1
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
2
|
Parthasarathy G, Venkatesan N, Sidhu GS, Song MJ, Liao CY, Barrow F, Mauer A, Sehrawat T, Nakao Y, Daniel PV, Dasgupta D, Pavelko K, Revelo XS, Malhi H. Deletion of sphingosine 1-phosphate receptor 1 in myeloid cells reduces hepatic inflammatory macrophages and attenuates MASH. Hepatol Commun 2025; 9:e0613. [PMID: 39899672 DOI: 10.1097/hc9.0000000000000613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/02/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Immune cell-driven inflammation is a key mediator of metabolic dysfunction-associated steatohepatitis (MASH) progression. We have previously demonstrated that pharmacological sphingosine 1-phosphate (S1P) receptor modulation ameliorates MASH and is associated with attenuated accumulation of intrahepatic macrophage and T-cell subsets. Although S1P receptors are expressed on several immune cell types, given the prominent role of monocyte-derived recruited macrophages in the sterile inflammation of MASH, we hypothesized that deletion of S1P receptor 1 (S1P1) on myeloid cells may ameliorate MASH by reducing the accumulation of proinflammatory monocyte-derived macrophages in the liver. METHODS The LyzMCre approach was used to generate myeloid cell-specific knockout mice, termed S1pr1MKO. Littermate S1pr1loxp/loxp mice were used as wild-type controls. MASH was established by feeding mice a high-fat, -fructose, and -cholesterol (FFC) diet for 24 weeks, which led to the development of steatohepatitis and MASH-defining cardiometabolic risk factors. Liver injury and inflammation were determined by histological and gene expression analyses. Intrahepatic leukocyte populations were analyzed by mass cytometry and immunohistochemistry. RESULTS Histological examination demonstrated a reduction in liver inflammatory infiltrates and fibrosis in high-fat, -fructose, and -cholesterol-fed S1pr1MKO compared to wild-type. There was a corresponding reduction in alanine aminotransferase, a sensitive marker for liver injury. As determined by mass cytometry, a significant decrease in recruited macrophages was noted in the livers of high-fat, -fructose, and -cholesterol-fed S1pr1MKO mice compared to wild-type. Gene ontology pathway analysis revealed significant suppression of the peroxisome proliferator-activated receptor gamma and mitogen-activated protein kinase pathways in S1pr1MKO consistent with attenuated MASH in mice. CONCLUSIONS Deletion of S1P1 in myeloid cells is sufficient to attenuate intrahepatic accumulation of monocyte-derived macrophages and ameliorate murine MASH.
Collapse
Affiliation(s)
- Gopanandan Parthasarathy
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nanditha Venkatesan
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Guneet Singh Sidhu
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Myeong Jun Song
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chieh-Yu Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fanta Barrow
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amy Mauer
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tejasav Sehrawat
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yasuhiko Nakao
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - P Vineeth Daniel
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Debanjali Dasgupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Zhang B, Han C, Zhang Z, Adiham A, Tan R, Gong P, Gu J. Integrated lipidomic and transcriptomics to explore the effects of ethyl acetate extract of Herpetospermum pedunculosum on nonalcoholic fatty liver disease in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118894. [PMID: 39369916 DOI: 10.1016/j.jep.2024.118894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herpetospermum pedunculosum (Ser.) C.B. Clarke (HP), a traditional Tibetan medicine used to treat hepatobiliary diseases, was confirmed that lignans-enriched ethyl acetate extract of HP (EAHP) could alleviate the hepatic injury by modern pharmacological evidence. However, the effects and potential mechanisms of EAHP against nonalcoholic fatty liver disease (NAFLD) are still unknown. AIM OF THE STUDY To reveal the effects of EAHP on NAFLD and explore the potential mechanisms from the perspective of lipidomics and transcriptomics. MATERIALS AND METHODS UPLC‒Q-TOF‒MS analysis was carried out to investigate the chemical components of EAHP. A Choline-deficient, L-amino acid defined, high fat diet (CDAHFD) was used to establish a NAFLD mouse model. The anti-NAFLD effects of various dosages of EAHP were evaluated by biochemical indexes and histological analysis. Hepatic lipidomic and transcriptomic analysis and multiple bioinformatics methods were used to screen biomarkers and signaling pathways. The levels of the corresponding genes were verified by qPCR. RESULTS 36 kinds of compounds were identified by UPLC‒Q-TOF‒MS analysis. Oral treatment with EAHP significantly decrease the liver index and the levels of ALT and AST in the serum. The measurements lipid content and Oil Red O staining results suggested that EAHP ameliorated lipid metabolism disorders by reducing the content of TG and LDL-C, increasing HDL-C in the liver. H&E staining and ELISA revealed that EAHP restored hepatic inflammatory infiltration and decrease the levels of IL-1β, IL-6, TNF-α, and increase IL-10 in the serum. Lipidomic analysis showed that EAHP could regulate CDAHFD-induced lipid metabolic disorder. The different lipid metabolites included TG, phosphatidyl choline (PC), diacylglycerol (DG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), ceramide (Cer). Transcriptomic analysis revealed that Bmp8b, Nbl1, Rgma, Sphk1, Thbs1, and Ugt8a were important regulators, which were associated with TGF-β signaling pathway and sphingolipid metabolism. The expressions of above genes detected by were qPCR consistent with transcriptomic data. CONCLUSIONS The ameliorative effects of EAHP on NAFLD are potentially attributable to the regulation of sphingolipid metabolism and TGF-β signaling pathway, etc., which results in abnormal hepatic lipid metabolism and inflammatory response.
Collapse
Affiliation(s)
- Boyu Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Cairong Han
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Zhongrui Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Akida Adiham
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Wang B, Wu X, Cheng J, Ye J, Zhu H, Liu X. Regulatory role of S1P and its receptors in sepsis-induced liver injury. Front Immunol 2025; 16:1489015. [PMID: 39935473 PMCID: PMC11811114 DOI: 10.3389/fimmu.2025.1489015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
As an immune and metabolic organ, the liver affects the progression and prognosis of sepsis. Despite the severe adverse effects of sepsis liver injury on the body, treatment options remain limited. Sphingosine-1-phosphate (S1P) is a widely distributed lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PR) to regulate downstream signaling pathways involved in the pathophysiological processes of sepsis, including endothelial permeability, cytokine release, and vascular tone. This review summarizes current research on the role of S1P in normal liver biology and describes the mechanisms by which changes in S1P/S1PR affect the development of liver-related diseases. At the same time, the pathological processes underlying liver injury, as evidenced by clinical manifestations during sepsis, were comprehensively reviewed. This paper focused on the mechanistic pathways through which S1P and its receptors modulate immunity, bile acid metabolism, and liver-intestinal circulation in septic liver injury. Finally, the relationships between S1P and its receptors with liver inflammation and metabolism and the use of related drugs for the treatment of liver injury were examined. By elucidating the role of S1P and its receptor in the pathogenesis of sepsis liver injury, this review established a molecular targeting framework, providing novel insights into clinical and drug development.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Merret PE, Sparfel L, Lavau C, Lagadic-Gossmann D, Martin-Chouly C. Extracellular vesicles as a potential source of biomarkers for endocrine disruptors in MASLD: A short review on the case of DEHP. Biochimie 2025; 228:127-137. [PMID: 39307409 DOI: 10.1016/j.biochi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
Collapse
Affiliation(s)
- Pierre-Etienne Merret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Catherine Lavau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
6
|
Broussard JL, Garfield A, Zarini S, Brozinick JT, Perreault L, Newsom SA, Kahn D, Kerege A, Berry KZ, Bui HH, Bergman BC. Combined diet and exercise training decreases serum lipids associated with insulin resistance. Obesity (Silver Spring) 2024; 32:2334-2344. [PMID: 39587896 PMCID: PMC11601951 DOI: 10.1002/oby.24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE Circulating lipids are linked with insulin resistance and increased cardiovascular disease risk. We previously reported that dihydroceramides, a specific type of sphingolipid, are elevated in insulin-resistant individuals; however, little is known regarding whether insulin-sensitizing lifestyle interventions can improve profiles of sphingolipids and other lipid species. METHODS A total of 21 individuals with obesity participated in a 3-month lifestyle intervention of combined weight loss and exercise training. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps, and serum lipidomics was conducted. RESULTS Following the intervention, BMI was significantly reduced by 10%; VO2peak and insulin sensitivity increased by 12% and 57%, respectively; and total serum triacylglycerol (TAG), diacylglycerol, dihydroceramides, sphingosine-1-phosphate, and sphinganine-1-phosphate were significantly reduced, as were specific species of dihydroceramides (C18:0 and C24:1). Individuals with higher preintervention TAG concentrations had significant decreases in serum lipids, which were not significantly changed in individuals with lower preintervention TAG. CONCLUSIONS These data show that serum sphingolipid species previously linked to insulin resistance in humans can be reduced with insulin-sensitizing lifestyle interventions. Furthermore, individuals with elevated serum TAG may significantly benefit from lifestyle interventions that increase insulin sensitivity due to a greater decrease in serum lipids related to insulin resistance.
Collapse
Affiliation(s)
- Josiane L. Broussard
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Amanda Garfield
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Simona Zarini
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Leigh Perreault
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean A. Newsom
- School of Exercise, Sport, and Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Darcy Kahn
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Kerege
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karin Zemski Berry
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Bryan C. Bergman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
8
|
Anderson A, Kovilakath A, Jamil M, Lambert J, Cowart LA. Adipocyte sphingosine kinase 1 regulates histone modifiers to disrupt circadian function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612486. [PMID: 39345509 PMCID: PMC11429876 DOI: 10.1101/2024.09.13.612486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Circadian rhythms align biological functions with the 24-hour day-night cycle, but modern artificial light disrupts these patterns, contributing to health issues like obesity and cardiovascular disease. The circadian clock operates through a transcriptional-translational feedback loop involving core components such as BMAL1 and CLOCK. Recent research has shown circadian variations in sphingolipid metabolism, specifically sphingosine-1-phosphate (S1P), which plays crucial signaling roles. This study investigates the sphingolipid enzyme, sphingosine kinase 1 (SphK1), which converts sphingosine to S1P, as a circadian-regulated gene in adipocytes. We find that SphK1 expression and activity follow a circadian rhythm, regulated by BMAL1 and CLOCK binding to its promoter. Adipocyte-specific SphK1 knockout mice exhibit disrupted circadian rhythms, and impaired adipocyte function. Additionally, SphK1 deficiency leads to reduced histone acetylation and altered histone deacetylase (HDAC) localization, affecting gene regulation. These results highlight the critical role of SphK1 in linking lipid metabolism with circadian biology.
