1
|
Morozova V, Pellegata D, Charles RP, Gertsch J. Carboxylesterase 1-mediated endocannabinoid metabolism in skin: role in melanoma progression in BRaf V600E/Pten -/- mice. Cancer Metab 2025; 13:8. [PMID: 39934865 DOI: 10.1186/s40170-025-00378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Melanoma is a highly aggressive skin cancer with a poor prognosis. The endocannabinoids 2-arachidonoylgylcerol (2-AG) and anandamide have been linked to melanoma progression, though their roles remain unclear. We hypothesized that the 2-AG-arachidonate-prostaglandin axis could drive aggressive melanoma progression. METHODS The genetically engineered melanoma mouse model B6-Tyr::CreERT2; BRafCA; PtenloxP was characterized by targeted metabolomics. Functionally expressed serine hydrolases in the tumor tissue were identified by chemoproteomics. Pharmacological inhibition of carboxylesterase 1 (CES1) was achieved through chronic in vivo i.p. treatment with JZL184 (10 mg/kg daily), confirmed by activity-based protein profiling (ABPP) and targeted lipidomics. CES1-mediated 2-AG hydrolysis was further confirmed in radiotracer-based assays using CES1-transfected cell lines. RESULTS The diacylglycerol and protein kinase C activator 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) was significantly elevated in the nodular-like melanoma tissues, along with 2-AG and arachidonic acid (ARA), compared to normal skin. AEA and other N-acylethanolamines were decreased, while, notably, prostaglandin levels remained unchanged. Significant changes in the levels of neuromodulators and neurotransmitters, including serotonin and adenosine, were observed. Pronounced differences between serine hydrolase activity in normal skin and melanoma tissue were identified by ABPP. Intriguingly, CES1 was identified as the only 2-AG-hydrolyzing enzyme in this melanoma tissue, as MAGL and ABHD6/12 were not expressed. The MAGL inhibitor JZL184 also efficiently inhibited CES1 in vitro and in vivo, increasing glycerol esters and reducing tumor progression. Additionally, scRNA-seq data from previous studies revealed divergent MAGL/CES1 expression patterns across different human melanoma subtypes. CONCLUSIONS A role of CES1 expression in skin is demonstrated for the first time. Our study suggests that 2-AG degradation to arachidonate favors melanoma progression, either reflecting the carcinogenic role of ARA or that monoacylglycerols like 2-AG and/or other CES1 substrates may exert antitumor effects, indicating that CES1 could be a potential therapeutic target. CES1 expression and high SAG, 2-AG, and ARA levels may be a signature of specific BRAF-driven malignant melanoma subtypes which are associated with discrete metabolic adaptations.
Collapse
Affiliation(s)
- Veronika Morozova
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, CH-3012, Switzerland
| | - Daniele Pellegata
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, CH-3012, Switzerland
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, CH-3012, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, CH-3012, Switzerland.
| |
Collapse
|
2
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
3
|
Mohsin S, Elabadlah H, Alotaiba MK, AlAmry S, Almehairbi SJ, Harara MMK, Almuhsin AMH, Tariq S, Howarth FC, Adeghate EA. High-Density Lipoprotein Is Located Alongside Insulin in the Islets of Langerhans of Normal and Rodent Models of Diabetes. Nutrients 2024; 16:313. [PMID: 38276551 PMCID: PMC10818677 DOI: 10.3390/nu16020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have implicated pre-beta and beta lipoproteins (VLDL and LDL) in the etiopathogenesis of complications of diabetes mellitus (DM). In contrast, alpha lipoprotein (HDL) is protective of the beta cells of the pancreas. This study examined the distribution of HDL in the islets of Langerhans of murine models of type 1 diabetic rats (streptozotocin (STZ)-induced DM in Wistar rats) and type 2 models of DM rats (Goto-Kakizaki (GK), non-diabetic Zucker lean (ZL), and Zucker diabetic and fatty (ZDF)). The extent by which HDL co-localizes with insulin or glucagon in the islets of the pancreas was also investigated. Pancreatic tissues of Wistar non-diabetic, diabetic Wistar, GK, ZL, and ZDF rats were processed for immunohistochemistry. Pancreatic samples of GK rats fed with either a low-fat or a high-fat diet were prepared for transmission immune-electron microscopy (TIEM) to establish the cytoplasmic localization of HDL in islet cells. HDL was detected in the core and periphery of pancreatic islets of Wistar non-diabetic and diabetic, GK, ZL, and ZDF rats. The average total of islet cells immune positive for HDL was markedly (<0.05) reduced in GK and ZDF rats in comparison to Wistar controls. The number of islet cells containing HDL was also remarkably (p < 0.05) reduced in Wistar diabetic rats and GK models fed on high-fat food. The co-localization study using immunofluorescence and TIEM techniques showed that HDL is detected alongside insulin within the secretory granules of β-cells. HDL did not co-localize with glucagon. This observation implies that HDL may contribute to the metabolism of insulin.
