1
|
Shi C, Wang Y, Guo J, Zhang D, Zhang Y, Zhang X, Gong Z. Role of malate dehydrogenase 1 and isocitrate dehydrogenase 1 and their posttranslational modifications in diseases. Biochem Biophys Res Commun 2025; 754:151535. [PMID: 40022816 DOI: 10.1016/j.bbrc.2025.151535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) are two crucial enzymes in the process of energy metabolism. MDH1 plays a crucial role in the malate-aspartate shuttle in the cytoplasm by utilizing the coenzyme NAD/NADH to catalyze the interconversion of malate and oxaloacetate. IDH1 utilizes the coenzyme NADP/NADPH to facilitate the reciprocal transformation between isocitrate and α-ketoglutarate and plays a significant role in the metabolic processes of carbohydrates, lipids, and proteins in the liver. MDH1 and IDH1, along with their posttranslational modifications such as methylation and acetylation can influence the development of many diseases. This article reviews the function of MDH1, IDH1, and their posttranslational changes in various illnesses, aiming to offer new perspectives on disease diagnosis and therapy.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Xiaoya Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| |
Collapse
|
2
|
Provost JJ, Cornely KA, Mertz PS, Peterson CN, Riley SG, Tarbox HJ, Narasimhan SR, Pulido AJ, Springer AL. Phosphorylation of mammalian cytosolic and mitochondrial malate dehydrogenase: insights into regulation. Essays Biochem 2024; 68:183-198. [PMID: 38864157 DOI: 10.1042/ebc20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Malate dehydrogenase (MDH) is a key enzyme in mammalian metabolic pathways in cytosolic and mitochondrial compartments. Regulation of MDH through phosphorylation remains an underexplored area. In this review we consolidate evidence supporting the potential role of phosphorylation in modulating the function of mammalian MDH. Parallels are drawn with the phosphorylation of lactate dehydrogenase, a homologous enzyme, to reveal its regulatory significance and to suggest a similar regulatory strategy for MDH. Comprehensive mining of phosphorylation databases, provides substantial experimental (primarily mass spectrometry) evidence of MDH phosphorylation in mammalian cells. Experimentally identified phosphorylation sites are overlaid with MDH's functional domains, offering perspective on how these modifications could influence enzyme activity. Preliminary results are presented from phosphomimetic mutations (serine/threonine residues changed to aspartate) generated in recombinant MDH proteins serving as a proof of concept for the regulatory impact of phosphorylation. We also examine and highlight several approaches to probe the structural and cellular impact of phosphorylation. This review highlights the need to explore the dynamic nature of MDH phosphorylation and calls for identifying the responsible kinases and the physiological conditions underpinning this modification. The synthesis of current evidence and experimental data aims to provide insights for future research on understanding MDH regulation, offering new avenues for therapeutic interventions in metabolic disorders and cancer.
Collapse
Affiliation(s)
- Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Kathleen A Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence RI, U.S.A
| | - Pamela S Mertz
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, MD, U.S.A
| | | | - Sophie G Riley
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Harrison J Tarbox
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Shree R Narasimhan
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Andrew J Pulido
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| |
Collapse
|
3
|
Leverett B, Austin S, Tan-Arroyo J. Malate dehydrogenase (MDH) in cancer: a promiscuous enzyme, a redox regulator, and a metabolic co-conspirator. Essays Biochem 2024; 68:135-146. [PMID: 38864161 DOI: 10.1042/ebc20230088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Malate dehydrogenase (MDH) is an essential enzyme in the tricarboxylic acid cycle that functions in cellular respiration and redox homeostasis. Recent studies indicate that MDH facilitates metabolic plasticity in tumor cells, catalyzing the formation of an oncometabolite, contributing to altered epigenetics, and maintaining redox capacity to support the rewired energy metabolism and biosynthesis that enables cancer progression. This minireview summarizes current findings on the unique supporting roles played by MDH in human cancers and provides an update on targeting MDH in cancer chemotherapy.
Collapse
Affiliation(s)
- Betsy Leverett
- Department of Biochemistry, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, U.S.A
| | - Shane Austin
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown Barbados BB11000, Barbados
| | - Jason Tan-Arroyo
- Department of Biology, Augsburg University, 2211 Riverside Ave, Minneapolis, MN 55454, U.S.A
| |
Collapse
|
4
|
Berndsen CE, Bell JK. The structural biology and dynamics of malate dehydrogenases. Essays Biochem 2024; 68:57-72. [PMID: 39113569 DOI: 10.1042/ebc20230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Malate dehydrogenase (MDH) enzymes catalyze the reversible oxidoreduction of malate to oxaloacetate using NAD(P) as a cofactor. This reaction is vital for metabolism and the exchange of reducing equivalents between cellular compartments. There are more than 100 structures of MDH in the Protein Data Bank, representing species from archaea, bacteria, and eukaryotes. This conserved family of enzymes shares a common nucleotide-binding domain, substrate-binding domain, and subunits associate to form a dimeric or a tetrameric enzyme. Despite the variety of crystallization conditions and ligands in the experimental structures, the conformation and configuration of MDH are similar. The quaternary structure and active site dynamics account for most conformational differences in the experimental MDH structures. Oligomerization appears essential for activity despite each subunit having a structurally independent active site. There are two dynamic regions within the active site that influence substrate binding and possibly catalysis, with one of these regions adjoining the subunit interface. In this review, we introduce the reader to the general structural framework of MDH highlighting the conservation of certain features and pointing out unique differences that regulate MDH enzyme activity.
Collapse
Affiliation(s)
- Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, U.S.A
| | - Jessica K Bell
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| |
Collapse
|
5
|
Kuhn ML, Rakus JF, Quenet D. Acetylation, ADP-ribosylation and methylation of malate dehydrogenase. Essays Biochem 2024; 68:199-212. [PMID: 38994669 PMCID: PMC11451102 DOI: 10.1042/ebc20230080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.
Collapse
Affiliation(s)
- Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco
State University, San Francisco, CA, U.S.A
| | - John F. Rakus
- School of Sciences, University of Louisiana at Monroe,
Monroe, LA, U.S.A
| | - Delphine Quenet
- Department of Biochemistry, Larner College of Medicine,
University of Vermont, Burlington, VT, U.S.A
| |
Collapse
|
6
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Shi C, Wang Y, Guo J, Zhang D, Zhang Y, Gong Z. Deacetylated MDH1 and IDH1 aggravates PANoptosis in acute liver failure through endoplasmic reticulum stress signaling. Cell Death Discov 2024; 10:275. [PMID: 38851781 PMCID: PMC11162427 DOI: 10.1038/s41420-024-02054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Acute liver failure (ALF) is a disease with a high mortality rate and poor prognosis, whose pathogenesis is not fully understood. PANoptosis is a recently proposed mode of cell death characterized by pyroptosis, apoptosis, and necroptosis, but it cannot be explained by any of them alone. This study aims to explore the role of PANoptosis in ALF and the impact and mechanism of deacetylated malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) on PANoptosis. Our results found that, compared with the control group, the cell viability in the lipopolysaccharide (LPS)/D-galactosamine (D-Gal) group decreased, lactate dehydrogenase (LDH) release increased, cell death increased, and the levels of PANoptosis-related molecules RIPK1, GSDMD, caspase-3, MLKL, IL-18, IL-1β increased, indicating that PANoptosis increased during ALF. Deacetylated MDH1 at K118 and IDH1 at K93 increased the expression of PANoptosis-related molecules RIPK1, GSDMD, caspase-3, MLKL, IL-18, and IL-1β in vivo and in vitro. The deacetylation weakened the inhibitory effect of histone deacetylase (HDAC) inhibitor ACY1215 on PANoptosis-related molecules, suggesting that deacetylated MDH1 at K118 and IDH1 at K93 aggravated PANoptosis during ALF. Deacetylated MDH1 at K118 and IDH1 at K93 also promoted the expression of endoplasmic reticulum stress-related molecules BIP, ATF6, XBP1, and CHOP in vivo and in vitro. The use of endoplasmic reticulum stress inhibitor 4-PBA weakened the promotion effect of deacetylated MDH1 K118 and IDH1 K93 on PANoptosis. The results suggested that deacetylated MDH1 at K118 and IDH1 at K93 may aggravate PANoptosis in ALF through endoplasmic reticulum stress signaling. In conclusion, deacetylated MDH1 and IDH1 may aggravate PANoptosis in ALF, and the mechanism may act through endoplasmic reticulum stress signaling.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Shi C, Zhang Y, Chen Q, Wang Y, Zhang D, Guo J, Zhang Q, Zhang W, Gong Z. The acetylation of MDH1 and IDH1 is associated with energy metabolism in acute liver failure. iScience 2024; 27:109678. [PMID: 38660411 PMCID: PMC11039345 DOI: 10.1016/j.isci.2024.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The liver is the main organ associated with metabolism. In our previous studies, we identified that the metabolic enzymes malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) were differentially expressed in ALF. The aim of this study was to explore the changes in the acetylation of MDH1 and IDH1 and the therapeutic effect of histone deacetylase (HDAC) inhibitor in acute liver failure (ALF). Decreased levels of many metabolites were observed in ALF patients. MDH1 and IDH1 were decreased in the livers of ALF patients. The HDAC inhibitor ACY1215 improved the expression of MDH1 and IDH1 after treatment with MDH1-siRNA and IDH1-siRNA. Transfection with mutant plasmids and adeno-associated viruses, identified MDH1 K118 acetylation and IDH1 K93 acetylation as two important sites that regulate metabolism in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Chen
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430022, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
9
|
Ito T, Tojo Y, Fujii M, Nishino K, Kosako H, Shinohara Y. Insights into the Mechanism of Catalytic Activity of Plasmodium Parasite Malate-Quinone Oxidoreductase. ACS OMEGA 2024; 9:21647-21657. [PMID: 38764661 PMCID: PMC11097338 DOI: 10.1021/acsomega.4c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Plasmodium malate-quinone oxidoreductase (MQO) is a membrane flavoprotein catalyzing the oxidation of malate to oxaloacetate and the reduction of quinone to quinol. Recently, using a yeast expression system, we demonstrated that MQO, expressed in place of mitochondrial malate dehydrogenase (MDH), contributes to the TCA cycle and the electron transport chain in mitochondria, making MQO attractive as a promising drug target in Plasmodium malaria parasites, which lack mitochondrial MDH. However, there is little information on the structure of MQO and its catalytic mechanism, information that will be required to develop novel drugs. Here, we investigated the catalytic site of P. falciparum MQO (PfMQO) using our yeast expression system. We generated a model structure for PfMQO with the AI tool AlphaFold and used protein footprinting by acetylation with acetic anhydride to analyze the surface topology of the model, confirming the computational prediction to be reasonably accurate. Moreover, a putative catalytic site, which includes a possible flavin-binding site, was identified by this combination of protein footprinting and structural prediction model. This active site was analyzed by site-directed mutagenesis. By measuring enzyme activity and protein expression levels in the PfMQO mutants, we showed that several residues at the active site are essential for enzyme function. In addition, a single substitution mutation near the catalytic site resulted in enhanced sensitivity to ferulenol, an inhibitor of PfMQO that competes with malate for binding to the enzyme. This strongly supports the notion that the substrate binds to the proposed catalytic site. Then, the location of the catalytic site was demonstrated by structural comparison with a homologous enzyme. Finally, we used our results to propose a mechanism for the catalytic activity of MQO by reference to the mechanism of action of structurally or functionally homologous enzymes.
