1
|
Chiricozzi E, Lunghi G, Valsecchi M, Carsana EV, Bassi R, Di Biase E, Dobi D, Ciampa MG, Mauri L, Aureli M, Inamori KI, Inokuchi JI, Sonnino S, Fazzari M. Metabolic and Structural Consequences of GM3 Synthase Deficiency: Insights from an HEK293-T Knockout Model. Biomedicines 2025; 13:843. [PMID: 40299395 PMCID: PMC12024672 DOI: 10.3390/biomedicines13040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background: GM3 Synthase Deficiency (GM3SD) is a rare autosomal recessive neurodevelopmental disease characterized by recurrent seizures and neurological deficits. The disorder stems from mutations in the ST3GAL5 gene, encoding GM3 synthase (GM3S), a key enzyme in ganglioside biosynthesis. While enzyme deficiencies affecting ganglioside catabolism are well-documented, the consequences of impaired ganglioside biosynthesis remain less explored. Methods: To investigate GM3SD, we used a Human Embryonic Kidney 293-T (HEK293-T) knockout (KO) cell model generated via CRISPR/Cas9 technology. Lipid composition was assessed via high-performance thin-layer chromatography (HPTLC); glycohydrolase activity in lysosomal and plasma membrane (PM) fractions was enzymatically analyzed. Lysosomal homeostasis was evaluated through protein content analysis and immunofluorescence, and cellular bioenergetics was measured using a luminescence-based assay. Results: Lipidome profiling revealed a significant accumulation of lactosylceramide (LacCer), the substrate of GM3S, along with increased levels of monosialyl-globoside Gb5 (MSGb5), indicating a metabolic shift in glycosphingolipid biosynthesis. Lipid raft analysis revealed elevated cholesterol levels, which may impair microdomain fluidity and signal transduction. Furthermore, altered activity of lysosomal and plasma membrane (PM)-associated glycohydrolases suggests secondary deregulation of glycosphingolipid metabolism, potentially contributing to abnormal lipid patterns. In addition, we observed increased lysosomal mass, indicating potential lysosomal homeostasis dysregulation. Finally, decreased adenosine triphosphate (ATP) levels point to impaired cellular bioenergetics, emphasizing the metabolic consequences of GM3SD. Conclusions: Together, these findings provide novel insights into the molecular alterations associated with GM3SD and establish the HEK293-T KO model as a promising platform for evaluating potential therapeutic strategies.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Erika Di Biase
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
| | - Dorina Dobi
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Kei-ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Jin-ichi Inokuchi
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka 565-0871, Japan;
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (M.V.); (E.V.C.); (R.B.); (D.D.); (M.G.C.); (L.M.); (M.A.); (S.S.)
| |
Collapse
|
2
|
Schengrund CL. Sphingolipids: Less Enigmatic but Still Many Questions about the Role(s) of Ceramide in the Synthesis/Function of the Ganglioside Class of Glycosphingolipids. Int J Mol Sci 2024; 25:6312. [PMID: 38928016 PMCID: PMC11203820 DOI: 10.3390/ijms25126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Wolf B, Blaschke CRK, Mungaray S, Weselman BT, Stefanenko M, Fedoriuk M, Bai H, Rodgers J, Palygin O, Drake RR, Nowling TK. Metabolic Markers and Association of Biological Sex in Lupus Nephritis. Int J Mol Sci 2023; 24:16490. [PMID: 38003679 PMCID: PMC10671813 DOI: 10.3390/ijms242216490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lupus nephritis (LN) is a serious complication for many patients who develop systemic lupus erythematosus, which primarily afflicts women. Our studies to identify biomarkers and the pathogenic mechanisms underlying LN will provide a better understanding of disease progression and sex bias, and lead to identification of additional potential therapeutic targets. The glycosphingolipid lactosylceramide (LacCer) and N-linked glycosylated proteins (N-glycans) were measured in urine and serum collected from LN and healthy control (HC) subjects (10 females and 10 males in each group). The sera from the LN and HC subjects were used to stimulate cytokine secretion and intracellular Ca2+ flux in female- and male-derived primary human renal mesangial cells (hRMCs). Significant differences were observed in the urine of LN patients compared to HCs. All major LacCers species were significantly elevated and differences between LN and HC were more pronounced in males. 72 individual N-glycans were altered in LN compared to HC and three N-glycans were significantly different between the sexes. In hRMCs, Ca2+ flux, but not cytokine secretion, was higher in response to LN sera compared to HC sera. Ca2+ flux, cytokine secretion, and glycosphingolipid levels were significantly higher in female-derived compared to male-derived hRMCs. Relative abundance of some LacCers and hexosylceramides were higher in female-derived compared to male-derived hRMCs. Urine LacCers and N-glycome could serve as definitive LN biomarkers and likely reflect renal disease activity. Despite higher sensitivity of female hRMCs, males may experience greater increases in LacCers, which may underscore worse disease in males. Elevated glycosphingolipid metabolism may poise renal cells to be more sensitive to external stimuli.
