1
|
Kim SM, Oh S, Lee SS, Park S, Hur YM, Ansari A, Lee G, Paik MJ, You YA, Kim YJ. Maternal Diet during Pregnancy Alters the Metabolites in Relation to Metabolic and Neurodegenerative Diseases in Young Adult Offspring. Int J Mol Sci 2024; 25:11046. [PMID: 39456828 PMCID: PMC11508017 DOI: 10.3390/ijms252011046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Maternal nutrition during the critical period of pregnancy increases the susceptibility of offspring to the development of diseases later in life. This study aimed to analyze metabolite profiles to investigate the effect of maternal diet during pregnancy on changes in offspring plasma metabolites and to identify correlations with metabolic parameters. Pregnant Sprague-Dawley rats were exposed to under- and overnutrition compared to controls, and their offspring were fed a standard diet after birth. Plasma metabolism was profiled in offspring at 16 weeks of age using liquid chromatography-mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). We analyzed 80 metabolites to identify distinct metabolites and metabolic and neurodegenerative disease-associated metabolites that were sex-differentially altered in each group compared to controls (p < 0.05, VIP score > 1.0). Specifically, changes in 3-indolepropionic acid, anthranilic acid, linoleic acid, and arachidonic acid, which are involved in tryptophan and linoleic acid metabolism, were observed in male offspring and correlated with plasma leptin levels in male offspring. Our results suggest that fatty acids involved in tryptophan and linoleic acid metabolism, which are altered by the maternal diet during pregnancy, may lead to an increased risk of metabolic and neurodegenerative diseases in the early life of male offspring.
Collapse
Affiliation(s)
- Soo-Min Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.O.); (S.S.L.); (M.-J.P.)
| | - Sang Suk Lee
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.O.); (S.S.L.); (M.-J.P.)
| | - Sunwha Park
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| | - Young-Min Hur
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| | - Gain Lee
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.O.); (S.S.L.); (M.-J.P.)
| | - Young-Ah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| |
Collapse
|
2
|
Das S, Varshney R, Farriester JW, Kyere-Davies G, Martinez AE, Hill K, Kinter M, Mullen GP, Nagareddy PR, Rudolph MC. NR2F2 Reactivation in Early-life Adipocyte Stem-like Cells Rescues Adipocyte Mitochondrial Oxidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611047. [PMID: 39314382 PMCID: PMC11419096 DOI: 10.1101/2024.09.09.611047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In humans, perinatal exposure to an elevated omega-6 (n6) relative to omega-3 (n3) Fatty Acid (FA) ratio is associated with the likelihood of childhood obesity. In mice, we show perinatal exposure to excessive n6-FA programs neonatal Adipocyte Stem-like cells (ASCs) to differentiate into adipocytes with lower mitochondrial nutrient oxidation and a propensity for nutrient storage. Omega-6 FA exposure reduced fatty acid oxidation (FAO) capacity, coinciding with impaired induction of beige adipocyte regulatory factors PPARγ, PGC1α, PRDM16, and UCP1. ASCs from n6-FA exposed pups formed adipocytes with increased lipogenic genes in vitro, consistent with an in vivo accelerated adipocyte hypertrophy, greater triacylglyceride accumulation, and increased % body fat. Conversely, n6-FA exposed pups had impaired whole animal 13C-palmitate oxidation. The metabolic nuclear receptor, NR2F2, was suppressed in ASCs by excess n6-FA intake preceding adipogenesis. ASC deletion of NR2F2, prior to adipogenesis, mimicked the reduced FAO capacity observed in ASCs from n6-FA exposed pups, suggesting that NR2F2 is required in ASCs for robust beige regulator expression and downstream nutrient oxidation in adipocytes. Transiently re-activating NR2F2 with ligand prior to differentiation in ASCs from n6-FA exposed pups, restored their FAO capacity as adipocytes by increasing the PPARγ-PGC1α axis, mitochondrial FA transporter CPT1A, ATP5 family synthases, and NDUF family Complex I proteins. Our findings suggest that excessive n6-FA exposure early in life dampens an NR2F2-mediated induction of beige adipocyte regulators, resulting in metabolic programming that is shifted towards nutrient storage.