Collapse
Affiliation(s)
- Takeshi Ito
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Graduate
School of Pharmaceutical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Yuma Tojo
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Faculty
of Pharmaceutical Sciences, Tokushima University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Minori Fujii
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Faculty
of Pharmaceutical Sciences, Tokushima University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Kohei Nishino
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Hidetaka Kosako
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Yasuo Shinohara
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Graduate
School of Pharmaceutical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
10
|
Zhang GD, Wang LL, Zheng L, Wang SQ, Yang RQ, He YT, Wang JW, Zhao MY, Ding Y, Liu M, Yang TY, Wu BM, Cui H, Zhang L. A novel HDAC6 inhibitor attenuate APAP-induced liver injury by regulating MDH1-mediated oxidative stress. Int Immunopharmacol 2024; 131:111861. [PMID: 38484665 DOI: 10.1016/j.intimp.2024.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Glutathione (GSH) depletion, mitochondrial damage, and oxidative stress have been implicated in the pathogenesis of acetaminophen (APAP) hepatotoxicity. Here, we demonstrated that the expression of histone deacetylase 6 (HDAC6) is highly elevated, whereas malate dehydrogenase 1 (MDH1) is downregulated in liver tissues and AML-12 cells induced by APAP. The therapeutic benefits of LT-630, a novel HDAC6 inhibitor on APAP-induced liver injury, were also substantiated. On this basis, we demonstrated that LT-630 improved the protein expression and acetylation level of MDH1. Furthermore, after overexpression of MDH1, an upregulated NADPH/NADP+ ratio and GSH level and decreased cell apoptosis were observed in APAP-stimulated AML-12 cells. Importantly, MDH1 siRNA clearly reversed the protection of LT-630 on APAP-stimulated AML-12 cells. In conclusion, LT-630 could ameliorate liver injury by modulating MDH1-mediated oxidative stress induced by APAP.
Collapse
Affiliation(s)
- Guo-Dong Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Li-Li Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Ling Zheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Shi-Qi Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Rong-Quan Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yu-Ting He
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jun-Wei Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Ming-Yu Zhao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yi Ding
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Mei Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Tian-Yu Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Bao-Ming Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| | - Hao Cui
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
11
|
Liu SS, Fang X, Wen X, Liu JS, Alip M, Sun T, Wang YY, Chen HW. How mesenchymal stem cells transform into adipocytes: Overview of the current understanding of adipogenic differentiation. World J Stem Cells 2024; 16:245-256. [PMID: 38577237 PMCID: PMC10989283 DOI: 10.4252/wjsc.v16.i3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 03/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts, chondrocytes and adipocytes. The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes, in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes. Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis. However, the mechanism underlying the adipogenic differentiation of MSCs is not fully understood. Here, the current knowledge of adipogenic differentiation in MSCs is reviewed, focusing on signaling pathways, noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation. Finally, the relationship between maladipogenic differentiation and diseases is briefly discussed. We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xiang Fang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xin Wen
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Ji-Shan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Miribangvl Alip
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Tian Sun
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yuan-Yuan Wang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hong-Wei Chen
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
12
|
Wang Y, Shi C, Guo J, Zhang D, Zhang Y, Zhang L, Gong Z. IDH1/MDH1 deacetylation promotes acute liver failure by regulating NETosis. Cell Mol Biol Lett 2024; 29:8. [PMID: 38172700 PMCID: PMC10765752 DOI: 10.1186/s11658-023-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a life-threatening disease, but its pathogenesis is not fully understood. NETosis is a novel mode of cell death. Although the formation of neutrophil extracellular traps (NETs) has been found in various liver diseases, the specific mechanism by which NETosis regulates the development of ALF is unclear. In this article, we explore the role and mechanism of NETosis in the pathogenesis of ALF. METHODS Clinically, we evaluated NETs-related markers in the liver and peripheral neutrophils of patients with ALF. In in vitro experiments, HL-60 cells were first induced to differentiate into neutrophil-like cells (dHL-60 cells) with dimethyl sulfoxide (DMSO). NETs were formed by inducing dHL-60 cells with PMA. In in vivo experiments, the ALF model in mice was established with LPS/D-gal, and the release of NETs was detected by immunofluorescence staining and western blotting. Finally, the acetylation levels of IDH1 and MDH1 were detected in dHL-60 cells and liver samples by immunoprecipitation. RESULTS Clinically, increased release of NETs in liver tissue was observed in patients with ALF, and NETs formation was detected in neutrophils from patients with liver failure. In dHL-60 cells, mutations at IDH1-K93 and MDH1-K118 deacetylate IDH1 and MDH1, which promotes the formation of NETs. In a mouse model of ALF, deacetylation of IDH1 and MDH1 resulted in NETosis and promoted the progression of acute liver failure. CONCLUSIONS Deacetylation of IDH1 and MDH1 reduces their activity and promotes the formation of NETs. This change aggravates the progression of acute liver failure.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Long Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
13
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
14
|
Aleshin VA, Sibiryakina DA, Kazantsev AV, Graf AV, Bunik VI. Acylation of the Rat Brain Proteins is Affected by the Inhibition of Pyruvate Dehydrogenase in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:105-118. [PMID: 37068879 DOI: 10.1134/s0006297923010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Organism adaptation to metabolic challenges requires coupling of metabolism to gene expression. In this regard, acylations of histones and metabolic proteins acquire significant interest. We hypothesize that adaptive response to inhibition of a key metabolic process, catalyzed by the acetyl-CoA-generating pyruvate dehydrogenase (PDH) complex, is mediated by changes in the protein acylations. The hypothesis is tested by intranasal administration to animals of PDH-specific inhibitors acetyl(methyl)phosphinate (AcMeP) or acetylphosphonate methyl ester (AcPMe), followed by the assessment of physiological parameters, brain protein acylation, and expression/phosphorylation of PDHA subunit. At the same dose, AcMeP, but not AcPMe, decreases acetylation and increases succinylation of the brain proteins with apparent molecular masses of 15-20 kDa. Regarding the proteins of 30-50 kDa, a strong inhibitor AcMeP affects acetylation only, while a less efficient AcPMe mostly increases succinylation. The unchanged succinylation of the 30-50 kDa proteins after the administration of AcMeP coincides with the upregulation of desuccinylase SIRT5. No significant differences between the levels of brain PDHA expression, PDHA phosphorylation, parameters of behavior or ECG are observed in the studied animal groups. The data indicate that the short-term inhibition of brain PDH affects acetylation and/or succinylation of the brain proteins, that depends on the inhibitor potency, protein molecular mass, and acylation type. The homeostatic nature of these changes is implied by the stability of physiological parameters after the PDH inhibition.