Collapse
Affiliation(s)
- Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA;
| | - Calvin R. K. Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Sandy Mungaray
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| | - Bryan T. Weselman
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Mykhailo Fedoriuk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Hongxia Bai
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Jessalyn Rodgers
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Tamara K. Nowling
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| |
Collapse
|
4
|
Nakayama H, Hanafusa K, Iwabuchi K. Biochemical and Microscopic Analyses for Sphingolipids and Its Related Molecules in Phagosomes. Methods Mol Biol 2023; 2613:203-214. [PMID: 36587081 DOI: 10.1007/978-1-0716-2910-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glycosphingolipids (GSLs) form GSL-enriched microdomains, together with sphingomyelin (SM), cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins, and membrane-associated signaling molecules. GSL-enriched microdomains mediate a variety of physiological functions, including innate immune responses. Innate immune responses are initialized by the binding of host pattern recognition receptors (PRRs) to pathogen-associated molecular patterns (PAMPs) expressed in microorganisms. This binding triggers phagocytosis and leads to the formation of a phagosome-containing microorganism and the subsequent lysosomal fusion with a phagosome. To detect the molecular interaction between GSL-enriched microdomains, sphingolipids, and signaling molecules from the uptake of the microorganism until the phagosome-containing microorganism fuses with lysosomes, biochemical and microscopic approaches are indispensable. Here, we describe the detailed methods for isolating phagosomes and observing the molecular interaction using a superresolution microscope. Our methodology provides a strategy for exploring the molecular interaction between the host and pathogen and for developing new treatment approaches.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan. .,Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan. .,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan. .,Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan. .,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| |
Collapse
|
5
|
Hanashima S, Mito K, Umegawa Y, Murata M, Hojo H. Lipid chain-driven interaction of a lipidated Src-family kinase Lyn with the bilayer membrane. Org Biomol Chem 2022; 20:6436-6444. [PMID: 35880995 DOI: 10.1039/d2ob01079h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Myristoylation is a process of ubiquitous protein modification, which promotes the interaction of lipidated proteins on cell surfaces, in conjunction with reversible S-palmitoylation. We report the cooperative lipid-lipid interaction of two acyl chains of proteins, which increases the protein-membrane interaction and facilitates selective targeting of membranes containing anionic lipids. Lyn is a member of the Src family kinases distributed on the membrane surface by N-myristoyl and neighbouring S-palmitoyl chain anchors at the unique N-terminus domain. We prepared N-terminal short segments of lipidated Lyn to investigate the behaviour of each acyl chain in the lipid composition-dependent membrane interaction by solid-state nuclear magnetic resonance (NMR) analysis. Solid-state 31P-NMR studies revealed that S-palmitoylation of N-myristoylated Lyn peptides increased the interaction between peptides and phospholipid head groups, particularly with the anionic phosphatidylserine-containing bilayers. The solid-state 2H-NMR of Lyn peptides with a perdeutero N-myristoyl chain indicated an increase (0.6-0.8 Å) in the extent of the N-myristoyl chain in the presence of nearby S-palmitoyl chains, probably through the interaction via the acyl chains. The cooperative hydrocarbon chain interaction of the two acyl chains of Lyn increased membrane binding by extending the hydrocarbon chains deeper into the membrane interior, thereby promoting the peptide-membrane surface interaction between the cationic peptide side chains and the anionic lipid head groups. This lipid-driven mechanism by S-palmitoylation promotes the partition of the lipidated proteins to the cytoplasmic surface of the cell membranes and may be involved in recruiting Lyn at the signalling domains rich in anionic lipids.
Collapse
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Kanako Mito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. .,Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hironobu Hojo
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.,Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| |
Collapse
|
6
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
7
|
Iwabuchi K, Nakayama H, Hanafusa K. Lactosylceramide-enriched microdomains mediate human neutrophil immunological functions via carbohydrate-carbohydrate interaction. Glycoconj J 2022; 39:239-246. [DOI: 10.1007/s10719-022-10060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
|
8
|
Hanashima S, Ikeda R, Matsubara Y, Yasuda T, Tsuchikawa H, Slotte JP, Murata M. Effect of cholesterol on the lactosylceramide domains in phospholipid bilayers. Biophys J 2022; 121:1143-1155. [PMID: 35218738 PMCID: PMC9034317 DOI: 10.1016/j.bpj.2022.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 02/22/2022] [Indexed: 11/02/2022] Open
Abstract
Lactosylceramide (LacCer) in the plasma membranes of immune cells is an important lipid for signaling in innate immunity through the formation of LacCer-rich domains together with cholesterol (Cho). However, the properties of the LacCer domains formed in multicomponent membranes remain unclear. In this study, we examined the properties of the LacCer domains formed in Cho containing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membranes by deuterium solid-state NMR and fluorescence lifetimes. The potent affinity of LacCer-LacCer (homophilic interaction) is known to induce a thermally stable gel phase in the unitary LacCer bilayer. In LacCer/Cho binary membranes, Cho gradually destabilized the LacCer gel phase to form the liquid-ordered (Lo) phase by its potent order effect. In the LacCer/POPC binary systems without Cho, the 2H NMR spectra of 10',10'-d2-LacCer and 18',18',18'-d3-LacCer probes revealed that LacCer was poorly miscible with POPC in the membranes and formed stable gel phases without being distributed in the liquid crystalline (Ld) domain. The lamellar structure of the LacCer/POPC membrane was gradually disrupted at around 60 °C, while the addition of Cho increased the thermal stability of the lamellarity. Furthermore, the area of the LacCer gel phase and its chain order were decreased in the LacCer/POPC/Cho ternary membranes, while the Lo domain, which was observed in the LacCer/Cho binary membrane, was not observed. Cho surrounding the LacCer gel domain liberated LacCer and facilitated forming the submicron- to nano-scale small domains in the Ld domain of the LacCer/POPC/Cho membranes, as revealed by the fluorescence lifetimes of trans-parinaric acid (tPA) and tPA-LacCer. Our findings on the membrane properties of the LacCer domains, particularly in the presence of Cho, would help elucidate the properties of the LacCer domains in biological membranes.
Collapse
Affiliation(s)
- Shinya Hanashima
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | - Ryuji Ikeda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Matsubara
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Tomokazu Yasuda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, FIN 20520 Turku, Finland
| | - Michio Murata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan; JST ERATO, Lipid Active Structure Project, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
10
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
11
|
Chiricozzi E. Plasma membrane glycosphingolipid signaling: a turning point. Glycoconj J 2021; 39:99-105. [PMID: 34398373 PMCID: PMC8979859 DOI: 10.1007/s10719-021-10008-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Plasma membrane interaction is highly recognized as an essential step to start the intracellular events in response to extracellular stimuli. The ways in which these interactions take place are less clear and detailed. Over the last decade my research has focused on developing the understanding of the glycosphingolipids-protein interaction that occurs at cell surface. By using chemical synthesis and biochemical approaches we have characterized some fundamental interactions that are key events both in the immune response and in the maintenance of neuronal homeostasis. In particular, for the first time it has been demonstrated that a glycolipid, present on the outer side of the membrane, the long-chain lactosylceramide, is able to directly modulate a cytosolic protein. But the real conceptual change was the demonstration that the GM1 oligosaccharide chain is able, alone, to replicate numerous functions of GM1 ganglioside and to directly interact with plasma membrane receptors by activating specific cellular signaling. In this conceptual shift, the development and application of multidisciplinary techniques in the field of biochemistry, from chemical synthesis to bioinformatic analysis, as well as discussions with several national and international colleagues have played a key role.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy.