Collapse
Affiliation(s)
- Snehasis Das
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Jacob W. Farriester
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Gertrude Kyere-Davies
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Alexandrea E. Martinez
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kaitlyn Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Gregory P. Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Prabhakara R. Nagareddy
- Deptartment of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Nayyar D, Said JM, McCarthy H, Hryciw DH, O'Keefe L, McAinch AJ. Effect of a High Linoleic Acid Diet on Pregnant Women and Their Offspring. Nutrients 2024; 16:3019. [PMID: 39275331 PMCID: PMC11397513 DOI: 10.3390/nu16173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Nutritional intake during pregnancy can affect gestational length, fetal development, and impact postnatal growth and health in offspring. Perturbations in maternal nutrition with either an excess or deficiency in nutrients during pregnancy may have harmful effects on the offspring's development and increase the risk of developing chronic diseases later in life. In pregnancy, nutrients transfer from the mother to the fetus via the placenta. Essential fatty acids, linoleic acid (LA) and alpha linoleic acid (ALA), can only be obtained in the diet. In Western countries, the ratio of LA and ALA in the diet has increased dramatically in recent decades. Some animal and human studies have found a correlation between maternal intake of LA and birth weight; however, the association varies. In contrast, some human studies have demonstrated inconclusive findings regarding the correlation between cord blood levels of LA and birth outcomes. In addition, high dietary LA intake in animal studies in pregnancy increased the production of inflammatory markers such as prostaglandins, leukotrienes, cytokines, and tumour necrosis factor-alpha. This review aims to highlight the effect of high dietary LA intake during pregnancy on birth outcomes, obesity, maternal inflammatory markers, and the transfer of fatty acids across the placenta.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Joanne M Said
- Department of Maternal Fetal Medicine, Joan Kirner Women's & Children's Sunshine Hospital, Western Health, St Albans, VIC 3021, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Helen McCarthy
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Lannie O'Keefe
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
4
|
Jeong HY, Moon YS, Cho KK. ω-6 and ω-3 Polyunsaturated Fatty Acids: Inflammation, Obesity and Foods of Animal Resources. Food Sci Anim Resour 2024; 44:988-1010. [PMID: 39246544 PMCID: PMC11377208 DOI: 10.5851/kosfa.2024.e65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Obesity, as defined by the World Health Organization (WHO), is excessive fat accumulation that can pose health risks and is a disorder of the energy homeostasis system. In typical westernized diets, ω-6 polyunsaturated fatty acids (PUFAs) vastly exceed the amount of ω-3 PUFAs, with ω-6/ω-3 ratios ranging from 10:1 to 25:1. ω-6 PUFAs, such as arachidonic acid, have pro-inflammatory effects and increase obesity. On the other hand, ω-3 PUFAs, including eicosapentaenoic acid and docosahexaenoic acid, have anti-inflammatory and anti-obesity effects. Linoleic acid (LA) and alpha-linolenic acid (ALA) are synthesized in almost all higher plants, algae, and some fungi. However, in humans and animals, they are essential fatty acids and must be consumed through diet or supplementation. Therefore, balancing LA/ALA ratios is essential for obesity prevention and human health. Monogastric animals such as pigs and chickens can produce meat and eggs fortified with ω-3 PUFAs by controlling dietary fatty acid (FA). Additionally, ruminant animals such as feeder cattle and lactating dairy cows can opt for feed supplementation with ω-3 PUFAs sources and rumen-protected microencapsulated FAs or pasture finishing. This method can produce ω-3 PUFAs and conjugated linoleic acid (CLA) fortified meat, milk, and cheese. A high ω-6/ω-3 ratio is associated with pro-inflammation and obesity, whereas a balanced ratio reduces inflammation and obesity. Additionally, probiotics containing lactic acid bacteria are necessary, which reduces inflammation and obesity by converting ω-6 PUFAs into functional metabolites such as 10-hydroxy-cis-12-octadecenoic acid and CLA.
Collapse
Affiliation(s)
- Hwa Yeong Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52725, Korea
| | - Yang Soo Moon
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52725, Korea
| | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang National University, Jinju 52725, Korea
| |
Collapse
|
5
|
Chaudron Y, Boyer C, Marmonier C, Plourde M, Vachon A, Delplanque B, Taouis M, Pifferi F. A vegetable fat-based diet delays psychomotor and cognitive development compared with maternal dairy fat intake in infant gray mouse lemurs. Commun Biol 2024; 7:609. [PMID: 38769408 PMCID: PMC11106064 DOI: 10.1038/s42003-024-06255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Dairy fat has a unique lipid profile; it is rich in short- and medium-chain saturated fatty acids that induce ketone production and has a balanced ω6/ω3 ratio that promotes cognitive development in early life. Moreover, the high consumption of vegetable oils in pregnant and lactating women raises concerns regarding the quality of lipids provided to offspring. Here, we investigate maternal dairy fat intake during gestation and lactation in a highly valuable primate model for infant nutritional studies, the gray mouse lemur (Microcebus murinus). Two experimental diets are provided to gestant mouse lemurs: a dairy fat-based (DF) or vegetable fat-based diet (VF). The psychomotor performance of neonates is tested during their first 30 days. Across all tasks, we observe more successful neonates born to mothers fed a DF diet. A greater rate of falls is observed in 8-day-old VF neonates, which is associated with delayed psychomotor development. Our findings suggest the potential benefits of lipids originating from a lactovegetarian diet compared with those originating from a vegan diet for the psychomotor development of neonates.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS MNHN 7179, 1 avenue du Petit Château, 91800, Brunoy, France.
| | - Constance Boyer
- Centre national interprofessionnel de l'économie laitière, 42 rue de Châteaudun, 75314, Paris cedex 09, France
| | - Corinne Marmonier
- Centre national interprofessionnel de l'économie laitière, 42 rue de Châteaudun, 75314, Paris cedex 09, France
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, 1036 Belvédère sud, Sherbrooke, J1H 4C4, Canada
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Annick Vachon
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, 1036 Belvédère sud, Sherbrooke, J1H 4C4, Canada
| | - Bernadette Delplanque
- UMR 9197, Paris-Saclay Institute of Neurosciences (NeuroPSI), University of Paris-Saclay, CNRS, 151 route de la Rotonde, F-91400, Saclay, France
| | - Mohammed Taouis
- UMR 9197, Paris-Saclay Institute of Neurosciences (NeuroPSI), University of Paris-Saclay, CNRS, 151 route de la Rotonde, F-91400, Saclay, France
| | - Fabien Pifferi
- UMR CNRS MNHN 7179, 1 avenue du Petit Château, 91800, Brunoy, France.
| |
Collapse
|
6
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
7
|
Carter WA, DeMoranville KJ, Trost L, Bryła A, Działo M, Sadowska ET, Bauchinger U, Pierce B, McWilliams SR. Dietary fatty acids and flight-training influence the expression of the eicosanoid hormone prostacyclin in songbirds. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111561. [PMID: 38056555 DOI: 10.1016/j.cbpa.2023.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Diet shifts can alter tissue fatty acid composition in birds, which is subsequently related to metabolic patterns. Eicosanoids, short-lived fatty acid-derived hormones, have been proposed to mediate these relationships but neither baseline concentrations nor the responses to diet and exercise have been measured in songbirds. We quantified a stable derivative of the vasodilatory eicosanoid prostacyclin in the plasma of male European Starlings (Sturnus vulgaris, N = 25) fed semisynthetic diets with either high (PUFA) or low (MUFA) amounts of n6 fatty acid precursors to prostacyclin. Plasma samples were taken from each bird before, immediately after, and two days following a 15-day flight-training regimen that a subset of birds (N = 17) underwent. We found elevated prostacyclin levels in flight-trained birds fed the PUFA diet compared to those fed the MUFA diet and a positive relationship between prostacyclin and body condition, indexed by fat score. Prostacyclin concentrations also significantly decreased at the final time point. These results are consistent with the proposed influences of precursor availability (i.e., dietary fatty acids) and regulatory feedback associated with exercise (i.e., fuel supply and inflammation), and suggest that prostacyclin may be an important mediator of dietary influence on songbird physiology.