Collapse
Affiliation(s)
- Vasily A Aleshin
- Belozersky Institute of Physico-Chemical Biology, Department of Biokinetics, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Sechenov University, Moscow, 119048, Russia
| | - Daria A Sibiryakina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey V Kazantsev
- Belozersky Institute of Physico-Chemical Biology, Department of Biokinetics, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Department of Biokinetics, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Victoria I Bunik
- Belozersky Institute of Physico-Chemical Biology, Department of Biokinetics, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Department of Biochemistry, Sechenov University, Moscow, 119048, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
15
|
Gill GS, Schultz MC. Multienzyme activity profiling for evaluation of cell-to-cell variability of metabolic state. FASEB Bioadv 2022; 4:709-723. [PMID: 36349298 PMCID: PMC9635011 DOI: 10.1096/fba.2022-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
In solid organs, cells of the same "type" can vary in their molecular phenotype. The basis of this state variation is being revealed by characterizing cell features including the expression pattern of mRNAs and the internal distribution of proteins. Here, the variability of metabolic state between cells is probed by enzyme activity profiling. We study individual cells of types that can be identified during the post-mitotic phase of oogenesis in Xenopus laevis. Whole-cell homogenates of isolated oocytes are used for kinetic analysis of enzymes, with a focus on the initial reaction rate. For each oocyte type studied, the activity signatures of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and malate dehydrogenase 1 (MDH1) vary more between the homogenates of single oocytes than between repeat samplings of control homogenates. Unexpectedly, the activity signatures of GAPDH and MDH1 strongly co-vary between oocytes of each type and change in strength of correlation during oogenesis. Therefore, variability of the kinetic behavior of these housekeeping enzymes between "identical" cells is physiologically programmed. Based on these findings, we propose that single-cell profiling of enzyme kinetics will improve understanding of how metabolic state heterogeneity is related to heterogeneity revealed by omics methods including proteomics, epigenomics, and metabolomics.
Collapse
Affiliation(s)
- Govind S. Gill
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Pediatrics & Group on the Molecular and Cell Biology of LipidsUniversity of AlbertaEdmontonAlbertaCanada
| | | |
Collapse
|
16
|
Zavileyskiy LG, Aleshin VA, Kaehne T, Karlina IS, Artiukhov AV, Maslova MV, Graf AV, Bunik VI. The Brain Protein Acylation System Responds to Seizures in the Rat Model of PTZ-Induced Epilepsy. Int J Mol Sci 2022; 23:ijms232012302. [PMID: 36293175 PMCID: PMC9603846 DOI: 10.3390/ijms232012302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Abnormal energy expenditure during seizures and metabolic regulation through post-translational protein acylation suggest acylation as a therapeutic target in epilepsy. Our goal is to characterize an interplay between the brain acylation system components and their changes after seizures. In a rat model of pentylenetetrazole (PTZ)-induced epilepsy, we quantify 43 acylations in 29 cerebral cortex proteins; levels of NAD+; expression of NAD+-dependent deacylases (SIRT2, SIRT3, SIRT5); activities of the acyl-CoA-producing/NAD+-utilizing complexes of 2-oxoacid dehydrogenases. Compared to the control group, acylations of 14 sites in 11 proteins are found to differ significantly after seizures, with six of the proteins involved in glycolysis and energy metabolism. Comparing the single and chronic seizures does not reveal significant differences in the acylations, pyruvate dehydrogenase activity, SIRT2 expression or NAD+. On the contrary, expression of SIRT3, SIRT5 and activity of 2-oxoglutarate dehydrogenase (OGDH) decrease in chronic seizures vs. a single seizure. Negative correlations between the protein succinylation/glutarylation and SIRT5 expression, and positive correlations between the protein acetylation and SIRT2 expression are shown. Our findings unravel involvement of SIRT5 and OGDH in metabolic adaptation to seizures through protein acylation, consistent with the known neuroprotective role of SIRT5 and contribution of OGDH to the Glu/GABA balance perturbed in epilepsy.
Collapse
Affiliation(s)
- Lev G. Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily A. Aleshin
- Department of Biokinetics, A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Irina S. Karlina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Artem V. Artiukhov
- Department of Biokinetics, A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia V. Graf
- Department of Biokinetics, A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biokinetics, A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-939-4484
| |
Collapse
|
17
|
Wu P, Zhou K, Zhang J, Ling X, Zhang X, Li P, Zhang L, Wei Q, Zhang T, Xie K, Zhang G. Transcriptome Integration Analysis at Different Embryonic Ages Reveals Key lncRNAs and mRNAs for Chicken Skeletal Muscle. Front Vet Sci 2022; 9:908255. [PMID: 35782545 PMCID: PMC9244430 DOI: 10.3389/fvets.2022.908255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
The growth and development of skeletal muscle at embryonic stages are vital and it directly affects the growth performance of chickens. Long non-coding RNA (lncRNA) plays an important role in this process. In the experiment, we collected the leg muscles of fast- and slow-growing Bian chickens both at 14- and 20-day embryo ages (14E and 20E) for RNA-seq. Finally, 292 and 347 differentially expressed (DE) lncRNAs were identified in F14vsF20 and S14vsS20, and 1,295 and 1,560 DE mRNAs were also screened, respectively. Then we constructed lncRNA-mRNA networks for the two groups, respectively, and found that 6 of the top 10 lncRNAs ranked with degree are same. GO analysis showed that 12 of the top 20 terms were same in the two comparison groups and most of them were related to energy metabolisms, such as cellular respiration and aerobic respiration. KEGG enrichment revealed that up to 16 pathways of the top 20 in F14vsF20 were same as that of S14vsS20 and most of them were related to growth, including citrate cycle (TCA cycle) and oxidative phosphorylation. Further analysis showed that there were 602 and 102 same DE mRNAs and DE lncRNAs between the two comparison groups. We then identified 442 lncRNA-mRNA pairs, including 201 mRNAs and 32 lncRNAs. Protein-Protein Interactions (PPI) network was predicted for the 201 mRNAs and three core networks were obtained using the plug-in MCODE of Cytoscape. Then the function of genes in the three core networks was further analyzed with ClueGo and they were mainly enriched in six groups of biological processes. On this basis, combined with KEGG pathways and lncRNA-mRNA networks, we identified several candidate lncRNAs and mRNAs. Among them, lncRNAs mainly include TCONS_00061389, TCONS_00025495, TCONS_00017622, TCONS_00216258 and TCONS_00084223, and mRNAs include PLK1, BUB1, TTK, NDUFS7 NDUFAB1, PDHA1, CDK1, SDHA, ACO2 and MDH1. The results would provide a foundation for further experiments on the role of lncRNAs in the regulation of muscle development. And it could also contribute to further clarify the regulatory mechanism of chicken skeletal muscle.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Peifeng Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Li Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Qingyu Wei
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Genxi Zhang
| |
Collapse
|
18
|
Volani C, Pagliaro A, Rainer J, Paglia G, Porro B, Stadiotti I, Foco L, Cogliati E, Paolin A, Lagrasta C, Frati C, Corradini E, Falco A, Matzinger T, Picard A, Ermon B, Piazza S, De Bortoli M, Tondo C, Philippe R, Medici A, Lavdas AA, Blumer MJF, Pompilio G, Sommariva E, Pramstaller PP, Troppmair J, Meraviglia V, Rossini A. GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. J Cell Mol Med 2022; 26:3687-3701. [PMID: 35712781 PMCID: PMC9258704 DOI: 10.1111/jcmm.17396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro‐fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB‐3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB‐3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.
Collapse
Affiliation(s)
- Chiara Volani
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandra Pagliaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Benedetta Porro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Adolfo Paolin
- Fondazione Banca dei Tessuti di Treviso, Treviso, Italy
| | - Costanza Lagrasta
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Emilia Corradini
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Theresa Matzinger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Benedetta Ermon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Povo, TN, Italy.,Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Marzia De Bortoli
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Claudio Tondo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milano, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy.,Department of Clinical Electrophysiology&Cardiac Pacing, Università degli Studi di Milano, Milano, Italy
| | - Réginald Philippe
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrea Medici
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandros A Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy.,Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
19
|
Wang M, Zhou C, Yu L, Kong D, Ma W, Lv B, Wang Y, Wu W, Zhou M, Cui G. Upregulation of MDH1 acetylation by HDAC6 inhibition protects against oxidative stress-derived neuronal apoptosis following intracerebral hemorrhage. Cell Mol Life Sci 2022; 79:356. [PMID: 35678904 PMCID: PMC11073123 DOI: 10.1007/s00018-022-04341-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress impairs functional recovery after intracerebral hemorrhage (ICH). Histone deacetylase 6 (HDAC6) plays an important role in the initiation of oxidative stress. However, the function of HDAC6 in ICH and the underlying mechanism of action remain elusive. We demonstrated here that HDAC6 knockout mice were resistant to oxidative stress following ICH, as assessed by the MDA and NADPH/NADP+ assays and ROS detection. HDAC6 deficiency also resulted in reduced neuronal apoptosis and lower expression levels of apoptosis-related proteins. Further mechanistic studies showed that HDAC6 bound to malate dehydrogenase 1 (MDH1) and mediated-MDH1 deacetylation on the lysine residues at position 121 and 298. MDH1 acetylation was inhibited in HT22 cells that were challenged with ICH-related damaging agents (Hemin, Hemoglobin, and Thrombin), but increased when HDAC6 was inhibited, suggesting an interplay between HDAC6 and MDH1. The acetylation-mimetic mutant, but not the acetylation-resistant mutant, of MDH1 protected neurons from oxidative injury. Furthermore, HDAC6 inhibition failed to alleviate brain damage after ICH when MDH1 was knockdown. Taken together, our study showed that HDAC6 inhibition protects against brain damage during ICH through MDH1 acetylation.