| |
Collapse
|
12
|
Rohrhofer J, Zwirzitz B, Selberherr E, Untersmayr E. The Impact of Dietary Sphingolipids on Intestinal Microbiota and Gastrointestinal Immune Homeostasis. Front Immunol 2021; 12:635704. [PMID: 34054805 PMCID: PMC8160510 DOI: 10.3389/fimmu.2021.635704] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The large surfaces of gastrointestinal (GI) organs are well adapted to their diverse tasks of selective nutritional uptake and defense against the external environment. To maintain a functional balance, a vast number of immune cells is located within the mucosa. A strictly regulated immune response is required to impede constant inflammation and to maintain barrier function. An increasing prevalence of GI diseases has been reported in Western societies over the past decades. This surge in GI disorders has been linked to dietary changes followed by an imbalance of the gut microbiome, leading to a chronic, low grade inflammation of the gut epithelium. To counteract the increasing health care costs associated with diseases, it is paramount to understand the mechanisms driving immuno-nutrition, the associations between nutritional compounds, the commensal gut microbiota, and the host immune response. Dietary compounds such as lipids, play a central role in GI barrier function. Bioactive sphingolipids (SLs), e.g. sphingomyelin (SM), sphingosine (Sph), ceramide (Cer), sphingosine-1- phosphate (S1P) and ceramide-1-phosphate (C1P) may derive from dietary SLs ingested through the diet. They are not only integral components of cell membranes, they additionally modulate cell trafficking and are precursors for mediators and second messenger molecules. By regulating intracellular calcium levels, cell motility, cell proliferation and apoptosis, SL metabolites have been described to influence GI immune homeostasis positively and detrimentally. Furthermore, dietary SLs are suggested to induce a shift in the gut microbiota. Modes of action range from competing with the commensal bacteria for intestinal cell attachment to prevention from pathogen invasion by regulating innate and immediate defense mechanisms. SL metabolites can also be produced by gut microorganisms, directly impacting host metabolic pathways. This review aims to summarize recent findings on SL signaling and functional variations of dietary SLs. We highlight novel insights in SL homeostasis and SL impact on GI barrier function, which is directly linked to changes of the intestinal microbiota. Knowledge gaps in current literature will be discussed to address questions relevant for understanding the pivotal role of dietary SLs on chronic, low grade inflammation and to define a balanced and healthy diet for disease prevention and treatment.
Collapse
Affiliation(s)
- Johanna Rohrhofer
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Eva Untersmayr
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Yao L, Hu Q, Zhang C, Ghonaim AH, Cheng Y, Ma H, Yu X, Wang J, Fan X, He Q. Untargeted LC-MS based metabolomic profiling of iPAMs to investigate lipid metabolic pathways alternations induced by different Pseudorabies virus strains. Vet Microbiol 2021; 256:109041. [PMID: 33813308 DOI: 10.1016/j.vetmic.2021.109041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Owing to viral recombination, interspecies transmission, and evolution, variant pseudorabies virus (PRV) strains exhibit different biological characteristics and pathogenicity. To improve the understanding of common and specific metabolic changes that occur upon infection by different PRV strains, we herein describe the comprehensive analysis of metabolites of PRV vaccine strain (Bartha K61), classical strain (EA) and variant strain (HNX) infection in immortalized porcine alveolar macrophage cells. Compared with uninfected cells, cells infected with Bartha K61, EA and HNX had 246, 225, and 272 differing metabolites, respectively. In the three types of PRV-strain-infected cells, lipids and lipid-like molecules accounted for over 50 % of the altered metabolites. As these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of the host metabolism. We analyzed the potential relationship between virus replication and the virus-mediated host metabolism. Our study resulted in the first reconstruction of the major lipid metabolic pathways involved in PRV infection, including those of glycerophospholipids, sphingolipids, glycerolipids, and fatty acyls. In addition, the metabolic perturbations caused by different PRV strain infections are consistent across many species, however, our results also revealed many specific metabolic alterations during HNX infection, such as the enrichment of phosphatidylinositol and 15R-PGE2 methyl ester 15-acetate, and the diminishment of phosphatidylethanolamine, phosphatidic acid, and ceramides. These strain-specific altered metabolites may be linked to the unique biological characteristics and pathogenicity of the HNX strain.
Collapse
Affiliation(s)
- Lun Yao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China
| | - Chengjun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China
| | - Ahmed H Ghonaim
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China; Desert Research Center, Cairo, 11435, Egypt
| | - Yufang Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China
| | - Hailong Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xuexiang Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China
| | - Junwei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xiansheng Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430000, China.
| |
Collapse
|
14
|
Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconj J 2021; 38:101-117. [PMID: 33620588 PMCID: PMC7917043 DOI: 10.1007/s10719-021-09974-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named “OligoGM1”. These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson’s disease.
Collapse
|
15
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
16
|
Modulation of calcium signaling depends on the oligosaccharide of GM1 in Neuro2a mouse neuroblastoma cells. Glycoconj J 2020; 37:713-727. [PMID: 33201378 PMCID: PMC7679337 DOI: 10.1007/s10719-020-09963-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Recently, we demonstrated that the oligosaccharide portion of ganglioside GM1 is responsible, via direct interaction and activation of the TrkA pathway, for the ability of GM1 to promote neuritogenesis and to confer neuroprotection in Neuro2a mouse neuroblastoma cells. Recalling the knowledge that ganglioside GM1 modulates calcium channels activity, thus regulating the cytosolic calcium concentration necessary for neuronal functions, we investigated if the GM1-oligosaccharide would be able to overlap the GM1 properties in the regulation of calcium signaling, excluding a specific role played by the ceramide moiety inserted into the external layer of plasma membrane. We observed, by calcium imaging, that GM1-oligosaccharide administration to undifferentiated Neuro2a cells resulted in an increased calcium influx, which turned out to be mediated by the activation of TrkA receptor. The biochemical analysis demonstrated that PLCγ and PKC activation follows the TrkA stimulation by GM1-oligosaccharide, leading to the opening of calcium channels both on the plasma membrane and on intracellular storages, as confirmed by calcium imaging experiments performed with IP3 receptor inhibitor. Subsequently, we found that neurite elongation in Neuro2a cells was blocked by subtoxic administration of extracellular and intracellular calcium chelators, suggesting that the increase of intracellular calcium is responsible of GM1-oligosaccharide mediated differentiation. These results suggest that GM1-oligosaccharide is responsible for the regulation of calcium signaling and homeostasis at the base of the neuronal functions mediated by plasma membrane GM1.
