1
|
Deroissart J, Binder CJ, Porsch F. Role of Antibodies and Their Specificities in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2154-2168. [PMID: 39114917 DOI: 10.1161/atvbaha.124.319843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by innate and adaptive immunity including humoral immunity. Importantly, antibody alterations achieved by genetic means or active and passive immunization strategies in preclinical studies can improve or aggravate atherosclerosis. Additionally, a wide range of epidemiological data demonstrate not only an association between the total levels of different antibody isotypes but also levels of antibodies targeting specific antigens with atherosclerotic cardiovascular disease. Here, we discuss the potential role of atherogenic dyslipidemia on the antibody repertoire and review potential antibody-mediated effector mechanisms involved in atherosclerosis development highlighting the major atherosclerosis-associated antigens that trigger antibody responses.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| |
Collapse
|
2
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
3
|
O’Brien JW, Case A, Kemper C, Zhao TX, Mallat Z. Therapeutic Avenues to Modulate B-Cell Function in Patients With Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:1512-1522. [PMID: 38813699 PMCID: PMC11208059 DOI: 10.1161/atvbaha.124.319844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The adaptive immune system plays an important role in the development and progression of atherosclerotic cardiovascular disease. B cells can have both proatherogenic and atheroprotective roles, making treatments aimed at modulating B cells important therapeutic targets. The innate-like B-cell response is generally considered atheroprotective, while the adaptive response is associated with mixed consequences for atherosclerosis. Additionally, interactions of B cells with components of the adaptive and innate immune system, including T cells and complement, also represent key points for therapeutic regulation. In this review, we discuss therapeutic approaches based on B-cell depletion, modulation of B-cell survival, manipulation of both the antibody-dependent and antibody-independent B-cell response, and emerging immunization techniques.
Collapse
Affiliation(s)
- James W. O’Brien
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
| | - Ayden Case
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.K.)
| | - Tian X. Zhao
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
- Department of Cardiology, Royal Papworth Hospital, Cambridge, United Kingdom (T.X.Z.)
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
- Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, France (Z.M.)
| |
Collapse
|
4
|
Raposo-Gutiérrez I, Rodríguez-Ronchel A, Ramiro AR. Atherosclerosis antigens as targets for immunotherapy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1129-1147. [PMID: 39196152 DOI: 10.1038/s44161-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 08/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.
Collapse
Affiliation(s)
- Irene Raposo-Gutiérrez
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Ana Rodríguez-Ronchel
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain.
| |
Collapse
|
5
|
Sahlström P, Joshua V, Valkovskaia V, Biese C, Stålesen R, Israelsson L, Végvári Á, Scheel-Toellner D, Klareskog L, Hansson M, Hensvold A, Malmström V, Grönwall C. Autoreactive B cells against malondialdehyde-induced protein cross-links are present in the joint, lung, and bone marrow of rheumatoid arthritis patients. J Biol Chem 2023; 299:105320. [PMID: 37802315 PMCID: PMC10641667 DOI: 10.1016/j.jbc.2023.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Autoantibodies to malondialdehyde (MDA) proteins constitute a subset of anti-modified protein autoantibodies in rheumatoid arthritis (RA), which is distinct from citrulline reactivity. Serum anti-MDA IgG levels are commonly elevated in RA and correlate with disease activity, CRP, IL6, and TNF-α. MDA is an oxidation-associated reactive aldehyde that together with acetaldehyde mediates formation of various immunogenic amino acid adducts including linear MDA-lysine, fluorescent malondialdehyde acetaldehyde (MAA)-lysine, and intramolecular cross-linking. We used single-cell cloning, generation of recombinant antibodies (n = 356 from 25 donors), and antigen-screening to investigate the presence of class-switched MDA/MAA+ B cells in RA synovium, bone marrow, and bronchoalveolar lavage. Anti-MDA/MAA+ B cells were found in bone marrow plasma cells of late disease and in the lung of both early disease and risk-individuals and in different B cell subsets (memory, double negative B cells). These were compared with previously identified anti-MDA/MAA from synovial memory and plasma cells. Seven out of eight clones carried somatic hypermutations and all bound MDA/MAA-lysine independently of protein backbone. However, clones with somatic hypermutations targeted MAA cross-linked structures rather than MDA- or MAA-hapten, while the germline-encoded synovial clone instead bound linear MDA-lysine in proteins and peptides. Binding patterns were maintained in germline converted clones. Affinity purification of polyclonal anti-MDA/MAA from patient serum revealed higher proportion of anti-MAA versus anti-MDA compared to healthy controls. In conclusion, IgG anti-MDA/MAA show distinct targeting of different molecular structures. Anti-MAA IgG has been shown to promote bone loss and osteoclastogenesis in vivo and may contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Peter Sahlström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vijay Joshua
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Viktoriia Valkovskaia
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Biese
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ragnhild Stålesen
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Israelsson
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aase Hensvold
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
Pattarabanjird T, Nguyen AT, McSkimming C, Dinh HQ, Marshall MA, Ghosheh Y, Gulati R, Durant C, Vallejo J, Saigusa R, Drago F, Guy TV, Premo K, Taylor AM, Paul S, Kundu B, Berr S, Gonen A, Tsimikas S, Miller Y, Pillai S, Ley K, Hedrick CC, McNamara CA. Human circulating CD24 hi marginal zone B cells produce IgM targeting atherogenic antigens and confer protection from vascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1003-1014. [PMID: 39196097 DOI: 10.1038/s44161-023-00356-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/26/2023] [Indexed: 08/29/2024]
Abstract
IgMs that inactivate oxidation-specific epitopes (IgMOSE), which are secondary products of lipid peroxidization, protect against inflammatory diseases, including diet-induced atherosclerosis. However, the human B cell subtype that produces IgMOSE remains unknown. In this study, we used single-cell mass cytometry and adoptive transfer of B cell subtypes to NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice to identify B27+IgM+CD24hi cells as the major producers of IgMOSE in humans. Notably, these cells have characteristics of human circulatory marginal zone B (MZB) cells, which are known to be atheoroprotective IgM producers in mice. CD24 antibody treatment to reduce MZB cells and IgM in a hyperlipidemic humanized mouse model provides the evidence that MZB cells protect against vascular inflammation. Consistent with these findings, the frequency of B27+IgM+CD24hi cells (MZB) in patients inversely correlates with coronary artery disease severity.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Anh Tram Nguyen
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Chantel McSkimming
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Huy Q Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine, Madison, WI, USA
| | - Melissa A Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | - Fabrizio Drago
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Thomas V Guy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Angela M Taylor
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Soumen Paul
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Bijoy Kundu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Stuart Berr
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yury Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Klaus Ley
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Coleen A McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA.
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Ebrahimian T, Dierick F, Ta V, Kotsiopriftis M, O'Connor Miranda J, Mann KK, Orthwein A, Lehoux S. B cell-specific knockout of AID protects against atherosclerosis. Sci Rep 2023; 13:8723. [PMID: 37253865 DOI: 10.1038/s41598-023-35980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
Antigen-naive IgM-producing B cells are atheroprotective, whereas mature B cells producing class-switched antibodies promote atherosclerosis. Activation-induced cytidine deaminase (AID), which mediates class switch recombination (CSR), would thus be expected to foster atherosclerosis. Yet, AID also plays a major role in the establishment of B cell tolerance. We sought to define whether AID affects atherosclerotic plaque formation. We generated Ldlr-/- chimeras transplanted with bone marrow from Aicda-/- or wild-type (WT) mice, fed a HFD for 14 weeks. Decreased B cell maturation in Ldlr-/-Aicda-/- mice was demonstrated by 50% reduction in splenic and aortic BAFFR expression, a key signaling component of B2 cell maturation. This was associated with increased plasma IgM in Ldlr-/-Aicda-/- compared with Ldlr-/-WT animals. Importantly, Ldlr-/-Aicda-/- mice had reduced atherosclerotic lesion area (0.20 ± 0.03mm2) compared with Ldlr-/-WT (0.30 ± 0.04mm2, P < 0.05), although no differences in plaque composition were noted between groups. In addition, immunofluorescence analysis revealed increased splenic B and T cell areas independent of cell number. AID depletion directly inhibits atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Talin Ebrahimian
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada.
| | - France Dierick
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | - Vincent Ta
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | - Maria Kotsiopriftis
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | | | - Koren K Mann
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| | - Stephanie Lehoux
- Lady Davis Institute for Medical Research, 3755, Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada.
| |
Collapse
|
8
|
Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y, Mao L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol 2023; 13:1079668. [PMID: 36685487 PMCID: PMC9849744 DOI: 10.3389/fimmu.2022.1079668] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease of the large and medium-sized artery walls. The molecular mechanisms regulating the onset and progression of atherosclerosis remain unclear. T cells, one of the most common immune cell types in atherosclerotic plaques, are increasingly recognized as a key mediator in the pathogenesis of atherosclerosis. Th1 cells are a subset of CD4+ T helper cells of the adaptive immune system, characterized by the expression of the transcription factor T-bet and secretion of cytokines such as IFN-γ. Converging evidence shows that Th1 cells play a key role in the onset and progression of atherosclerosis. Besides, Th1 is the central mediator to orchestrate the adaptive immune system. In this review, we aim to summarize the complex role of Th1 cells in atherosclerosis and propose novel preventative and therapeutic approaches targeting Th1 cell-associated specific cytokines and receptors to prevent atherogenesis.