Collapse
Affiliation(s)
- Miao Wang
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China.
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chao Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Lu Yu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Delian Kong
- Department of Neurology, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weijing Ma
- Department of Neurology, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bingchen Lv
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Yan Wang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Weifeng Wu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Mingyue Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Guiyun Cui
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China.
| |
Collapse
|
20
|
Jia X, Xiong X, Chen H, Xiao G, Cheng Q, Zhang Z. Promising Novel Method of Acetylation Modification for Regulating Fatty Acid Metabolism in Brassica napus L. BIOLOGY 2022; 11:483. [PMID: 35453683 PMCID: PMC9029296 DOI: 10.3390/biology11040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, lysine acetylation analysis was conducted using two Brassica napus near-isogenic lines, HOCR and LOCR, containing high and low oleic acid contents, respectively, to explore this relationship. Proteins showing differences in quantitative information between the B. napus lines were identified in lysine acetylation analysis, and KEGG pathways were analyzed, yielding 45 enriched proteins, most of which are involved in carbon fixation in photosynthetic organisms, photosynthesis, ascorbate and aldarate metabolism, and glycolysis. Potential key genes related to fatty acid metabolisms were determined. To further explore the effect of acetylation modification on fatty acid metabolisms, the acyl-ACP3 related gene BnaACP363K was cloned, and a base mutation at No.63 was changed via overlapping primer PCR method. This study is the first to demonstrate that acetylation modification can regulate oleic acid metabolisms, which provides a promising approach for the study of the molecular mechanism of oleic acid in rapeseed.
Collapse
Affiliation(s)
- Xiaojiang Jia
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Junlebao Dairy Co., Ltd., Shijiazhuang 050221, China
| | - Xinghua Xiong
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Hao Chen
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Gang Xiao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Qian Cheng
- Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha 410205, China
| | - Zhenqian Zhang
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
21
|
Peng Y, Liu H, Liu J, Long J. Post-translational modifications on mitochondrial metabolic enzymes in cancer. Free Radic Biol Med 2022; 179:11-23. [PMID: 34929314 DOI: 10.1016/j.freeradbiomed.2021.12.264] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
Mitochondrion is the powerhouse of the cell. The research of nearly a century has expanded our understanding of mitochondrion, far beyond the view that mitochondrion is an important energy generator of cells. During the initiation, growth and survival of tumor cells, significant mitochondrial metabolic changes have taken place in the important enzymes of respiratory chain and tricarboxylic acid cycle, mitochondrial biogenesis and dynamics, oxidative stress regulation and molecular signaling. Therefore, mitochondrial metabolic proteins are the key mediators of tumorigenesis. Post-translational modification is the molecular switch that regulates protein function. Understanding how these mitochondria-related post-translational modification function during tumorigenesis will bring new ideas for the next generation of cancer treatment.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
22
|
Xu Y, Shi Z, Bao L. An expanding repertoire of protein acylations. Mol Cell Proteomics 2022; 21:100193. [PMID: 34999219 PMCID: PMC8933697 DOI: 10.1016/j.mcpro.2022.100193] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
Abstract
Protein post-translational modifications play key roles in multiple cellular processes by allowing rapid reprogramming of individual protein functions. Acylation, one of the most important post-translational modifications, is involved in different physiological activities including cell differentiation and energy metabolism. In recent years, the progression in technologies, especially the antibodies against acylation and the highly sensitive and effective mass spectrometry–based proteomics, as well as optimized functional studies, greatly deepen our understanding of protein acylation. In this review, we give a general overview of the 12 main protein acylations (formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, glutarylation, palmitoylation, myristoylation, benzoylation, crotonylation, and 2-hydroxyisobutyrylation), including their substrates (histones and nonhistone proteins), regulatory enzymes (writers, readers, and erasers), biological functions (transcriptional regulation, metabolic regulation, subcellular targeting, protein–membrane interactions, protein stability, and folding), and related diseases (cancer, diabetes, heart disease, neurodegenerative disease, and viral infection), to present a complete picture of protein acylations and highlight their functional significance in future research. Provide a general overview of the 12 main protein acylations. Acylation of viral proteins promotes viral integration and infection. Hyperacylation of histone has antitumous and neuroprotective effects. MS is widely used in the identification of acylation but has its challenges.
Collapse
Affiliation(s)
- Yuxuan Xu
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Zhenyu Shi
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Li Bao
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
23
|
Marín-Hernández Á, Rodríguez-Zavala JS, Jasso-Chávez R, Saavedra E, Moreno-Sánchez R. Protein acetylation effects on enzyme activity and metabolic pathway fluxes. J Cell Biochem 2021; 123:701-718. [PMID: 34931340 DOI: 10.1002/jcb.30197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.
Collapse
Affiliation(s)
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | |
Collapse
|
24
|
Yang Y, Cheng Z, Zhang W, Hei W, Lu C, Cai C, Zhao Y, Gao P, Guo X, Cao G, Li B. GOT1 regulates adipocyte differentiation by altering NADPH content. Anim Biosci 2021; 35:155-165. [PMID: 34474530 PMCID: PMC8738948 DOI: 10.5713/ab.21.0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Objective This study was performed to examine whether the porcine glutamic-oxaloacetic transaminase 1 (GOT1) gene has important functions in regulating adipocyte differentiation. Methods Porcine GOT1 knockout and overexpression vectors were constructed and transfected into the mouse adipogenic 3T3-L1 cells. Lipid droplets levels were measured after 8 days of differentiation. The mechanisms through which GOT1 participated in lipid deposition were examined by measuring the expression of malate dehydrogenase 1 (MDH1) and malic enzyme (ME1) and the cellular nicotinamide adenine dinucleotide phosphate (NADPH) content. Results GOT1 knockout significantly decreased lipid deposition in the 3T3-L1 cells (p< 0.01), whereas GOT1 overexpression significantly increased lipid accumulation (p<0.01). At the same time, GOT1 knockout significantly decreased the NADPH content and the expression of MDH1 and ME1 in the 3T3-L1 cells. Overexpression of GOT1 significantly increased the NADPH content and the expression of MDH1 and ME1, suggesting that GOT1 regulated adipocyte differentiation by altering the NADPH content. Conclusion The results preliminarily revealed the effector mechanisms of GOT1 in regulating adipose differentiation. Thus, a theoretical basis is provided for improving the quality of pork and studies on diseases associated with lipid metabolism.
Collapse
Affiliation(s)
- Yang Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Zhimin Cheng
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.,Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Wei Hei
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
25
|
Wang D, Yu H, Li Y, Xu Z, Shi S, Dou D, Sun L, Zheng Z, Shi X, Deng X, Zhong X. iTRAQ-based quantitative proteomics analysis of the hepatoprotective effect of melatonin on ANIT-induced cholestasis in rats. Exp Ther Med 2021; 22:1014. [PMID: 34373700 PMCID: PMC8343461 DOI: 10.3892/etm.2021.10446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/28/2021] [Indexed: 11/15/2022] Open
Abstract
The therapeutic effects of melatonin on cholestatic liver injury have received widespread attention recently. The aim of the present study was to investigate the mechanisms of the anti-cholestatic effects of melatonin against α-naphthyl isothiocyanate (ANIT)-induced liver injury in rats and to screen for potential biomarkers of cholestasis through isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Rats orally received melatonin (100 mg/kg body weight) or an equivalent volume of 0.25% carboxymethyl cellulose sodium salt 12 h after intraperitoneal injection of ANIT (75 mg/kg) and were subsequently sacrificed at 36 h after injection. Liver biochemical indices were determined and liver tissue samples were stained using hematoxylin-eosin staining, followed by iTRAQ quantitative proteomics to identify potential underlying therapeutic mechanisms and biomarkers. The results suggested that the expression levels of alanine transaminase, aspartate aminotransferase, total bilirubin and direct bilirubin were reduced in the rats treated with melatonin. Histopathological observation indicated that melatonin was effective in the treatment of ANIT-induced cholestasis. iTRAQ proteomics results suggested that melatonin-mediated reduction in ANIT-induced cholestasis may be associated with enhanced antioxidant function and relieving abnormal fatty acid metabolism. According to pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes, the major metabolic pathways for the metabolism of melatonin are fatty acid degradation, the peroxisome proliferator-activated receptor signaling pathway, fatty acid metabolism, chemical carcinogenesis, carbon metabolism, pyruvate metabolism, fatty acid biosynthesis and retinol metabolism, as well as drug metabolism via cytochrome P450. Malate dehydrogenase 1 and glutathione S-transferase Yb-3 may serve as potential targets in the treatment of ANIT-induced cholestasis with melatonin.