Collapse
|
17
|
Roy KR, Uddin MB, Roy SC, Hill RA, Marshall J, Li Y, Chamcheu JC, Lu H, Liu Y. Gb3-cSrc complex in glycosphingolipid-enriched microdomains contributes to the expression of p53 mutant protein and cancer drug resistance via β-catenin-activated RNA methylation. FASEB Bioadv 2020; 2:653-667. [PMID: 33205006 PMCID: PMC7655095 DOI: 10.1096/fba.2020-00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Glucosylceramide synthase (GCS) is a key enzyme catalyzing ceramide glycosylation to generate glucosylceramide (GlcCer), which in turn serves as the precursor for cells to produce glycosphingolipids (GSLs). In cell membranes, GSLs serve as essential components of GSL-enriched microdomains (GEMs) and mediate membrane functions and cell behaviors. Previous studies showed that ceramide glycosylation correlates with upregulated expression of p53 hotspot mutant R273H and cancer drug resistance. Yet, the underlying mechanisms remain elusive. We report herewith that globotriaosylceramide (Gb3) is associated with cSrc kinase in GEMs and plays a crucial role in modulating expression of p53 R273H mutant and drug resistance. Colon cancer cell lines, either WiDr homozygous for missense-mutated TP53 (R273H+/+) or SW48/TP53-Dox bearing heterozygous TP53 mutant (R273H/+), display drug resistance with increased ceramide glycosylation. Inhibition of GCS with Genz-161 (GENZ 667161) resensitized cells to apoptosis in these p53 mutant-carrying cancer cells. Genz-161 effectively inhibited GCS activity, and substantially suppressed the elevated Gb3 levels seen in GEMs of p53-mutant cells exposed to doxorubicin. Complex formation between Gb3 and cSrc in GEMs to activate β-catenin was detected in both cultured cells and xenograft tumors. Suppression of ceramide glycosylation significantly decreased Gb3-cSrc in GEMs, β-catenin, and methyltransferase-like 3 for m6A RNA methylation, thus altering pre-mRNA splicing, resulting in upregulated expression of wild-type p53 protein, but not mutants, in cells carrying p53 R273H. Altogether, increased Gb3-cSrc complex in GEMs of membranes in response to anticancer drug induced cell stress promotes expression of p53 mutant proteins and accordant cancer drug resistance.
Collapse
Affiliation(s)
- Kartik R. Roy
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Mohammad B. Uddin
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - John Marshall
- Department of Rare Genetic Disease ResearchSanofi‐Genzyme R&D CenterGenzyme, FraminghamMassachusettsUSA
| | - Yu‐Teh Li
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Hua Lu
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yong‐Yu Liu
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| |
Collapse
|
18
|
Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Front Cell Dev Biol 2020; 8:589799. [PMID: 33195253 PMCID: PMC7658261 DOI: 10.3389/fcell.2020.589799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane microdomains, also called lipid rafts, are areas on membrane enriched in glycolipids, sphingolipids, and cholesterol. Although membrane microdomains are thought to play key roles in many cellular functions, their structures, properties, and biological functions remain obscure. Cellular membranes contain several types of glycoproteins, glycolipids, and other lipids, including cholesterol, glycerophospholipids, and sphingomyelin. Depending on their physicochemical properties, especially the characteristics of their glycolipids, various microdomains form on these cell membranes, providing structural or functional contextures thought to be essential for biological activities. For example, the plasma membranes of human neutrophils are enriched in lactosylceramide (LacCer) and phosphatidylglucoside (PtdGlc), each of which forms different membrane microdomains with different surrounding molecules and is involved in different functions of neutrophils. Specifically, LacCer forms Lyn-coupled lipid microdomains, which mediate neutrophil chemotaxis, phagocytosis, and superoxide generation, whereas PtdGlc-enriched microdomains mediate neutrophil differentiation and spontaneous apoptosis. However, the mechanisms by which these glycolipids form different nano/meso microdomains and mediate their specialized functions remain incompletely understood. This review describes current understanding of the roles of glycolipids and sphingolipids in their enriched contextures on cellular membranes, including their mechanisms of facilitation and regulation of intracellular signaling. This review also introduces new concepts about the roles of glycolipid and sphingolipid-dependent contextures in immunological functions.
Collapse
Affiliation(s)
- Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| |
Collapse
|
19
|
Fazzari M, Audano M, Lunghi G, Di Biase E, Loberto N, Mauri L, Mitro N, Sonnino S, Chiricozzi E. The oligosaccharide portion of ganglioside GM1 regulates mitochondrial function in neuroblastoma cells. Glycoconj J 2020; 37:293-306. [PMID: 32266604 DOI: 10.1007/s10719-020-09920-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The crucial role of ganglioside GM1 in the regulation of neural homeostasis has been assessed by several studies. Recently we shed new light on the molecular basis underlying GM1 effects demonstrating that GM1 oligosaccharide directly binds TrkA receptor and triggers MAPK pathway activation leading to neuronal differentiation and protection. Following its exogenous administration, proteomic analysis revealed an increased expression of proteins involved in several biochemical mechanisms, including mitochondrial bioenergetics. Based on these data, we investigated the possible effect of GM1 oligosaccharide administration on mitochondrial function. We show that wild-type Neuro2a cells exposed to GM1 oligosaccharide displayed an increased mitochondrial density and an enhanced mitochondrial activity together with reduced reactive oxygen species levels. Interestingly, using a Neuro2a model of mitochondrial dysfunction, we found an increased mitochondrial oxygen consumption rate as well as increased complex I and II activities upon GM1 oligosaccharide administration. Taken together, our data identify GM1 oligosaccharide as a mitochondrial regulator that by acting at the plasma membrane level triggers biochemical signaling pathway inducing mitochondriogenesis and increasing mitochondrial activity. Although further studies are necessary, the capability to enhance the function of impaired mitochondria points to the therapeutic potential of the GM1 oligosaccharide for the treatment of pathologies where these organelles are compromised, including Parkinson's disease.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan (MI), Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan (MI), Italy.
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy.
| |
Collapse
|
20
|
Chiricozzi E, Lunghi G, Di Biase E, Fazzari M, Sonnino S, Mauri L. GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. Int J Mol Sci 2020; 21:E868. [PMID: 32013258 PMCID: PMC7037093 DOI: 10.3390/ijms21030868] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico-chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever-increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component.