Collapse
Affiliation(s)
- Andrea Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maryam Jamil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
9
|
Lambert J, Kovilakath A, Jamil M, Valentine Y, Anderson A, Montefusco D, Cowart LA. Sphingosine kinase 1 is induced by glucocorticoids in adipose derived stem cells and enhances glucocorticoid mediated signaling in adipose expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612482. [PMID: 39314417 PMCID: PMC11419133 DOI: 10.1101/2024.09.13.612482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sphingosine kinase 1 (SphK1) plays a crucial role in regulating metabolic pathways within adipocytes and is elevated in the adipose tissue of obese mice. While previous studies have reported both pro- and inhibitory effects of SphK1 and its product, sphingosine-1-phosphate (S1P), on adipogenesis, the precise mechanisms remain unclear. This study explores the timing and downstream effects of SphK1/S1P expression and activation during in vitro adipogenesis. We demonstrate that the synthetic glucocorticoid dexamethasone robustly induces SphK1 expression, suggesting its involvement in glucocorticoid-dependent signaling during adipogenesis. Notably, the activation of C/EBPδ, a key gene in early adipogenesis and a target of glucocorticoids, is diminished in SphK1-/- adipose-derived stem cells (ADSCs). Furthermore, glucocorticoid administration promotes adipose tissue expansion via SphK1 in a depot-specific manner. Although adipose expansion still occurs in SphK1-/- mice, it is significantly reduced. These findings indicate that while SphK1 is not essential for adipogenesis, it enhances early gene activation, thereby facilitating adipose tissue expansion.
Collapse
Affiliation(s)
- Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maryam Jamil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yolander Valentine
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrea Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - David Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
10
|
Wei CS, Song LL, Peng ZX, Wang XL. Influence of SphK1 on Inflammatory Responses in Lipopolysaccharide-Challenged RAW 264.7 Cells. Cell Biochem Biophys 2024; 82:2511-2521. [PMID: 38909173 DOI: 10.1007/s12013-024-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious respiratory disorders caused by a variety of intrapulmonary and extrapulmonary factors. Their incidence is increasing year by year, with high morbidity and mortality rates and lack of effective treatment. Inflammation plays a crucial role in ALI development, with sphingosine kinase 1 (SphK1) being a pivotal enzyme influencing sphingolipid metabolism and participating in inflammatory responses. However, the specific impact and the signaling pathway underlying SphK1 in lipopolysaccharide (LPS)-induced ALI/ARDS are poorly understood. This investigation aimed to explore the influence of SphK1 on inflammation and delve into the mechanistic aspects of inflammation in RAW 264.7 cells during LPS-induced ALI, which is of great importance in providing new targets and strategies for ALI/ARDS treatment.
Collapse
Affiliation(s)
- Chao-Shun Wei
- Medical College of Jishou University, Jishou, Hunan, 416000, PR China
| | - Lin-Li Song
- Medical College of Jishou University, Jishou, Hunan, 416000, PR China
| | - Zi-Xi Peng
- Medical College of Jishou University, Jishou, Hunan, 416000, PR China
| | - Xiao-Li Wang
- Medical College of Hunan Normal University, Changsha, Hunan, 410006, PR China.
| |
Collapse
|
11
|
Mendez Espinoza I, Choos END, Ecelbarger CM, Shepard BD. SGLT2 inhibition leads to a restoration of hepatic and circulating metabolites involved in the folate cycle and pyrimidine biosynthesis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G235-G253. [PMID: 38915277 PMCID: PMC11427092 DOI: 10.1152/ajpgi.00029.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Inhibition of sodium-glucose cotransporter 2 (SGLT2) by empagliflozin (EMPA) and other "flozins" can improve glycemic control under conditions of diabetes and kidney disease. Though they act on the kidney, they also offer cardiovascular and liver protection. Previously, we found that EMPA decreased circulating triglycerides and hepatic lipid and cholesterol esters in male TallyHo mice fed a high-milk-fat diet (HMFD). The goal of this study was to determine whether the liver protection is associated with a change in metabolic function by characterizing the hepatic and circulating metabolic and lipidomic profiles using targeted LC-MS. In both male and female mice, HMFD feeding significantly altered the circulating and hepatic metabolome compared with low-fat diet (LFD). Addition of EMPA resulted in the restoration of circulating orotate (intermediate in pyrimidine biosynthesis) and hepatic dihydrofolate (intermediate in the folate and methionine cycles) levels in males and acylcarnitines in females. These changes were partially explained by altered expression of rate-limiting enzymes in these pathways. This metabolic signature was not detected when EMPA was incorporated into an LFD, suggesting that the restoration requires the metabolic shift that accompanies the HMFD. Notably, the HMFD increased expression of 18 of 20 circulating amino acids in males and 11 of 20 in females, and this pattern was reversed by EMPA. Finally, we confirmed that SGLT2 inhibition upregulates ketone bodies including β-hydroxybutyrate. Collectively, this study highlights the metabolic changes that occur with EMPA treatment, and sheds light on the possible mechanisms by which this drug offers liver and systemic protection.NEW & NOTEWORTHY Sodium-glucose cotransporter 2 (SGLT2) inhibitors, including empagliflozin, have emerged as a new treatment option for individuals with type 2 diabetes that have positive impacts on kidney and cardiovascular disease. However, less is known about their impact on other tissues, including the liver. Here, we report that empagliflozin reduces hepatic steatosis that is associated with restoring metabolic intermediates in the folate and pyrimidine biosynthesis pathways. These changes may lead to new approaches to treat nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ileana Mendez Espinoza
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Elijah N D Choos
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Carolyn M Ecelbarger
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
12
|
Ramos-Molina B, Rossell J, Pérez-Montes de Oca A, Pardina E, Genua I, Rojo-López MI, Julián MT, Alonso N, Julve J, Mauricio D. Therapeutic implications for sphingolipid metabolism in metabolic dysfunction-associated steatohepatitis. Front Endocrinol (Lausanne) 2024; 15:1400961. [PMID: 38962680 PMCID: PMC11220194 DOI: 10.3389/fendo.2024.1400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver disease, has increased worldwide along with the epidemics of obesity and related dysmetabolic conditions characterized by impaired glucose metabolism and insulin signaling, such as type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive accumulation of lipid droplets in hepatocytes that occurs when the hepatic lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a central node in the pathogenesis of MASLD and is frequently linked to the overproduction of lipotoxic species, increased cellular stress, and mitochondrial dysfunction. A compelling body of evidence suggests that the accumulation of lipid species derived from sphingolipid metabolism, such as ceramides, contributes significantly to the structural and functional tissue damage observed in more severe grades of MASLD by triggering inflammatory and fibrogenic mechanisms. In this context, MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), which represents the advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role of sphingolipid species as drivers of MASH and the mechanisms involved in the disease. In addition, given the absence of approved therapies and the limited options for treating MASH, we discuss the feasibility of therapeutic strategies to protect against MASH and other severe manifestations by modulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Joana Rossell
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Pardina
- Department de Biochemistry & Molecular Biology, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Idoia Genua
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina I. Rojo-López
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
| | - María Teresa Julián
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Julve
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Didac Mauricio
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), Vic, Spain
| |
Collapse
|
13
|
Brown RDR, Green CD, Weigel C, Ni B, Celi FS, Proia RL, Spiegel S. Overexpression of ORMDL3 confers sexual dimorphism in diet-induced non-alcoholic steatohepatitis. Mol Metab 2024; 79:101851. [PMID: 38081412 PMCID: PMC10772294 DOI: 10.1016/j.molmet.2023.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
OBJECTIVE The bioactive sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) accumulate with overnutrition and have been implicated in non-alcoholic steatohepatitis (NASH) development. ORMDL3, a negative regulator of the rate-limiting step in ceramide biosynthesis, has been identified as an obesity-related gene. Therefore, we assessed the role of ORMDL3 in diet-induced obesity and development of NASH. METHODS Globally overexpressing Ormdl3-Flag transgenic mice (ORMDL3TG) were fed a western high-fat, carbohydrate and cholesterol enriched diet, with high fructose-glucose drinking water. Physiological, biochemical and sphingolipidomic analyses were employed to measure the effect of ORMDL3 overexpression on NASH development. RESULTS ORMDL3TG male but not female mice fed a western high-fat diet and sugar water had exacerbated adipocyte hypertrophy together with increased severity of white adipose inflammation and fibrosis. Hepatic steatosis, dyslipidemia, impaired glucose homeostasis, hyperinsulinemia, and insulin resistance were significantly more severe only in obese ORMDL3TG male mice that accompanied dramatic liver fibrosis, inflammation, and formation of hepatic crown-like structures, which are unique features of human and murine NASH. Obesogenic diet induces ORMDL expression in male mice but reduces it in females. Mechanistically, overexpression of Ormdl3 lowered the levels of S1P and ceramides only in obese female mice and antithetically increased them in tissues of obese males. ORMDL3TG male mice exhibited a much greater induction of the UPR, propagating ER stress that contributed to their early development of NASH. CONCLUSIONS This study uncovered a previously unrecognized role for ORMDL3 in sexual dimorphism important for the development and progression of NASH.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Bin Ni
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francesco S Celi
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Richard L Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
14
|
Rida R, Kreydiyyeh S. Effect of FTY720P on lipid accumulation in HEPG2 cells. Sci Rep 2023; 13:19716. [PMID: 37953311 PMCID: PMC10641067 DOI: 10.1038/s41598-023-46011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by an increase in hepatic lipid accumulation due to impaired lipid metabolism. Although a correlation was found between NAFLD and sphingosine-1-phosphate (S1P), the role of the sphingolipid remains controversial. The aim of this study was to investigate any involvement of S1P in steatosis using its analog FTY720P and HepG2 cells. Lipid accumulation was induced by incubating the cells in a mixture of oleic and palmitic acid, and was quantified using Oil Red O. The involvement of signaling mediators was studied using pharmacological inhibitors and western blot analysis. FTY720P increased lipid accumulation, but this increase wasn't maintained in the presence of inhibitors of S1PR3, Gq, SREBP, mTOR, PI3K, and PPARγ indicating their involvement in the process. The results revealed that FTY720P binds to S1PR3 which activates sequentially Gq, PI3K, and mTOR leading to an increase in SREBP expression and PPARγ activation. It was concluded that in presence of a high level of fatty acids, lipid accumulation is increased in hepatocytes by the exogenously added FTY720P.