Collapse
Affiliation(s)
- Sahar Mohsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Haba Elabadlah
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Cambridge Medical and Rehabilitation Center, Al Ain P.O. Box 222297, United Arab Emirates
| | - Mariam K. Alotaiba
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Suhail AlAmry
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Shamma J. Almehairbi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Maha M. K. Harara
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Aisha M. H. Almuhsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Gan C, Wang J, Martínez-Chávez A, Hillebrand M, de Vries N, Beukers J, Wagenaar E, Wang Y, Lebre MC, Rosing H, Klarenbeek S, Ali RB, Pritchard C, Huijbers I, Beijnen JH, Schinkel AH. Carboxylesterase 1 family knockout alters drug disposition and lipid metabolism. Acta Pharm Sin B 2023; 13:618-631. [PMID: 36873183 PMCID: PMC9978993 DOI: 10.1016/j.apsb.2022.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/01/2022] Open
Abstract
The mammalian carboxylesterase 1 (Ces1/CES1) family comprises several enzymes that hydrolyze many xenobiotic chemicals and endogenous lipids. To investigate the pharmacological and physiological roles of Ces1/CES1, we generated Ces1 cluster knockout (Ces1 -/- ) mice, and a hepatic human CES1 transgenic model in the Ces1 -/- background (TgCES1). Ces1 -/- mice displayed profoundly decreased conversion of the anticancer prodrug irinotecan to SN-38 in plasma and tissues. TgCES1 mice exhibited enhanced metabolism of irinotecan to SN-38 in liver and kidney. Ces1 and hCES1 activity increased irinotecan toxicity, likely by enhancing the formation of pharmacodynamically active SN-38. Ces1 -/- mice also showed markedly increased capecitabine plasma exposure, which was moderately decreased in TgCES1 mice. Ces1 -/- mice were overweight with increased adipose tissue, white adipose tissue inflammation (in males), a higher lipid load in brown adipose tissue, and impaired blood glucose tolerance (in males). These phenotypes were mostly reversed in TgCES1 mice. TgCES1 mice displayed increased triglyceride secretion from liver to plasma, together with higher triglyceride levels in the male liver. These results indicate that the carboxylesterase 1 family plays essential roles in drug and lipid metabolism and detoxification. Ces1 -/- and TgCES1 mice will provide excellent tools for further study of the in vivo functions of Ces1/CES1 enzymes.