Collapse
Affiliation(s)
| | | | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
9
|
Huang J, Tao H, Yancey PG, Leuthner Z, May-Zhang LS, Jung JY, Zhang Y, Ding L, Amarnath V, Liu D, Collins S, Davies SS, Linton MF. Scavenging dicarbonyls with 5'-O-pentyl-pyridoxamine increases HDL net cholesterol efflux capacity and attenuates atherosclerosis and insulin resistance. Mol Metab 2022; 67:101651. [PMID: 36481344 PMCID: PMC9792904 DOI: 10.1016/j.molmet.2022.101651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Oxidative stress contributes to the development of insulin resistance (IR) and atherosclerosis. Peroxidation of lipids produces reactive dicarbonyls such as Isolevuglandins (IsoLG) and malondialdehyde (MDA) that covalently bind plasma/cellular proteins, phospholipids, and DNA leading to altered function and toxicity. We examined whether scavenging reactive dicarbonyls with 5'-O-pentyl-pyridoxamine (PPM) protects against the development of IR and atherosclerosis in Ldlr-/- mice. METHODS Male or female Ldlr-/- mice were fed a western diet (WD) for 16 weeks and treated with PPM versus vehicle alone. Plaque extent, dicarbonyl-lysyl adducts, efferocytosis, apoptosis, macrophage inflammation, and necrotic area were measured. Plasma MDA-LDL adducts and the in vivo and in vitro effects of PPM on the ability of HDL to reduce macrophage cholesterol were measured. Blood Ly6Chi monocytes and ex vivo 5-ethynyl-2'-deoxyuridine (EdU) incorporation into bone marrow CD11b+ monocytes and CD34+ hematopoietic stem and progenitor cells (HSPC) were also examined. IR was examined by measuring fasting glucose/insulin levels and tolerance to insulin/glucose challenge. RESULTS PPM reduced the proximal aortic atherosclerosis by 48% and by 46% in female and male Ldlr-/- mice, respectively. PPM also decreased IR and hepatic fat and inflammation in male Ldlr-/- mice. Importantly, PPM decreased plasma MDA-LDL adducts and prevented the accumulation of plaque MDA- and IsoLG-lysyl adducts in Ldlr-/- mice. In addition, PPM increased the net cholesterol efflux capacity of HDL from Ldlr-/- mice and prevented both the in vitro impairment of HDL net cholesterol efflux capacity and apoAI crosslinking by MPO generated hypochlorous acid. Moreover, PPM decreased features of plaque instability including decreased proinflammatory M1-like macrophages, IL-1β expression, myeloperoxidase, apoptosis, and necrotic core. In contrast, PPM increased M2-like macrophages, Tregs, fibrous cap thickness, and efferocytosis. Furthermore, PPM reduced inflammatory monocytosis as evidenced by decreased blood Ly6Chi monocytes and proliferation of bone marrow monocytes and HSPC from Ldlr-/- mice. CONCLUSIONS PPM has pleotropic atheroprotective effects in a murine model of familial hypercholesterolemia, supporting the therapeutic potential of reactive dicarbonyl scavenging in the treatment of IR and atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Huan Tao
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Patricia G. Yancey
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zoe Leuthner
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Linda S. May-Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ju-Yang Jung
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Youmin Zhang
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lei Ding
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Venkataraman Amarnath
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dianxin Liu
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sheila Collins
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Sean S. Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - MacRae F. Linton
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Corresponding author. Department of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN, United States.
| |
Collapse
|
10
|
Taylor JA, Hutchinson MA, Gearhart PJ, Maul RW. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun Ageing 2022; 19:59. [PMID: 36461105 PMCID: PMC9717479 DOI: 10.1186/s12979-022-00316-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
The sequestering of oxidation-modified low-density lipoprotein by macrophages results in the accumulation of fatty deposits within the walls of arteries. Necrosis of these cells causes a release of intercellular epitopes and the activation of the adaptive immune system, which we predict leads to robust autoantibody production. T cells produce cytokines that act in the plaque environment and further stimulate B cell antibody production. B cells in atherosclerosis meanwhile have a mixed role based on subclass. The current model is that B-1 cells produce protective IgM antibodies in response to oxidation-specific epitopes that work to control plaque formation, while follicular B-2 cells produce class-switched antibodies (IgG, IgA, and IgE) which exacerbate the disease. Over the course of this review, we discuss further the validation of these protective antibodies while evaluating the current dogma regarding class-switched antibodies in atherosclerosis. There are several contradictory findings regarding the involvement of class-switched antibodies in the disease. We hypothesize that this is due to antigen-specificity, and not simply isotype, being important, and that a closer evaluation of these antibodies' targets should be conducted. We propose that specific antibodies may have therapeutical potential in preventing and controlling plaque development within a clinical setting.
Collapse
Affiliation(s)
- Joshua A. Taylor
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark A. Hutchinson
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Patricia J. Gearhart
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Robert W. Maul
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| |
Collapse
|
11
|
Chen HJC, Chen CY, Fang YH, Hung KW, Wu DC. Malondialdehyde-Induced Post-translational Modifications in Hemoglobin of Smokers by NanoLC-NSI/MS/MS Analysis. J Proteome Res 2022; 21:2947-2957. [PMID: 36375001 DOI: 10.1021/acs.jproteome.2c00442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malondialdehyde (MDA) is the most abundant α,β-unsaturated aldehyde generated from endogenous peroxidation of polyunsaturated fatty acids and is present in cigarette smoke. Post-translational modifications of blood hemoglobin can serve as biomarkers for exposure to chemicals. In this study, two types of MDA-induced modifications, the N-propenal and the dihydropyridine (DHP), were identified at multiple sites in human hemoglobin digest by the high-resolution mass spectrometry. The N-propenal and the DHP types of modification led to the increase of 54.0106 and 134.0368 amu, respectively, at the N-terminal and lysine residues. Among the 21 MDA-modified peptides, 14 with dose-response to MDA concentrations were simultaneously quantified in study subjects by the nanoflow liquid chromatography nanoelectrospray ionization tandem mass spectrometry under selected reaction monitoring (nanoLC-NSI-MS/MS-SRM) without prior enrichment. The results showed that the modifications of the N-propenal-type at α-Lys-11, α-Lys-16, α-Lys-61, β-Lys-8, and β-Lys-17, as well as the DHP-type at the α-N-terminal valine, are significantly higher in hemoglobin isolated from the blood of smokers than in nonsmoking individuals. This is the first report to identify and quantify multiple sites of MDA-induced modifications in human hemoglobin from peripheral blood. Our results suggest that the MDA-derived modifications on hemoglobin might represent valuable biomarkers for MDA-induced protein damage.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Chau-Yi Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Ya-Hsuan Fang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Kai-Wei Hung
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung80756, Taiwan.,Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung807, Taiwan
| |
Collapse
|
12
|
Alic L, Binder CJ, Papac-Milicevic N. The OSE complotype and its clinical potential. Front Immunol 2022; 13:1010893. [PMID: 36248824 PMCID: PMC9561429 DOI: 10.3389/fimmu.2022.1010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cellular death, aging, and tissue damage trigger inflammation that leads to enzymatic and non-enzymatic lipid peroxidation of polyunsaturated fatty acids present on cellular membranes and lipoproteins. This results in the generation of highly reactive degradation products, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), that covalently modify free amino groups of proteins and lipids in their vicinity. These newly generated neoepitopes represent a unique set of damage-associated molecular patterns (DAMPs) associated with oxidative stress termed oxidation-specific epitopes (OSEs). OSEs are enriched on oxidized lipoproteins, microvesicles, and dying cells, and can trigger sterile inflammation. Therefore, prompt recognition and removal of OSEs is required to maintain the homeostatic balance. This is partially achieved by various humoral components of the innate immune system, such as natural IgM antibodies, pentraxins and complement components that not only bind OSEs but in some cases modulate their pro-inflammatory potential. Natural IgM antibodies are potent complement activators, and 30% of them recognize OSEs such as oxidized phosphocholine (OxPC-), 4-HNE-, and MDA-epitopes. Furthermore, OxPC-epitopes can bind the complement-activating pentraxin C-reactive protein, while MDA-epitopes are bound by C1q, C3a, complement factor H (CFH), and complement factor H-related proteins 1, 3, 5 (FHR-1, FHR-3, FHR-5). In addition, CFH and FHR-3 are recruited to 2-(ω-carboxyethyl)pyrrole (CEP), and full-length CFH also possesses the ability to attenuate 4-HNE-induced oxidative stress. Consequently, alterations in the innate humoral defense against OSEs predispose to the development of diseases associated with oxidative stress, as shown for the prototypical OSE, MDA-epitopes. In this mini-review, we focus on the mechanisms of the accumulation of OSEs, the pathophysiological consequences, and the interactions between different OSEs and complement components. Additionally, we will discuss the clinical potential of genetic variants in OSE-recognizing complement proteins – the OSE complotype - in the risk estimation of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nikolina Papac-Milicevic,
| |
Collapse
|
13
|
Pattarabanjird T, Marshall M, Upadhye A, Srikakulapu P, Garmey J, Haider A, Taylor AM, Lutgens E, McNamara CA. B-1b Cells Possess Unique bHLH-Driven P62-Dependent Self-Renewal and Atheroprotection. Circ Res 2022; 130:981-993. [PMID: 35209718 PMCID: PMC9075598 DOI: 10.1161/circresaha.121.320436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers, leading to higher IgMOSE production and reduction in atherosclerotic plaque formation. Yet, the mechanism underlying this regulation remains unexplored. METHODS Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. RESULTS Through RNA sequencing, P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 and activating NF-κB (nuclear factor kappa B), leading to subsequent C-MYC upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSE levels and were protected against atherosclerosis. Consistent with murine mechanistic findings, P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing SNP (rs11574) in the ID3 gene and directly correlated with plasma IgMOSE levels. CONCLUSIONS This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSE production to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover, analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects, suggesting P62 as a new immunomodulatory target for treating atherosclerosis.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Melissa Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Aditi Upadhye
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - James Garmey
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Antony Haider
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Angela M. Taylor
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany; and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Correspondence: Corresponding Author, , Phone: 434-243-5854, Address: 345 Crispell Dr. Charlottesville, VA 22908
| |
Collapse
|
14
|
Promoting athero-protective immunity by vaccination with low density lipoprotein-derived antigens. Atherosclerosis 2021; 335:89-97. [PMID: 34462127 DOI: 10.1016/j.atherosclerosis.2021.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Immune responses activated by LDL particles that have been trapped and oxidized in the arterial wall play an important role in atherosclerosis. Some of these immune responses are protective by facilitating the removal of pro-inflammatory and toxic lipid species formed as result of LDL oxidation. However, should these protective immune responses be insufficient, other more potent pro-inflammatory immune responses instead contributing to disease progression will gradually become dominant. The importance of the balance between protective and pathogenic immunity is particularly apparent when it comes to the adaptive immune system where pro-inflammatory T helper 1 (Th1) type T cells aggravate atherosclerosis, while regulatory T cells (Tregs) have an opposing role. As oxidized LDL is a key autoantigen in atherosclerosis, it has become an interesting possibility that immune-modulatory therapy that favors the activity of apolipoprotein B peptide-specific Tregs could be developed into a novel treatment strategy for prevention/stabilization of atherosclerosis and ischemic cardiovascular events. Indeed, several such oxidized LDL tolerance vaccines have shown promising results in animal models of atherosclerosis. This review will discuss the experimental background for development of atherosclerosis vaccines based on LDL-derived antigens as well as the challenges involved in translating these findings into clinical application.