Collapse
Affiliation(s)
- Reem Rida
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
15
|
Morishige JI, Yoshioka K, Nakata H, Ishimaru K, Nagata N, Tanaka T, Takuwa Y, Ando H. Sphingosine kinase 1 is involved in triglyceride breakdown by maintaining lysosomal integrity in brown adipocytes. J Lipid Res 2023; 64:100450. [PMID: 37751791 PMCID: PMC10630120 DOI: 10.1016/j.jlr.2023.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) has been implicated in brown adipose tissue (BAT) formation and energy consumption; however, the mechanistic role of sphingolipids, including S1P, in BAT remains unclear. Here, we showed that, in mice, BAT activation by cold exposure upregulated mRNA and protein expression of the S1P-synthesizing enzyme sphingosine kinase 1 (SphK1) and S1P production in BAT. Treatment of wild-type brown adipocytes with exogenous S1P or S1P receptor subtype-selective agonists stimulated triglyceride (TG) breakdown only marginally, compared with noradrenaline. However, genetic deletion of Sphk1 resulted in hypothermia and diminished body weight loss upon cold exposure, suggesting that SphK1 is involved in thermogenesis through mechanisms different from receptor-mediated, extracellular action of S1P. In BAT of wild-type mice, SphK1 was localized largely in the lysosomes of brown adipocytes. In the brown adipocytes of Sphk1-/- mice, the number of lysosomes was reduced and lysosomal function, including proteolytic activity, acid esterase activity, and motility, was impaired. Concordantly, nuclear translocation of transcription factor EB, a master transcriptional regulator of lysosome biogenesis, was reduced, leading to decreased mRNA expression of the lysosome-related genes in Sphk1-/- BAT. Moreover, BAT of Sphk1-/- mice showed greater TG accumulation with dominant larger lipid droplets in brown adipocytes. Inhibition of lysosomes with chloroquine resulted in a less extent of triglyceride accumulation in Sphk1-/- brown adipocytes compared with wild-type brown adipocytes, suggesting a reduced lysosome-mediated TG breakdown in Sphk1-/- mice. Our results indicate a novel role of SphK1 in lysosomal integrity, which is required for TG breakdown and thermogenesis in BAT.
Collapse
Affiliation(s)
- Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kazuaki Yoshioka
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Kazuhiro Ishimaru
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Yoh Takuwa
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
16
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
17
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
18
|
Musso G, Saba F, Cassader M, Gambino R. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances. Prog Lipid Res 2023; 91:101238. [PMID: 37244504 DOI: 10.1016/j.plipres.2023.101238] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.
Collapse
Affiliation(s)
- Giovanni Musso
- Dept of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy.
| | - Francesca Saba
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Abdelraheem KM, Younis NN, Shaheen MA, Elswefy SE, Ali SI. Raspberry ketone improves non-alcoholic fatty liver disease induced in rats by modulating sphingosine kinase/sphingosine-1-phosphate and toll-like receptor 4 pathways. J Pharm Pharmacol 2023:7160323. [PMID: 37167472 DOI: 10.1093/jpp/rgad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES To investigate the therapeutic role of calorie-restricted diet (CR) and raspberry ketone (RK) in non-alcoholic fatty liver disease (NAFLD) and the implication of sphingosine kinase-1 (SphK1)/sphingosine-1-phosphate (S1P) and toll-like receptor 4 (TLR4) signalling. METHODS NAFLD was induced by feeding rats high-fat-fructose-diet (HFFD) for 6 weeks. Rats were then randomly assigned to three groups (n = 6 each); NAFLD group continued on HFFD for another 8 weeks. CR group was switched to CR diet (25% calorie restriction) for 8 weeks and RK group was switched to normal diet and received RK (55 mg/kg/day; orally) for 8 weeks. Another six rats were used as normal control. KEY FINDINGS HFFD induced a state of NAFLD indicated by increased fat deposition in liver tissue along with dyslipidemia, elevated liver enzymes, oxidative stress and inflammation. Either CR diet or RK reversed these changes and decreased HFFD-induced elevation of hepatic SphK1, S1P, S1PR1 and TLR4. Of notice, RK along with a normal calorie diet was even better than CR alone in most studied parameters. CONCLUSIONS SphK1/S1P and TLR4 are interconnected and related to the establishment of HFFD-induced NAFLD and can be modulated by RK. Supplementation of RK without calorie restriction to patients with NAFLD unable to follow CR diet to achieve their treatment goals would be a promising therapeutic modality.
Collapse
Affiliation(s)
- Kareem M Abdelraheem
- Biochemistry Department, Faculty of Pharmacy, Sinai University - Qantara Branch, Ismailia, Egypt
| | - Nahla N Younis
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Shaheen
- Histology and Cell Biology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Sahar E Elswefy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Biochemistry Department, Faculty of Pharmacy, Delta University for Sciences and Technology, Gamasa, Egypt
| | - Sousou I Ali
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Brown RDR, Spiegel S. ORMDL in metabolic health and disease. Pharmacol Ther 2023; 245:108401. [PMID: 37003301 PMCID: PMC10148913 DOI: 10.1016/j.pharmthera.2023.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Obesity is a key risk factor for the development of metabolic disease. Bioactive sphingolipid metabolites are among the lipids increased in obesity. Obesogenic saturated fatty acids are substrates for serine palmitoyltransferase (SPT) the rate-limiting step in de novo sphingolipid biosynthesis. The mammalian orosomucoid-like protein isoforms ORMDL1-3 negatively regulate SPT activity. Here we summarize evidence that dysregulation of sphingolipid metabolism and SPT activity correlates with pathogenesis of obesity. This review also discusses the current understanding of the function of SPT and ORMDL in obesity and metabolic disease. Gaps and limitations in current knowledge are highlighted together with the need to further understand how ORMDL3, which has been identified as an obesity-related gene, contributes to the pathogenesis of obesity and development of metabolic disease related to its physiological functions. Finally, we point out the needs to move this young field of research forward.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
21
|
Rigamonti AE, Dei Cas M, Caroli D, De Col A, Cella SG, Paroni R, Sartorio A. Identification of a Specific Plasma Sphingolipid Profile in a Group of Normal-Weight and Obese Subjects: A Novel Approach for a "Biochemical" Diagnosis of Metabolic Syndrome? Int J Mol Sci 2023; 24:ijms24087451. [PMID: 37108620 PMCID: PMC10138812 DOI: 10.3390/ijms24087451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome is nosographically defined by using clinical diagnostic criteria such as those of the International Diabetes Federation (IDF) ones, including visceral adiposity, blood hypertension, insulin resistance and dyslipidemia. Due to the pathophysiological implications of the cardiometabolic risk of the obese subject, sphingolipids, measured in the plasma, might be used to biochemically support the diagnosis of metabolic syndrome. A total of 84 participants, including normal-weight (NW) and obese subjects without (OB-SIMET-) and with (OB-SIMET+) metabolic syndrome, were included in the study, and sphingolipidomics, including ceramides (Cer), dihydroceramides (DHCer), hexosyl-ceramides (HexCer), lactosyl-ceramides (LacCer), sphingomyelins (SM) and GM3 ganglosides families, and sphingosine-1-phosphate (S1P) and its congeners, was performed in plasma. Only total DHCers and S1P were significantly higher in OB-SIMET+ than NW subjects (p < 0.05), while total Cers decreased in both obese groups, though statistical significance was reached only in OB-SIMET- (vs. NW) subjects (p < 0.05). When considering the comparisons of the single sphingolipid species in the obese groups (OB-SIMET- or OB-SIMET+) vs. NW subjects, Cer 24:0 was significantly decreased (p < 0.05), while Cer 24:1, DHCer 16:0, 18:0, 18:1 and 24:1, and SM 18:0, 18:1 and 24:1 were significantly increased (p < 0.05). Furthermore, taking into account the same groups for comparison, HexCer 22:0 and 24:0, and GM3 22:0 and 24:0 were significantly decreased (p < 0.05), while HexCer 24:1 and S1P were significantly increased (p < 0.05). After having analyzed all data via a PLS-DA-based approach, the subsequent determination of the VIP scores evidenced the existence of a specific cluster of 15 sphingolipids endowed with a high discriminating performance (i.e., VIP score > 1.0) among the three groups, including DHCer 18:0, DHCer 24:1, Cer 18:0, HexCer 22:0, GM3 24:0, Cer C24:1, SM 18:1, SM 18:0, DHCer 18:1, HexCer 24:0, SM 24:1, S1P, SM 16:0, HexCer 24:1 and LacCer 22:0. After having run a series of multiple linear regressions, modeled by inserting each sphingolipid having a VIP score > 1.0 as a dependent variable, and waist circumference (WC), systolic/diastolic blood pressures (SBP/DBP), homeostasis model assessment-estimated insulin resistance (HOMA-IR), high-density lipoprotein (HDL), triglycerides (TG) (surrogates of IDF criteria) and C-reactive protein (CRP) (a marker of inflammation) as independent variables, WC was significantly associated with DHCer 18:0, DHCer 24:1, Cer 18:0, HexCer 22:0, Cer 24:1, SM 18:1, and LacCer 22:0 (p < 0.05); SBP with Cer 18:0, Cer 24:1, and SM 18:0 (p < 0.05); HOMA-IR with DHCer 18:0, DHCer 24:1, Cer 18:0, Cer 24:1, SM 18:1, and SM 18:0 (p < 0.05); HDL with HexCer 22:0, and HexCer 24:0 (p < 0.05); TG with DHCer 18:1, DHCer 24:1, SM 18:1, and SM 16:0 (p < 0.05); CRP with DHCer 18:1, and SP1 (p < 0.05). In conclusion, a cluster of 15 sphingolipid species is able to discriminate, with high performance, NW, OB-SIMET- and OB-SIMET+ groups. Although (surrogates of) the IDF diagnostic criteria seem to predict only partially, but congruently, the observed sphingolipid signature, sphingolipidomics might represent a promising "biochemical" support for the clinical diagnosis of metabolic syndrome.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Silvano G Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| |
Collapse
|
22
|
Hirao H, Kojima H, Dery KJ, Nakamura K, Kadono K, Zhai Y, Farmer DG, Kaldas FM, Kupiec-Weglinski JW. Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation. J Clin Invest 2023; 133:e162940. [PMID: 36719377 PMCID: PMC9888387 DOI: 10.1172/jci162940] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils, the largest innate immune cell population in humans, are the primary proinflammatory sentinel in the ischemia-reperfusion injury (IRI) mechanism in orthotopic liver transplantation (OLT). Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, CC1, or CD66a) is essential in neutrophil activation and serves as a checkpoint regulator of innate immune-driven IRI cascade in OLT. Although CC1 alternative splicing generates two functionally distinct short and long cytoplasmic isoforms, their role in neutrophil activation remains unknown. Here, we undertook molecular and functional studies to interrogate the significance of neutrophil CC1 signaling in mouse and human OLT recipients. In the experimental arm, we employed a mouse OLT model to document that ablation of recipient-derived neutrophil CC1-long (CC1-L) isotype aggravated hepatic IRI by promoting neutrophil extracellular traps (NETs). Notably, by regulating the S1P-S1PR2/S1PR3 axis, neutrophil CC1-L determined susceptibility to NET formation via autophagy signaling. In the clinical arm, liver grafts from 55 transplant patients selectively enriched for neutrophil CC1-L showed relative resistance to ischemia-reperfusion (IR) stress/tissue damage, improved hepatocellular function, and clinical outcomes. In conclusion, despite neutrophils being considered a principal villain in peritransplant tissue injury, their CC1-L isoform may serve as a regulator of IR stress resistance/NETosis in human and mouse OLT recipients.