Collapse
Affiliation(s)
- Dingnan Wang
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Han Yu
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Formulas of Chinese Medicine, Basic Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yunzhou Li
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zongying Xu
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shaohua Shi
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Dou Dou
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Lili Sun
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zhili Zheng
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xinghua Shi
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xiulan Deng
- Department of Pharmacology, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xianggen Zhong
- Synopsis of Golden Chamber Department, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|
26
|
Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven‐Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021; 44:792-808. [PMID: 33990986 PMCID: PMC8362162 DOI: 10.1002/jimd.12402] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.
Collapse
Affiliation(s)
- Melissa H. Broeks
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Clara D. M. van Karnebeek
- Departments of PediatricsAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| |
Collapse
|
27
|
Miao Y, Wang Y, Huang D, Lin X, Lin Z, Lin X. Profile of protein lysine propionylation in Aeromonas hydrophila and its role in enzymatic regulation. Biochem Biophys Res Commun 2021; 562:1-8. [PMID: 34030039 DOI: 10.1016/j.bbrc.2021.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022]
Abstract
Protein lysine propionylation (Kpr) modification is a novel post-translational modification (PTM) of prokaryotic cells that was recently discovered; however, it is not clear how this modification regulates bacterial life. In this study, the protein Kpr modification profile in Aeromonas hydrophila was identified by high specificity antibody-based affinity enrichment combined with high resolution LC MS/MS. A total of 98 lysine-propionylated peptides with 59 Kpr proteins were identified, most of which were associated with energy metabolism, transcription and translation processes. To further understand the role of Kpr modified proteins, the K168 site on malate dehydrogenase (MDH) and K608 site on acetyl-coenzyme A synthetase (AcsA) were subjected to site-directed mutation to arginine (R) and glutamine (Q) to simulate deacylation and propionylation, respectively. Subsequent measurement of the enzymatic activity showed that the K168 site of Kpr modification on MDH may negatively regulate the MDH enzymatic activity while also affecting the survival of mdh derivatives when using glucose as the carbon source, whereas Kpr modification of K608 of AcsA does not. Overall, the results of this study indicate that protein Kpr modification plays an important role in bacterial biological functions, especially those involved in the activity of metabolic enzymes.
Collapse
Affiliation(s)
- Yuxuan Miao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Dongping Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiaoke Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Zhenping Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
28
|
Park TJ, Park A, Kim J, Kim JY, Han BS, Oh KJ, Lee EW, Lee SC, Bae KH, Kim WK. Myonectin inhibits adipogenesis in 3T3-L1 preadipocytes by regulating p38 MAPK pathway. BMB Rep 2021. [PMID: 33407993 PMCID: PMC7907746 DOI: 10.5483/bmbrep.2021.54.2.262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In current times, obesity is a major health problem closely associated with metabolic disease such as diabetes, dyslipidemia, and cardiovascular disease. The direct cause of obesity is known as an abnormal increase in fat cell size and the adipocyte pool. Hyperplasia, the increase in number of adipocytes, results from adipogenesis in which preadipocytes differentiate into mature adipocytes. Adipogenesis is regulated by local and systemic cues that alter transduction pathways and subsequent control of adipogenic transcription factors. Therefore, the regulation of adipogenesis is an important target for preventing obesity. Myonectin, a member of the CTRP family, is a type of myokine released by skeletal muscle cells. Although several studies have shown that myonectin is associated with lipid metabolism, the role of myonectin during adipogenesis is not known. Here, we demonstrate the role of myonectin during adipocyte differentiation of 3T3-L1 cells. We found that myonectin inhibits the adipogenesis of 3T3-L1 preadipocytes with a reduction in the expression of adipogenic transcription factors such as C/EBPα, β and PPARγ. Furthermore, we show that myonectin has an inhibitory effect on adipogenesis through the regulation of the p38 MAPK pathway and CHOP. These findings suggest that myonectin may be a novel therapeutic target for the prevention of obesity.
Collapse
Affiliation(s)
- Tae-Jun Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Anna Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eun Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| |
Collapse
|
29
|
Latorre-Muro P, Baeza J, Hurtado-Guerrero R, Hicks T, Delso I, Hernández-Ruiz C, Velázquez-Campoy A, Lawton AJ, Angulo J, Denu JM, Carrodeguas JA. Self-acetylation at the active site of phosphoenolpyruvate carboxykinase (PCK1) controls enzyme activity. J Biol Chem 2021; 296:100205. [PMID: 33334880 PMCID: PMC7948413 DOI: 10.1074/jbc.ra120.015103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Acetylation is known to regulate the activity of cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme in gluconeogenesis, by promoting the reverse reaction of the enzyme (converting phosphoenolpyruvate to oxaloacetate). It is also known that the histone acetyltransferase p300 can induce PCK1 acetylation in cells, but whether that is a direct or indirect function was not known. Here we initially set out to determine whether p300 can acetylate directly PCK1 in vitro. We report that p300 weakly acetylates PCK1, but surprisingly, using several techniques including protein crystallization, mass spectrometry, isothermal titration calorimetry, saturation-transfer difference nuclear magnetic resonance and molecular docking, we found that PCK1 is also able to acetylate itself using acetyl-CoA independently of p300. This reaction yielded an acetylated recombinant PCK1 with a 3-fold decrease in kcat without changes in Km for all substrates. Acetylation stoichiometry was determined for 14 residues, including residues lining the active site. Structural and kinetic analyses determined that site-directed acetylation of K244, located inside the active site, altered this site and rendered the enzyme inactive. In addition, we found that acetyl-CoA binding to the active site is specific and metal dependent. Our findings provide direct evidence for acetyl-CoA binding and chemical reaction with the active site of PCK1 and suggest a newly discovered regulatory mechanism of PCK1 during metabolic stress.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
| | - Josue Baeza
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Ignacio Delso
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, Zaragoza, Spain
| | - Cristina Hernández-Ruiz
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Adrian Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain; IIS Aragón, Zaragoza, Spain
| | - Alexis J Lawton
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - Jesús Angulo
- School of Pharmacy, University of East Anglia, Norwich, UK; Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain; Instituto de Investigaciones Químicas (CSIC-Universidad de Sevilla), Sevilla, Spain
| | - John M Denu
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - José A Carrodeguas
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; IIS Aragón, Zaragoza, Spain.
| |
Collapse
|
30
|
Choi S, Goswami N, Schmidt F. Comparative Proteomic Profiling of 3T3-L1 Adipocyte Differentiation Using SILAC Quantification. J Proteome Res 2020; 19:4884-4900. [PMID: 32991178 DOI: 10.1021/acs.jproteome.0c00475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipocyte differentiation is a general physiological process that is also critical for metabolic syndrome. In spite of extensive study in the past two decades, adipogenesis is a still complex cellular process that is accompanied by complicated molecular mechanisms. Here, we performed SILAC-based quantitative global proteomic profiling of 3T3-L1 adipocyte differentiation. We report protein changes to the proteome profiles, with 354 proteins exhibiting significant increase and 56 proteins showing decrease in our statistical analysis. Our results show that adipocyte differentiation is involved not only in metabolic processes by increasing TCA cycle, fatty acid synthesis, lipolysis, acetyl-CoA production, antioxidants, and electron transport, but also in nicotinamide metabolism, cristae formation, mitochondrial protein import, and Ca2+ transport into mitochondria and ER. A search for Chromosome-Centric Human Proteome Project (C-HPP) using neXtprot highlighted one protein with a protein existence uncertain (PE5) and 17 proteins as functionally uncharacterized protein existence 1 (uPE1). This study provides quantitative information on proteome changes in adipogenic differentiation, which is helpful in improving our understanding of the processes of adipogenesis.
Collapse
Affiliation(s)
- Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| | - Neha Goswami
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| |
Collapse
|
31
|
Umbrasas D, Jokubka R, Kaupinis A, Valius M, Arandarčikaitė O, Borutaitė V. Nitric Oxide Donor NOC-18-Induced Changes of Mitochondrial Phosphoproteome in Rat Cardiac Ischemia Model. ACTA ACUST UNITED AC 2019; 55:medicina55100631. [PMID: 31554309 PMCID: PMC6843668 DOI: 10.3390/medicina55100631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 01/02/2023]
Abstract
Background and objective: Nitric oxide (NO) is known to exert cardioprotective effects against heart ischemic damage and may be involved in ischemic pre- and postconditioning. NO-triggered cardioprotective mechanisms are not well understood but may involve regulation of mitochondrial permeability transition pore (mPTP). In this study, we aimed to identify differentially phosphorylated mitochondrial proteins possibly involved in the NO/protein kinase G (PKG)/mPTP signaling pathway that can increase the resistance of cardiomyocytes to ischemic damage. Materials and methods: Isolated hearts from Wistar rats were perfused with NO donor NOC-18 prior to induction of stop–flow ischemia. To quantify and characterize the phosphoproteins, mitochondrial proteins were resolved and analyzed by two-dimensional gel electrophoresis followed by Pro-Q Diamond phosphoprotein gel staining, excision, trypsin digestions, and mass spectrometry. Quantitative proteomic analysis coupled with liquid chromatography–tandem mass spectrometry was also performed. Results: Mitochondrial protein phosphorylation patterns in NOC-18-pretreated ischemic hearts versus ischemic hearts were compared. Pretreatment of hearts with NOC-18 caused changes in mitochondrial phosphoproteome after ischemia which involved modifications of 10 mitochondrial membrane-bound and 10 matrix proteins. Among them, α-subunit of ATP synthase and adenine nucleotide (ADP/ATP) translocase 1, both of which are considered as potential structural components of mPTP, were identified. We also found that treatment of isolated non-ischemic mitochondria with recombinant PKG did not cause the same protein phosphorylation as pretreatment of hearts with NOC-18. Conclusions: Our study suggests that pretreatment of hearts with NOC-18 causes changes in mitochondrial phosphoproteome after ischemia which involves modifications of certain proteins thought to be involved in the regulation of mPTP opening and intracellular redox state. These proteins may be potential targets for pharmacological preconditioning of the heart.