Collapse
Affiliation(s)
| | | | | | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Milano, Italy; (E.C.)
| | | |
Collapse
|
21
|
Silsirivanit A, Phoomak C, Teeravirote K, Wattanavises S, Seubwai W, Saengboonmee C, Zhan Z, Inokuchi JI, Suzuki A, Wongkham S. Overexpression of HexCer and LacCer containing 2-hydroxylated fatty acids in cholangiocarcinoma and the association of the increase of LacCer (d18:1-h23:0) with shorter survival of the patients. Glycoconj J 2019; 36:103-111. [PMID: 30888588 DOI: 10.1007/s10719-019-09864-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 01/29/2023]
Abstract
Alteration of glycosphingolipid (GSL) synthesis is observed in many types of cancer. In this study, we have analyzed the expression of sphingolipids and GSLs in cholangiocarcinoma (CCA) tissues and adjacent normal liver tissues. Neutral lipids were extracted from tissue samples using mild-alkaline treatment method followed by TLC and LC-MS analysis. The expression of ceramides, hexosylceramides (HexCer), and lactosylceramides (LacCer) was altered in CCA tissues, 61.1% (11/18) of them showing an increase whereas 38.9% (7/18) showing a decrease, compared with the adjacent normal tissue. Cers and GSLs containing 2-hydroxylated fatty acids except one LacCer molecular species were overexpressed in CCA tissues, and the increase of LacCer (d18:1-h23:0) was correlated with shorter survival of CCA patients, suggesting the involvement of GSL synthesis and fatty acid hydroxylation in progression of CCA. Taken together, we have demonstrated in this study the increase of GSL synthesis and fatty hydroxylation in CCA, which probably be used as a target for CCA treatment.
Collapse
Affiliation(s)
- Atit Silsirivanit
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chatchai Phoomak
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Karuntarat Teeravirote
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sasiprapa Wattanavises
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Zhaoqi Zhan
- Shimadzu Asia Pacific Pte Ltd, Singapore Science Park I, Singapore, Singapore
| | - Jin-Ichi Inokuchi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Sopit Wongkham
- Department of Biochemistry and Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
22
|
Chiricozzi E, Maggioni M, di Biase E, Lunghi G, Fazzari M, Loberto N, Elisa M, Scalvini FG, Tedeschi G, Sonnino S. The Neuroprotective Role of the GM1 Oligosaccharide, II 3Neu5Ac-Gg 4, in Neuroblastoma Cells. Mol Neurobiol 2019; 56:6673-6702. [PMID: 30911934 DOI: 10.1007/s12035-019-1556-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
Abstract
Recently, we demonstrated that the GM1 oligosaccharide, II3Neu5Ac-Gg4 (OligoGM1), administered to cultured murine Neuro2a neuroblastoma cells interacts with the NGF receptor TrkA, leading to the activation of the ERK1/2 downstream pathway and to cell differentiation. To understand how the activation of the TrkA pathway is able to trigger key biochemical signaling, we performed a proteomic analysis on Neuro2a cells treated with 50 μM OligoGM1 for 24 h. Over 3000 proteins were identified. Among these, 324 proteins were exclusively expressed in OligoGM1-treated cells. Interestingly, several proteins expressed only in OligoGM1-treated cells are involved in biochemical mechanisms with a neuroprotective potential, reflecting the GM1 neuroprotective effect. In addition, we found that the exogenous administration of OligoGM1 reduced the cellular oxidative stress in Neuro2a cells and conferred protection against MPTP neurotoxicity. These results confirm and reinforce the idea that the molecular mechanisms underlying the GM1 neurotrophic and neuroprotective effects depend on its oligosaccharide chain, suggesting the activation of a positive signaling starting at plasma membrane level.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Erika di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maffioli Elisa
- Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133, Milan, Italy
| | | | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133, Milan, Italy
- Fondazione Unimi, v.le Ortles 22/4, 20139, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| |
Collapse
|
23
|
Chiricozzi E, Biase ED, Maggioni M, Lunghi G, Fazzari M, Pomè DY, Casellato R, Loberto N, Mauri L, Sonnino S. GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. J Neurochem 2019; 149:231-241. [PMID: 30776097 DOI: 10.1111/jnc.14685] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
Recently, we highlighted that the ganglioside GM1 promotes neuroblastoma cells differentiation by activating the TrkA receptor through the formation of a TrkA-GM1 oligosaccharide complex at the cell surface. To study the TrkA-GM1 interaction, we synthesized two radioactive GM1 derivatives presenting a photoactivable nitrophenylazide group at the end of lipid moiety, 1 or at position 6 of external galactose, 2; and a radioactive oligosaccharide portion of GM1 carrying the nitrophenylazide group at position 1 of glucose, 3. The three compounds were singly administered to cultured neuroblastoma Neuro2a cells under established conditions that allow cell surface interactions. After UV activation of photoactivable compounds, the proteins were analyzed by PAGE separation. The formation of cross-linked TrkA-GM1 derivatives complexes was identified by both radioimaging and immunoblotting. Results indicated that the administration of compounds 2 and 3, carrying the photoactivable group on the oligosaccharide, led to the formation of a radioactive TrkA complex, while the administration of compound 1 did not. This underlines that the TrkA-GM1 interaction directly involves the GM1 oligosaccharide, but not the ceramide. To better understand how GM1 relates to the TrkA, we isolated plasma membrane lipid rafts. As expected, GM1 was found in the rigid detergent-resistant fractions, while TrkA was found as a detergent soluble fraction component. These results suggest that TrkA and GM1 belong to separate membrane domains: probably TrkA interacts by 'flopping' down its extracellular portion onto the membrane, approaching its interplay site to the oligosaccharide portion of GM1.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Riccardo Casellato
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| |
Collapse
|
24
|