Collapse
Affiliation(s)
- Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hidenobu Kojima
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kenneth J. Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yuan Zhai
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Douglas G. Farmer
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
23
|
Wang X, He Q, Zhou C, Xu Y, Liu D, Fujiwara N, Kubota N, Click A, Henderson P, Vancil J, Marquez CA, Gunasekaran G, Schwartz ME, Tabrizian P, Sarpel U, Fiel MI, Diao Y, Sun B, Hoshida Y, Liang S, Zhong Z. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development. Immunity 2023; 56:58-77.e11. [PMID: 36521495 PMCID: PMC9839616 DOI: 10.1016/j.immuni.2022.11.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/12/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Obesity-induced chronic liver inflammation is a hallmark of nonalcoholic steatohepatitis (NASH)-an aggressive form of nonalcoholic fatty liver disease. However, it remains unclear how such a low-grade, yet persistent, inflammation is sustained in the liver. Here, we show that the macrophage phagocytic receptor TREM2, induced by hepatocyte-derived sphingosine-1-phosphate, was required for efferocytosis of lipid-laden apoptotic hepatocytes and thereby maintained liver immune homeostasis. However, prolonged hypernutrition led to the production of proinflammatory cytokines TNF and IL-1β in the liver to induce TREM2 shedding through ADAM17-dependent proteolytic cleavage. Loss of TREM2 resulted in aberrant accumulation of dying hepatocytes, thereby further augmenting proinflammatory cytokine production. This ultimately precipitated a vicious cycle that licensed chronic inflammation to drive simple steatosis transition to NASH. Therefore, impaired macrophage efferocytosis is a previously unrecognized key pathogenic event that enables chronic liver inflammation in obesity. Blocking TREM2 cleavage to restore efferocytosis may represent an effective strategy to treat NASH.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qifeng He
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chuanli Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yueyuan Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA
| | - Danhui Liu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arielle Click
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Polly Henderson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Janiece Vancil
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cesia Ammi Marquez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh Gunasekaran
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myron E Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Parissa Tabrizian
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Umut Sarpel
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Jo H, Shim K, Jeoung D. The Crosstalk between FcεRI and Sphingosine Signaling in Allergic Inflammation. Int J Mol Sci 2022; 23:ijms232213892. [PMID: 36430378 PMCID: PMC9695510 DOI: 10.3390/ijms232213892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingolipid molecules have recently attracted attention as signaling molecules in allergic inflammation diseases. Sphingosine-1-phosphate (S1P) is synthesized by two isoforms of sphingosine kinases (SPHK 1 and SPHK2) and is known to be involved in various cellular processes. S1P levels reportedly increase in allergic inflammatory diseases, such as asthma and anaphylaxis. FcεRI signaling is necessary for allergic inflammation as it can activate the SPHKs and increase the S1P level; once S1P is secreted, it can bind to the S1P receptors (S1PRs). The role of S1P signaling in various allergic diseases is discussed. Increased levels of S1P are positively associated with asthma and anaphylaxis. S1P can either induce or suppress allergic skin diseases in a context-dependent manner. The crosstalk between FcεRI and S1P/SPHK/S1PRs is discussed. The roles of the microRNAs that regulate the expression of the components of S1P signaling in allergic inflammatory diseases are also discussed. Various reports suggest the role of S1P in FcεRI-mediated mast cell (MC) activation. Thus, S1P/SPHK/S1PRs signaling can be the target for developing anti-allergy drugs.
Collapse
|
25
|
Kołakowski A, Dziemitko S, Chmielecka A, Żywno H, Bzdęga W, Charytoniuk T, Chabowski A, Konstantynowicz-Nowicka K. Molecular Advances in MAFLD—A Link between Sphingolipids and Extracellular Matrix in Development and Progression to Fibrosis. Int J Mol Sci 2022; 23:ijms231911380. [PMID: 36232681 PMCID: PMC9569877 DOI: 10.3390/ijms231911380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a major cause of liver diseases globally and its prevalence is expected to grow in the coming decades. The main cause of MAFLD development is changed in the composition of the extracellular matrix (ECM). Increased production of matrix molecules and inflammatory processes lead to progressive fibrosis, cirrhosis, and ultimately liver failure. In addition, increased accumulation of sphingolipids accompanied by increased expression of pro-inflammatory cytokines in the ECM is closely related to lipogenesis, MAFLD development, and its progression to fibrosis. In our work, we will summarize all information regarding the role of sphingolipids e.g., ceramide and S1P in MAFLD development. These sphingolipids seem to have the most significant effect on macrophages and, consequently, HSCs which trigger the entire cascade of overproduction matrix molecules, especially type I and III collagen, proteoglycans, elastin, and also tissue inhibitors of metalloproteinases, which as a result cause the development of liver fibrosis.
Collapse
Affiliation(s)
- Adrian Kołakowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Sylwia Dziemitko
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Hubert Żywno
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Wiktor Bzdęga
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
- Department of Ophthalmology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
26
|
Renal Metabolome in Obese Mice Treated with Empagliflozin Suggests a Reduction in Cellular Respiration. Biomolecules 2022; 12:biom12091176. [PMID: 36139016 PMCID: PMC9496198 DOI: 10.3390/biom12091176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Sodium glucose cotransporter, type 2 inhibitors, such as Empagliflozin, are protective of the kidneys by unclear mechanisms. Our aim was to determine how Empagliflozin affected kidney cortical metabolome and lipidome in mice. Adult male TALLYHO mice (prone to obesity) were treated with a high-milk-fat diet, or this diet containing Empagliflozin (0.01%), for 8 weeks. Targeted and untargeted metabolomics and lipidomics were conducted on kidney cortex by liquid chromatography followed by tandem mass-spectroscopy. Metabolites were statistically analyzed by MetaboAnalyst 5.0, LipidSig (lipid species only) and/or CEU Mass Mediator (untargeted annotation). In general, volcano plotting revealed oppositely skewed patterns for targeted metabolites (primarily hydrophilic) and lipids (hydrophobic) in that polar metabolites showed a larger number of decreased species, while non-polar (lipids) had a greater number of increased species (>20% changed and/or raw p-value < 0.05). The top three pathways regulated by Empagliflozin were urea cycle, spermine/spermidine biosynthesis, and aspartate metabolism, with an amino acid network being highly affected, with 14 of 20 classic amino acids down-regulated. Out of 75 changed polar metabolites, only three were up-regulated, i.e., flavin mononucleotide (FMN), uridine, and ureidosuccinic acid. Both FMN and uridine have been shown to be protective of the kidney. Scrutiny of metabolites of glycolysis/gluconeogenesis/Krebs cycle revealed a 20−45% reduction in several species, including phosphoenolpyruvate (PEP), succinate, and malic acid. In contrast, although overall lipid quantity was not higher, several lipid species were increased by EMPA, including those of the classes, phosphatidic acids, phosphatidylcholines, and carnitines. Overall, these analyses suggest a protection from extensive metabolic load and the corresponding oxidative stress with EMPA in kidney. This may be in response to reduced energy demands of the proximal tubule as a result of inhibition of transport and/or differences in metabolic pools available for metabolism.
Collapse
|
27
|
Wollny T, Wnorowska U, Piktel E, Suprewicz Ł, Król G, Głuszek K, Góźdź S, Kopczyński J, Bucki R. Sphingosine-1-Phosphate-Triggered Expression of Cathelicidin LL-37 Promotes the Growth of Human Bladder Cancer Cells. Int J Mol Sci 2022; 23:7443. [PMID: 35806446 PMCID: PMC9267432 DOI: 10.3390/ijms23137443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
It has been proven that tumour growth and progression are regulated by a variety of mediators released during the inflammatory process preceding the tumour appearance, but the role of inflammation in the development of bladder cancer is ambiguous. This study was designed around the hypothesis that sphingosine-1-phosphate (S1P), as a regulator of several cellular processes important in both inflammation and cancer development, may exert some of the pro-tumorigenic effects indirectly due to its ability to regulate the expression of human cathelicidin (hCAP-18). LL-37 peptide released from hCAP-18 is involved in the development of various types of cancer in humans, especially those associated with infections. Using immunohistological staining, we showed high expression of hCAP-18/LL-37 and sphingosine kinase 1 (the enzyme that forms S1P from sphingosine) in human bladder cancer cells. In a cell culture model, S1P was able to stimulate the expression and release of hCAP-18/LL-37 from human bladder cells, and the addition of LL-37 peptide dose-dependently increased their proliferation. Additionally, the effect of S1P on LL-37 release was inhibited in the presence of FTY720P, a synthetic immunosuppressant that blocks S1P receptors. Together, this study presents the possibility of paracrine relation in which LL-37 production following cell stimulation by S1P promotes the development and growth of bladder cancer.