Collapse
Affiliation(s)
- Danielius Umbrasas
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.
| | - Ramūnas Jokubka
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry Vilnius University Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry Vilnius University Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Odeta Arandarčikaitė
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.
| | - Vilmantė Borutaitė
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.
| |
Collapse
|
32
|
Gao Y, Lee H, Kwon OK, Tan M, Kim KT, Lee S. Global Proteomic Analysis of Lysine Succinylation in Zebrafish (Danio rerio). J Proteome Res 2019; 18:3762-3769. [DOI: 10.1021/acs.jproteome.9b00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minjia Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
Gao P, Cheng Z, Li M, Zhang N, Le B, Zhang W, Song P, Guo X, Li B, Cao G. Selection of candidate genes affecting meat quality and preliminary exploration of related molecular mechanisms in the Mashen pig. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1084-1094. [PMID: 31010998 PMCID: PMC6599955 DOI: 10.5713/ajas.18.0718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
Abstract
Objective The aim of this study was to select the candidate genes affecting meat quality and preliminarily explore the related molecular mechanisms in the Mashen pig. Methods The present study explored genetic factors affecting meat quality in the Mashen pig using RNA sequencing (RNA-Seq). We sequenced the transcriptomes of 180-day-old Mashen and Large White pigs using longissimus dorsi to select differentially expressed genes (DEGs). Results The results indicated that a total of 425 genes were differentially expressed between Mashen and Large White pigs. A gene ontology enrichment analysis revealed that DEGs were mainly enriched for biological processes associated with metabolism and muscle development, while a Kyoto encyclopedia of genes and genomes analysis showed that DEGs mainly participated in signaling pathways associated with amino acid metabolism, fatty acid metabolism, and skeletal muscle differentiation. A MCODE analysis of the protein-protein interaction network indicated that the four identified subsets of genes were mainly associated with translational initiation, skeletal muscle differentiation, amino acid metabolism, and oxidative phosphorylation pathways. Conclusion Based on the analysis results, we selected glutamic-oxaloacetic transaminase 1, malate dehydrogenase 1, pyruvate dehydrogenase 1, pyruvate dehydrogenase kinase 4, and activator protein-1 as candidate genes affecting meat quality in pigs. A discussion of the related molecular mechanisms is provided to offer a theoretical basis for future studies on the improvement of meat quality in pigs.
Collapse
Affiliation(s)
- Pengfei Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Zhimin Cheng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Meng Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ningfang Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Baoyu Le
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wanfeng Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Pengkang Song
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaohong Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Bugao Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Guoqing Cao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
34
|
Latorre-Muro P, Baeza J, Armstrong EA, Hurtado-Guerrero R, Corzana F, Wu LE, Sinclair DA, López-Buesa P, Carrodeguas JA, Denu JM. Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell 2018; 71:718-732.e9. [PMID: 30193097 PMCID: PMC6188669 DOI: 10.1016/j.molcel.2018.07.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/01/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts the enzyme between gluconeogenic and anaplerotic activities. Under high glucose, p300-dependent hyperacetylation of PCK1 did not lead to protein degradation but instead increased the ability of PCK1 to perform the anaplerotic reaction, converting phosphoenolpyruvate to oxaloacetate. Lys91 acetylation destabilizes the active site of PCK1 and favors the reverse reaction. At low energy input, we demonstrate that SIRT1 deacetylates PCK1 and fully restores the gluconeogenic ability of PCK1. Additionally, we found that GSK3β-mediated phosphorylation of PCK1 decreases acetylation and increases ubiquitination. Biochemical evidence suggests that serine phosphorylation adjacent to Lys91 stimulates SIRT1-dependent deacetylation of PCK1. This work reveals an unexpected capacity of hyperacetylated PCK1 to promote anaplerotic activity, and the intersection of post-translational control of PCK1 involving acetylation, phosphorylation, and ubiquitination.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Josue Baeza
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Eric A Armstrong
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Fundación ARAID, Government of Aragón, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Lindsay E Wu
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Department of Genetics, Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Pascual López-Buesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - José A Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; IIS Aragón, Zaragoza, Spain.
| | - John M Denu
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA; Morgridge Institute for Research, Madison, WI 53715, USA.
| |
Collapse
|
35
|
Hyndman KA, Yang CR, Jung HJ, Umejiego EN, Chou CL, Knepper MA. Proteomic determination of the lysine acetylome and phosphoproteome in the rat native inner medullary collecting duct. Physiol Genomics 2018; 50:669-679. [PMID: 29932826 DOI: 10.1152/physiolgenomics.00029.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phosphorylation and lysine (K)-acetylation are dynamic posttranslational modifications of proteins. Previous proteomic studies have identified over 170,000 phosphorylation sites and 15,000 K-acetylation sites in mammals. We recently reported that the inner medullary collecting duct (IMCD), which functions in the regulation of water-reabsorption, via the actions of vasopressin, expresses many of the enzymes that can modulated K-acetylation. The purpose of this study was to determine the K-acetylated or phosphorylated proteins expressed in IMCD cells. Second we questioned whether vasopressin V2 receptor activation significantly affects the IMCD acetylome or phosphoproteome? K-acetylated or serine-, threonine-, or tyrosine-phosphorylated peptides were identified from native rat IMCDs by proteomic analysis with four different enzymes (trypsin, chymotrypsin, ASP-N, or Glu-C) to generate a high-resolution proteome. K-acetylation was identified in 431 unique proteins, and 64% of the K-acetylated sites were novel. The acetylated proteins were expressed in all compartments of the cell and were enriched in pathways including glycolysis and vasopressin-regulated water reabsorption. In the vasopressin-regulated water reabsorption pathway, eight proteins were acetylated, including the novel identification of the basolateral water channel, AQP3, acetylated at K282; 215 proteins were phosphorylated in this IMCD cohort, including AQP2 peptides that were phosphorylated at four serines: 256, 261, 264, and 269. Acute dDAVP did not significantly affect the IMCD acetylome; however, it did significantly affect previously known vasopressin-regulated phosphorylation sites. In conclusion, presence of K-acetylated proteins involved in metabolism, ion, and water transport in the IMCD points to multiple roles of K-acetylation beyond its canonical role in transcriptional regulation.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Ezigbobiara N Umejiego
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Chung-Ling Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
36
|
Pan D, Wang L, Chen S, Lv X, Lu S, Cheng CL, Tan F, Chen W. Protein acetylation as a mechanism for Kandelia candel's adaption to daily flooding. TREE PHYSIOLOGY 2018; 38:895-910. [PMID: 29301031 DOI: 10.1093/treephys/tpx162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
To explore the adaptation mechanisms of Kandelia candel (L.) Druce in response to daily flooding, a large-scale quantitative lysine acetylome was carried out using immunoaffinity enrichment of Lys-acetylated peptides and liquid chromatography linked to tandem mass spectrometry. A total of 1041 lysine acetylation (LysAc) sites, 1021 Lys-acetylated peptides and 617 Lys-acetylated proteins were identified. Six conserved sequence motifs of the LysAc sites, including a new motif KxxxxK, were detected. Among these proteins, 260 were differentially acetylated in response to flooding, which were preferentially predicted to participate in carbon metabolism and photosynthesis pathways based on KEGG pathway category enrichment analysis. Consistently, the transcriptional level of acetyltransferase and the consumption of acetyl-CoA were up-regulated under flooding conditions. Most of physiological parameters and mRNA expression levels related to carbon metabolism and photosynthesis were found to be insignificantly affected by flooding. Taken together, reversible protein LysAc is likely to be a post-translational mechanism contributing to the mangrove K. candel's adaptation to daily flooding.