Albeituni S, Stiban J. Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:169-191. [PMID: 31562630 DOI: 10.1007/978-3-030-21735-8_15] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ceramides are bioactive sphingolipids that support the structure of the plasma membrane and mediate numerous cell-signaling events in eukaryotic cells. The finding that ceramides act as second messengers transducing cellular signals has attracted substantial attention in several fields of Biology. Since all cells contain lipid plasma membranes, the impact of various ceramides, ceramide synthases, ceramide metabolites, and other sphingolipids has been implicated in a vast range of cellular functions including, migration, proliferation, response to external stimuli, and death. The roles of lipids in these functions widely differ among the diverse cell types. Herein, we discuss the roles of ceramides and other sphingolipids in mediating the function of various immune cells; particularly dendritic cells, neutrophils, and macrophages. In addition, we highlight the main studies describing effects of ceramides in inflammation, specifically in various inflammatory settings including insulin resistance, graft-versus-host disease, immune suppression in cancer, multiple sclerosis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
25
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
26
|
Nakayama H, Nagafuku M, Suzuki A, Iwabuchi K, Inokuchi JI. The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett 2018; 592:3921-3942. [PMID: 30320884 DOI: 10.1002/1873-3468.13275] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023]
Abstract
Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived β-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan.,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
27
|
Abstract
More than 100 years have passed since Elie Metchnikoff discovered phagocytes. As molecular biological techniques have been developed and improved, we have gained deeper knowledge about the molecular mechanisms of immunological responses to invasion. The innate immune system is the inborn defense mechanism and the first line of defense against all kinds of pathogenic organisms, including bacteria, fungi, viruses, etc. Innate immunity was originally considered to comprise non-specific reactions. However, we now know that innate immune systems develop molecular mechanisms specific to pathogenic microorganisms. In the 1970s, a neutral glycosphingolipid lactosylceramide (LacCer) was found to bind specifically to several kinds of microorganisms. LacCer is highly expressed in phagocytes and epithelial cells. LacCer forms lipid rafts on human neutrophils and is involved in neutrophil migration, phagocytosis, and superoxide generation. In contrast, mouse neutrophils express relatively little LacCer on their cell surfaces. Thus, it is difficult to observe LacCer-mediated innate immunological reactions in mice. Mycobacterium tuberculosis is a typical pathogen for humans but not mice in general. Interestingly, M. tuberculosis can escape killing by neutrophils through regulation of the LacCer-enriched lipid raft-mediated immunological reactions of these cells. These observations indicate that LacCer-enriched lipid rafts play an essential role in human innate immunity. This review describes LacCer-mediated innate immunity in humans.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Infection-control Nursing, Juntendo University, Graduate School of Health-Care and Nursing.,Institute for Environmental and Gender Specific Medicine, Juntendo University, Graduate School of Medicine
| |
Collapse
|
28
|
Gronnier J, Gerbeau-Pissot P, Germain V, Mongrand S, Simon-Plas F. Divide and Rule: Plant Plasma Membrane Organization. TRENDS IN PLANT SCIENCE 2018; 23:899-917. [PMID: 30174194 DOI: 10.1016/j.tplants.2018.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 05/24/2023]
Abstract
Since the publication of the fluid mosaic as a relevant model for biological membranes, accumulating evidence has revealed the outstanding complexity of the composition and organization of the plant plasma membrane (PM). Powerful new methodologies have uncovered the remarkable multiscale and multicomponent heterogeneity of PM subcompartmentalization, and this is emerging as a general trait with different features and properties. It is now evident that the dynamics of such a complex organization are intrinsically related to signaling pathways that regulate key physiological processes. Listing and linking recent progress in precisely qualifying these heterogeneities will help to draw an integrated picture of the plant PM. Understanding the key principles governing such a complex dynamic organization will contribute to deciphering the crucial role of the PM in cell physiology.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France; Present address: Laboratory of Cyril Zipfel, Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Patricia Gerbeau-Pissot
- Agroécologie, Institut National Supérieur des Sciences Agronomiques, de l'Alimentation, et de l'Environnement (AgroSup) Dijon, CNRS, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France; These authors contributed equally to this work
| | - Françoise Simon-Plas
- Agroécologie, Institut National Supérieur des Sciences Agronomiques, de l'Alimentation, et de l'Environnement (AgroSup) Dijon, CNRS, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France; These authors contributed equally to this work.
| |
Collapse
|
29
|
Ferraro M, Colombo G. Targeting Difficult Protein-Protein Interactions with Plain and General Computational Approaches. Molecules 2018; 23:molecules23092256. [PMID: 30181519 PMCID: PMC6225287 DOI: 10.3390/molecules23092256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Investigating protein-protein interactions (PPIs) holds great potential for therapeutic applications, since they mediate intricate cell signaling networks in physiological and disease states. However, their complex and multifaceted nature poses a major challenge for biochemistry and medicinal chemistry, thereby limiting the druggability of biological partners participating in PPIs. Molecular Dynamics (MD) provides a solid framework to study the reciprocal shaping of proteins’ interacting surfaces. Here, we review successful applications of MD-based methods developed in our group to predict interfacial areas involved in PPIs of pharmaceutical interest. We report two interesting examples of how structural, dynamic and energetic information can be combined into efficient strategies which, complemented by experiments, can lead to the design of new small molecules with promising activities against cancer and infections. Our advances in targeting key PPIs in angiogenic pathways and antigen-antibody recognition events will be discussed for their role in drug discovery and chemical biology.
Collapse
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy.
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy.