Collapse
Affiliation(s)
- Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, Mickiewicza 2B, 15-222 Bialystok, Poland;
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Katarzyna Głuszek
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Stanisław Góźdź
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Janusz Kopczyński
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| |
Collapse
|
28
|
Montefusco D, Jamil M, Maczis MA, Schroeder W, Levi M, Ranjit S, Allegood J, Bandyopadhyay D, Retnam R, Spiegel S, Cowart LA. Sphingosine Kinase 1 Mediates Sexual Dimorphism in Fibrosis in a Mouse Model of NASH. Mol Metab 2022; 62:101523. [PMID: 35671973 PMCID: PMC9194589 DOI: 10.1016/j.molmet.2022.101523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Men with non-alcoholic fatty liver disease (NAFLD) are more likely to progress to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of this dimorphism is unclear. We have previously shown that mice with global deletion of SphK1, the enzyme that produces the bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), were protected from development of NASH. The aim of this study was to elucidate the role of hepatocyte-specific SphK1 in development of NASH and to compare its contribution to hepatosteatosis in male and female mice. RESULTS We generated hepatocyte-specific SphK1 knockout mice (SphK1-hKO). Unlike the global knockout, SphK1-hKO male mice were not protected from diet-induced steatosis, inflammation, or fibrogenesis. In contrast, female SphK1-hKO mice were protected from inflammation. Surprisingly, however, in these female mice, there was a ∼10-fold increase in the fibrosis markers Col1α1 and 2-3 fold induction of alpha smooth muscle actin and the pro-fibrotic chemokine CCL5. Because increased fibrosis in female SphK1-hKO mice occurred despite an attenuated inflammatory response, we investigated the crosstalk between hepatocytes and hepatic stellate cells, central players in fibrosis. We found that estrogen stimulated release of S1P from female hepatocytes preventing TGFβ-induced expression of Col1α1 in HSCs via S1PR3. CONCLUSIONS The results revealed a novel pathway of estrogen-mediated cross-talk between hepatocytes and HSCs that may contribute to sex differences in NAFLD through an anti-fibrogenic function of the S1P/S1PR3 axis. This pathway is susceptible to pharmacologic manipulation, which may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- David Montefusco
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA.
| | - Maryam Jamil
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Melissa A Maczis
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - William Schroeder
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Jeremy Allegood
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | | | - Reuben Retnam
- Virginia Commonwealth University Department of Biostatistics, VA, USA
| | - Sarah Spiegel
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - L Ashley Cowart
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA; Hunter Holmes McGuire VAMC, Richmond, VA, USA
| |
Collapse
|
29
|
Varre JV, Holland WL, Summers SA. You aren't IMMUNE to the ceramides that accumulate in cardiometabolic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159125. [PMID: 35218934 PMCID: PMC9050903 DOI: 10.1016/j.bbalip.2022.159125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Obesity leads to persistent increases in immune responses that contribute to cardiometabolic pathologies such as diabetes and cardiovascular disease. Pro-inflammatory macrophages infiltrate the expanding fat mass, which leads to increased production of cytokines such as tumor necrosis factor-alpha. Moreover, saturated fatty acids enhance signaling through the toll-like receptors involved in innate immunity. Herein we discuss the evidence that ceramides-which are intermediates in the biosynthetic pathway that produces sphingolipids-are essential intermediates that link these inflammatory signals to impaired tissue function. We discuss the mechanisms linking these immune insults to ceramide production and review the numerous ceramide actions that alter cellular metabolism, induce oxidative stress, and stimulate apoptosis. Lastly, we evaluate the correlation of ceramides in humans with inflammation-linked cardiometabolic disease and discuss preclinical studies which suggest that ceramide-lowering interventions may be an effective strategy to treat or prevent such maladies.
Collapse
Affiliation(s)
- Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America.
| |
Collapse
|
30
|
Jackson KG, Way GW, Zhou H. Bile acids and sphingolipids in non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1163-1171. [PMID: 35788089 PMCID: PMC9337250 DOI: 10.1097/cm9.0000000000002156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is one of the fastest-growing diseases, and its global prevalence is estimated to increase >50% by 2030. NAFLD is comorbid with metabolic syndrome, obesity, type 2 diabetes, and insulin resistance. Despite extensive research efforts, there are no pharmacologic or biological therapeutics for the treatment of NAFLD. Bile acids and sphingolipids are well-characterized signaling molecules. Over the last few decades, researchers have uncovered potential mechanisms by which bile acids and sphingolipids regulate hepatic lipid metabolism. Dysregulation of bile acid and sphingolipid metabolism has been linked to steatosis, inflammation, and fibrosis in patients with NAFLD. This clinical observation has been recapitulated in animal models, which are well-accepted by experts in the hepatology field. Recent transcriptomic and lipidomic studies also show that sphingolipids are important players in the pathogenesis of NAFLD. Moreover, the identification of bile acids as activators of sphingolipid-mediated signaling pathways established a novel theory for bile acid and sphingolipid biology. In this review, we summarize the recent advances in the understanding of bile acid and sphingolipid-mediated signaling pathways as potential contributors to NAFLD. A better understanding of the pathologic effects mediated by bile acids and sphingolipids will facilitate the development of new diagnostic and therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Kaitlyn G. Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Grayson W. Way
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
31
|
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice. Int J Mol Sci 2022; 23:ijms23105675. [PMID: 35628485 PMCID: PMC9147974 DOI: 10.3390/ijms23105675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sodium-glucose co-transporters (SGLTs) serve to reabsorb glucose in the kidney. Recently, these transporters, mainly SGLT2, have emerged as new therapeutic targets for patients with diabetes and kidney disease; by inhibiting glucose reabsorption, they promote glycosuria, weight loss, and improve glucose tolerance. They have also been linked to cardiac protection and mitigation of liver injury. However, to date, the mechanism(s) by which SGLT2 inhibition promotes systemic improvements is not fully appreciated. Using an obese TallyHo mouse model which recapitulates the human condition of diabetes and nonalcoholic fatty liver disease (NAFLD), we sought to determine how modulation of renal glucose handling impacts liver structure and function. Apart from an attenuation of hyperglycemia, Empagliflozin was found to decrease circulating triglycerides and lipid accumulation in the liver in male TallyHo mice. This correlated with lowered hepatic cholesterol esters. Using in vivo MRI analysis, we further determined that the reduction in hepatic steatosis in male TallyHo mice was associated with an increase in nuchal white fat indicative of "healthy adipose expansion". Notably, this whitening of the adipose came at the expense of brown adipose tissue. Collectively, these data indicate that the modulation of renal glucose handling has systemic effects and may be useful as a treatment option for NAFLD and steatohepatitis.
Collapse
|
32
|
Distinct Effects of Cannabidiol on Sphingolipid Metabolism in Subcutaneous and Visceral Adipose Tissues Derived from High-Fat-Diet-Fed Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23105382. [PMID: 35628194 PMCID: PMC9142011 DOI: 10.3390/ijms23105382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Available data suggest that cannabidiol (CBD) may ameliorate symptoms of insulin resistance by modulating the sphingolipid concentrations in particular organs. However, it is not entirely clear whether its beneficial actions also involve adipose tissues in a state of overnutrition. The aim of the study was to evaluate the effect of CBD on sphingolipid metabolism pathways and, as a result, on the development of insulin resistance in subcutaneous (SAT) and visceral (VAT) adipose tissues of an animal model of HFD-induced insulin resistance. Our experiment was performed on Wistar rats that were fed with a high-fat diet and/or received intraperitoneal CBD injections. We showed that CBD significantly lowered the ceramide content in VAT by reducing its de novo synthesis and increasing its catabolism. However, in SAT, CBD decreased the ceramide level through the inhibition of salvage and de novo synthesis pathways. All of these changes restored adipose tissues’ sensitivity to insulin. Our study showed that CBD sensitized adipose tissue to insulin by influencing the metabolism of sphingolipids under the conditions of increased availability of fatty acids in the diet. Therefore, we believe that CBD use may be considered as a potential therapeutic strategy for treating or reducing insulin resistance, T2DM, and metabolic syndrome.
Collapse
|
33
|
Papadopoulos C, Spourita E, Mimidis K, Kolios G, Tentes L, Anagnostopoulos K. Nonalcoholic Fatty Liver Disease Patients Exhibit Reduced CD47 and Increased Sphingosine, Cholesterol, and Monocyte Chemoattractant Protein-1 Levels in the Erythrocyte Membranes. Metab Syndr Relat Disord 2022; 20:377-383. [PMID: 35532955 DOI: 10.1089/met.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) constitutes a significant cause of deaths, liver transplantations, and economic costs worldwide. Despite extended research, investigations on the role of erythrocytes are scarce. Red blood cells from experimental animals and human patients with NAFLD present phosphatidylserine exposure, which is then recognized by Kupffer cells. This event leads to erythrophagocytosis and amplification of inflammation through iron disposition. In addition, it has been shown that erythrocytes from NAFLD patients release the chemokine monocyte chemoattractant protein-1 (MCP1), leading to increased tumor necrosis factor alpha release from macrophages RAW 264.7. However, erythrophagocytosis can also be caused by reduced CD47 levels. Moreover, increased MCP1 release could be either signal-induced or caused by higher MCP1 levels on the erythrocyte membrane. Finally, erythrocyte efferocytosis could provide additional inflammatory metabolites. Methods: In this study, we measured the erythrocyte membrane levels of CD47 and MCP1 by enzyme-linked immunosorbent assay, and cholesterol and sphingosine with thin-layer chromatography. Eighteen patients (8 men and 10 women, aged 56.7 ± 11.5 years) and 14 healthy controls (7 men and 7 women, aged 39.3 ± 15.6 years) participated in our study. Results: The erythrocyte CD47 levels were decreased in the erythrocyte membranes of NAFLD patients (844 ± 409 pg/mL) compared with healthy controls (2969 ± 1936 pg/mL) with P = 0.012. Levels of MCP1 increased in NAFLD patients (389 ± 255 pg/mL) compared with healthy controls (230 ± 117 pg/mL) with P = 0.0274, but low statistical power. Moreover, in erythrocyte membranes, there was a statistically significant accumulation of sphingosine and cholesterol in NAFLD patients compared with healthy controls. Conclusions: Our results imply that erythrocytes release chemotactic "find me" signals (MCP1) while containing reduced "do not eat me" signals (CD47). These molecules can lead to erythrophagocytosis. Next, increased "goodbye" signals (sphingosine and cholesterol) could augment inflammation by metabolic reprogramming.