Collapse
Affiliation(s)
- Dezhuo Pan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lingxia Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- College of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaojie Lv
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Si Lu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chi-Lien Cheng
- Department of Biology, The University of Iowa, 210 Biology Building, Iowa City, IA 52242, USA
| | - Fanlin Tan
- Fujian Academy of Forestry, Fuzhou 350012, PR China
| | - Wei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| |
Collapse
|
37
|
Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Vilar E, Bhattacharya P, Millward S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 2018; 36:289-303. [PMID: 28762014 PMCID: PMC5557878 DOI: 10.1007/s10555-017-9675-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After more than a century, aspirin remains one of the most commonly used drugs in western medicine. Although mainly used for its anti-thrombotic, anti-pyretic, and analgesic properties, a multitude of clinical studies have provided convincing evidence that regular, low-dose aspirin use dramatically lowers the risk of cancer. These observations coincide with recent studies showing a functional relationship between platelets and tumors, suggesting that aspirin's chemopreventive properties may result, in part, from direct modulation of platelet biology and biochemistry. Here, we present a review of the biochemistry and pharmacology of aspirin with particular emphasis on its cyclooxygenase-dependent and cyclooxygenase-independent effects in platelets. We also correlate the results of proteomic-based studies of aspirin acetylation in eukaryotic cells with recent developments in platelet proteomics to identify non-cyclooxygenase targets of aspirin-mediated acetylation in platelets that may play a role in its chemopreventive mechanism.
Collapse
Affiliation(s)
- Argentina Ornelas
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niki Zacharias-Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G Menter
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer S Davis
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lenard Lichtenberger
- McGovern Medical School, Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David Hawke
- Department of Systems Biology, Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ernest Hawk
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Yu Y, Mendoza TM, Ribnicky DM, Poulev A, Noland RC, Mynatt RL, Raskin I, Cefalu WT, Floyd ZE. An Extract of Russian Tarragon Prevents Obesity-Related Ectopic Lipid Accumulation. Mol Nutr Food Res 2018; 62:e1700856. [PMID: 29476602 PMCID: PMC5929974 DOI: 10.1002/mnfr.201700856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Indexed: 11/08/2022]
Abstract
SCOPE The primary disorder underlying metabolic syndrome is insulin resistance due to excess body weight and abdominal visceral fat accumulation. In this study, it is asked if dietary intake of an ethanolic extract from Russian tarragon (Artemisia dracunculus L., termed PMI5011), shown to improve glucose utilization by enhancing insulin signaling in skeletal muscle, could prevent obesity-induced insulin resistance, skeletal muscle metabolic inflexibility, and ectopic lipid accumulation in the skeletal muscle and liver. METHODS AND RESULTS Male wild-type mice are fed a high-fat diet alone or supplemented with PMI5011 (1% w/w) over 3 months. Dietary intake of PMI5011 improved fatty acid oxidation and metabolic flexibility in the skeletal muscle, reduced insulin levels, and enhanced insulin signaling in the skeletal muscle and liver independent of robust changes in expression of factors that control fatty acid oxidation. This corresponds with significantly reduced lipid accumulation in the skeletal muscle and liver, although body weight gain is comparable to a high-fat diet alone. CONCLUSION Previous studies showed that PMI5011 enhances insulin sensitivity in the setting of established obesity-induced insulin resistance. The current study demonstrates that dietary intake of PMI5011 prevents high-fat diet-induced insulin resistance, metabolic dysfunction, and ectopic lipid accumulation in the skeletal muscle and liver without reducing body weight.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, Baton Rouge, LA
| | | | - David M Ribnicky
- Department of Plant Biology, Rutgers University, New Brunswick, NJ
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ
| | | | | | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, NJ
| | | | | |
Collapse
|
39
|
Yang Y, Tong M, Bai X, Liu X, Cai X, Luo X, Zhang P, Cai W, Vallée I, Zhou Y, Liu M. Comprehensive Proteomic Analysis of Lysine Acetylation in the Foodborne Pathogen Trichinella spiralis. Front Microbiol 2018; 8:2674. [PMID: 29375535 PMCID: PMC5768625 DOI: 10.3389/fmicb.2017.02674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Lysine acetylation is a dynamic and highly conserved post-translational modification that plays a critical role in regulating diverse cellular processes. Trichinella spiralis is a foodborne parasite with a considerable socio-economic impact. However, to date, little is known regarding the role of lysine acetylation in this parasitic nematode. In this study, we utilized a proteomic approach involving anti-acetyl lysine-based enrichment and highly sensitive mass spectrometry to identify the global acetylated proteome and investigate lysine acetylation in T. spiralis. In total, 3872 lysine modification sites were identified in 1592 proteins that are involved in a wide variety of biological processes. Consistent with the results of previous studies, a large number of the acetylated proteins appear to be involved in metabolic and biosynthetic processes. Interestingly, according to the functional enrichment analysis, 29 acetylated proteins were associated with phagocytosis, suggesting an important role of lysine acetylation in this process. Among the identified proteins, 15 putative acetylation motifs were detected. The presence of serine downstream of the lysine acetylation site was commonly observed in the regions surrounding the sites. Moreover, protein interaction network analysis revealed that various interactions are regulated by protein acetylation. These data represent the first report of the acetylome of T. spiralis and provide an important resource for further explorations of the role of lysine acetylation in this foodborne pathogen.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China.,Wu Xi Medical School, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mingwei Tong
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuepeng Cai
- China Institute of Veterinary Drug Control, Beijing, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Peihao Zhang
- Wu Xi Medical School, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Cai
- Wu Xi Medical School, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Isabelle Vallée
- JRU BIPAR, ANSES, École Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Disease, Wuxi, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
40
|
Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for direct enzyme (de)acetylation. Biochem J 2017; 474:2829-2839. [PMID: 28673962 DOI: 10.1042/bcj20170389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023]
Abstract
2-Hydroxyglutarate (2-HG) is a hypoxic metabolite with potentially important epigenetic signaling roles. The mechanisms underlying 2-HG generation are poorly understood, but evidence suggests a potential regulatory role for the sirtuin family of lysine deacetylases. Thus, we hypothesized that the acetylation status of the major 2-HG-generating enzymes [lactate dehydrogenase (LDH), isocitrate dehydrogenase (IDH) and malate dehydrogenase (MDH)] may govern their 2-HG-generating activity. In vitro acetylation of these enzymes, with confirmation by western blotting, mass spectrometry, reversibility by recombinant sirtuins and an assay for global lysine occupancy, yielded no effect on 2-HG-generating activity. In addition, while elevated 2-HG in hypoxia is associated with the activation of lysine deacetylases, we found that mice lacking mitochondrial SIRT3 exhibited hyperacetylation and elevated 2-HG. These data suggest that there is no direct link between enzyme acetylation and 2-HG production. Furthermore, our observed effects of in vitro acetylation on the canonical activities of IDH, MDH and LDH appeared to contrast with previous findings wherein acetyl-mimetic lysine mutations resulted in the inhibition of these enzymes. Overall, these data suggest that a causal relationship should not be assumed between acetylation of metabolic enzymes and their activities, canonical or otherwise.
Collapse
|
41
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
42
|
Hwang JT, Choi HK, Kim SH, Chung S, Hur HJ, Park JH, Chung MY. Hypolipidemic Activity of Quercus acutissima Fruit Ethanol Extract is Mediated by Inhibition of Acetylation. J Med Food 2017; 20:542-549. [PMID: 28581876 DOI: 10.1089/jmf.2016.3912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The acetylation of histone and nonhistone proteins is associated with adipogenesis. The objective of the present study was to investigate whether an ethanol extract of Quercus acutissima fruit (QF) exhibits antiobesity effects through inhibition of acetylation in 3T3-L1 preadipocytes and high fat diet (HFD)-fed obese mice. We observed that QF acts as a histone acetyltransferase (HAT) inhibitor and that QF (400 μg/mL) markedly inhibits the activity of p300 and CREB-binding protein. QF (200 μg/mL) significantly attenuated lipid accumulation without apparent toxicity, which is likely attributable to a decrease in the expressions of lipogenic proteins, including fatty acid synthase, peroxisome proliferator-activated receptor gamma, sterol regulatory element-binding protein 1, and CCAAT-enhancer-binding proteins alpha that were otherwise increased by MDI (a hormonal cocktail containing methyl isobutylmethylxanthine, dexamethasone, and insulin). MDI increased the acetylation of total lysine residues in whole 3T3-L1 cell lysate, an effect that was reversed by QF treatment (200 μg/mL). To further confirm the antiobesity activity of QF, mice were fed with HFD supplemented with QF at 50 and 200 mg/kg body weight. Mice fed with HFD exhibited increased masses of body, liver, and retroperitoneal fat, an effect that was suppressed in the presence of QF supplementation. QF-mediated decreases in body weight were attributable to a decrease in the average size of lipid droplets, as well as lipid accumulation in retroperitoneal fat and the liver, respectively. QF-mediated reductions in the size of the lipid droplets in the retroperitoneal fat tissue were likely associated with decreased expression of DGAT2. Taken together, our observations suggest that QF acts as an HAT inhibitor and attenuates adipogenesis in 3T3-L1 preadipocytes, resulting in the mitigation of HFD-induced obesity.