Collapse
Affiliation(s)
- Changpei Gan
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jing Wang
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Alejandra Martínez-Chávez
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Michel Hillebrand
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Joke Beukers
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Els Wagenaar
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Yaogeng Wang
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Maria C Lebre
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Colin Pritchard
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ivo Huijbers
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CS, the Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| |
Collapse
|
5
|
Hasson TS, Said E, Helal MG. Nifuroxazide modulates hepatic expression of LXRs/SR-BI/CES1/CYP7A1 and LDL-R and attenuates experimentally-induced hypercholesterolemia and the associated cardiovascular complications. Life Sci 2022; 306:120790. [PMID: 35817168 DOI: 10.1016/j.lfs.2022.120790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Hyperlipidemia is a serious disorders affecting the metabolism of fats in the human body, and it is usually associated with some serious cardiovascular complications increasing the risk for sudden death. Nifuroxazide (NFR) is an oral nitrofuran antibiotic that has long been used for management of diarrhea and recently various recent out merging valuable therapeutic impacts were reported. The current study sought the concept of repositioning nifuroxazide in management of hyperlipidemia. Hyperlipidemia was induced in male rabbits using cholesterol enriched diet for 9 weeks and starting from the beginning of 5th week; NFR (100 and 300 mg/kg) were administered once daily for the further 5 weeks; till the end of the 9th week of the experiment. NFR significantly recovered balanced lipid profile as serum cholesterol, total glycerides, LDL significantly declined with significant elevation in serum HDL. Meanwhile, serum LDH, CK, ALT and AST activities were significantly corrected. These biochemical changes were correlated with significant improvement in the histopathological examination of hepatic, cardiac and aortic specimen with decreased expression of CD68 and Ki67 in the myocardium and the aorta implying retraction in macrophages' infiltration and tissue regeneration. Myocardial specimen confirmed significant recovery with preservation of cardiac muscle fibers. Aortic specimen confirmed retraction in the aortic thickness and fewer deposition of fat globules. In conclusion, NFR attenuated experimentally-induced hyperlipidemia with significant recovery of serum profile and tissue necrotic changes. The histopathological examination of hepatic, myocardial and aortic specimen confirmed the onset of tissues' recovery alongside biochemical improvement.
Collapse
Affiliation(s)
- Tamara Shaker Hasson
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Faculty of Pharmacy, New Mansoura University, New Mansoura, Egypt.
| | - Manar Gamal Helal
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
7
|
Lian J, van der Veen JN, Watts R, Jacobs RL, Lehner R. Carboxylesterase 1d (Ces1d) does not contribute to cholesteryl ester hydrolysis in the liver. J Lipid Res 2021; 62:100093. [PMID: 34153284 PMCID: PMC8287225 DOI: 10.1016/j.jlr.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
The liver is the central organ regulating cholesterol synthesis, storage, transport, and elimination. Mouse carboxylesterase 1d (Ces1d) and its human ortholog CES1 have been described to possess lipase activity and play roles in hepatic triacylglycerol metabolism and VLDL assembly. It has been proposed that Ces1d/CES1 might also catalyze cholesteryl ester (CE) hydrolysis in the liver and thus be responsible for the hydrolysis of HDL-derived CE; this could contribute to the final step in the reverse cholesterol transport (RCT) pathway, wherein cholesterol is secreted from the liver into bile and feces, either directly or after conversion to water-soluble bile salts. However, the proposed function of Ces1d/CES1 as a CE hydrolase is controversial. In this study, we interrogated the role hepatic Ces1d plays in cholesterol homeostasis using liver-specific Ces1d-deficient mice. We rationalized that if Ces1d is a major hepatic CE hydrolase, its absence would (1) reduce in vivo RCT flux and (2) provoke liver CE accumulation after a high-cholesterol diet challenge. We found that liver-specific Ces1d-deficient mice did not show any difference in the flux of in vivo HDL-to-feces RCT nor did it cause additional liver CE accumulation after high-fat, high-cholesterol Western-type diet feeding. These findings challenge the importance of Ces1d as a major hepatic CE hydrolase.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Jelske N van der Veen