Collapse
|
15
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Pattarabanjird T, Li C, McNamara C. B Cells in Atherosclerosis: Mechanisms and Potential Clinical Applications. ACTA ACUST UNITED AC 2021; 6:546-563. [PMID: 34222726 PMCID: PMC8246059 DOI: 10.1016/j.jacbts.2021.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
B cells regulate atherosclerotic plaque formation through production of antibodies and cytokines, and effects are subset specific (B1 and B2). Putative human atheroprotective B1 cells function similarly to murine B1 in their spontaneous IgM antibody production. However, marker strategies in identifying human and murine B1 are different. IgM antibody to oxidation specific epitopes produced by B1 cells associate with human coronary artery disease. Neoantigen immunization may be a promising strategy for atherosclerosis vaccine development, but further study to determine relevant antigens still need to be done. B-cell–targeted therapies, used in treating autoimmune diseases as well as lymphoid cancers, might have potential applications in treating cardiovascular diseases. Short- and long-term cardiovascular effects of these agents need to be assessed.
Because atherosclerotic cardiovascular disease is a leading cause of death worldwide, understanding inflammatory processes underpinning its pathology is critical. B cells have been implicated as a key immune cell type in regulating atherosclerosis. B-cell effects, mediated by antibodies and cytokines, are subset specific. In this review, we focus on elaborating mechanisms underlying subtype-specific roles of B cells in atherosclerosis and discuss available human data implicating B cells in atherosclerosis. We further discuss potential B cell–linked therapeutic approaches, including immunization and B cell–targeted biologics. Given recent evidence strongly supporting a role for B cells in human atherosclerosis and the expansion of immunomodulatory agents that affect B-cell biology in clinical use and clinical trials for other disorders, it is important that the cardiovascular field be cognizant of potential beneficial or untoward effects of modulating B-cell activity on atherosclerosis.
Collapse
Key Words
- APRIL, A proliferation−inducing ligand
- ApoE, apolipoprotein E
- B-cell
- BAFF, B-cell–activating factor
- BAFFR, B-cell–activating factor receptor
- BCMA, B-cell maturation antigen
- BCR, B-cell receptor
- Breg, regulatory B cell
- CAD, coronary artery disease
- CTLA4, cytotoxic T-lymphocyte–associated protein 4
- CVD, cardiovascular disease
- CXCR4, C-X-C motif chemokine receptor 4
- GC, germinal center
- GITR, glucocorticoid-induced tumor necrosis factor receptor–related protein
- GITRL, glucocorticoid-induced tumor necrosis factor receptor–related protein ligand
- GM-CSF, granulocyte-macrophage colony–stimulating factor
- ICI, immune checkpoint inhibitor
- IFN, interferon
- IL, interleukin
- IVUS, intravascular ultrasound
- LDL, low-density lipoprotein
- LDLR, low-density lipoprotein receptor
- MDA-LDL, malondialdehyde-modified low-density lipoprotein
- MI, myocardial infarction
- OSE, oxidation-specific epitope
- OxLDL, oxidized low-density lipoprotein
- PC, phosphorylcholine
- PD-1, programmed cell death protein 1
- PD-L2, programmed death ligand 2
- PDL1, programmed death ligand 1
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- TACI, transmembrane activator and CAML interactor
- TNF, tumor necrosis factor
- Treg, regulatory T cell
- atherosclerosis
- immunoglobulins
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Cynthia Li
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Coleen McNamara
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Kyrklund M, Kaski H, Akhi R, Nissinen AE, Kummu O, Bergmann U, Pussinen P, Hörkkö S, Wang C. Existence of natural mouse IgG mAbs recognising epitopes shared by malondialdehyde acetaldehyde adducts and Porphyromonas gingivalis. Innate Immun 2021; 27:158-169. [PMID: 33445998 PMCID: PMC7882809 DOI: 10.1177/1753425920981133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Natural Abs are produced by B lymphocytes in the absence of external Ag stimulation. They recognise self, altered self and foreign Ags, comprising an important first-line defence against invading pathogens and serving as innate recognition receptors for tissue homeostasis. Natural IgG Abs have been found in newborns and uninfected individuals. Yet, their physiological role remains unclear. Previously, no natural IgG Abs to oxidation-specific epitopes have been reported. Here, we show the cloning and characterisation of mouse IgG mAbs against malondialdehyde acetaldehyde (MAA)-modified low-density lipoprotein. Sequence analysis reveals high homology with germline genes, suggesting that they are natural. Further investigation shows that the MAA-specific natural IgG Abs cross-react with the major periodontal pathogen Porphyromonas gingivalis and recognise its principle virulence factors gingipain Kgp and long fimbriae. The study provides evidence that natural IgGs may play an important role in innate immune defence and in regulation of tissue homeostasis by recognising and removing invading pathogens and/or modified self-Ags, thus being involved in the development of periodontitis and atherosclerosis.
Collapse
MESH Headings
- Acetaldehyde/chemistry
- Acetaldehyde/metabolism
- Animals
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Clone Cells
- Epitopes, B-Lymphocyte/metabolism
- Fimbriae Proteins/metabolism
- Gingipain Cysteine Endopeptidases/metabolism
- Immunity, Innate
- Immunoglobulin G/isolation & purification
- Immunoglobulin G/metabolism
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Malondialdehyde/chemistry
- Malondialdehyde/metabolism
- Mice
- Mice, Knockout
- Oxidation-Reduction
- Periodontitis/immunology
- Porphyromonas gingivalis/physiology
- Receptors, LDL/genetics
- Receptors, Pattern Recognition/isolation & purification
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Mikael Kyrklund
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Heidi Kaski
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Antti E Nissinen
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Outi Kummu
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Ulrich Bergmann
- Protein Analysis Core Facility, Biocentre Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Chunguang Wang
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Finland
- Chunguang Wang, Cardiovascular Research Unit, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, Helsinki 00290, Finland.
| |
Collapse
|
18
|
The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity. Antioxidants (Basel) 2020; 9:antiox9111132. [PMID: 33203089 PMCID: PMC7696601 DOI: 10.3390/antiox9111132] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
The nonenzymatic adduction of malondialdehyde (MDA) to the protein amino groups leads to the formation of malondialdehyde-lysine (MDALys). The degree of unsaturation of biological membranes and the intracellular oxidative conditions are the main factors that modulate MDALys formation. The low concentration of this modification in the different cellular components, found in a wide diversity of tissues and animal species, is indicative of the presence of a complex network of cellular protection mechanisms that avoid its cytotoxic effects. In this review, we will focus on the chemistry of this lipoxidation-derived protein modification, the specificity of MDALys formation in proteins, the methodology used for its detection and quantification, the MDA-lipoxidized proteome, the metabolism of MDA-modified proteins, and the detrimental effects of this protein modification. We also propose that MDALys is an indicator of the rate of aging based on findings which demonstrate that (i) MDALys accumulates in tissues with age, (ii) the lower the concentration of MDALys the greater the longevity of the animal species, and (iii) its concentration is attenuated by anti-aging nutritional and pharmacological interventions.
Collapse
|
19
|
Tian S, Nakamura J, Hiller S, Simington S, Holley DW, Mota R, Willis MS, Bultman SJ, Luft JC, DeSimone JM, Jia Z, Maeda N, Yi X. New insights into immunomodulation via overexpressing lipoic acid synthase as a therapeutic potential to reduce atherosclerosis. Vascul Pharmacol 2020; 133-134:106777. [PMID: 32750408 DOI: 10.1016/j.vph.2020.106777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 01/24/2023]
Abstract
Atherosclerosis is a systemic chronic inflammatory disease. Many antioxidants including alpha-lipoic acid (LA), a product of lipoic acid synthase (Lias), have proven to be effective for treatment of this disease. However, the question remains whether LA regulates the immune response as a protective mechanism against atherosclerosis. We initially investigated whether enhanced endogenous antioxidant can retard the development of atherosclerosis via immunomodulation. To explore the impact of enhanced endogenous antioxidant on the retardation of atherosclerosis via immune regulation, our laboratory has recently created a double mutant mouse model, using apolipoprotein E-deficient (Apoe-/-) mice crossbred with mice overexpressing lipoic acid synthase gene (LiasH/H), designated as LiasH/HApoe-/- mice. Their littermates, Lias+/+Apoe-/- mice, served as a control. Distinct redox environments between the two strains of mice have been established and they can be used to facilitate identification of antioxidant targets in the immune response. At 6 months of age, LiasH/HApoe-/- mice had profoundly decreased atherosclerotic lesion size in the aortic sinus compared to their Lias+/+Apoe-/- littermates, accompanied by significantly enhanced numbers of regulatory T cells (Tregs) and anti-oxidized LDL autoantibody in the vascular system, and reduced T cell infiltrates in aortic walls. Our results represent a novel exploration into an environment with increased endogenous antioxidant and its ability to alleviate atherosclerosis, likely through regulation of the immune response. These outcomes shed light on a new therapeutic strategy using antioxidants to lessen atherosclerosis.
