicated that native low-density lipoprotein (LDL) did not substantially increase macrophage cholesterol content during in-vitro incubations, investigators presumed that LDL must be modified in some way to trigger its uptake by the macrophage. The purpose of this review is to discuss recent findings showing that native unmodified LDL can induce massive macrophage cholesterol accumulation mimicking macrophage foam cell formation that occurs within atherosclerotic plaques. RECENT FINDINGS Macrophages that show high rates of fluid-phase pinocytosis also show similar high rates of uptake of native unmodified LDL through nonreceptor mediated uptake within both macropinosomes and micropinosomes. Nonsaturable fluid-phase uptake of LDL by macrophages converts the macrophages into foam cells. Different macrophage phenotypes demonstrate either constitutive fluid-phase pinocytosis or inducible fluid-phase pinocytosis. Fluid-phase pinocytosis has been demonstrated by macrophages within mouse atherosclerotic plaques indicating that this pathway contributes to plaque macrophage cholesterol accumulation. SUMMARY Contrary to what has been believed previously, macrophages can take up large amounts of native unmodified LDL by receptor-independent, fluid-phase pinocytosis converting these macrophages into foam cells. Thus, targeting macrophage fluid-phase pinocytosis should be considered when investigating strategies to limit macrophage cholesterol accumulation in atherosclerotic plaques.
Collapse
Affiliation(s)
- Howard S Kruth
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892-1422, USA.
| |
Collapse
|