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Yu L, Lu H, Yang X, Li R, Shi J, Yu Y, Ma C, Sun F, Zhang S, Zhang F. Diosgenin alleviates hypercholesterolemia via SRB1/CES-1/CYP7A1/FXR pathway in high-fat diet-fed rats. Toxicol Appl Pharmacol 2021; 412:115388. [PMID: 33383043 DOI: 10.1016/j.taap.2020.115388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Phytosterol diosgenin (DG) exhibits cholesterol-lowering properties. Few studies focused on the underlying mechanism of DG attenuation of hypercholesterolemia by promoting cholesterol metabolism. To investigate the roles of SRB1/CES-1/CYP7A1/FXR pathways in accelerating cholesterol elimination and alleviating hypercholesterolemia, a rat model of hypercholesterolemia was induced by providing a high-fat diet (HFD). Experimental rat models were randomly divided into a normal control (Con) group, HFD group, low-dose DG (LDG) group (150 mg/kg/d), high-dose DG (HDG) group (300 mg/kg) and Simvastatin (Sim) group (4 mg/kg/d). Body weights, serum and hepatic lipid parameters of rats were tested. The expression levels of scavenger receptor class B type I (SRB1), carboxylesterase-1 (CES-1), cholesterol7α- hydroxylase (CYP7A1), and farnesoid X receptor (FXR) were determined. The results showed that DG reduced weight and lowered lipid levels in HFD-fed rats. Pathological morphology analyses revealed that DG notably improved hepatic steatosis and intestinal structure. Further studies showed the increased hepatic SRB1, CES-1, CYP7A1 and inhibited FXR-mediated signaling in DG-fed rats, which contributing to the decrease of hepatic cholesterol. DG also increased intestinal SRB1 and CES-1, inhibiting cholesterol absorption and promoting RCT. The expression levels of these receptors in the HDG group were higher than LDG and Sim groups. These data suggested that DG accelerated reverse cholesterol transport (RCT) and enhanced cholesterol elimination via SRB1/CES-1/CYP7A1/FXR pathway, and DG might be a new candidate for the alleviation of hypercholesterolemia.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Haifei Lu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiufen Yang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ruoqi Li
- Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Jingjing Shi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yantong Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Chaoqun Ma
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Fengcui Sun
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Shizhao Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
9
|
Su H, Yang Y, Zou J, Cheng Y, Yang Y, Wu J, Pollak P, Yang Y. Transcriptome analysis of the ovary of beet armyworm Spodoptera exigua under different exposures of cadmium stress. CHEMOSPHERE 2020; 251:126372. [PMID: 32169707 DOI: 10.1016/j.chemosphere.2020.126372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution is becoming an increasingly serious problem globally, and cadmium pollution ranks first in the world. Reproduction in insects is affected by cadmium stress in a dose-dependent manner. However, no previous studies have examined the molecular mechanisms underlying the influence of cadmium exposure on insect reproduction. In this study, RNA-Seq was used to investigate changes in ovary gene expression in newly emerged female beet army worms. The beet armyworms were reared under 4 cadmium concentrations: 0 mg/kg (control), low 0.2 mg/kg (L), medium 12.8 mg/kg (M) and high 51.2 mg/kg (H). Compared with the control (CK), a total of 3453 differentially expressed genes (DEGs) were identified in L cadmium stress, including 1791 up-regulated and 1662 down-regulated candidates; in L versus M groups, 982 up-regulated and 658 down-regulated DEGs; and in M versus H groups, 6508 up-regulated and 2000 down-regulated DEGs were identified and the expression patterns of ten genes were verified by q PCR. Many of the identified DEGs were relevant to juvenile hormone and molting hormone biosynthesis, insulin secretion, estrogen signaling, amino acid metabolism and lipid biosynthesis. These data will provide a molecular prospective to understand the ecological risk of heavy metal pollution and are a resource for selecting key genes as targets in gene-editing/silencing technologies for sustainable pest management.