Collapse
Affiliation(s)
- Wales A Carter
- Department of Resources Science, University of Rhode Island, Kingston, RI, USA.
| | | | - Lisa Trost
- Department for Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Amadeusz Bryła
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Maciej Działo
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Barbara Pierce
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Scott R McWilliams
- Department of Resources Science, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
8
|
Wei T, Tan D, Zhong S, Zhang H, Deng Z, Li J. Differences in Absorption and Metabolism between Structured 1,3-Oleate-2-palmitate Glycerol and 1-Oleate-2-palmitate-3-linoleate Glycerol on C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19610-19621. [PMID: 38038963 DOI: 10.1021/acs.jafc.3c07234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
This study investigated differences in absorption and metabolism between 1,3-oleate-2-palmitate glycerol (OPO) and 1-oleate-2-palmitate-3-linoleate glycerol (OPL) using C57BL/6J mice. OPL was associated with higher postprandial plasma total triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) concentrations, and the ratio of LDL-C to high-density lipoprotein cholesterol (HDL-C) compared to those of OPO (p > 0.05). OPO significantly increased postprandial oleic acid (OA) concentrations compared to OPL over the entire monitoring period (p < 0.05), while OPL significantly elevated linoleic acid (LA) levels compared to OPO (p < 0.05). After 1 month of feeding, the mice in both OPO and OPL groups showed lower final weight, weight gain, and liver TG, LDL-C, and LDL/HDL concentrations compared to the control (soybean oil) group. Lipidomics results showed that OPO increased the biosynthesis of very long-chain fatty acids and decreased the abundance of AcCa (16:1), AcCa (18:2), AcCa (18:1), AcCa (16:0), CarE (16:0), and CarE (16:1) relative to OPL. These lipid metabolites were positively correlated with liver TG, LDL-C, and LDL/HDL levels and negatively related to peroxisome proliferator-activated receptors α (PPARα) and acyl-CoA oxidase (ACOX1) expression. This study showed differences in physiologic functions between OPO and OPL and provided support for the future application of OPL in infant formula.
Collapse
Affiliation(s)
- Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Dengfeng Tan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shengyue Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd., Shanghai 200137, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
9
|
Courville AB, Majchrzak-Hong S, Yang S, Turner S, Wilhite B, Ness Shipley K, Horneffer Y, Domenichiello AF, Schwandt M, Cutler RG, Chen KY, Hibbeln JR, Ramsden CE. Dietary linoleic acid lowering alone does not lower arachidonic acid or endocannabinoids among women with overweight and obesity: A randomized, controlled trial. Lipids 2023; 58:271-284. [PMID: 38100748 PMCID: PMC10767670 DOI: 10.1002/lipd.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
The linoleic acid (LA)-arachidonic acid (ARA)-inflammatory axis suggests dietary LA lowering benefits health because it lowers ARA and ARA-derived endocannabinoids (ECB). Dietary LA reduction increases concentrations of omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DHA derived ECB. The aim of this study was to examine targeted reduction of dietary LA, with and without EPA and DHA, on plasma EPA and DHA and ECB (2-arachidonoyl glycerol [2-AG], anandamide [AEA], and docosahexaenoyl ethanolamide [DHA-EA]). Healthy, pre-menopausal women (n = 62, BMI 30 ± 3 kg/m2 , age 35 ± 7 years; mean ± SD) were randomized to three 12-week controlled diets: (1) high LA, low omega-3 EPA and DHA (H6L3); (2) low LA, low omega-3 EPA and DHA (L6L3); or (3) low LA, high omega-3 EPA and DHA (L6H3). Baseline plasma fatty acids and ECB were similar between diets. Starting at 4 weeks, L6L3 and L6H3 lowered plasma LA compared to H6L3 (p < 0.001). While plasma ARA changed from baseline by 8% in L6L3 and -8% in L6H3, there were no group differences. After 4 weeks, plasma EPA and DHA increased from baseline in women on the L6H3 diet (ps < 0.001) and were different than the H6L3 and L6L3 diets. No differences were found between diets for AEA or 2-AG, however, in L6L3 and L6H3, AEA increased by 14% (ps < 0.02). L6H3 resulted in 35% higher DHA-EA (p = 0.013) whereas no changes were seen with the other diets. Lowering dietary LA did not result in the expected changes in fatty acids associated with the LA-ARA inflammatory axis in women with overweight and obesity.