| |
Collapse
|
30
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
31
|
Chiricozzi E, Loberto N, Schiumarini D, Samarani M, Mancini G, Tamanini A, Lippi G, Dechecchi MC, Bassi R, Giussani P, Aureli M. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection. J Leukoc Biol 2018; 103:445-456. [PMID: 29345379 DOI: 10.1002/jlb.3mr0717-269r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Domitilla Schiumarini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Maura Samarani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mancini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Tamanini
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giuseppe Lippi
- Sezione di Biochimica Clinica, Università degli Studi di Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Paola Giussani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
Iwabuchi K. Gangliosides in the Immune System: Role of Glycosphingolipids and Glycosphingolipid-Enriched Lipid Rafts in Immunological Functions. Methods Mol Biol 2018; 1804:83-95. [PMID: 29926405 DOI: 10.1007/978-1-4939-8552-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although individuals are constantly exposed to infectious agents, these agents are generally resisted by the innate and acquired immune systems. Both the innate and acquired immune systems protect against invading organisms, but they differ functionally in several ways. The innate immune system is the body's inborn defense mechanism and the first line of defense against invading organisms, such as bacteria, fungi, and viruses. Glycosphingolipids (GSLs), which are expressed on the outer leaflet of plasma membranes (Murate et al., J Cell Sci 128(8):1627-1638, 2015), are involved in both innate and acquired immunity (Inokuchi et al., Biochim Biophys Acta 1851(1):98-106, 2015; Nakayama et al., Arch Immunol Ther Exp (Warsz) 61(3):217-228, 2013; Rueda, Br J Nutr 98(Suppl 1):S68-73, 2007; Popa and Portoukalian, Pathol Biol (Paris) 51(5):253-255, 2003).Recent studies have indicated that innate immunity is not a "nonspecific" immune system. Large numbers of viruses, bacteria, and bacterial toxins have been reported to bind to host surface carbohydrates, a number of which are components of GSLs (Schengrund, Biochem Pharmacol 65(5):699-707, 2003). Binding studies have also demonstrated that some glycolipids function as receptors for microorganisms and bacterial toxins (Yates and Rampersaud, Ann N Y Acad Sci 845:57-71, 1998). These findings clearly indicate that GSLs are involved in host-pathogen interactions.GSLs are composed of hydrophobic ceramide and hydrophilic sugar moieties (Hakomori, Annu Rev Biochem 50:733-764, 1980). The ceramide moiety of sphingolipids and the cholesterol sterol-ring system are thought to interact via hydrogen bonds and hydrophobic van der Waal's forces (Mukherjee and Maxfield, Annu Rev Cell Dev Biol 20:839-866, 2004). Additional hydrophilic cis interactions among GSL headgroups have been found to promote their lateral associations with surrounding lipid and protein membrane components. These interactions result in the separation in cell membranes of lipid rafts, which are lipid domains rich in GSLs, cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins and membrane-anchored signaling molecules (Pike, J Lipid Res 47(7):1597-1598, 2006). These GSL-enriched lipid rafts play important roles in immunological functions (Inokuchi et al., Biochim Biophys Acta 1851(1):98-106, 2015; Iwabuchi et al., Mediators Inflamm 2015:120748, 2015; Anderson and Roche, Biochim Biophys Acta 1853(4):775-780, 2015; Zuidscherwoude et al., J Leukoc Biol 95(2):251-263, 2014; Dykstra et al., Annu Rev Immunol 21:457-481, 2003). This introductory chapter describes the roles of GSLs and their lipid rafts in the immune system.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Infection Control Nursing, Graduate School of Health Care and Nursing, Juntendo University, Chiba, Japan.
- Institute for Environmental and Gender Specific Medicine, Graduate school of Medicine, Juntendo University, Chiba, Japan.
| |
Collapse
|
33
|
Chiricozzi E, Pomè DY, Maggioni M, Di Biase E, Parravicini C, Palazzolo L, Loberto N, Eberini I, Sonnino S. Role of the GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J Neurochem 2017; 143:645-659. [PMID: 28796418 DOI: 10.1111/jnc.14146] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/27/2022]
Abstract
GM1 ganglioside (II3 NeuAc-Gg4 Cer) is known to promote neurite formation in neuroblastoma cells by activating TrkA-MAPK pathway. The molecular mechanism by which GM1 is involved in the neurodifferentiation process is still unknown, however, in vitro and in vivo evidences have suggested that the oligosaccharide portion of this ganglioside could be involved. Here, we report that, similarly to the entire GM1 molecule, its oligosaccharide II3 NeuAc-Gg4, rather than its ceramide (Cer) portion is responsible for the neurodifferentiation process by augmenting neurite elongation and increasing the neurofilament protein expression in murine neuroblastoma cells, Neuro2a. Conversely, asialo-GM1, GM2 and GM3 oligosaccharides are not effective in neurite elongation on Neuro2a cells, whereas the effect exerted by the Fuc-GM1 oligosaccharide (IV2 αFucII3 Neu5Ac-Gg4 ) is similar to that exerted by GM1 oligosaccharide. The neurotrophic properties of GM1 oligosaccharide are exerted by activating the TrkA receptor and the following phosphorylation cascade. By photolabeling experiments performed with a nitrophenylazide containing GM1 oligosaccharide, labeled with tritium, we showed a direct interaction between the GM1 oligosaccharide and the extracellular domain of TrkA receptor. Moreover, molecular docking analyses confirmed that GM1 oligosaccharide binds the TrkA-nerve growth factor complex leading to a binding free energy of approx. -11.5 kcal/mol, acting as a bridge able to increase and stabilize the TrkA-nerve growth factor molecular interactions.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| |
Collapse
|
34
|
Compostella F, Pitirollo O, Silvestri A, Polito L. Glyco-gold nanoparticles: synthesis and applications. Beilstein J Org Chem 2017; 13:1008-1021. [PMID: 28684980 PMCID: PMC5480336 DOI: 10.3762/bjoc.13.100] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 01/15/2023] Open
Abstract
Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.
Collapse
Affiliation(s)
- Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milan, Italy
| | - Olimpia Pitirollo
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessandro Silvestri
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Laura Polito
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|
35
|
Paladino A, Marchetti F, Rinaldi S, Colombo G. Protein design: from computer models to artificial intelligence. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Antonella Paladino
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Filippo Marchetti
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Silvia Rinaldi
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Giorgio Colombo
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| |
Collapse
|
36
|
Wu Y, Hannigan M, Zhan L, Madri JA, Huang CK. -NOD Mice Having a Lyn Tyrosine Kinase Mutation Exhibit Abnormal Neutrophil Chemotaxis. J Cell Physiol 2017; 232:1689-1695. [PMID: 27591397 DOI: 10.1002/jcp.25583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Neutrophils from NOD (Non-Obese Diabetic) mice exhibited reduced migration speed, decreased frequency of directional changes, and loss of directionality during chemotaxis (compared to wild-type [WT] C57BL/6 mice). Additionally, F-actin of chemotaxing NOD neutrophils failed to orient toward the chemoattractant gradient and NOD neutrophil adhesion was impaired. A point mutation near the autophosphorylation site of Lyn in NOD mice was identified. Point mutations of G to A (G1412 in LynA and G1199 in LynB) cause a change of amino acid E393 (glutamic acid) to K (lysine) in LynA (E393 →K) (E372 of LynB), affecting fMLP-induced tyrosine phosphorylation. These data indicate that the Lyn mutation in NOD neutrophils is likely responsible for dysregulation of neutrophil adhesion and directed migration, implying the role of Lyn in modulating diabetic patient's susceptibility to bacterial and fungal infections. J. Cell. Physiol. 232: 1689-1695, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Hannigan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lijun Zhan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Chi-Kuang Huang