Collapse
Affiliation(s)
- Honghua Su
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yang Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Jincheng Zou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Yuqing Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Yong Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiaojiao Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Patrick Pollak
- Entomology Department, Cornell University, Ithaca, NY, 14853, USA
| | - Yizhong Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
10
|
Xu Y, Zhu Y, Bawa FC, Hu S, Pan X, Yin L, Zhang Y. Hepatocyte-Specific Expression of Human Carboxylesterase 1 Attenuates Diet-Induced Steatohepatitis and Hyperlipidemia in Mice. Hepatol Commun 2020; 4:527-539. [PMID: 32258948 PMCID: PMC7109343 DOI: 10.1002/hep4.1487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Rodents have at least five carboxylesterase 1 (Ces1) genes, whereas there is only one CES1 gene in humans, raising the question as to whether human CES1 and mouse Ces1 genes share the same functions. In this study, we investigate the role of human CES1 in the development of steatohepatitis or dyslipidemia in C57BL/6 mice. Hepatocyte-specific expression of human CES1 prevented Western diet or alcohol-induced steatohepatitis and hyperlipidemia. Mechanistically, human CES1 induced lipolysis and fatty acid oxidation, leading to a reduction in hepatic triglyceride and free fatty acid levels. Human CES1 also reduced hepatic-free cholesterol levels and induced low-density lipoprotein receptor. In addition, human CES1 induced hepatic lipoprotein lipase and apolipoprotein C-II expression. Conclusion: Hepatocyte-specific overexpression of human CES1 attenuates diet-induced steatohepatitis and hyperlipidemia.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Yingdong Zhu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Shuwei Hu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Xiaoli Pan
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Liya Yin
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| |
Collapse
|
11
|
Adipocyte Hypoxia-Inducible Factor 2α Suppresses Atherosclerosis by Promoting Adipose Ceramide Catabolism. Cell Metab 2019; 30:937-951.e5. [PMID: 31668872 DOI: 10.1016/j.cmet.2019.09.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/10/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
Obesity-induced adipose dysfunction is a major contributor to atherosclerosis. Cold exposure has been reported to affect atherosclerosis through regulation of adipose function, but the mechanism has not been well clarified. Here, adipocyte hypoxia-inducible factor 2α (HIF-2α) was upregulated after mild cold exposure at 16°C and mediated cold-induced thermogenesis. Adipocyte HIF-2α deficiency exacerbated Western-diet-induced atherosclerosis by increasing adipose ceramide levels, which blunted hepatocyte cholesterol elimination and thermogenesis. Mechanistically, Acer2, the gene encoding alkaline ceramidase 2, was identified as a novel target gene of HIF-2α, triggering ceramide catabolism. Adipose overexpression of ACER2 rescued adipocyte HIF-2α-deficiency-induced exacerbation of atherosclerosis. Furthermore, activation of adipose HIF-2α by the HIF prolyl hydroxylase inhibitor FG-4592 had protective effects on atherosclerosis, accompanied by a reduction in adipose and plasma ceramide and plasma cholesterol levels. This study highlights adipocyte HIF-2α as a putative drug target against atherosclerosis.
Collapse
|
12
|
Zhang F, Zhao J, Sun D, Wei N. MiR-155 inhibits transformation of macrophages into foam cells via regulating CEH expression. Biomed Pharmacother 2018; 104:645-651. [PMID: 29803178 DOI: 10.1016/j.biopha.2018.05.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
MiR-155 can inhibit the formation of atherosclerosis by interfering with the transformation of macrophages into foam cells that plays a critical role in the pathogenesis of atherosclerosis, but the precise mechanisms of miR-155 are still unknown. Herein, we observed that mRNA and protein expression levels of CEH were significantly upregulated in a dose- and time-dependent manner by transfected with miR-155 mimics in THP-1 macrophages. Further studies showed that overexpression of miR-155 can significantly inhibit foam cells formation, reduce intracellular CE accumulation and enhance the efflux of FC and cholesterol, result in a decrease of intracellular lipid accumulation; while this effect was significantly reversed by siCEH. Meanwhile, we found that Tim-3 is associated with miR-155-mediated CEH expression in THP-1 macrophage-derived foam cells. Overexpression of Tim-3 can attenuate miR-155-mediated CEH induction. Taken together, our findings demonstrated that miR-155 can inhibit the transformation of macrophages into foam cells by enhancing CEH signaling pathway in macrophages, this effect is likely to be achieved by inhibiting the expression of Tim-3.