Collapse
Affiliation(s)
- Amber B Courville
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Sharon Majchrzak-Hong
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Shanna Yang
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Sara Turner
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Breanne Wilhite
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Katherine Ness Shipley
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Yvonne Horneffer
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Anthony F Domenichiello
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Melanie Schwandt
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Roy G Cutler
- National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| | - Kong Y Chen
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Joseph R Hibbeln
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Christopher E Ramsden
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Nartey MNN, Jisaka M, Syeda PK, Nishimura K, Shimizu H, Yokota K. Prostaglandin D 2 Added during the Differentiation of 3T3-L1 Cells Suppresses Adipogenesis via Dysfunction of D-Prostanoid Receptor P1 and P2. Life (Basel) 2023; 13:life13020370. [PMID: 36836727 PMCID: PMC9963520 DOI: 10.3390/life13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
We previously reported that the addition of prostaglandin, (PG)D2, and its chemically stable analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), during the maturation phase of 3T3-L1 cells promotes adipogenesis. In the present study, we aimed to elucidate the effects of the addition of PGD2 or 11d-11m-PGD2 to 3T3-L1 cells during the differentiation phase on adipogenesis. We found that both PGD2 and 11d-11m-PGD2 suppressed adipogenesis through the downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) expression. However, the latter suppressed adipogenesis more potently than PGD2, most likely because of its higher resistance to spontaneous transformation into PGJ2 derivatives. In addition, this anti-adipogenic effect was attenuated by the coexistence of an IP receptor agonist, suggesting that the effect depends on the intensity of the signaling from the IP receptor. The D-prostanoid receptors 1 (DP1) and 2 (DP2, also known as a chemoattractant receptor-homologous molecule expressed on Th2 cells) are receptors for PGD2. The inhibitory effects of PGD2 and 11d-11m-PGD2 on adipogenesis were slightly attenuated by a DP2 agonist. Furthermore, the addition of PGD2 and 11d-11m-PGD2 during the differentiation phase reduced the DP1 and DP2 expression during the maturation phase. Overall, these results indicated that the addition of PGD2 or 11d-11m-PGD2 during the differentiation phase suppresses adipogenesis via the dysfunction of DP1 and DP2. Therefore, unidentified receptor(s) for both molecules may be involved in the suppression of adipogenesis.
Collapse
Affiliation(s)
- Michael N. N. Nartey
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Council for Scientific and Industrial Research-Animal Research Institute, Achimota, Accra P.O. Box AH20, Ghana
| | - Mitsuo Jisaka
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Correspondence:
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Kohji Nishimura
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Hidehisa Shimizu
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Kazushige Yokota
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| |
Collapse
|
11
|
Nartey MNN, Jisaka M, Syeda PK, Nishimura K, Shimizu H, Yokota K. Arachidonic Acid Added during the Differentiation Phase of 3T3-L1 Cells Exerts Anti-Adipogenic Effect by Reducing the Effects of Pro-Adipogenic Prostaglandins. Life (Basel) 2023; 13:life13020367. [PMID: 36836723 PMCID: PMC9962328 DOI: 10.3390/life13020367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
A linoleic acid (LA) metabolite arachidonic acid (AA) added to 3T3-L1 cells is reported to suppress adipogenesis. The purpose of the present study aimed to clarify the effects of AA added during the differentiation phase, including adipogenesis, the types of prostaglandins (PG)s produced, and the crosstalk between AA and the PGs produced. Adipogenesis was inhibited by AA added, while LA did not. When AA was added, increased PGE2 and PGF2α production, unchanged Δ12-PGJ2 production, and reduced PGI2 production were observed. Since the decreased PGI2 production was reflected in decreased CCAAT/enhancer-binding protein-β (C/EBPβ) and C/EBPδ expression, we expected that the coexistence of PGI2 with AA would suppress the anti-adipogenic effects of AA. However, the coexistence of PGI2 with AA did not attenuate the anti-adipogenic effects of AA. In addition, the results were similar when Δ12-PGJ2 coexisted with AA. Taken together, these results indicated that the metabolism of ingested LA to AA is necessary to inhibit adipogenesis and that exposure of AA to adipocytes during only the differentiation phase is sufficient. As further mechanisms for suppressing adipogenesis, AA was found not only to increase PGE2 and PGF2α and decrease PGI2 production but also to abrogate the pro-adipogenic effects of PGI2 and Δ12-PGJ2.
Collapse
Affiliation(s)
- Michael N. N. Nartey
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Council for Scientific and Industrial Research-Animal Research Institute, Achimota, Accra P.O. Box AH20, Ghana
| | - Mitsuo Jisaka
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Correspondence:
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Kohji Nishimura
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Hidehisa Shimizu
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Kazushige Yokota
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| |
Collapse
|
12
|
Infant Red Blood Cell Arachidonic to Docosahexaenoic Acid Ratio Inversely Associates with Fat-Free Mass Independent of Breastfeeding Exclusivity. Nutrients 2022; 14:nu14204238. [PMID: 36296922 PMCID: PMC9608835 DOI: 10.3390/nu14204238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of childhood obesity has increased nearly ten times over the last 40 years, influenced by early life nutrients that have persistent effects on life-long metabolism. During the first six months, infants undergo accelerated adipose accumulation, but little is known regarding infant fatty acid status and its relationship to infant body composition. We tested the hypothesis that a low arachidonic to docosahexaenoic acid ratio (AA/DHA) in infant red blood cells (RBCs), a long-term indicator of fatty acid intake, would associate with more infant fat-free mass (FFM) and/or less adipose accumulation over the first 4 months of life. The fatty acid and composition of breastmilk and infant RBCs, as well as the phospholipid composition of infant RBCs, were quantified using targeted and unbiased lipid mass spectrometry from infants predominantly breastfed or predominantly formula-fed. Regardless of feeding type, FFM accumulation was inversely associated with the infant’s RBC AA/DHA ratio (p = 0.029, R2 = 0.216). Infants in the lowest AA/DHA ratio tertile had significantly greater FFM when controlling for infant sex, adiposity at 2 weeks, and feeding type (p < 0.0001). Infant RBC phospholipid analyses revealed greater peroxisome-derived ether lipids in the low AA/DHA group, primarily within the phosphatidylethanolamines. Our findings support a role for a low AA/DHA ratio in promoting FFM accrual and identify peroxisomal activity as a target of DHA in the growing infant. Both FFM abundance and peroxisomal activity may be important determinants of infant metabolism during development.