Collapse
Affiliation(s)
- Jin-Taek Hwang
- 1 Korea Food Research Institute , Seongnam, Korea.,2 Department of Food Biotechnology, Korea University of Science & Technology , Daejeon, Korea
| | | | - Sung Hee Kim
- 1 Korea Food Research Institute , Seongnam, Korea
| | | | | | - Jae Ho Park
- 1 Korea Food Research Institute , Seongnam, Korea.,2 Department of Food Biotechnology, Korea University of Science & Technology , Daejeon, Korea
| | - Min-Yu Chung
- 1 Korea Food Research Institute , Seongnam, Korea
| |
Collapse
|
43
|
Venkat S, Gregory C, Sturges J, Gan Q, Fan C. Studying the Lysine Acetylation of Malate Dehydrogenase. J Mol Biol 2017; 429:1396-1405. [PMID: 28366830 PMCID: PMC5479488 DOI: 10.1016/j.jmb.2017.03.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Protein acetylation plays important roles in many biological processes. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, has been identified to be acetylated in bacteria by proteomic studies, but no further characterization has been reported. One challenge for studying protein acetylation is to get purely acetylated proteins at specific positions. Here, we applied the genetic code expansion strategy to site-specifically incorporate Nε-acetyllysine into MDH. The acetylation of lysine residues in MDH could enhance its enzyme activity. The Escherichia coli deacetylase CobB could deacetylate acetylated MDH, while the E. coli acetyltransferase YfiQ cannot acetylate MDH efficiently. Our results also demonstrated that acetyl-CoA or acetyl-phosphate could acetylate MDH chemically in vitro. Furthermore, the acetylation level of MDH was shown to be affected by carbon sources in the growth medium.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Caroline Gregory
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jourdan Sturges
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
44
|
Gan Q, Lehman BP, Bobik TA, Fan C. Expanding the genetic code of Salmonella with non-canonical amino acids. Sci Rep 2016; 6:39920. [PMID: 28008993 PMCID: PMC5180212 DOI: 10.1038/srep39920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
The diversity of non-canonical amino acids (ncAAs) endows proteins with new features for a variety of biological studies and biotechnological applications. The genetic code expansion strategy, which co-translationally incorporates ncAAs into specific sites of target proteins, has been applied in many organisms. However, there have been only few studies on pathogens using genetic code expansion. Here, we introduce this technique into the human pathogen Salmonella by incorporating p-azido-phenylalanine, benzoyl-phenylalanine, acetyl-lysine, and phosphoserine into selected Salmonella proteins including a microcompartment shell protein (PduA), a type III secretion effector protein (SteA), and a metabolic enzyme (malate dehydrogenase), and demonstrate practical applications of genetic code expansion in protein labeling, photocrosslinking, and post-translational modification studies in Salmonella. This work will provide powerful tools for a wide range of studies on Salmonella.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Brent P Lehman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
45
|
Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole. Sci Rep 2016; 6:37730. [PMID: 27883048 PMCID: PMC5121901 DOI: 10.1038/srep37730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 01/15/2023] Open
Abstract
Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92 of 863 identified proteins in B. odoriphaga exhibited altered levels of expression, among which 14 proteins were related to the action mechanism of benzothiazole, 11 proteins were involved in stress responses, and 67 proteins were associated with the adaptation of B. odoriphaga to benzothiazole. Further bioinformatics analysis indicated that the reduction in energy metabolism, inhibition of the detoxification process and interference with DNA and RNA synthesis were potentially associated with the mode of action of benzothiazole. The myosin heavy chain, succinyl-CoA synthetase and Ca+-transporting ATPase proteins may be related to the stress response. Increased expression of proteins involved in carbohydrate metabolism, energy production and conversion pathways was responsible for the adaptive response of B. odoriphaga. The results of this study provide novel insight into the molecular mechanisms of benzothiazole at a large-scale translation level and will facilitate the elucidation of the mechanism of action of benzothiazole.
Collapse
|
46
|
Son MJ, Kim WK, Park A, Oh KJ, Kim JH, Han BS, Kim IC, Chi SW, Park SG, Lee SC, Bae KH. Set7/9, a methyltransferase, regulates the thermogenic program during brown adipocyte differentiation through the modulation of p53 acetylation. Mol Cell Endocrinol 2016; 431:46-53. [PMID: 27132805 DOI: 10.1016/j.mce.2016.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 01/03/2023]
Abstract
Brown adipose tissue, which is mainly composed of brown adipocytes, plays a key role in the regulation of energy balance via dissipation of extra energy as heat, and consequently counteracts obesity and its associated-disorders. Therefore, brown adipocyte differentiation should be tightly controlled at the multiple regulation steps. Among these, the regulation at the level of post-translational modifications (PTMs) is largely unknown. Here, we investigated the changes in the expression level of the enzymes involved in protein lysine methylation during brown adipocyte differentiation by using quantitative real-time PCR (qPCR) array analysis. Several enzymes showing differential expression patterns were identified. In particular, the expression level of methyltransferase Set7/9 was dramatically repressed during brown adipocyte differentiation. Although there was no significant change in lipid accumulation, ectopic expression of Set7/9 led to enhanced expression of several key thermogenic genes, such as uncoupling protein-1 (UCP-1), Cidea, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16). In contrast, knockdown of endogenous Set7/9 led to significantly reduced expression of these thermogenic genes. Furthermore, suppressed mitochondrial DNA content and decreased oxygen consumption rate were also detected upon Set7/9 knockdown. We found that p53 acetylation was regulated by Set7/9-dependent interaction with Sirt1. Based on these results, we suggest that Set7/9 acts as a fine regulator of the thermogenic program during brown adipocyte differentiation by regulation of p53 acetylation. Thus, Set7/9 could be used as a valuable target for regulating thermogenic capacity and consequently to overcome obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Min Jeong Son
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Anna Park
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Jeong-Hoon Kim
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Baek Soo Han
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Il Chul Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung-Wook Chi
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Sung Goo Park
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
47
|
First Comprehensive Proteome Analyses of Lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L. Sci Rep 2016; 6:31576. [PMID: 27515067 PMCID: PMC4981852 DOI: 10.1038/srep31576] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/26/2016] [Indexed: 01/23/2023] Open
Abstract
Protein acetylation and succinylation are the most crucial protein post-translational modifications (PTMs) involved in the regulation of plant growth and development. In this study, we present the first lysine-acetylation and lysine-succinylation proteome analysis of seedling leaves in Brachypodium distachyon L (Bd). Using high accuracy nano LC-MS/MS combined with affinity purification, we identified a total of 636 lysine-acetylated sites in 353 proteins and 605 lysine-succinylated sites in 262 proteins. These proteins participated in many biology processes, with various molecular functions. In particular, 119 proteins and 115 sites were found to be both acetylated and succinylated, simultaneously. Among the 353 acetylated proteins, 148 had acetylation orthologs in Oryza sativa L., Arabidopsis thaliana, Synechocystis sp. PCC 6803, and Glycine max L. Among the 262 succinylated proteins, 170 of them were found to have homologous proteins in Oryza sativa L., Escherichia coli, Sacchayromyces cerevisiae, or Homo sapiens. Motif-X analysis of the acetylated and succinylated sites identified two new acetylated motifs (K---K and K-I-K) and twelve significantly enriched succinylated motifs for the first time, which could serve as possible binding loci for future studies in plants. Our comprehensive dataset provides a promising starting point for further functional analysis of acetylation and succinylation in Bd and other plant species.
Collapse
|
48
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
49
|
Kim SY, Sim CK, Tang H, Han W, Zhang K, Xu F. Acetylome study in mouse adipocytes identifies targets of SIRT1 deacetylation in chromatin organization and RNA processing. Arch Biochem Biophys 2016; 598:1-10. [PMID: 27021582 DOI: 10.1016/j.abb.2016.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/29/2016] [Accepted: 03/24/2016] [Indexed: 01/24/2023]
Abstract
SIRT1 is a key protein deacetylase that regulates cellular metabolism through lysine deacetylation on both histones and non-histone proteins. Lysine acetylation is a wide-spread post-translational modification found on many regulatory proteins and it plays an essential role in cell signaling, transcription and metabolism. In mice, SIRT1 has known protective functions during high-fat diet but the acetylome regulated by SIRT1 in adipocytes is not completely understood. Here we conducted acetylome analyses in murine adipocytes treated with small-molecule modulators that inhibit or activate the deacetylase activity of SIRT1. We identified a total of 302 acetylated peptides from 78 proteins in this study. From the list of potential SIRT1 targets, we selected seven candidates and further verified that six of them can be deacetylated by SIRT1 in-vitro. Among them, half of the SIRT1 targets are involved in regulating chromatin structure and the other half is involved in RNA processing. Our results provide a resource for further SIRT1 target validation in fat cells and suggest a potential role of SIRT1 in the regulation of chromatin structure and RNA processing, which may possibly extend to other cell types as well.
Collapse
Affiliation(s)
- Sun-Yee Kim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore
| | - Choon Kiat Sim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore
| | - Hui Tang
- Department of Pharmacology and Toxicology, UTMB at Galveston, TX 77554, USA
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore 138667, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, UTMB at Galveston, TX 77554, USA.
| | - Feng Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
50
|
Kim SW, Park TJ, Chaudhari HN, Choi JH, Choi JY, Kim YJ, Choi MS, Yun JW. Hepatic proteome and its network response to supplementation of an anti-obesity herbal mixture in diet-induced obese mice. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0258-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|