Collapse
Affiliation(s)
- Fengxiang Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, 121001, China
| | - Jinsong Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, 121001, China
| | - Dapeng Sun
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, 121001, China.
| | - Ning Wei
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Xu J, Xu Y, Xu Y, Yin L, Zhang Y. Global inactivation of carboxylesterase 1 (Ces1/Ces1g) protects against atherosclerosis in Ldlr -/- mice. Sci Rep 2017; 7:17845. [PMID: 29259301 PMCID: PMC5736751 DOI: 10.1038/s41598-017-18232-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death in the western world. Increased plasma triglyceride and cholesterol levels are major risk factors for this disease. Carboxylesterase 1 (Ces1/Ces1g) has been shown to play a role in metabolic control. So far, the role of mouse Ces1/Ces1g deficiency in atherosclerosis is not elucidated. We generated Ces1/Ces1g−/− mice. Compared to wild-type mice, Ces1/Ces1g−/− mice had reduced plasma cholesterol levels. We then generated Ces1g−/−Ldlr−/− double knockout (DKO) mice, which were fed a Western diet for 16 weeks. Compared to Ldlr−/− mice, DKO mice displayed decreased plasma cholesterol and TG levels and reduced atherosclerotic lesions. Interestingly, knockdown of hepatic Ces1/Ces1g in Apoe−/− mice resulted in hyperlipidemia and exacerbated Western diet-induced atherogenesis. Mechanistically, global inactivation of Ces1/Ces1g inhibited intestinal cholesterol and fat absorption and Niemann-Pick C1 like 1 expression, and increased macrophage cholesterol efflux by inducing ATP-binding cassette subfamily A member 1 (ABCA1) and ABCG1. Ces1/Ces1g ablation also promoted M2 macrophage polarization and induced hepatic cholesterol 7α-hydroxylase and sterol 12α-hydroxylase expression. In conclusion, global loss of Ces1/Ces1g protects against the development of atherosclerosis by inhibiting intestinal cholesterol and triglyceride absorption and promoting macrophage cholesterol efflux.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
14
|
Gao A, Cayabyab FS, Chen X, Yang J, Wang L, Peng T, Lv Y. Implications of Sortilin in Lipid Metabolism and Lipid Disorder Diseases. DNA Cell Biol 2017; 36:1050-1061. [DOI: 10.1089/dna.2017.3853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anbo Gao
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Francisco S. Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jing Yang
- Department of Metabolism & Endocrinology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
He H, Lancina MG, Wang J, Korzun WJ, Yang H, Ghosh S. Bolstering cholesteryl ester hydrolysis in liver: A hepatocyte-targeting gene delivery strategy for potential alleviation of atherosclerosis. Biomaterials 2017; 130:1-13. [PMID: 28349866 DOI: 10.1016/j.biomaterials.2017.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/15/2022]
Abstract
Current atherosclerosis treatment strategies primarily focus on limiting further cholesteryl esters (CE) accumulation by reducing endogenous synthesis of cholesterol in the liver. No therapy is currently available to enhance the removal of CE, a crucial step to reduce the burden of the existing disease. Given the central role of hepatic cholesteryl ester hydrolase (CEH) in the intrahepatic hydrolysis of CE and subsequent removal of the resulting free cholesterol (FC), in this work, we applied galactose-functionalized polyamidoamine (PAMAM) dendrimer generation 5 (Gal-G5) for hepatocyte-specific delivery of CEH expression vector. The data presented herein show the increased specific uptake of Gal-G5/CEH expression vector complexes (simply Gal-G5/CEH) by hepatocytes in vitro and in vivo. Furthermore, the upregulated CEH expression in the hepatocytes significantly enhanced the intracellular hydrolysis of high density lipoprotein-associated CE (HDL-CE) and subsequent conversion/secretion of hydrolyzed FC as bile acids (BA). The increased CEH expression in the liver significantly increased the flux of HDL-CE to biliary as well as fecal FC and BA. Meanwhile, Gal-G5 did not induce hepatic or renal toxicity. It was also not immunotoxic. Because of these encouraging pre-clinical testing results, using this safe and highly efficient hepatocyte-specific gene delivery platform to enhance the hepatic processes involved in cholesterol elimination is a promising strategy for the alleviation of atherosclerosis.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, United States