Collapse
|
13
|
Nan S, Yao M, Zhang X, Wang H, Li J, Niu J, Chen C, Zhang W, Nie C. Fermented grape seed meal promotes broiler growth and reduces abdominal fat deposition through intestinal microorganisms. Front Microbiol 2022; 13:994033. [PMID: 36299718 PMCID: PMC9589342 DOI: 10.3389/fmicb.2022.994033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 12/23/2023] Open
Abstract
The fermentation of grape seed meal, a non-conventional feed resource, improves its conventional nutritional composition, promotes the growth and development of livestock and fat metabolism by influencing the structure and diversity of intestinal bacteria. In this study, the nutritional components of Fermented grape seed meal (FGSM) and their effects on the growth performance, carcass quality, serum biochemistry, and intestinal bacteria of yellow feather broilers were investigated. A total of 240 male 14-day-old yellow-feathered broilers were randomly selected and divided into four groups, with three replicates of 20 chickens each. Animals were fed diets containing 0% (Group I), 2% (Group II), 4% (Group III), or 6% (Group IV) FGSM until they were 56 days old. The results showed that Acid soluble protein (ASP) and Crude protein (CP) contents increased, Acid detergent fiber (ADF) and Neutral detergent fiber (NDF) contents decreased, and free amino acid content increased in the FGSM group. The non-targeted metabolome identified 29 differential metabolites in FGSM, including organic acids, polyunsaturated fatty acids, and monosaccharides. During the entire trial period, Average daily gain (ADG) increased and Feed conversion ratio (FCR) decreased in response to dietary FGSM supplementation (p < 0.05). TP content in the serum increased and BUN content decreased in groups III and IV (p < 0.05). Simultaneously, the serum TG content in group III and the abdominal fat rate in group IV were significantly reduced (p < 0.05). The results of gut microbiota analysis showed that FGSM could significantly increase the Shannon and Simpson indices of broilers (35 days). Reducing the relative abundance of Bacteroidetes significantly altered cecal microbiota composition by increasing the relative abundance of Firmicutes (p < 0.05). By day 56, butyric acid content increased in the cecal samples from Group III (p < 0.05). In addition, Spearman's correlation analysis revealed a strong correlation between broiler growth performance, abdominal fat percentage, SCFAs, and gut microbes. In summary, the addition of appropriate levels of FGSM to rations improved broiler growth performance and reduced fat deposition by regulating gut microbes through differential metabolites and affecting the microbiota structure and SCFA content of the gut.
Collapse
Affiliation(s)
- Shanshan Nan
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Min Yao
- School of Medicine, Shihezi University, Shihezi, China
| | - Xiaoyang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hailiang Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiacheng Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
14
|
Inazumi T, Sugimoto Y. Metabolic Regulation in Adipocytes by Prostanoid Receptors. Biol Pharm Bull 2022; 45:992-997. [DOI: 10.1248/bpb.b22-00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
15
|
Shin S. Regulation of Adipose Tissue Biology by Long-Chain Fatty Acids: Metabolic Effects and Molecular Mechanisms. J Obes Metab Syndr 2022; 31:147-160. [PMID: 35691686 PMCID: PMC9284576 DOI: 10.7570/jomes22014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Long-chain fatty acids (LCFA) modulate metabolic, oxidative, and inflammatory responses, and the physiological effects of LCFA are determined by chain length and the degree of saturation. Adipose tissues comprise multiple cell types, and play a significant role in energy storage and expenditure. Fatty acid uptake and oxidation are the pathways through which fatty acids participate in the regulation of energy homeostasis, and their dysregulation can lead to the development of obesity and chronic obesity-related disorders, including type 2 diabetes, cardiovascular diseases, and certain types of cancer. Numerous studies have reported that many aspects of adipose tissue biology are influenced by the number and position of double bonds in LCFA, and these effects are mediated by various signaling pathways, including those regulating adipocyte differentiation (adipogenesis), thermogenesis, and inflammation in adipose tissue. This review aims to describe the underlying molecular mechanisms by which different types of LCFA influence adipose tissue metabolism, and to further clarify their relevance to metabolic dysregulation associated with obesity. A better understanding of the effects of LCFA on adipose tissue metabolism may lead to improved nutraceutical strategies to address obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, Korea
| |
Collapse
|
16
|
Nartey MNN, Jisaka M, Syeda PK, Nishimura K, Shimizu H, Yokota K. Prostaglandin D2 and its analog, 11d-11m-PGD2, added during the differentiation phase contribute to adipogenic program inhibition in 3T3-L1 cells. Biosci Biotechnol Biochem 2022; 86:628-634. [DOI: 10.1093/bbb/zbac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
ABSTRACT
We previously reported that prostaglandin (PG)D2 and its isosteric analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), promote adipogenesis in 3T3-L1 cells during the maturation phase. Focusing on the differentiation phase, although both PGs inhibited adipogenesis, this effect was canceled out by PGI2 and PGJ2 derivatives. Thus, PGD2 and 11d-11m-PGD2 play different roles during the phases, but do not affect PGI2- and PGJ2-derivative-induced adipogenesis.