Collapse
Affiliation(s)
- Shaomin Tian
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Japan
| | - Sylvia Hiller
- Department of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen Simington
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darcy W Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Roberto Mota
- Department of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Monte S Willis
- Indiana Center for Musculoskeletal Health, Department of Pathology & Laboratory Medicine, and Krannert Institute of Cardiology and Division of Cardiology, Department of Internal Medicine, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys MS 5067, Indianapolis, IN 46202, USA
| | - Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Christopher Luft
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph M DeSimone
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nobuyo Maeda
- Department of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xianwen Yi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Roy P, Ali AJ, Kobiyama K, Ghosheh Y, Ley K. Opportunities for an atherosclerosis vaccine: From mice to humans. Vaccine 2020; 38:4495-4506. [PMID: 31964554 PMCID: PMC7939143 DOI: 10.1016/j.vaccine.2019.12.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/14/2023]
Abstract
Atherosclerosis, the major underlying cause of cardiovascular diseases (CVD), is the number one killer globally. The disease pathogenesis involves a complex interplay between metabolic and immune components. Although lipid-lowering drugs such as statins curb the risks associated with CVD, significant residual inflammatory risk remains. Substantial evidence from experimental models and clinical studies has established the role of inflammation and immune effector mechanisms in the pathogenesis of atherosclerosis. Several stages of the disease are affected by host-mediated antigen-specific adaptive immune responses that play either protective or proatherogenic roles. Therefore, strategies to boost an anti-atherogenic humoral and T regulatory cell response are emerging as preventative or therapeutic strategies to lowering inflammatory residual risks. Vaccination holds promise as an efficient, durable and relatively inexpensive approach to induce protective adaptive immunity in atherosclerotic patients. In this review, we discuss the status and opportunities for a human atherosclerosis vaccine. We describe (1) some of the immunomodulatory therapeutic interventions tested in atherosclerosis (2) the immune targets identified in pre-clinical and clinical investigations (3) immunization strategies evaluated in animal models (4) past and ongoing clinical trials to examine the safety and efficacy of human atherosclerosis vaccines and (5) strategies to improve and optimize vaccination in humans (antigen selection, formulation, dose and delivery).
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA
| | - Amal J Ali
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA
| | - Kouji Kobiyama
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA; Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yanal Ghosheh
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA; Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, MC0412, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Abstract
Adaptive as well as innate immune responses contribute to the development of atherosclerosis. Studies performed in experimental animals have revealed that some of these immune responses are protective while others contribute to the progression of disease. These observations suggest that it may be possible to develop novel therapies for cardiovascular disease by selectively modulating such atheroprotective and proatherogenic immunity. Recent advances in cancer treatment using immune check inhibitors and CAR (chimeric antigen receptor) T-cell therapy serve as excellent examples of the possibilities of targeting the immune system to combat disease. LDL (low-density lipoprotein) that has accumulated in the artery wall is a key autoantigen in atherosclerosis, and activation of antigen-specific T helper 1–type T cells is thought to fuel plaque inflammation. Studies aiming to prove this concept by immunizing experimental animals with oxidized LDL particles unexpectedly resulted in activation of atheroprotective immunity involving regulatory T cells. This prompted several research groups to try to develop vaccines against atherosclerosis. In this review, we will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk. We will also summarize ongoing clinical studies and discuss the challenges associated with developing an effective and safe atherosclerosis vaccine.
Collapse
Affiliation(s)
- Jan Nilsson
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (J.N.)
| | - Göran K. Hansson
- Department of Medicine, Karolinska University Hospital Solna, Karolinska Institute, Sweden (G.K.H.)
| |
Collapse
|
22
|
Upadhye A, Srikakulapu P, Gonen A, Hendrikx S, Perry HM, Nguyen A, McSkimming C, Marshall MA, Garmey JC, Taylor AM, Bender TP, Tsimikas S, Holodick NE, Rothstein TL, Witztum JL, McNamara CA. Diversification and CXCR4-Dependent Establishment of the Bone Marrow B-1a Cell Pool Governs Atheroprotective IgM Production Linked to Human Coronary Atherosclerosis. Circ Res 2019; 125:e55-e70. [PMID: 31549940 DOI: 10.1161/circresaha.119.315786] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE B-1 cell-derived natural IgM antibodies against oxidation-specific epitopes on low-density lipoprotein are anti-inflammatory and atheroprotective. Bone marrow (BM) B-1a cells contribute abundantly to IgM production, yet the unique repertoire of IgM antibodies generated by BM B-1a and the factors maintaining the BM B-1a population remain unexplored. CXCR4 (C-X-C motif chemokine receptor 4) has been implicated in human cardiovascular disease and B-cell homeostasis, yet the role of B-1 cell CXCR4 in regulating atheroprotective IgM levels and human cardiovascular disease is unknown. OBJECTIVE To characterize the BM B-1a IgM repertoire and to determine whether CXCR4 regulates B-1 production of atheroprotective IgM in mice and humans. METHODS AND RESULTS Single-cell sequencing demonstrated that BM B-1a cells from aged ApoE-/- mice with established atherosclerosis express a unique repertoire of IgM antibodies containing increased nontemplate-encoded nucleotide additions and a greater frequency of unique heavy chain complementarity determining region 3 sequences compared with peritoneal cavity B-1a cells. Some complementarity determining region 3 sequences were common to both compartments suggesting B-1a migration between compartments. Indeed, mature peritoneal cavity B-1a cells migrated to BM in a CXCR4-dependent manner. Furthermore, BM IgM production and plasma IgM levels were reduced in ApoE-/- mice with B-cell-specific knockout of CXCR4, and overexpression of CXCR4 on B-1a cells increased BM localization and plasma IgM against oxidation specific epitopes, including IgM specific for malondialdehyde-modified LDL (low-density lipoprotein). Finally, in a 50-subject human cohort, we find that CXCR4 expression on circulating human B-1 cells positively associates with plasma levels of IgM antibodies specific for malondialdehyde-modified LDL and inversely associates with human coronary artery plaque burden and necrosis. CONCLUSIONS These data provide the first report of a unique BM B-1a cell IgM repertoire and identifies CXCR4 expression as a critical factor selectively governing BM B-1a localization and production of IgM against oxidation specific epitopes. That CXCR4 expression on human B-1 cells was greater in humans with low coronary artery plaque burden suggests a potential targeted approach for immune modulation to limit atherosclerosis.
Collapse
Affiliation(s)
- Aditi Upadhye
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Department of Microbiology, Immunology, Cancer Biology (A.U., T.P.B.), University of Virginia, Charlottesville
| | - Prasad Srikakulapu
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Ayelet Gonen
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Sabrina Hendrikx
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Heather M Perry
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Anh Nguyen
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Chantel McSkimming
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Melissa A Marshall
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - James C Garmey
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Angela M Taylor
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Department of Medicine (A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Timothy P Bender
- Department of Microbiology, Immunology, Cancer Biology (A.U., T.P.B.), University of Virginia, Charlottesville.,Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville
| | - Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Nichol E Holodick
- Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo MI (N.E.H., T.L.R.)
| | - Thomas L Rothstein
- Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo MI (N.E.H., T.L.R.)
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Coleen A McNamara
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville.,Department of Medicine (A.M.T., C.A.M.), University of Virginia, Charlottesville
| |
Collapse
|
23
|
Narayanan P, Shen L, Curtis BR, Bourdon MA, Nolan JP, Gupta S, Hoffmaster C, Zhou F, Christian B, Schaubhut JL, Greenlee S, Burel SA, Witztum JL, Engelhardt JA, Henry SP. Investigation into the Mechanism(s) That Leads to Platelet Decreases in Cynomolgus Monkeys During Administration of ISIS 104838, a 2'-MOE-Modified Antisense Oligonucleotide. Toxicol Sci 2019; 164:613-626. [PMID: 29846725 DOI: 10.1093/toxsci/kfy119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ISIS 104838, a 2'-O-methoxyethyl (2'-MOE)-modified antisense oligonucleotide (ASO), causes a moderate, reproducible, dose-dependent, but selflimiting decrease in platelet (PLT) counts in monkeys and humans. To determine the etiology of PLT decrease in cynomolgus monkeys, a 12-week repeat dose toxicology study in 5 cynomolgus monkeys given subcutaneous injections of ISIS 104838 (30-60 mg/kg/week). Monkeys were also injected intravenously with 111Indium(In)-oxine-labeled PLTs to investigate PLT sequestration. In response to continued dosing, PLT counts were decreased by 50%-90% by day 30 in all monkeys. PLT decreases were accompanied by 2- to 4.5-fold increases in immunoglobulin M(IgM), which were typified by a 2- to 5-fold increase in antiplatelet factor 4 (antiPF4) IgM and antiPLT IgM, respectively. Monocyte chemotactic protein 1 increased upon dosing of ISIS 104838, concomitant with a 2- to 6-fold increase in monocyte-derived extracellular vesicles (EVs), indicating monocyte activation but not PLT activation. Despite a 2- to 3-fold increase in von Willebrand factor antigen in all monkeys following ASO administration, only 2 monkeys showed a 2- to 4-fold increase in endothelial EVs. Additionally, a ∼60 - 80%% increase in PLT sequestration in liver and spleen was also observed. Collectively, these results suggest the overall increase in total IgM, antiPLT IgM and/or antiPF4 IgM, in concert with monocyte activation contributed to increased PLT sequestration in spleen and liver, leading to decreased PLTs in peripheral blood.