| | - Michael G Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - William J Korzun
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
16
|
Li J, Wang Y, Matye DJ, Chavan H, Krishnamurthy P, Li F, Li T. Sortilin 1 Modulates Hepatic Cholesterol Lipotoxicity in Mice via Functional Interaction with Liver Carboxylesterase 1. J Biol Chem 2016; 292:146-160. [PMID: 27881673 DOI: 10.1074/jbc.m116.762005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/19/2016] [Indexed: 12/13/2022] Open
Abstract
The liver plays a key role in cholesterol metabolism. Impaired hepatic cholesterol homeostasis causes intracellular free cholesterol accumulation and hepatocyte injury. Sortilin 1 (SORT1) is a lysosomal trafficking receptor that was identified by genome-wide association studies (GWAS) as a novel regulator of cholesterol metabolism in humans. Here we report that SORT1 deficiency protected against cholesterol accumulation-induced liver injury and inflammation in mice. Using an LC-MS/MS-based proteomics approach, we identified liver carboxylesterase 1 (CES1) as a novel SORT1-interacting protein. Mechanistic studies further showed that SORT1 may regulate CES1 lysosomal targeting and degradation and that SORT1 deficiency resulted in higher liver CES1 protein abundance. Previous studies have established an important role of hepatic CES1 in promoting intracellular cholesterol mobilization, cholesterol efflux, and bile acid synthesis. Consistently, high cholesterol atherogenic diet-challenged Sort1 knock-out mice showed less hepatic free cholesterol accumulation, increased bile acid synthesis, decreased biliary cholesterol secretion, and the absence of gallstone formation. SORT1 deficiency did not alter hepatic ceramide and fatty acid metabolism in high cholesterol atherogenic diet-fed mice. Finally, knockdown of liver CES1 in mice markedly increased the susceptibility to high cholesterol diet-induced liver injury and abolished the protective effect against cholesterol lipotoxicity in Sort1 knock-out mice. In summary, this study identified a novel SORT1-CES1 axis that regulates cholesterol-induced liver injury, which provides novel insights that improve our current understanding of the molecular links between SORT1 and cholesterol metabolism. This study further suggests that therapeutic inhibition of SORT1 may be beneficial in improving hepatic cholesterol homeostasis in metabolic and inflammatory liver diseases.
Collapse
Affiliation(s)
- Jibiao Li
- From the Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas 66160 and
| | - Yifeng Wang
- From the Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas 66160 and
| | - David J Matye
- From the Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas 66160 and
| | - Hemantkumar Chavan
- From the Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas 66160 and
| | - Partha Krishnamurthy
- From the Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas 66160 and
| | - Feng Li
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Tiangang Li
- From the Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas 66160 and
| |
Collapse
|
17
|
Wang J, Bie J, Ghosh S. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile. J Lipid Res 2016; 57:1712-9. [PMID: 27381048 DOI: 10.1194/jlr.m069682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination.