Collapse
Affiliation(s)
- Charalampos Papadopoulos
- Laboratory of Biochemistry, Department of Basic Sciences, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Spourita
- Laboratory of Biochemistry, Department of Basic Sciences, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Mimidis
- First Department of Internal Medicine, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Basic Sciences, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Loannis Tentes
- Laboratory of Biochemistry, Department of Basic Sciences, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Anagnostopoulos
- Laboratory of Biochemistry, Department of Basic Sciences, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
34
|
Red Blood Cell-Conditioned Media from Non-Alcoholic Fatty Liver Disease Patients Contain Increased MCP1 and Induce TNF-α Release. Rep Biochem Mol Biol 2022; 11:54-62. [PMID: 35765536 PMCID: PMC9208556 DOI: 10.52547/rbmb.11.1.54] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023]
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) constitutes a global pandemic. An intricate network among cytokines and lipids possesses a central role in NAFLD pathogenesis. Red blood cells comprise an important source of both cytokines and signaling lipids and have an important role in molecular crosstalk during immunometabolic deregulation. However, their role in NAFLD has not been thoroughly investigated. Methods Conditioned media from erythrocytes derived from 10 NAFLD patients (4 men, 6 women, aged 57.875±15.16) and 10 healthy controls (4 men, 6 women, aged 39.3±15.55) was analyzed for the cytokines IFN-γ, TNF-α, CCL2, CCL5, IL-8, IL-1β, IL-12p40, IL-17, MIP-1β, the signaling lipids sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), and cholesterol. Their effect on the cytokine profile released by RAW 264.7 macrophages was also studied. Results MCP1 levels were greater in conditioned growth medium from NAFLD patient erythrocytes than in that from healthy controls (37±40 vs 6.51±5.63 pg/ml). No statistically significant differences were found between patients and healthy controls with regard to S1P, LPA, cholesterol, or eight other cytokines. TNF-a release by RAW 264.7 cells was greater after incubation with patient-derived erythrocyte-conditioned medium than in medium without RAW 264.7 cells from either healthy or NAFLD subjects. Conclusion Erythrocytes may contribute to liver infiltration by monocytes, and macrophage activation, partially due to CCL2 release, in the context of NAFLD..
Collapse
|
35
|
DeVito LM, Dennis EA, Kahn BB, Shulman GI, Witztum JL, Sadhu S, Nickels J, Spite M, Smyth S, Spiegel S. Bioactive lipids and metabolic syndrome-a symposium report. Ann N Y Acad Sci 2022; 1511:87-106. [PMID: 35218041 DOI: 10.1111/nyas.14752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
Recent research has shed light on the cellular and molecular functions of bioactive lipids that go far beyond what was known about their role as dietary lipids. Bioactive lipids regulate inflammation and its resolution as signaling molecules. Genetic studies have identified key factors that can increase the risk of cardiovascular diseases and metabolic syndrome through their effects on lipogenesis. Lipid scientists have explored how these signaling pathways affect lipid metabolism in the liver, adipose tissue, and macrophages by utilizing a variety of techniques in both humans and animal models, including novel lipidomics approaches and molecular dynamics models. Dissecting out these lipid pathways can help identify mechanisms that can be targeted to prevent or treat cardiometabolic conditions. Continued investigation of the multitude of functions mediated by bioactive lipids may reveal additional components of these pathways that can provide a greater understanding of metabolic homeostasis.
Collapse
Affiliation(s)
| | | | - Barbara B Kahn
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Joseph Nickels
- Genesis Biotechnology Group, Hamilton Township, New Jersey
| | - Matthew Spite
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Susan Smyth
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarah Spiegel
- Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
36
|
McGowan EM, Lin Y, Chen S. Targeting Chronic Inflammation of the Digestive System in Cancer Prevention: Modulators of the Bioactive Sphingolipid Sphingosine-1-Phosphate Pathway. Cancers (Basel) 2022; 14:cancers14030535. [PMID: 35158806 PMCID: PMC8833440 DOI: 10.3390/cancers14030535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023] Open
Abstract
Incidence of gastrointestinal (GI) cancers is increasing, and late-stage diagnosis makes these cancers difficult to treat. Chronic and low-grade inflammation are recognized risks for most GI cancers. The GI mucosal immune system maintains healthy homeostasis and signalling molecules made from saturated fats, bioactive sphingolipids, play essential roles in healthy GI immunity. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is a key mediator in a balanced GI immune response. Disruption in the S1P pathway underlies systemic chronic metabolic inflammatory disorders, including diabetes and GI cancers, providing a strong rationale for using modulators of the S1P pathway to treat pathological inflammation. Here, we discuss the effects of bioactive sphingolipids in immune homeostasis with a focus on S1P in chronic low-grade inflammation associated with increased risk of GI carcinogenesis. Contemporary information on S1P signalling involvement in cancers of the digestive system, from top to bottom, is reviewed. Further, we discuss the use of novel S1P receptor modulators currently in clinical trials and their potential as first-line drugs in the clinic for chronic inflammatory diseases. Recently, ozanimod (ZeposiaTM) and etrasimod have been approved for clinical use to treat ulcerative colitis and eosinophilic oesophagitis, respectively, which may have longer term benefits in reducing risk of GI cancers.
Collapse
Affiliation(s)
- Eileen M. McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
- Correspondence: ; Tel.: +86-614-0581-4048
| | - Yiguang Lin
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Size Chen
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
37
|
Zhou ZS, Kong CF, Sun JR, Qu XK, Sun JH, Sun AT. Fisetin Ameliorates Alcohol-Induced Liver Injury through Regulating SIRT1 and SphK1 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2171-2184. [DOI: 10.1142/s0192415x22500938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alcoholic liver disease (ALD) often leads to hepatitis, hepatic cirrhosis, and even hepatocellular carcinoma. Fisetin has been shown to confer protection against liver injury. Herein, we investigated whether fisetin could prevent ethanol-induced hepatotoxicity. Mice were fed on 5% (v/v) Lieber–DeCarli ethanol diet. Human primary hepatic stellate cells (HSCs) co-cultured with ethanol were used to verify the therapeutic effect of fisetin. The results of alanine/aspartate aminotransferase (ALT/AST), Triglyceride (TG), total cholesterol (TC) in serum, Oil O Red and Masson staining revealed that fisetin (80[Formula: see text]mg/kg) ameliorated ethanol-induced mice liver injury and fibrosis. Besides, immunofluorescence results of [Formula: see text]-SMA revealed that fisetin suppressed HSCs activation. The suppression was dose-dependent. Furthermore, fisetin promoted SIRT1-mediated autophagy and inhibited Sphk1-mediated endoplasmic reticulum stress (ER stress) both in vitro and in vivo. Molecular docking results indicated potential interaction of fisetin with SIRT1 and SphK1. The inhibitory effect of fisetin on HSCs activation was reversed on co-culturing with EX-527, a specific inhibitor against STIR1 overexpression. Thus, fisetin has the potential to ameliorate alcohol-induced liver injury through suppression of HSCs activation, SIRT1-mediated autophagy and Sphk1-mediated ER stress.
Collapse
Affiliation(s)
- Zi-Shen Zhou
- School of Public Health, Jilin University, Jilin, P. R. China
| | - Chen-Fan Kong
- Department of Gastroenterology, Affiliated Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Guangdong, P. R. China
| | - Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xiang-Ke Qu
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Jin-Hui Sun
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - An-Tao Sun
- Department of Gastroenterology, Guang’anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
38
|
Manifold Roles of Ceramide Metabolism in Non-Alcoholic Fatty Liver Disease and Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:157-168. [DOI: 10.1007/978-981-19-0394-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Abstract
The relationship between sphingolipid levels and NAFLD pathology has been recognized for some time. Numerous studies using pharmacological and genetic approaches in vitro and in animal models of NAFLD have demonstrated that modifications to sphingolipid metabolism can attenuate various facets of NAFLD pathology. However, a more precise understanding of the role of sphingolipids and NAFLD pathology is essential to creating therapeutics that target this pathway. This chapter touches on the scale and variety of sphingolipid metabolites at play in NAFLD, which vary widely in their chemical structures and biological functions. With advances in liquid chromatography and tandem mass spectrometry approaches, each of thousands of individual sphingolipid species and sphingolipid metabolites can be identified and precisely quantified. These approaches are beginning to reveal specific sub-classes and species of sphingolipids that change in NAFLD, and as such, enzymes that generate them can be identified and potentially serve as therapeutic targets. Advances in lipidomics technology have been, and will continue to be, critical to these gains in our understanding of NAFLD.