Collapse
Affiliation(s)
| | - Lijiang Shen
- Nonclinical Development, Ionis Pharmaceuticals Inc, Carlsbad, California, 92010
| | - Brian R Curtis
- Blood Research Institute Blood Center Wisconsin, Milwaukee, Wisconsin 53236
| | | | - John P Nolan
- Cellarcus Technologies, La Jolla, California 92037
| | - Shipra Gupta
- Shin Nippon Biomedical Laboratories (SNBL), Everett, Washington
| | | | - Fangli Zhou
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093
| | | | | | - Sarah Greenlee
- Nonclinical Development, Ionis Pharmaceuticals Inc, Carlsbad, California, 92010
| | - Sebastien A Burel
- Nonclinical Development, Ionis Pharmaceuticals Inc, Carlsbad, California, 92010
| | - Joe L Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093
| | | | - Scott P Henry
- Nonclinical Development, Ionis Pharmaceuticals Inc, Carlsbad, California, 92010
| |
Collapse
|
24
|
PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a Human Antibody Detects Clinically Relevant Atherothrombosis. J Am Coll Cardiol 2019; 71:321-335. [PMID: 29348025 DOI: 10.1016/j.jacc.2017.11.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidation-specific epitopes (OSEs) are proinflammatory, and elevated levels in plasma predict cardiovascular events. OBJECTIVES The purpose of this study was to develop novel positron emission tomography (PET) probes to noninvasively image OSE-rich lesions. METHODS An antigen-binding fragment (Fab) antibody library was constructed from human fetal cord blood. After multiple rounds of screening against malondialdehyde-acetaldehyde (MAA) epitopes, the Fab LA25 containing minimal nontemplated insertions in the CDR3 region was identified and characterized. In mice, pharmacokinetics, biodistribution, and plaque specificity studies were performed with Zirconium-89 (89Zr)-labeled LA25. In rabbits, 89Zr-LA25 was used in combination with an integrated clinical PET/magnetic resonance (MR) system. 18F-fluorodeoxyglucose PET and dynamic contrast-enhanced MR imaging were used to evaluate vessel wall inflammation and plaque neovascularization, respectively. Extensive ex vivo validation was carried out through a combination of gamma counting, near infrared fluorescence, autoradiography, immunohistochemistry, and immunofluorescence. RESULTS LA25 bound specifically to MAA epitopes in advanced and ruptured human atherosclerotic plaques with accompanying thrombi and in debris from distal protection devices. PET/MR imaging 24 h after injection of 89Zr-LA25 showed increased uptake in the abdominal aorta of atherosclerotic rabbits compared with nonatherosclerotic control rabbits, confirmed by ex vivo gamma counting and autoradiography. 18F-fluorodeoxyglucose PET, dynamic contrast-enhanced MR imaging, and near-infrared fluorescence signals were also significantly higher in atherosclerotic rabbit aortas compared with control aortas. Enhanced liver uptake was also noted in atherosclerotic animals, confirmed by the presence of MAA epitopes by immunostaining. CONCLUSIONS 89Zr-LA25 is a novel PET radiotracer that may allow noninvasive phenotyping of high-risk OSE-rich lesions.
Collapse
|
25
|
Gęgotek A, Skrzydlewska E. Biological effect of protein modifications by lipid peroxidation products. Chem Phys Lipids 2019; 221:46-52. [DOI: 10.1016/j.chemphyslip.2019.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 03/24/2019] [Indexed: 01/26/2023]
|
26
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
27
|
Gonen A, Choi SH, Miu P, Agatisa-Boyle C, Acks D, Taylor AM, McNamara CA, Tsimikas S, Witztum JL, Miller YI. A monoclonal antibody to assess oxidized cholesteryl esters associated with apoAI and apoB-100 lipoproteins in human plasma. J Lipid Res 2018; 60:436-445. [PMID: 30563909 PMCID: PMC6358287 DOI: 10.1194/jlr.d090852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/15/2018] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is associated with increased lipid peroxidation, leading to generation of multiple oxidation-specific epitopes (OSEs), contributing to the pathogenesis of atherosclerosis and its clinical manifestation. Oxidized cholesteryl esters (OxCEs) are a major class of OSEs found in human plasma and atherosclerotic tissue. To evaluate OxCEs as a candidate biomarker, we generated a novel mouse monoclonal Ab (mAb) specific to an OxCE modification of proteins. The mAb AG23 (IgG1) was raised in C57BL6 mice immunized with OxCE-modified keyhole limpet hemocyanin, and hybridomas were screened against OxCE-modified BSA. This method ensures mAb specificity to the OxCE modification, independent of a carrier protein. AG23 specifically stained human carotid artery atherosclerotic lesions. An ELISA method, with AG23 as a capture and either anti-apoAI or anti-apoB-100 as the detection Abs, was developed to assay apoAI and apoB-100 lipoproteins that have one or more OxCE epitopes. OxCE-apoA or OxCE-apoB did not correlate with the well-established oxidized phospholipid-apoB biomarker. In a cohort of subjects treated with atorvastatin, OxCE-apoA was significantly lower than in the placebo group, independent of the apoAI levels. These results suggest the potential diagnostic utility of a new biomarker assay to measure OxCE-modified lipoproteins in patients with CVD.
Collapse
Affiliation(s)
- Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Phuong Miu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Acks
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Angela M Taylor
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Coleen A McNamara
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Joseph L Witztum
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
28
|
Afonso CB, Spickett CM. Lipoproteins as targets and markers of lipoxidation. Redox Biol 2018; 23:101066. [PMID: 30579928 PMCID: PMC6859580 DOI: 10.1016/j.redox.2018.101066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
Lipoproteins are essential systemic lipid transport particles, composed of apolipoproteins embedded in a phospholipid and cholesterol monolayer surrounding a cargo of diverse lipid species. Many of the lipids present are susceptible to oxidative damage by lipid peroxidation, giving rise to the formation of reactive lipid peroxidation products (rLPPs). In view of the close proximity of the protein and lipid moieties within lipoproteins, the probability of adduct formation between rLPPs and amino acid residues of the proteins, a process called lipoxidation, is high. There has been interest for many years in the biological effects of such modifications, but the field has been limited to some extent by the availability of methods to determine the sites and exact nature of such modification. More recently, the availability of a wide range of antibodies to lipoxidation products, as well as advances in analytical techniques such as liquid chromatography tandem mass spectrometry (LC-MSMS), have increased our knowledge substantially. While most work has focused on LDL, oxidation of which has long been associated with pro-inflammatory responses and atherosclerosis, some studies on HDL, VLDL and Lipoprotein(a) have also been reported. As the broader topic of LDL oxidation has been reviewed previously, this review focuses on lipoxidative modifications of lipoproteins, from the historical background through to recent advances in the field. We consider the main methods of analysis for detecting rLPP adducts on apolipoproteins, including their advantages and disadvantages, as well as the biological effects of lipoxidized lipoproteins and their potential roles in diseases. Lipoproteins can be modified by reactive Lipid Peroxidation Products (rLPPs). Lipoprotein lipoxidation is known to occur in several inflammatory diseases. Biochemical, immunochemical and mass spectrometry methods can detect rLPP adducts. Due to higher information output, MS can facilitate localization of modifications. Antibodies against some rLPPs have been used to identify lipoxidation in vivo.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
29
|
|
30
|
Ambrogini E, Que X, Wang S, Yamaguchi F, Weinstein RS, Tsimikas S, Manolagas SC, Witztum JL, Jilka RL. Oxidation-specific epitopes restrain bone formation. Nat Commun 2018; 9:2193. [PMID: 29875355 PMCID: PMC5990540 DOI: 10.1038/s41467-018-04047-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis and osteoporosis are epidemiologically linked and oxidation specific epitopes (OSEs), such as phosphocholine (PC) of oxidized phospholipids (PC-OxPL) and malondialdehyde (MDA), are pathogenic in both. The proatherogenic effects of OSEs are opposed by innate immune antibodies. Here we show that high-fat diet (HFD)-induced bone loss is attenuated in mice expressing a single chain variable region fragment of the IgM E06 (E06-scFv) that neutralizes PC-OxPL, by increasing osteoblast number and stimulating bone formation. Similarly, HFD-induced bone loss is attenuated in mice expressing IK17-scFv, which neutralizes MDA. Notably, E06-scFv also increases bone mass in mice fed a normal diet. Moreover, the levels of anti-PC IgM decrease in aged mice. We conclude that OSEs, whether produced chronically or increased by HFD, restrain bone formation, and that diminished defense against OSEs may contribute to age-related bone loss. Anti-OSEs, therefore, may represent a novel therapeutic approach against osteoporosis and atherosclerosis simultaneously.
Collapse
Affiliation(s)
- Elena Ambrogini
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, 4301W. Markham, Little Rock, AR, 72205, USA.
| | - Xuchu Que
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093-0682, USA
| | - Shuling Wang
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093-0682, USA
| | - Fumihiro Yamaguchi
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093-0682, USA
| | - Robert S Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, 4301W. Markham, Little Rock, AR, 72205, USA
| | - Sotirios Tsimikas
- Department of Medicine, Cardiololgy, University of California San Diego, 9500 GilmanDrive, La Jolla, CA, 92093-0682, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, 4301W. Markham, Little Rock, AR, 72205, USA
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093-0682, USA
| | - Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, 4301W. Markham, Little Rock, AR, 72205, USA
| |
Collapse
|
31
|
Que X, Hung MY, Yeang C, Gonen A, Prohaska TA, Sun X, Diehl C, Määttä A, Gaddis DE, Bowden K, Pattison J, MacDonald JG, Ylä-Herttuala S, Mellon PL, Hedrick CC, Ley K, Miller YI, Glass CK, Peterson KL, Binder CJ, Tsimikas S, Witztum JL. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 2018; 558:301-306. [PMID: 29875409 PMCID: PMC6033669 DOI: 10.1038/s41586-018-0198-8] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022]
Abstract
Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.
Collapse
Affiliation(s)
- Xuchu Que
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ming-Yow Hung
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Calvin Yeang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Thomas A Prohaska
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoli Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Cody Diehl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Brigham Young University Idaho, Rexburg, ID, USA
| | - Antti Määttä
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Dalia E Gaddis
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Karen Bowden
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Pattison
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Pamela L Mellon
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christopher K Glass
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kirk L Peterson
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph L Witztum
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Sanjadi M, Rezvanie Sichanie Z, Totonchi H, Karami J, Rezaei R, Aslani S. Atherosclerosis and autoimmunity: a growing relationship. Int J Rheum Dis 2018; 21:908-921. [PMID: 29671956 DOI: 10.1111/1756-185x.13309] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Atherosclerosis is regarded as one of the leading causes of mortality and morbidity in the world. Nowadays, it seems that atherosclerosis cannot be defined merely through the Framingham traditional risk factors and that autoimmunity settings exert a remarkable role in its mechanobiology. Individuals with autoimmune disorders show enhanced occurrence of cardiovascular complications and subclinical atherosclerosis. The mechanisms underlying the atherosclerosis in disorders like rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid syndrome, systemic sclerosis and Sjögren's syndrome, seem to be the classical risk factors. However, chronic inflammatory processes and abnormal immune function may also be involved in atherosclerosis development. Autoantigens, autoantibodies, infectious agents and pro-inflammatory mediators exert a role in that process. Being armed with the mechanisms underlying autoimmunity in the etiopathogenesis of atherosclerosis in rheumatic autoimmune disorders and the shared etiologic pathway may result in substantial developing therapeutics for these patients.