Collapse
Affiliation(s)
- Michael N N Nartey
- The , 4-101 Koyama-Minami, Tottori , Japan
- United Graduate School of Agricultural Sciences, Tottori University , 4-101 Koyama-Minami, Tottori , Japan
- Council for Scientific and Industrial Research-Animal Research Institute , Achimota, Accra , Ghana
| | - Mitsuo Jisaka
- The , 4-101 Koyama-Minami, Tottori , Japan
- United Graduate School of Agricultural Sciences, Tottori University , 4-101 Koyama-Minami, Tottori , Japan
- Department of Life Science and Biotechnology, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Project Center for Fortification of Local Specialty Food Functions, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
| | - Kohji Nishimura
- The , 4-101 Koyama-Minami, Tottori , Japan
- United Graduate School of Agricultural Sciences, Tottori University , 4-101 Koyama-Minami, Tottori , Japan
- Department of Life Science and Biotechnology, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Project Center for Fortification of Local Specialty Food Functions, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Interdisciplinary Center for Science Research, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Raman Project Center for Medical and Biological Applications, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
| | - Hidehisa Shimizu
- The , 4-101 Koyama-Minami, Tottori , Japan
- United Graduate School of Agricultural Sciences, Tottori University , 4-101 Koyama-Minami, Tottori , Japan
- Department of Life Science and Biotechnology, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Project Center for Fortification of Local Specialty Food Functions, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Interdisciplinary Center for Science Research, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Raman Project Center for Medical and Biological Applications, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Estuary Research Center, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
| | - Kazushige Yokota
- The , 4-101 Koyama-Minami, Tottori , Japan
- United Graduate School of Agricultural Sciences, Tottori University , 4-101 Koyama-Minami, Tottori , Japan
- Department of Life Science and Biotechnology, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Project Center for Fortification of Local Specialty Food Functions, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , 1060 Nishikawatsu-Cho, Matsue, Shimane , Japan
| |
Collapse
|
17
|
Maternal polyunsaturated fatty acid concentrations during pregnancy and childhood liver fat accumulation. Clin Nutr 2022; 41:847-854. [DOI: 10.1016/j.clnu.2022.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
|
18
|
Perng W, Oken E. Programming long-term health: Maternal and fetal nutritional and dietary needs. EARLY NUTRITION AND LONG-TERM HEALTH 2022:27-63. [DOI: 10.1016/b978-0-12-824389-3.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Ivanisevic M, Horvaticek M, Delmis K, Delmis J. Supplementation of EPA and DHA in pregnant women with type 1 diabetes mellitus. Ann Med 2021; 53:848-859. [PMID: 34210228 PMCID: PMC8260041 DOI: 10.1080/07853890.2021.1936151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND/OBJECTIVE Lower proportions of n-3 PUFAs have been observed in neonates born to diabetic mothers. We aimed to investigate the association between DHA and EPA supplementation during pregnancy complicated with type 1 diabetes on concentration and proportion of fatty acids in maternal and foetal blood. SUBJECTS AND METHODS We conducted a prospective randomized, single-blinded, placebo-controlled trial of 111 eligible pregnant women with type 1 diabetes and presented the results of 84 (intervention arm and control arm comprised 42 participants each) of them who successfully finished the trial in an academic hospital. The initiation of EPA and DHA supplementation or placebo started at randomization visit on gestational week 11-12. Blood samples were taken on the first (screening) visit to the clinic (1st trimester, between 8th and 10th gestational week, GW), then in the second trimester (19-24th GW) and third trimester (30th-33rd GW). On the delivery day, a blood sample was taken on fasting just before birth. The umbilical vein blood sample was taken shortly after the delivery. RESULTS We found a significant increase in the intervention group when compared the first and the third trimester for n-3 PUFAs concentration, 4.3 mg/L (3.3-7.6): 10.0 mg/L (7.1-13.7), p < .001. In the intervention group, the concentration of DHA in maternal vein serum was 11.4 mg/L (7.7-17.5), and in umbilical vein serum, it was 5.1 mg/L (3.0-7.7), which was significantly higher than that in the control group, maternal vein serum: median 9.2 mg/L(6.0-12.3), p = .03 and umbilical vein serum: median 3.4 mg/L (2.1-5.6), p = .009. CONCLUSION The increased weight gain in pregnancy and concentration and proportions of DHA, n-3 PUFAs with a decreased proportion of AA, n-6 PUFAs, and AA/DHA ratio in maternal and umbilical vein serum summarize the effect of supplementation with EPA and DHA.
Collapse
Affiliation(s)
- Marina Ivanisevic
- Referral Center for Diabetes in Pregnancy, Ministry of Health Republic of Croatia, Clinical Department of Obstetrics and Gynecology, Zagreb University Hospital Center, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Josip Delmis
- Referral Center for Diabetes in Pregnancy, Ministry of Health Republic of Croatia, Clinical Department of Obstetrics and Gynecology, Zagreb University Hospital Center, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Demmelmair H, Koletzko B. Perinatal Polyunsaturated Fatty Acid Status and Obesity Risk. Nutrients 2021; 13:3882. [PMID: 34836138 PMCID: PMC8625539 DOI: 10.3390/nu13113882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
High obesity rates in almost all regions of the world prompt an urgent need for effective obesity prevention. Very good scientific evidence from cell culture and rodent studies show that the availability of essential polyunsaturated fatty acids (PUFA) and their long-chain polyunsaturated derivatives, namely, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, influence adipogenesis; for this reason, early life status may influence later obesity risk. The respective PUFA effects could be mediated via their eicosanoid derivatives, their influence on cell membrane properties, the browning of white adipose tissue, changes to the offspring gut microbiome, their influence on developing regulatory circuits, and gene expression during critical periods. Randomized clinical trials and observational studies show divergent findings in humans, with mostly null findings but also the positive and negative effects of an increased n-3 to n-6 PUFA ratio on BMI and fat mass development. Hence, animal study findings cannot be directly extrapolated to humans. Even though the mechanistic data basis for the effects of n-3 PUFA on obesity risk appears promising, no recommendations for humans can be derived at present.