Collapse
Affiliation(s)
- Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| | - Jinghua Bie
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| |
Collapse
|
18
|
Evaluating computational models of cholesterol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1360-76. [DOI: 10.1016/j.bbalip.2015.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/08/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023]
|
19
|
Xu YY, Du F, Meng B, Xie GH, Cao J, Fan D, Yu H. Hepatic overexpression of methionine sulfoxide reductase A reduces atherosclerosis in apolipoprotein E-deficient mice. J Lipid Res 2015; 56:1891-900. [PMID: 26318157 PMCID: PMC4583078 DOI: 10.1194/jlr.m058776] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
Methionine sulfoxide reductase A (MsrA), a specific enzyme that converts methionine-S-sulfoxide to methionine, plays an important role in the regulation of protein function and the maintenance of redox homeostasis. In this study, we examined the impact of hepatic MsrA overexpression on lipid metabolism and atherosclerosis in apoE-deficient (apoE−/−) mice. In vitro study showed that in HepG2 cells, lentivirus-mediated human MsrA (hMsrA) overexpression upregulated the expression levels of several key lipoprotein-metabolism-related genes such as liver X receptor α, scavenger receptor class B type I, and ABCA1. ApoE−/− mice were intravenously injected with lentivirus to achieve high-level hMsrA expression predominantly in the liver. We found that hepatic hMsrA expression significantly reduced plasma VLDL/LDL levels, improved plasma superoxide dismutase, and paraoxonase-1 activities, and decreased plasma serum amyloid A level in apoE−/− mice fed a Western diet, by significantly altering the expression of several genes in the liver involving cholesterol selective uptake, conversion and excretion into bile, TG biosynthesis, and inflammation. Moreover, overexpression of hMsrA resulted in reduced hepatic steatosis and aortic atherosclerosis. These results suggest that hepatic MsrA may be an effective therapeutic target for ameliorating dyslipidemia and reducing atherosclerosis-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yan-Yong Xu
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Fen Du
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Bing Meng
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Guang-Hui Xie
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Hong Yu
- Department of Biochemistry and Molecular Biology Wuhan University School of Basic Medical Sciences, Wuhan, China Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
20
|
Xu J, Yin L, Xu Y, Li Y, Zalzala M, Cheng G, Zhang Y. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS One 2014; 9:e109663. [PMID: 25285996 PMCID: PMC4186840 DOI: 10.1371/journal.pone.0109663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1) is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL), an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yuanyuan Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Munaf Zalzala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ghosh SS, Bie J, Wang J, Ghosh S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation. PLoS One 2014; 9:e108577. [PMID: 25251395 PMCID: PMC4177397 DOI: 10.1371/journal.pone.0108577] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/29/2014] [Indexed: 02/07/2023] Open
Abstract
Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as Type 2 Diabetes and atherosclerosis) has shifted the focus from Western diet-induced changes in gut microbiota per se to release of gut bacteria-derived products into circulation as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. Under physiological conditions, an intact intestinal barrier prevents this release of LPS underscoring the importance of examining and modulating the direct effects of Western diet on intestinal barrier function. In the present study we evaluated two strategies, namely selective gut decontamination and supplementation with oral curcumin, to modulate Western-diet (WD) induced changes in intestinal barrier function and subsequent development of glucose intolerance and atherosclerosis. LDLR−/− mice were fed WD for 16 weeks and either received non-absorbable antibiotics (Neomycin and polymyxin) in drinking water for selective gut decontamination or gavaged daily with curcumin. WD significantly increased intestinal permeability as assessed by in vivo translocation of FITC-dextran and plasma LPS levels. Selective gut decontamination and supplementation with curcumin significantly attenuated the WD-induced increase in plasma LPS levels (3.32 vs 1.90 or 1.51 EU/ml, respectively) and improved intestinal barrier function at multiple levels (restoring intestinal alkaline phosphatase activity and expression of tight junction proteins, ZO-1 and Claudin-1). Consequently, both these interventions significantly reduced WD-induced glucose intolerance and atherosclerosis in LDLR−/− mice. Activation of macrophages by low levels of LPS (50 ng/ml) and its exacerbation by fatty acids is likely the mechanism by which release of trace amounts of LPS into circulation due to disruption of intestinal barrier function induces the development of these diseases. These studies not only establish the important role of intestinal barrier function, but also identify oral supplementation with curcumin as a potential therapeutic strategy to improve intestinal barrier function and prevent the development of metabolic diseases.
Collapse
Affiliation(s)
- Siddhartha S. Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Jinghua Bie
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ghosh S, Bie J, Wang J, Yuan Q, Ghosh SS. Cholesterol removal from plaques and elimination from the body: change in paradigm to reduce risk for heart disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|