Collapse
Affiliation(s)
- Maryam Sanjadi
- Department of Biochemistry, Islamic Azad University, Falavarjan Branch, Tehran, Iran
| | | | - Hamidreza Totonchi
- Department of Biochemistry, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Mahendra AI, Fajar JK, Harapan H, Heriansyah T, Prawiro SR, Widjajanto E, Rohman MS, Mintaroem K, Pikir BS, Prashar Y. Porphyromonas gingivalis vesicles reduce MDA-LDL levels and aortic wall thickness in high fat diet induced atherosclerosis rats. Artery Res 2018. [DOI: 10.1016/j.artres.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
34
|
Wang C, Kankaanpää J, Kummu O, Turunen SP, Akhi R, Bergmann U, Pussinen P, Remes AM, Hörkkö S. Characterization of a natural mouse monoclonal antibody recognizing epitopes shared by oxidized low-density lipoprotein and chaperonin 60 of Aggregatibacter actinomycetemcomitans. Immunol Res 2017; 64:699-710. [PMID: 26786003 DOI: 10.1007/s12026-015-8781-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural antibodies are predominantly antibodies of the IgM isotype present in the circulation of all vertebrates that have not been previously exposed to exogenous antigens. They are often directed against highly conserved epitopes and bind to ligands of varying chemical composition with low affinity. In this study we cloned and characterized a natural mouse monoclonal IgM antibody selected by binding to malondialdehyde acetaldehyde epitopes on low-density lipoprotein (LDL). Interestingly, the IgM antibody cross-reacted with Aggregatibacter actinomycetemcomitans (Aa) bacteria, a key pathogenic microbe in periodontitis reported to be associated with risk factor for atherosclerosis, thus being named as Aa_Mab. It is more intriguing that the binding molecule of Aa to Aa_Mab IgM was found to be Aa chaperonin 60 or HSP60, a member of heat-shock protein family, behaving not only as a chaperone for correct protein folding but also as a powerful virulence factor of the bacteria for inducing bone resorption and as a putative pathogenic factor in atherosclerosis. The findings will highlight the question of whether molecular mimicry between pathogen components and oxidized LDL could lead to atheroprotective immune activity, and also would be of great importance in potential application of immune response-based preventive and therapeutic strategies against atherosclerosis and periodontal disease.
Collapse
Affiliation(s)
- Chunguang Wang
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.
| | - Jari Kankaanpää
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Outi Kummu
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| | - S Pauliina Turunen
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Genome-scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland
| | - Ulrich Bergmann
- Protein Analysis Core Facility, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne M Remes
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
35
|
Evidence that endogenous formaldehyde produces immunogenic and atherogenic adduct epitopes. Sci Rep 2017; 7:10787. [PMID: 28883613 PMCID: PMC5589919 DOI: 10.1038/s41598-017-11289-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 01/21/2023] Open
Abstract
Endogenous formaldehyde is abundantly present in our bodies, at around 100 µM under normal conditions. While such high steady state levels of formaldehyde may be derived by enzymatic reactions including oxidative demethylation/deamination and myeloperoxidation, it is unclear whether endogenous formaldehyde can initiate and/or promote diseases in humans. Here, we show that fluorescent malondialdehyde-formaldehyde (M2FA)-lysine adducts are immunogenic without adjuvants in mice. Natural antibody titers against M2FA are elevated in atherosclerosis-prone mice. Staining with an antibody against M2FA demonstrated that M2FA is present in plaque found on the aortic valve of ApoE−/− mice. To mimic inflammation during atherogenesis, human myeloperoxidase was incubated with glycine, H2O2, malondialdehyde, and a lysine analog in PBS at a physiological temperature, which resulted in M2FA generation. These results strongly suggest that the 1,4-dihydropyridine-type of lysine adducts observed in atherosclerosis lesions are likely produced by endogenous formaldehyde and malondialdehyde with lysine. These highly fluorescent M2FA adducts may play important roles in human inflammatory and degenerative diseases.
Collapse
|
36
|
Sage AP, Nus M, Bagchi Chakraborty J, Tsiantoulas D, Newland SA, Finigan AJ, Masters L, Binder CJ, Mallat Z. X-Box Binding Protein-1 Dependent Plasma Cell Responses Limit the Development of Atherosclerosis. Circ Res 2017; 121:270-281. [DOI: 10.1161/circresaha.117.310884] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Rationale:
Diverse B cell responses and functions may be involved in atherosclerosis. Protective antibody responses, such as those against oxidized lipid epitopes, are thought to mainly derive from T cell-independent innate B cell subsets. In contrast, both pathogenic and protective roles have been associated with T cell-dependent antibodies, and their importance in both humans and mouse models is still unclear.
Objective:
To specifically target antibody production by plasma cells and determine the impact on atherosclerotic plaque development in mice with and without CD4+ T cells.
Methods and Results:
We combined a model of specific antibody deficiency, B cell-specific CD79a-
Cre
x XBP1 (X-box binding protein-1) floxed mice (XBP1-conditional knockout), with antibody-mediated depletion of CD4+ T cells. Ldlr knockout mice transplanted with XBP1-conditional knockout (or wild-type control littermate) bone marrow were fed western diet for 8 weeks with or without anti-CD4 depletion. All groups had similar levels of serum cholesterol. In Ldlr/XBP1-conditional knockout mice, serum levels of IgG, IgE, and IgM were significantly attenuated, and local antibody deposition in atherosclerotic plaque was absent. Antibody deficiency significantly accelerated atherosclerosis at both the aortic root and aortic arch. T cell and monocyte responses were not modulated, but necrotic core size was greater, even when adjusting for plaque size, and collagen deposition significantly lower. Anti-CD4 depletion in Ldlr/wild-type mice led to a decrease of serum IgG1 and IgG2c but not IgG3, as well as decreased IgM, associated with increased atherosclerosis and necrotic cores, and a decrease in plaque collagen. The combination of antibody deficiency and anti-CD4 depletion has no additive effects on aortic root atherosclerosis.
Conclusions:
The endogenous T cell-dependent humoral response can be protective. This has important implications for novel vaccine strategies for atherosclerosis and in understanding the impacts of immunotherapies used in patients at high risk for cardiovascular disease.
Collapse
Affiliation(s)
- Andrew P. Sage
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| | - Meritxell Nus
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| | - Jayashree Bagchi Chakraborty
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| | - Dimitrios Tsiantoulas
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| | - Stephen A. Newland
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| | - Alison J. Finigan
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| | - Leanne Masters
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| | - Christoph J. Binder
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (A.P.S., M.N., J.B.C., S.A.N., A.J.F., L.M., Z.M.); Department of Laboratory Medicine, (D.T., C.J.B.); Medical University of Vienna, Austria (D.T., C.J.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (D.T., C.J.B.); INSERM U970, Paris Cardiovascular Research Center, France (Z.M.); and Université Paris Descartes, Sorbonne Paris Cité, France (Z.M.)
| |
Collapse
|
37
|
Busch CJL, Hendrikx T, Weismann D, Jäckel S, Walenbergh SMA, Rendeiro AF, Weißer J, Puhm F, Hladik A, Göderle L, Papac-Milicevic N, Haas G, Millischer V, Subramaniam S, Knapp S, Bennett KL, Bock C, Reinhardt C, Shiri-Sverdlov R, Binder CJ. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology 2017; 65:1181-1195. [PMID: 27981604 PMCID: PMC5892702 DOI: 10.1002/hep.28970] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/31/2016] [Accepted: 11/26/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Diet-related health issues such as nonalcoholic fatty liver disease and cardiovascular disorders are known to have a major inflammatory component. However, the exact pathways linking diet-induced changes (e.g., hyperlipidemia) and the ensuing inflammation have remained elusive so far. We identified biological processes related to innate immunity and oxidative stress as prime response pathways in livers of low-density lipoprotein receptor-deficient mice on a Western-type diet using RNA sequencing and in silico functional analyses of transcriptome data. The observed changes were independent of the presence of microbiota and thus indicative of a role for sterile triggers. We further show that malondialdehyde (MDA) epitopes, products of lipid peroxidation and markers for enhanced oxidative stress, are detectable in hepatic inflammation predominantly on dying cells and stimulate cytokine secretion as well as leukocyte recruitment in vitro and in vivo. MDA-induced cytokine secretion in vitro was dependent on the presence of the scavenger receptors CD36 and MSR1. Moreover, in vivo neutralization of endogenously generated MDA epitopes by intravenous injection of a specific MDA antibody results in decreased hepatic inflammation in low-density lipoprotein receptor-deficient mice on a Western-type diet. CONCLUSION Accumulation of MDA epitopes plays a major role during diet-induced hepatic inflammation and can be ameliorated by administration of an anti-MDA antibody. (Hepatology 2017;65:1181-1195).
Collapse
Affiliation(s)
- Clara Jana-Lui Busch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - David Weismann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sven Jäckel
- Center for Thrombosis and Haemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Mainz, Germany
| | - Sofie M. A. Walenbergh
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Juliane Weißer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Puhm
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Laboratory of Infection Biology, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Laura Göderle
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gerald Haas
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vincent Millischer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Saravanan Subramaniam
- Center for Thrombosis and Haemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Laboratory of Infection Biology, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Haemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Mainz, Germany
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
38
|
Capoulade R, Chan KL, Mathieu P, Bossé Y, Dumesnil JG, Tam JW, Teo KK, Yang X, Witztum JL, Arsenault BJ, Després JP, Pibarot P, Tsimikas S. Autoantibodies and immune complexes to oxidation-specific epitopes and progression of aortic stenosis: Results from the ASTRONOMER trial. Atherosclerosis 2017; 260:1-7. [PMID: 28319871 DOI: 10.1016/j.atherosclerosis.2017.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/11/2017] [Accepted: 03/08/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Elevated levels of lipoprotein(a) [Lp(a)] and oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB) predict the progression of pre-existing mild-to-moderate calcific aortic valve stenosis (CAVS). Whether indirect markers of oxidation-specific epitopes (OSE) are also predictive is not known. The association between IgG and IgM autoantibodies and malondialdehyde-modified low density lipoprotein (MDA-LDL) and IgG and IgM apolipoprotein B immune complexes (apoB-IC), and the hemodynamic progression rate of CAVS was determined in the ASTRONOMER (Aortic Stenosis Progression Observation: Measuring Effects of Rosuvastatin, NCT00800800) trial. METHODS Plasma levels of IgG and IgM MDA-LDL and apoB-IC were measured in 220 patients with mild-to-moderate CAVS from the ASTRONOMER trial. The endpoint of this study was the progression rate of CAVS, measured by the annualized increase in peak aortic jet velocity (Vpeak) over a median follow-up of 3.5 [2.9-4.5] years. RESULTS There was no difference in the progression rate of CAVS across tertiles of IgG and IgM MDA-LDL and apoB-IC levels (all p > 0.05). After multivariable analysis, no marker reached significance level to predict faster CAVS progression or need for aortic valve replacement (all p > 0.05). There was no interaction between the OSE antibody titers and plasma levels of Lp(a) or OxPL-apoB, as well as age, with regards to the progression rate of CAVS. CONCLUSIONS Autoantibody titers to MDA-LDL and apoB-IC, which are an indirect measurement of OSE, unlike direct measurements of OxPL-apoB or their major lipoprotein carrier Lp(a), do not predict the progression of CAVS or need for AVR.