Collapse
Affiliation(s)
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Pediatrics, Dr. von Hauner Children’s Hospital, University of Munich Medical Centre, LMU—Ludwig-Maximilians-Universität Munich, D-80337 Munich, Germany;
| |
Collapse
|
21
|
Kim M, Voy BH. Fighting Fat With Fat: n-3 Polyunsaturated Fatty Acids and Adipose Deposition in Broiler Chickens. Front Physiol 2021; 12:755317. [PMID: 34658934 PMCID: PMC8511411 DOI: 10.3389/fphys.2021.755317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Modern broiler chickens are incredibly efficient, but they accumulate more adipose tissue than is physiologically necessary due to inadvertent consequences of selection for rapid growth. Accumulation of excess adipose tissue wastes feed in birds raised for market, and it compromises well-being in broiler-breeders. Studies driven by the obesity epidemic in humans demonstrate that the fatty acid profile of the diet influences adipose tissue growth and metabolism in ways that can be manipulated to reduce fat accretion. Omega-3 polyunsaturated fatty acids (n-3 PUFA) can inhibit adipocyte differentiation, induce fatty acid oxidation, and enhance energy expenditure, all of which can counteract the accretion of excess adipose tissue. This mini-review summarizes efforts to counteract the tendency for fat accretion in broilers by enriching the diet in n-3 PUFA.
Collapse
Affiliation(s)
| | - Brynn H. Voy
- Department of Animal Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
22
|
Carlson SE, Schipper L, Brenna JT, Agostoni C, Calder PC, Forsyth S, Legrand P, Abrahamse-Berkeveld M, van de Heijning BJM, van der Beek EM, Koletzko BV, Muhlhausler B. Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Adv Nutr 2021; 12:2085-2098. [PMID: 34265035 PMCID: PMC8634410 DOI: 10.1093/advances/nmab076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Infant formula should provide the appropriate nutrients and adequate energy to facilitate healthy infant growth and development. If conclusive data on quantitative nutrient requirements are not available, the composition of human milk (HM) can provide some initial guidance on the infant formula composition. This paper provides a narrative review of the current knowledge, unresolved questions, and future research needs in the area of HM fatty acid (FA) composition, with a particular focus on exploring appropriate intake levels of the essential FA linoleic acid (LA) in infant formula. The paper highlights a clear gap in clinical evidence as to the impact of LA levels in HM or formula on infant outcomes, such as growth, development, and long-term health. The available preclinical information suggests potential disadvantages of high LA intake in the early postnatal period. We recommend performing well-designed clinical intervention trials to create clarity on optimal levels of LA to achieve positive impacts on both short-term growth and development and long-term functional health outcomes.
Collapse
Affiliation(s)
| | | | - J Thomas Brenna
- Department of Pediatrics, University of Texas at Austin, Austin, TX, USA,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Carlo Agostoni
- Pediatric Area, Fondazione IRCCS Ca’Granda- Ospedale Maggiore Policlinico, Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus–French National Institute of Health and Medical Research, Rennes, France
| | | | | | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, The Netherlands,Department of Pediatrics, University Medical Center, Groningen, The Netherlands
| | - Berthold V Koletzko
- Ludwig-Maximilians-Universität Munich, Department of Paediatrics, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Beverly Muhlhausler
- Nutrition and Health Program, Health and Biosecurity, CSIRO, Adelaide, Australia,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
23
|
Cappellozza BI, Cooke RF, Harvey KM. Omega-6 Fatty Acids: A Sustainable Alternative to Improve Beef Production Efficiency. Animals (Basel) 2021; 11:ani11061764. [PMID: 34204706 PMCID: PMC8231484 DOI: 10.3390/ani11061764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The global beef industry is currently challenged with improving production efficiency while fostering judicious use of limited natural resources. Sustainable management systems are warranted to ensure that worldwide demands for beef and ecological stewardship are met. Supplementing cattle with omega-6 fatty acids is a nutritional intervention shown to sustainably enhance productivity across different sectors of the beef industry. The purpose of this review is to discuss recent research that describes the advantages of supplementing omega-6 fatty acids on traits that are critical to beef production efficiency, including reproduction, immunocompetence, growth, and quality of carcass and beef products. Abstract Global beef production must increase in the next decades to meet the demands of a growing population, while promoting sustainable use of limited natural resources. Supplementing beef cattle with omega-6 fatty acids (FAs) is a nutritional approach shown to enhance production efficiency, with research conducted across different environments and sectors of the beef industry. Omega-6 FA from natural feed ingredients such as soybean oil are highly susceptible to ruminal biohydrogenation. Hence, our and other research groups have used soybean oil in the form of Ca soaps (CSSO) to lessen ruminal biohydrogenation, and maximize delivery of omega-6 FA to the duodenum for absorption. In cow–calf systems, omega-6 FA supplementation to beef cows improved pregnancy success by promoting the establishment of early pregnancy. Cows receiving omega-6 FA during late gestation gave birth to calves that were healthier and more efficient in the feedlot, suggesting the potential role of omega-6 FA on developmental programming. Supplementing omega-6 FA to young cattle also elicited programming effects toward improved adipogenesis and carcass quality, and improved calf immunocompetence upon a stress stimulus. Cattle supplemented with omega-6 FA during growing or finishing periods also experienced improved performance and carcass quality. All these research results were generated using cattle of different genetic composition (Bos taurus and B. indicus influenced), and in different environments (tropical, subtropical, and temperate region). Hence, supplementing omega-6 FA via CSSO is a sustainable approach to enhance the production efficiency of beef industries across different areas of the world.