Collapse
Affiliation(s)
- David Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrea Anderson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
40
|
Hong CH, Ko MS, Kim JH, Cho H, Lee CH, Yoon JE, Yun JY, Baek IJ, Jang JE, Lee SE, Cho YK, Baek JY, Oh SJ, Lee BY, Lim JS, Lee J, Hartig SM, Conde de la Rosa L, Garcia-Ruiz C, Lee KU, Fernández-Checa JC, Choi JW, Kim S, Koh EH. Sphingosine 1-Phosphate Receptor 4 Promotes Nonalcoholic Steatohepatitis by Activating NLRP3 Inflammasome. Cell Mol Gastroenterol Hepatol 2021; 13:925-947. [PMID: 34890841 PMCID: PMC8810559 DOI: 10.1016/j.jcmgh.2021.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Sphingosine 1-phosphate receptors (S1PRs) are a group of G-protein-coupled receptors that confer a broad range of functional effects in chronic inflammatory and metabolic diseases. S1PRs also may mediate the development of nonalcoholic steatohepatitis (NASH), but the specific subtypes involved and the mechanism of action are unclear. METHODS We investigated which type of S1PR isoforms is activated in various murine models of NASH. The mechanism of action of S1PR4 was examined in hepatic macrophages isolated from high-fat, high-cholesterol diet (HFHCD)-fed mice. We developed a selective S1PR4 functional antagonist by screening the fingolimod (2-amino-2-[2-(4- n -octylphenyl)ethyl]-1,3- propanediol hydrochloride)-like sphingolipid-focused library. RESULTS The livers of various mouse models of NASH as well as hepatic macrophages showed high expression of S1pr4. Moreover, in a cohort of NASH patients, expression of S1PR4 was 6-fold higher than those of healthy controls. S1pr4+/- mice were protected from HFHCD-induced NASH and hepatic fibrosis without changes in steatosis. S1pr4 depletion in hepatic macrophages inhibited lipopolysaccharide-mediated Ca++ release and deactivated the Nod-like receptor pyrin domain-containning protein 3 (NLRP3) inflammasome. S1P increased the expression of S1pr4 in hepatic macrophages and activated NLRP3 inflammasome through inositol trisphosphate/inositol trisphosphate-receptor-dependent [Ca++] signaling. To further clarify the biological function of S1PR4, we developed SLB736, a novel selective functional antagonist of SIPR4. Similar to S1pr4+/- mice, administration of SLB736 to HFHCD-fed mice prevented the development of NASH and hepatic fibrosis, but not steatosis, by deactivating the NLRP3 inflammasome. CONCLUSIONS S1PR4 may be a new therapeutic target for NASH that mediates the activation of NLRP3 inflammasome in hepatic macrophages.
Collapse
Affiliation(s)
- Chung Hwan Hong
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myoung Seok Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hyun Kim
- College of Pharmacy, Seoul National University, Seoul, Korea,College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Hyunkyung Cho
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Chi-Ho Lee
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Ji Eun Yoon
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Young Yun
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Jeoung Baek
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Eun Jang
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Kyung Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeon Baek
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jin Oh
- New Drug Development Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Joon Seo Lim
- Clinical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Sean M. Hartig
- Molecular and Cellular Biology, Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona and Liver Unit-Hospital Clinic-Instituto de Investigaciones Biomédicas August Pi i Sunyer, Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona and Liver Unit-Hospital Clinic-Instituto de Investigaciones Biomédicas August Pi i Sunyer, Centro de Investigación Biomédica en Red, Barcelona, Spain,Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ki-Up Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jose C. Fernández-Checa
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona and Liver Unit-Hospital Clinic-Instituto de Investigaciones Biomédicas August Pi i Sunyer, Centro de Investigación Biomédica en Red, Barcelona, Spain,Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California,Correspondence Address correspondence to: Jose C. Fernández-Checa, PhD, Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Cientificas, Barcelona and Liver Unit-Hospital Clinic–Instituto de Investigaciones Biomédicas August Pi i Sunyer, Centro de Investigación Biomédica en Red, Barcelona 08036, Spain. fax: (34) 93-3129405.
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon, Korea,Ji Woong Choi, PhD, Laboratory of Pharmacology, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea. fax: (82) 32-820-4829.
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul, Korea,Sanghee Kim, PhD, College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea. fax: (82) 2-762-8322.
| | - Eun Hee Koh
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,Eun Hee Koh, MD, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea. fax: (82) 2-3010-6962.
| |
Collapse
|
41
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
42
|
Green CD, Maceyka M, Cowart LA, Spiegel S. Sphingolipids in metabolic disease: The good, the bad, and the unknown. Cell Metab 2021; 33:1293-1306. [PMID: 34233172 PMCID: PMC8269961 DOI: 10.1016/j.cmet.2021.06.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
The bioactive sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) are a recent addition to the lipids accumulated in obesity and have emerged as important molecular players in metabolic diseases. Here we summarize evidence that dysregulation of sphingolipid metabolism correlates with pathogenesis of metabolic diseases in humans. This review discusses the current understanding of how ceramide regulates signaling and metabolic pathways to exacerbate metabolic diseases and the Janus faces for its further metabolite S1P, the kinases that produce it, and the multifaceted and at times opposing actions of S1P receptors in various tissues. Gaps and limitations in current knowledge are highlighted together with the need to further decipher the full array of their actions in tissue dysfunction underlying metabolic pathologies, pointing out prospects to move this young field of research toward the development of effective therapeutics.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, VCU School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, VCU School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, VCU School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA; Hunter Holmes McGuire VA Medical Center, Richmond, VA 23298, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA.
| |
Collapse
|
43
|
Mastrocola R, Dal Bello F, Cento AS, Gaens K, Collotta D, Aragno M, Medana C, Collino M, Wouters K, Schalkwijk CG. Altered hepatic sphingolipid metabolism in insulin resistant mice: Role of advanced glycation endproducts. Free Radic Biol Med 2021; 169:425-435. [PMID: 33905864 DOI: 10.1016/j.freeradbiomed.2021.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
High plasma levels of the sphingolipid intermediates ceramide (Cer) and sphingosine-1-phosphate (S1P) are suggested to be involved in the development of insulin resistance (IR). Recent evidence indicates that advanced glycation endproducts (AGEs) can alter the sphingolipids metabolism equilibrium. Since enzymes responsible for sphingolipid rheostat maintenance are highly expressed in liver, we thus investigated whether AGEs accumulation can affect hepatic sphingolipids metabolism in insulin resistant mice. Two different models of IR were examined: genetically diabetic LeptrDb-/- (DbDb) and diet-induced insulin resistant C57Bl/6J mice fed a 60% trans-fat diet (HFD). In addition, a group of HFD mice was supplemented with the anti-AGEs compound pyridoxamine. AGEs were evaluated in the liver by western blotting. Cer and S1P were measured by UHPLC-MS/MS. The expression of RAGE and of enzymes involved in sphingolipid metabolism were assessed by RT-PCR and western blotting. HepG2 cells were used to study the effect of the major AGE Nε-(carboxymethyl)lysine (CML)-albumin on sphingolipid metabolism and the role of the receptor of AGEs (RAGE). High levels of AGEs and RAGE were detected in the liver of both DbDb and HFD mice in comparison to controls. The expression of enzymes of sphingolipid metabolism was altered in both models, accompanied by increased levels of Cer and S1P. Specifically, ceramide synthase 5 and sphingosine kinase 1 were increased, while neutral ceramidase was reduced. Pyridoxamine supplementation to HFD mice diminished hepatic AGEs and prevented alterations of sphingolipid metabolism and the development of IR. CML administration to HepG2 cells evoked alterations similar to those observed in vivo, that were in part mediated by the binding to RAGE. The present study shows a direct involvement of AGEs in alterations of sphingolipid metabolism associated to the development of IR. The modulation of sphingolipids metabolism through the prevention of AGEs accumulation by pyridoxamine may reduce the development of IR.
Collapse
Affiliation(s)
- Raffaella Mastrocola
- Dept. of Clinical and Biological Sciences, University of Turin, Italy; Dept. of Internal Medicine, MUMC+, Maastricht, Limburg, Cardiovascular Research Institute, Maastricht (CARIM), the Netherlands.
| | - Federica Dal Bello
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Alessia S Cento
- Dept. of Clinical and Biological Sciences, University of Turin, Italy
| | - Katrien Gaens
- Dept. of Internal Medicine, MUMC+, Maastricht, Limburg, Cardiovascular Research Institute, Maastricht (CARIM), the Netherlands
| | - Debora Collotta
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Manuela Aragno
- Dept. of Clinical and Biological Sciences, University of Turin, Italy
| | - Claudio Medana
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Massimo Collino
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Kristiaan Wouters
- Dept. of Internal Medicine, MUMC+, Maastricht, Limburg, Cardiovascular Research Institute, Maastricht (CARIM), the Netherlands
| | - Casper G Schalkwijk
- Dept. of Internal Medicine, MUMC+, Maastricht, Limburg, Cardiovascular Research Institute, Maastricht (CARIM), the Netherlands
| |
Collapse
|
44
|
Li Q, Qian J, Li Y, Huang P, Liang H, Sun H, Liu C, Peng J, Lin X, Chen X, Peng H, Wang Z, Liu M, Shi Y, Yan H, Wei Y, Liao L, He Q, Huang X, Ruan F, Mao C, Zhou J, Wang K, Li C. Generation of sphingosine-1-phosphate by sphingosine kinase 1 protects nonalcoholic fatty liver from ischemia/reperfusion injury through alleviating reactive oxygen species production in hepatocytes. Free Radic Biol Med 2020; 159:136-149. [PMID: 32738398 DOI: 10.1016/j.freeradbiomed.2020.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver (NAFL) is emerging as a leading risk factor of hepatic ischemia/reperfusion (I/R) injury lacking of effective therapy. Lipid dyshomeostasis has been implicated in the hepatopathy of NAFL. Herein, we investigate the bioactive lipids that critically regulate I/R injury in NAFL. METHODS Lipidomics were performed to identify dysregulated lipids in mouse and human NAFL with I/R injury. The alteration of corresponding lipid-metabolizing genes was examined. The effects of the dysregulated lipid metabolism on I/R injury in NAFL were evaluated in mice and primary hepatocytes. RESULTS Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) were uncovered to be substantially activated by I/R in mouse NAFL. Sphingosine kinase 1 (Sphk1) was found to be essential for hepatic S1P generation in response to I/R in hepatocytes of NAFL mice. Sphk1 knockdown inhibited the hepatic S1P rise while accumulating ceramides in hepatocytes of NAFL mice, leading to aggressive hepatic I/R injury with upregulation of oxidative stress and increase of reactive oxygen species (ROS). In contrast, administration of exogenous S1P protected hepatocytes of NAFL mice from hepatic I/R injury. Clinical study revealed a significant activation of S1P generation by I/R in liver specimens of NAFL patients. In vitro studies on the L02 human hepatocytes consolidated that inhibiting the generation of S1P by knocking down SPHK1 exaggerated I/R-induced damage and oxidative stress in human hepatocytes of NAFL. CONCLUSIONS Generation of S1P by SPHK1 is important for protecting NAFL from I/R injury, which may serve as therapeutic targets for hepatic I/R injury in NAFL.