Collapse
Affiliation(s)
- Romain Capoulade
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart & Lung Institute, Laval University, Québec City, Québec, Canada
| | - Kwan L Chan
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Patrick Mathieu
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart & Lung Institute, Laval University, Québec City, Québec, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart & Lung Institute, Laval University, Québec City, Québec, Canada
| | - Jean G Dumesnil
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart & Lung Institute, Laval University, Québec City, Québec, Canada
| | - James W Tam
- St. Boniface General Hospital, Winnipeg, Manitoba, Canada
| | - Koon K Teo
- McMaster University, Hamilton, Ontario, Canada
| | - Xiaohong Yang
- University of California San Diego, La Jolla, CA, USA
| | | | - Benoit J Arsenault
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart & Lung Institute, Laval University, Québec City, Québec, Canada
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart & Lung Institute, Laval University, Québec City, Québec, Canada
| | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart & Lung Institute, Laval University, Québec City, Québec, Canada.
| | | |
Collapse
|
39
|
Shimomoto T, Collins LB, Yi X, Holley DW, Zhang Z, Tian X, Uchida K, Wang C, Hörkkö S, Willis MS, Gold A, Bultman SJ, Nakamura J. A purified MAA-based ELISA is a useful tool for determining anti-MAA antibody titer with high sensitivity. PLoS One 2017; 12:e0172172. [PMID: 28222187 PMCID: PMC5319763 DOI: 10.1371/journal.pone.0172172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/31/2017] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis is widely accepted to be a chronic inflammatory disease, and the immunological response to the accumulation of LDL is believed to play a critical role in the development of this disease. 1,4-Dihydropyridine-type MAA-adducted LDL has been implicated in atherosclerosis. Here, we have demonstrated that pure MAA-modified residues can be chemically conjugated to large proteins without by-product contamination. Using this pure antigen, we established a purified MAA-ELISA, with which a marked increase in anti-MAA antibody titer was determined at a very early stage of atherosclerosis in 3-month ApoE-/- mice fed with a normal diet. Our methods of Nε-MAA-L-lysine purification and purified antigen-based ELISA will be easily applicable for biomarker-based detection of early stage atherosclerosis in patients, as well as for the development of an adduct-specific Liquid Chromatography/Mass Spectrometry-based quantification of physiological and pathological levels of MAA.
Collapse
Affiliation(s)
- Takasumi Shimomoto
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leonard B. Collins
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xianwen Yi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Darcy W. Holley
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xu Tian
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Koji Uchida
- School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chunguang Wang
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| | - Monte S. Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Avram Gold
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
40
|
Miller YI, Shyy JYJ. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends Endocrinol Metab 2017; 28:143-152. [PMID: 27931771 PMCID: PMC5253098 DOI: 10.1016/j.tem.2016.11.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 01/13/2023]
Abstract
Oxidized low-density lipoprotein (OxLDL), which contains hundreds of different oxidized lipid molecules, is a hallmark of hyperlipidemia and atherosclerosis. The same oxidized lipids found in OxLDL are also formed in apoptotic cells, and are present in tissues as well as in the circulation under pathological conditions. In many disease contexts, oxidized lipids constitute damage signals, or patterns, that activate pattern-recognition receptors (PRRs) and significantly contribute to inflammation. Here, we review recent discoveries and emerging trends in the field of oxidized lipids and the regulation of inflammation, focusing on oxidation products of polyunsaturated fatty acids esterified into cholesteryl esters (CEs) and phospholipids (PLs). We also highlight context-dependent activation and biased agonism of Toll-like receptor-4 (TLR4) and the NLRP3 inflammasome, among other signaling pathways activated by oxidized lipids.
Collapse
Affiliation(s)
- Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
41
|
van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, Nieuwdorp M, Joosten LAB, Netea MG, Koschinsky ML, Witztum JL, Tsimikas S, Riksen NP, Stroes ESG. Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation 2016; 134:611-24. [PMID: 27496857 DOI: 10.1161/circulationaha.116.020838] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/22/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Elevated lipoprotein(a) [Lp(a)] is a prevalent, independent cardiovascular risk factor, but the underlying mechanisms responsible for its pathogenicity are poorly defined. Because Lp(a) is the prominent carrier of proinflammatory oxidized phospholipids (OxPLs), part of its atherothrombosis might be mediated through this pathway. METHODS In vivo imaging techniques including magnetic resonance imaging, (18)F-fluorodeoxyglucose uptake positron emission tomography/computed tomography and single-photon emission computed tomography/computed tomography were used to measure subsequently atherosclerotic burden, arterial wall inflammation, and monocyte trafficking to the arterial wall. Ex vivo analysis of monocytes was performed with fluorescence-activated cell sorter analysis, inflammatory stimulation assays, and transendothelial migration assays. In vitro studies of the pathophysiology of Lp(a) on monocytes were performed with an in vitro model for trained immunity. RESULTS We show that subjects with elevated Lp(a) (108 mg/dL [50-195 mg/dL]; n=30) have increased arterial inflammation and enhanced peripheral blood mononuclear cells trafficking to the arterial wall compared with subjects with normal Lp(a) (7 mg/dL [2-28 mg/dL]; n=30). In addition, monocytes isolated from subjects with elevated Lp(a) remain in a long-lasting primed state, as evidenced by an increased capacity to transmigrate and produce proinflammatory cytokines on stimulation (n=15). In vitro studies show that Lp(a) contains OxPL and augments the proinflammatory response in monocytes derived from healthy control subjects (n=6). This effect was markedly attenuated by inactivating OxPL on Lp(a) or removing OxPL on apolipoprotein(a). CONCLUSIONS These findings demonstrate that Lp(a) induces monocyte trafficking to the arterial wall and mediates proinflammatory responses through its OxPL content. These findings provide a novel mechanism by which Lp(a) mediates cardiovascular disease. CLINICAL TRIAL REGISTRATION URL: http://www.trialregister.nl. Unique identifier: NTR5006 (VIPER Study).
Collapse
Affiliation(s)
- Fleur M van der Valk
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Siroon Bekkering
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Jeffrey Kroon
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Calvin Yeang
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Jan Van den Bossche
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Jaap D van Buul
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Amir Ravandi
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Aart J Nederveen
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Hein J Verberne
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Corey Scipione
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Max Nieuwdorp
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Leo A B Joosten
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Mihai G Netea
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Marlys L Koschinsky
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Joseph L Witztum
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Sotirios Tsimikas
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Niels P Riksen
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.)
| | - Erik S G Stroes
- From Department of Vascular Medicine (F.M.V.d.V., M.N., E.S.G.S.), Department of Molecular Cell Biology, Sanquin Research (J.K., J.D.v.B.), Experimental Vascular Biology, (J.v.d.B.), Department of Radiology (A.J.N.), and Department of Nuclear Medicine (H.J.V.), Academic Medical Center, Amsterdam, the Netherlands; Departments of Internal Medicine (S.B., L.A.B.J., M.G.N., N.P.R.) and Pharmacology-Toxicology (N.P.R.), Radboud UMC, Nijmegen, the Netherlands; Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine (C.Y., S.T.) and Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University California, San Diego, La Jolla; St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Canada (A.R.); Department of Chemistry, Biochemistry and Pharmacology, University of Windsor, Windsor, Canada (C.S.); and Robarts Research Institute, Schulich School of Medicine, Western University, London, Canada (M.L.K.).
| |
Collapse
|
42
|
Busch CJ, Binder CJ. Malondialdehyde epitopes as mediators of sterile inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:398-406. [PMID: 27355566 DOI: 10.1016/j.bbalip.2016.06.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022]
Abstract
Enhanced lipid peroxidation occurs during oxidative stress and results in the generation of lipid peroxidation end products such as malondialdehyde (MDA), which can attach to autologous biomolecules, thereby generating neo-self epitopes capable of inducing potentially undesired biological responses. Therefore, the immune system has developed mechanisms to protect from MDA epitopes by binding and neutralizing them through both cellular and soluble effectors. Here, we briefly discuss innate immune responses targeting MDA epitopes and their pro-inflammatory properties, followed by a review of physiological carriers of MDA epitopes that are relevant in homeostasis and disease. Then we discuss in detail the evidence for cellular responses towards MDA epitopes mainly in lung, liver and the circulation as well as signal transduction mechanisms and receptors implicated in the response to MDA epitopes. Last, we hypothesize on the role of MDA epitopes as mediators of inflammation in diseases and speculate on their contribution to disease pathogenesis. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Clara J Busch
- Department of Laboratory Medicine, Medical University of Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
43
|
Papac-Milicevic N, Busch CJL, Binder CJ. Malondialdehyde Epitopes as Targets of Immunity and the Implications for Atherosclerosis. Adv Immunol 2016; 131:1-59. [PMID: 27235680 DOI: 10.1016/bs.ai.2016.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating evidence suggests that oxidation-specific epitopes (OSEs) constitute a novel class of damage-associated molecular patterns (DAMPs) generated during high oxidative stress but also in the physiological process of apoptosis. To deal with the potentially harmful consequences of such epitopes, the immune system has developed several mechanisms to protect from OSEs and to orchestrate their clearance, including IgM natural antibodies and both cellular- and membrane-bound receptors. Here, we focus on malondialdehyde (MDA) epitopes as prominent examples of OSEs that trigger both innate and adaptive immune responses. First, we review the mechanisms of MDA generation, the different types of adducts on various biomolecules and provide relevant examples for physiological carriers of MDA such as apoptotic cells, microvesicles, or oxidized low-density lipoproteins. Based on recent insights, we argue that MDA epitopes contribute to the maintenance of homeostatic functions by acting as markers of elevated oxidative stress and tissue damage. We discuss multiple lines of evidence that MDA epitopes are proinflammatory and thus important targets of innate and adaptive immune responses. Finally, we illustrate the relevance of MDA epitopes in human pathologies by describing their capacity to drive inflammatory processes in atherosclerosis and highlighting protective mechanisms of immunity that could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- N Papac-Milicevic
- Medical University of Vienna, Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - C J-L Busch
- Medical University of Vienna, Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - C J Binder
- Medical University of Vienna, Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
44
|
Choi SH, Gonen A, Diehl CJ, Kim J, Almazan F, Witztum JL, Miller YI. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL. Autophagy 2016; 11:785-95. [PMID: 25946330 DOI: 10.1080/15548627.2015.1037061] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.