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
37
|
Chaudhari A, Håversen L, Mobini R, Andersson L, Ståhlman M, Lu E, Rutberg M, Fogelstrand P, Ekroos K, Mardinoglu A, Levin M, Perkins R, Borén J. ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1643-1651. [DOI: 10.1016/j.bbalip.2016.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/02/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022]
|
38
|
Nakayama H, Kurihara H, Morita YS, Kinoshita T, Mauri L, Prinetti A, Sonnino S, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K. Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Sci Signal 2016; 9:ra101. [PMID: 27729551 DOI: 10.1126/scisignal.aaf1585] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathogenic mycobacteria use virulence factors, including mannose-capped lipoarabinomannan (ManLAM), to survive in host phagocytic cells, such as neutrophils. We assessed the roles of lactosylceramide (LacCer, CDw17)-enriched lipid rafts in the phagocytosis of mycobacteria by human neutrophils and in the intracellular fate of phagocytosed mycobacteria. We showed that the association of the Src family kinase (SFK) Lyn with C24 fatty acid chain-containing LacCer was essential for the phagocytosis of mycobacteria by neutrophils. Assays with LacCer-containing liposomes, LacCer-coated plastic plates, and LAM-coated beads demonstrated that the phagocytosis of mycobacteria was mediated through the binding of LacCer to LAM. Both ManLAM from pathogenic species and phosphoinositol-capped LAM (PILAM) from nonpathogenic Mycobacterium smegmatis bound equivalently to LacCer to stimulate phagocytosis. However, PILAM from an M. smegmatis α1,2-mannosyltransferase deletion mutant (ΔMSMEG_4247), lacking the α1,2-monomannose side branches of the LAM mannan core, did not bind to LacCer or induce phagocytosis. An anti-LacCer antibody immunoprecipitated the SFK Hck from the phagosomes of neutrophils that internalized nonpathogenic mycobacteria but not from those that internalized pathogenic mycobacteria. Furthermore, knockdown of Hck by short inhibitory RNA abolished the fusion of lysosomes with phagosomes containing nonpathogenic mycobacteria. Further analysis showed that ManLAM, but not PILAM, inhibited the association of Hck with LacCer-enriched lipid rafts in phagosomal membranes, effectively blocking phagolysosome formation. Together, these findings suggest that pathogenic mycobacteria use ManLAM not only for binding to LacCer-enriched lipid rafts and entering neutrophils but also for disrupting signaling through Hck-coupled, LacCer-enriched lipid rafts and preventing phagolysosome formation.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan. Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Hidetake Kurihara
- Department of Anatomy, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9364, USA. Department of Immunoregulation, Research Institute for Microbial Diseases, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan. Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan. Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan.
| |
Collapse
|
39
|
Dauner M, Batroff E, Bachmann V, Hauck CR, Wittmann V. Synthetic Glycosphingolipids for Live-Cell Labeling. Bioconjug Chem 2016; 27:1624-37. [PMID: 27253729 DOI: 10.1021/acs.bioconjchem.6b00177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosphingolipids are an important component of cell membranes that are involved in many biological processes. Fluorescently labeled glycosphingolipids are frequently used to gain insight into their localization. However, the attachment of a fluorophore to the glycan part or-more commonly-to the lipid part of glycosphingolipids is known to alter the biophysical properties and can perturb the biological function of the probe. Presented here is the synthesis of novel glycosphingolipid probes with mono- and disaccharide head groups and ceramide moieties containing fatty acids of varying chain length (C4 to C20). These glycosphingolipids bear an azide or an alkyne group as chemical reporter to which a fluorophore can be attached through a bioorthogonal ligation reaction. The fluorescent tag and any linker connected to it can be chosen in a flexible manner. We demonstrate the suitability of the probes by selective visualization of the plasma membrane of living cells by confocal microscopy techniques. Whereas the derivatives with the shorter fatty acids can be directly applied to HEK 293T cells, the hydrophobic glycosphingolipids with longer fatty acids can be delivered to cells using fusogenic liposomes.
Collapse
Affiliation(s)
- Martin Dauner
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Ellen Batroff
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Verena Bachmann
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Christof R Hauck
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
40
|
Murate M, Kobayashi T. Revisiting transbilayer distribution of lipids in the plasma membrane. Chem Phys Lipids 2016; 194:58-71. [DOI: 10.1016/j.chemphyslip.2015.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
|
41
|
Sphingolipids as Regulators of the Phagocytic Response to Fungal Infections. Mediators Inflamm 2015; 2015:640540. [PMID: 26688618 PMCID: PMC4673356 DOI: 10.1155/2015/640540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/01/2015] [Indexed: 12/14/2022] Open
Abstract
Fungal infections pose a significant risk for the increasing population of individuals who are immunocompromised. Phagocytes play an important role in immune defense against fungal pathogens, but the interactions between host and fungi are still not well understood. Sphingolipids have been shown to play an important role in many cell functions, including the function of phagocytes. In this review, we discuss major findings that relate to the importance of sphingolipids in macrophage and neutrophil function and the role of macrophages and neutrophils in the most common types of fungal infections, as well as studies that have linked these three concepts to show the importance of sphingolipid signaling in immune response to fungal infections.
Collapse
|
42
|
Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. Mediators Inflamm 2015; 2015:120748. [PMID: 26609196 PMCID: PMC4644562 DOI: 10.1155/2015/120748] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/19/2023] Open
Abstract
Glycosphingolipids (GSLs) are composed of hydrophobic ceramide and hydrophilic sugar chains. GSLs cluster to form membrane microdomains (lipid rafts) on plasma membranes, along with several kinds of transducer molecules, including Src family kinases and small G proteins. However, GSL-mediated biological functions remain unclear. Lactosylceramide (LacCer, CDw17) is highly expressed on the plasma membranes of human phagocytes and mediates several immunological and inflammatory reactions, including phagocytosis, chemotaxis, and superoxide generation. LacCer forms membrane microdomains with the Src family tyrosine kinase Lyn and the Gαi subunit of heterotrimeric G proteins. The very long fatty acids C24:0 and C24:1 are the main ceramide components of LacCer in neutrophil plasma membranes and are directly connected with the fatty acids of Lyn and Gαi. These observations suggest that the very long fatty acid chains of ceramide are critical for GSL-mediated outside-in signaling. Sphingosine is another component of ceramide, with the hydrolysis of ceramide by ceramidase producing sphingosine and fatty acids. Sphingosine is phosphorylated by sphingosine kinase to sphingosine-1-phosphate, which is involved in a wide range of cellular functions, including growth, differentiation, survival, chemotaxis, angiogenesis, and embryogenesis, in various types of cells. This review describes the role of ceramide moiety of GSLs and its metabolites in immunological and inflammatory reactions in human.
Collapse
|