Collapse
Affiliation(s)
- Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pengxiang Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Sun
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Peng
- Department of General Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinxin Lin
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuefang Chen
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongxian Peng
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zihuan Wang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiqi Liu
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaru Shi
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongmei Yan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiran Wei
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghua He
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixin Huang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangyi Ruan
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Cungui Mao
- Department of Medicine and Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
Yang W, Sui J, Ma Y, Simon TG, Petrick JL, Lai M, McGlynn KA, Campbell PT, Giovannucci EL, Chan AT, Zhang X. High Dietary Intake of Vegetable or Polyunsaturated Fats Is Associated With Reduced Risk of Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2020; 18:2775-2783.e11. [PMID: 31927110 PMCID: PMC7343586 DOI: 10.1016/j.cgh.2020.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS We investigated associations of intake of total fats, specific dietary fats, and fats from different food sources with risk of hepatocellular carcinoma (HCC) using data from the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). METHODS We analyzed data from a total of 138,483 women and men who participated in the NHS or HPFS. A validated semi-quantitative food frequency questionnaire was sent to NHS participants in 1980, 1984, 1986, and every 4 years thereafter; dietary information was collected from participants in the HPFS in 1986 and every 4 years thereafter. Multivariable hazard ratios (HRs) and 95% CIs were estimated using Cox proportional hazards regression. RESULTS After an average follow-up time of 26.6 years, 160 incident HCC cases were documented. Although there was a non-significant association between total fat intake and HCC, intake of vegetable fats reduced risk of HCC (HR for the highest vs lowest quartile, 0.61; 95% CI, 0.39-0.96; Ptrend = .02), but not animal or dairy fats. Replacing animal or dairy fats with an equivalent amount of vegetable fats was associated with a lower risk of HCC (HR per 1 standard deviation, 0.79; 95% CI, 0.65-0.97). Among fat subtypes, monounsaturated and polyunsaturated fatty acids, including n-3 (HR, 0.63; 95% CI, 0.41-0.96; Ptrend = .14) and n-6 polyunsaturated fatty acids (HR, 0.54; 95% CI, 0.34-0.86; Ptrend = .02), were inversely associated with risk of HCC. Higher ratios of monounsaturated or polyunsaturated fat to saturated fat were inversely associated with HCC risk (all Ptrend ≤ .02). In addition, when replacing saturated fats with monounsaturated or polyunsaturated fats, the HR per 1 standard deviation was 0.77 (95% CI, 0.64-0.92). CONCLUSIONS In an analysis of data from 2 large cohort studies, we found higher intake of vegetable fats and polyunsaturated fats to be associated with lower risk of HCC. Replacing animal or dairy fats with vegetable fats, or replacing saturated fats with monounsaturated or polyunsaturated fats, was associated with reduced risk of HCC.
Collapse
Affiliation(s)
- Wanshui Yang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Jing Sui
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China
| | - Yanan Ma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Tracey G Simon
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Jessica L Petrick
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Slone Epidemiology Center, Boston University, Boston, Massachusetts
| | - Michelle Lai
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
46
|
Chen Z, Hu M. The apoM-S1P axis in hepatic diseases. Clin Chim Acta 2020; 511:235-242. [PMID: 33096030 DOI: 10.1016/j.cca.2020.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Liver dysfunction is always accompanied by lipid metabolism dysfunction. Apolipoprotein M (apoM), a member of the apolipoprotein family, is primarily expressed and secreted from the liver. apoM is the main chaperone of sphingosine-1-phosphate (S1P), a small signalling molecule associated with numerous physiologic and pathophysiologic processes. In addition to transport, apoM also influences the biologic effects of S1P. Most recently, numerous studies have investigated the potential role of the apoM-S1P axis in a variety of hepatic diseases. These include liver fibrosis, viral hepatitis B and C infection, hepatobiliary disease, non-alcoholic and alcoholic steatohepatitis, acute liver injury and hepatocellular carcinoma. In this review, the roles of apoM and S1P in the development of hepatic diseases are summarized, and novel insights into the diagnosis and treatment of hepatic diseases are discussed.
Collapse
Affiliation(s)
- Zhiyang Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, PR China.
| |
Collapse
|
47
|
Anderson AK, Lambert JM, Montefusco DJ, Tran BN, Roddy P, Holland WL, Cowart LA. Depletion of adipocyte sphingosine kinase 1 leads to cell hypertrophy, impaired lipolysis, and nonalcoholic fatty liver disease. J Lipid Res 2020; 61:1328-1340. [PMID: 32690594 PMCID: PMC7529052 DOI: 10.1194/jlr.ra120000875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids have become established participants in the pathogenesis of obesity and its associated maladies. Sphingosine kinase 1 (SPHK1), which generates S1P, has been shown to increase in liver and adipose of obese humans and mice and to regulate inflammation in hepatocytes and adipose tissue, insulin resistance, and systemic inflammation in mouse models of obesity. Previous studies by us and others have demonstrated that global sphingosine kinase 1 KO mice are protected from diet-induced obesity, insulin resistance, systemic inflammation, and NAFLD, suggesting that SPHK1 may mediate pathological outcomes of obesity. As adipose tissue dysfunction has gained recognition as a central instigator of obesity-induced metabolic disease, we hypothesized that SPHK1 intrinsic to adipocytes may contribute to HFD-induced metabolic pathology. To test this, we depleted Sphk1 from adipocytes in mice (SK1fatKO) and placed them on a HFD. In contrast to our initial hypothesis, SK1fatKO mice displayed greater weight gain on HFD and exacerbated impairment in glucose clearance. Pro-inflammatory cytokines and neutrophil content of adipose tissue were similar, as were levels of circulating leptin and adiponectin. However, SPHK1-null adipocytes were hypertrophied and had lower basal lipolytic activity. Interestingly, hepatocyte triacylglycerol accumulation and expression of pro-inflammatory cytokines and collagen 1a1 were exacerbated in SK1fatKO mice on a HFD, implicating a specific role for adipocyte SPHK1 in adipocyte function and inter-organ cross-talk that maintains overall metabolic homeostasis in obesity. Thus, SPHK1 serves a previously unidentified essential homeostatic role in adipocytes that protects from obesity-associated pathology. These findings may have implications for pharmacological targeting of the SPHK1/S1P signaling axis.
Collapse
Affiliation(s)
- Andrea K Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - Johana M Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - David J Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bao Ngan Tran
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick Roddy
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
48
|
Yu J, Dong J, Chen K, Ding Y, Yang Z, Lan T. Generation of mice with hepatocyte-specific conditional deletion of sphingosine kinase 1. Transgenic Res 2020; 29:419-428. [PMID: 32696422 DOI: 10.1007/s11248-020-00211-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
SphK1 gene has different roles in various types of cells in liver diseases, but most studies are based on global knockout mice, which hampers the study on the cellular and molecular mechanisms of SphK1. In order to further study the role of SphK1 in liver, SphK1 conditional knockout mice were constructed. A liver-specific SphK1 gene knockout mouse model was constructed by the Cre/Loxp recombinant enzyme system. PCR technologies and western blotting were used to identified the elimination of SphK1 gene in hepatocytes. SphK1flox/flox mice were used as a control group to verify the effectiveness of SphK1 liver-specific knockout mice from the profile, pathology, and serology of mice. The ablation of SphK1 in hepatic parenchymal cells was demonstrated by fluorescent in situ hybridization and the contents of S1P and Sph were measured by ELISA kit. The genotypes of liver in SphK1 conditional knockout mice were different from that of other organs. The mRNA and protein levels of SphK1 in liver tissue of SphK1 conditional knockout mice were almost depleted by compared with SphK1flox/flox mice. Physiology and pathology showed no significant difference between SphK1 liver conditional knockout mice and SphK1flox/flox mice. Additionally, SphK1 was eliminated in hepatocytes, leading to the reduce of S1P content in hepatocytes and liver tissues and the increase of Sph content in hepatocytes. The model of SphK1 gene liver conditional knockout mice was successfully constructed, providing a tool for the study of the roles of SphK1 in hepatocyte and liver diseases.
Collapse
Affiliation(s)
- Jinfeng Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiale Dong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kangdi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yaping Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhicheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| |
Collapse
|
49
|
Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E, Le Stunff H. Sphingosine-1-Phosphate Metabolism in the Regulation of Obesity/Type 2 Diabetes. Cells 2020; 9:E1682. [PMID: 32668665 PMCID: PMC7407406 DOI: 10.3390/cells9071682] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pathophysiological condition where excess free fatty acids (FFA) target and promote the dysfunctioning of insulin sensitive tissues and of pancreatic β cells. This leads to the dysregulation of glucose homeostasis, which culminates in the onset of type 2 diabetes (T2D). FFA, which accumulate in these tissues, are metabolized as lipid derivatives such as ceramide, and the ectopic accumulation of the latter has been shown to lead to lipotoxicity. Ceramide is an active lipid that inhibits the insulin signaling pathway as well as inducing pancreatic β cell death. In mammals, ceramide is a key lipid intermediate for sphingolipid metabolism as is sphingosine-1-phosphate (S1P). S1P levels have also been associated with the development of obesity and T2D. In this review, the current knowledge on S1P metabolism in regulating insulin signaling in pancreatic β cell fate and in the regulation of feeding by the hypothalamus in the context of obesity and T2D is summarized. It demonstrates that S1P can display opposite effects on insulin sensitive tissues and pancreatic β cells, which depends on its origin or its degradation pathway.
Collapse
Affiliation(s)
- Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Cecile L. Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Mohamed L. Mariko
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies métaboliques, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Yacir Benomar
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| |
Collapse
|
50
|
Park WJ, Song JH, Kim GT, Park TS. Ceramide and Sphingosine 1-Phosphate in Liver Diseases. Mol Cells 2020; 43:419-430. [PMID: 32392908 PMCID: PMC7264474 DOI: 10.14348/molcells.2020.0054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 2999, Korea
| | - Jae-Hwi Song
- Department of Life Science, Gachon University, Seongnam 1310, Korea
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Seongnam 1310, Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Seongnam 1310, Korea
| |
Collapse
|