Collapse
Key Words
- 3MA, 3-methyladenine
- APCs, antigen-presenting cells
- BCR, B cell receptor
- BMDM, bone marrow-derived macrophage
- Baf, bafilomycin A1
- DPI, diphenyleneiodonium
- FCGR, Fc fragment of IgG
- GFP, green fluorescent protein
- HFD, high-fat diet
- IL2, interleukin 2
- ITAM, immunoreceptor tyrosine-based activation motif
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LPS, lipopolysaccharide
- MAA-LDL, malondialdehyde-acetaldehyde modified low density lipoprotein
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MAPK, mitogen-activated protein kinase
- MDA-LDL, malondialdehyde modified low density lipoprotein
- MHC-II
- MHC-II, major histocompatibility complex class II
- NOX, NAPDH oxidase
- OSE, oxidation specific epitopes
- OxLDL
- OxLDL, oxidized low density lipoprotein
- PBS, phosphate-buffered saline
- PIC, piceatannol
- ROS
- ROS, reactive oxygen species
- SYK
- SYK, spleen tyrosine kinase
- TCR, T cell receptor
- TLR4, toll-like receptor 4
- TNF, tumor necrosis factor
- autophagy
- low affinity, receptor
- mmLDL, minimally modified low density lipoprotein
- oxidation-specific antibodies
Collapse
Affiliation(s)
- Soo-Ho Choi
- a Department of Medicine; University of California , San Diego; La Jolla , CA , USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Wolf D, Zirlik A, Ley K. Beyond vascular inflammation--recent advances in understanding atherosclerosis. Cell Mol Life Sci 2015; 72:3853-69. [PMID: 26100516 PMCID: PMC4577451 DOI: 10.1007/s00018-015-1971-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022]
Abstract
Atherosclerosis is the most life-threatening pathology worldwide. Its major clinical complications, stroke, myocardial infarction, and heart failure, are on the rise in many regions of the world--despite considerable progress in understanding cause, progression, and consequences of atherosclerosis. Originally perceived as a lipid-storage disease of the arterial wall (Die cellularpathologie in ihrer begründung auf physiologische und pathologische gewebelehre. August Hirschwald Verlag Berlin, [1871]), atherosclerosis was recognized as a chronic inflammatory disease in 1986 (New Engl J Med 314:488-500, 1986). The presence of lymphocytes in atherosclerotic lesions suggested autoimmune processes in the vessel wall (Clin Exp Immunol 64:261-268, 1986). Since the advent of suitable mouse models of atherosclerosis (Science 258:468-471, 1992; Cell 71:343-353, 1992; J Clin Invest 92:883-893, 1993) and the development of flow cytometry to define the cellular infiltrate in atherosclerotic lesions (J Exp Med 203:1273-1282, 2006), the origin, lineage, phenotype, and function of distinct inflammatory cells that trigger or inhibit the inflammatory response in the atherosclerotic plaque have been studied. Multiphoton microscopy recently enabled direct visualization of antigen-specific interactions between T cells and antigen-presenting cells in the vessel wall (J Clin Invest 122:3114-3126, 2012). Vascular immunology is now emerging as a new field, providing evidence for protective as well as damaging autoimmune responses (Int Immunol 25:615-622, 2013). Manipulating inflammation and autoimmunity both hold promise for new therapeutic strategies in cardiovascular disease. Ongoing work (J Clin Invest 123:27-36, 2013; Front Immunol 2013; Semin Immunol 31:95-101, 2009) suggests that it may be possible to develop antigen-specific immunomodulatory prevention and therapy-a vaccine against atherosclerosis.
Collapse
Affiliation(s)
- Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Andreas Zirlik
- Atherogenesis Research Group, Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
46
|
Rosenfeld SM, Perry HM, Gonen A, Prohaska TA, Srikakulapu P, Grewal S, Das D, McSkimming C, Taylor AM, Tsimikas S, Bender TP, Witztum JL, McNamara CA. B-1b Cells Secrete Atheroprotective IgM and Attenuate Atherosclerosis. Circ Res 2015; 117:e28-39. [PMID: 26082558 DOI: 10.1161/circresaha.117.306044] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023]
Abstract
RATIONALE B cells contribute to atherosclerosis through subset-specific mechanisms. Whereas some controversy exists about the role of B-2 cells, B-1a cells are atheroprotective because of secretion of atheroprotective IgM antibodies independent of antigen. B-1b cells, a unique subset of B-1 cells that respond specifically to T-cell-independent antigens, have not been studied within the context of atherosclerosis. OBJECTIVE To determine whether B-1b cells produce atheroprotective IgM antibodies and function to protect against diet-induced atherosclerosis. METHODS AND RESULTS We demonstrate that B-1b cells are sufficient to produce IgM antibodies against oxidation-specific epitopes on low-density lipoprotein both in vitro and in vivo. In addition, we demonstrate that B-1b cells provide atheroprotection after adoptive transfer into B- and T-cell deficient (Rag1(-/-)Apoe(-/-)) hosts. We implicate inhibitor of differentiation 3 (Id3) in the regulation of B-1b cells as B-cell-specific Id3 knockout mice (Id3(BKO)Apoe(-/-)) have increased numbers of B-1b cells systemically, increased titers of oxidation-specific epitope-reactive IgM antibodies, and significantly reduced diet-induced atherosclerosis when compared with Id3(WT)Apoe(-/-) controls. Finally, we report that the presence of a homozygous single nucleotide polymorphism in ID3 in humans that attenuates Id3 function is associated with an increased percentage of circulating B-1 cells and anti-malondialdehyde-low-density lipoprotein IgM suggesting clinical relevance. CONCLUSIONS These results provide novel evidence that B-1b cells produce atheroprotective oxidation-specific epitope-reactive IgM antibodies and protect against atherosclerosis in mice and suggest that similar mechanisms may occur in humans.
Collapse
Affiliation(s)
- Sam M Rosenfeld
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Heather M Perry
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Ayelet Gonen
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Thomas A Prohaska
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Prasad Srikakulapu
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Sukhdeep Grewal
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Deepanjana Das
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Chantel McSkimming
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Angela M Taylor
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Sotirios Tsimikas
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Timothy P Bender
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Joseph L Witztum
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla
| | - Coleen A McNamara
- From the Cardiovascular Research Center (S.M.R., H.M.P., P.S., S.G., D.D., C.M., C.A.M.), Department of Pathology (S.M.R., H.M.P.), Department of Medicine, Division of Cardiovascular Medicine (A.M.T., C.A.M.), and Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville; and Department of Medicine, Division of Endocrinology and Metabolism (A.G., T.A.P., J.L.W.) and Department of Medicine, Division of Cardiology (S.T.), University of California San Diego, La Jolla.
| |
Collapse
|
47
|
Haller E, Lindner W, Lämmerhofer M. Gold nanoparticle-antibody conjugates for specific extraction and subsequent analysis by liquid chromatography-tandem mass spectrometry of malondialdehyde-modified low density lipoprotein as biomarker for cardiovascular risk. Anal Chim Acta 2014; 857:53-63. [PMID: 25604820 DOI: 10.1016/j.aca.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/06/2014] [Accepted: 12/13/2014] [Indexed: 01/05/2023]
Abstract
Oxidized low-density lipoproteins (OxLDLs) like malondialdehyde-modified low-density lipoprotein (MDA-LDL) play a major role in atherosclerosis and have been proposed as useful biomarkers for oxidative stress. In this study, gold-nanoparticles (GNPs) were functionalized via distinct chemistries with anti-MDA-LDL antibodies (Abs) for selective recognition and capture of MDA-LDL from biological matrices. The study focused on optimization of binding affinities and saturation capacities of the antiMDA-LDL-Ab-GNP bioconjugate by exploring distinct random and oriented immobilization approaches, such as (i) direct adsorptive attachment of Abs on the GNP surface, (ii) covalent bonding by amide coupling of Abs to carboxy-terminated-pegylated GNPs, (iii) oriented immobilization via oxidized carbohydrate moiety of the Ab on hydrazide-derivatized GNPs and (iv) cysteine-tagged protein A (cProtA)-bonded GNPs. Depending on immobilization chemistry, up to 3 antibodies per GNP could be immobilized as determined by ELISA. The highest binding capacity was achieved with the GNP-cProtA-Ab bioconjugate which yielded a saturation capacity of 2.24±0.04μgmL(-1) GNP suspension for MDA-LDL with an affinity Kd of 5.25±0.11×10(-10)M. The GNP-cProtA-antiMDA-LDL bioconjugate revealed high specificity for MDA-LDL over copper(II)-oxidized LDL as well as native human LDL. This clearly demonstrates the usefulness of the new GNP-Ab bioconjugates for specific extraction of MDA-LDL from plasma samples as biomarkers of oxidative stress. Their combination as specific immunoextraction nanomaterials with analysis by LC-MS/MS allows sensitive and selective detection of MDA-LDL in complex samples.
Collapse
Affiliation(s)
- Elisabeth Haller
- Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|