Collapse
Affiliation(s)
| | - Reinaldo Fernandes Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-979-458-2703
| | | |
Collapse
|
24
|
Sasaki Y, Kuwata H, Akatsu M, Yamakawa Y, Ochiai T, Yoda E, Nakatani Y, Yokoyama C, Hara S. Involvement of prostacyclin synthase in high-fat-diet-induced obesity. Prostaglandins Other Lipid Mediat 2021; 153:106523. [PMID: 33383181 DOI: 10.1016/j.prostaglandins.2020.106523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Prostacyclin (PGI2) synthase (PGIS) functions downstream of inducible cyclooxygenase COX-2 in the PGI2 biosynthetic pathway. Although COX-2 and PGI2 receptor (IP) are known to be involved in adipogenesis and obesity, the involvement of PGIS has not been fully elucidated. In this study, we examined the role of PGIS in adiposity by using PGIS-deficient mice. Although PGIS deficiency did not affect in vitro adipocyte differentiation, when fed a high-fat diet (HFD), PGIS knockout (KO) mice showed reductions in both body weight gain and epididymal fat mass relative to wild-type (WT) mice. PGIS deficiency might reduce HFD-induced obesity by suppressing PGI2 production. We further found that additional gene deletion of microsomal prostaglandin (PG) E synthase-1 (mPGES-1), one of the other PG terminal synthases that also functions downstream of COX-2, emphasized the metabolic phenotypes of PGIS-deficient mice. More marked reduction in obesity and improved insulin resistance were observed in PGIS/mPGES-1 double KO (DKO) mice. Since an additive increase in PGF2α level in epididymal fat was observed in DKO mice, mPGES-1 deficiency might affect adiposity by enhancing the production of PGF2α. Our immunohistochemical analysis further revealed that in adipose tissues, PGIS was expressed in vascular and stromal cells but not in adipocytes. These results suggested that PGI2 produced from PGIS-expressed stromal tissues might enhance HFD-induced obesity by acting on IP expressed in adipocytes. The balance of expressions of PG terminal synthases and the subsequent production of prostanoids might be critical for adiposity.
Collapse
Affiliation(s)
- Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Moe Akatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Yuri Yamakawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Chieko Yokoyama
- Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
25
|
Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats. Nutrients 2020; 12:nu12113451. [PMID: 33187208 PMCID: PMC7697261 DOI: 10.3390/nu12113451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are not yet all established. Herein, we investigated the effects of maternal and weaning linoleic acid (LA)-rich diet interactions on gut intestinal and adipose tissue physiology in young (3-month-old) and older (6-month-old) adult offspring. Pregnant rats were fed a control diet (2% LA) or an LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring were either maintained on the maternal diet or fed the other diet for 3 or 6 months. At 3 months of age, the maternal LA-diet favored low-grade inflammation and greater adiposity, while at 6 months of age, offspring intestinal barrier function, adipose tissue physiology and hepatic conjugated linoleic acids were strongly influenced by the weaning diet. The maternal LA-diet impacted offspring cecal microbiota diversity and composition at 3 months of age, but had only few remnant effects upon cecal microbiota composition at 6 months of age. Our study suggests that perinatal exposure to high LA levels induces a differential metabolic response to weaning diet exposure in adult life. This programming effect of a maternal LA-diet may be related to the alteration of offspring gut microbiota.
Collapse
|
26
|
Meyer DM, Brei C, Bader BL, Hauner H. Evaluation of Maternal Dietary n-3 LCPUFA Supplementation as a Primary Strategy to Reduce Offspring Obesity: Lessons From the INFAT Trial and Implications for Future Research. Front Nutr 2020; 7:156. [PMID: 33043038 PMCID: PMC7522594 DOI: 10.3389/fnut.2020.00156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022] Open
Abstract
Preclinical research suggests that early exposure to LCPUFAs is associated with offspring health outcomes, although evidence in humans is rather unclear. In 2006, we established the Impact of Nutritional Fatty acids during pregnancy and lactation on early human Adipose Tissue development (INFAT) study, a prospective randomized controlled intervention trial that examined whether decreasing the n-6/n-3 LCPUFA ratio during pregnancy and lactation influences offspring adipose tissue development in children up to 5 years. Our results indicate that maternal supplementation with n-3 LCPUFAs does not reduce offspring obesity risk, which is in line with recent publications. This perspective describes the challenges and lessons learned from our clinical trial. We discuss key findings and critically evaluate differences in study design, methodology, and analyses across similar intervention trials that may partly explain heterogeneous results. Summarizing evidence from human trials, we conclude that n-3 LCPUFA supplementation should not be recommended as a primordial strategy to prevent childhood obesity. Instead, it remains unknown whether n-3 LCPUFA supplementation could benefit high-risk subgroups and some vulnerable maternal/child populations. The perspectives offered herein are derived largely from insights gained from ours and similar n-3 LCPUFA intervention trials and help to provide direction for future research that examines the impact of maternal nutritional exposure on offspring health and disease outcomes.
Collapse
Affiliation(s)
- Dorothy Marie Meyer
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christina Brei
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Lorenz Bader
- ZIEL-Institute for Food and Health, Freising, Germany.,Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich School of Life Sciences Weihenstephan, Freising, Germany
| | - Hans Hauner
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany.,ZIEL-Institute for Food and Health, Freising, Germany.,Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich School of Life Sciences Weihenstephan, Freising, Germany
| |
Collapse
|
27
|
Tans R, Bande R, van Rooij A, Molloy BJ, Stienstra R, Tack CJ, Wevers RA, Wessels HJCT, Gloerich J, van Gool AJ. Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102157. [PMID: 32629236 DOI: 10.1016/j.plefa.2020.102157] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Obesity is associated with adipose tissue inflammation which in turn drives insulin resistance and the development of type 2 diabetes. Oxylipins are a collection of lipid metabolites, subdivided in different classes, which are involved in inflammatory cascades. They play important roles in regulating adipose tissue homeostasis and inflammation and are therefore putative biomarkers for obesity-associated adipose tissue inflammation and the subsequent risk of type 2 diabetes onset. The objective for this study is to design an assay for a specific oxylipin class and evaluate these as potential prognostic biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes. METHODS An optimized workflow was developed to extract oxylipins from plasma using solid-phase extraction followed by analysis using ultra-high performance liquid chromatography coupled to a triple quadrupole mass spectrometer in multiple reaction monitoring mode. This workflow was applied to clinical plasma samples obtained from obese-type 2 diabetes patients and from lean and obese control subjects. RESULTS The assay was analytically validated and enabled reproducible analyses of oxylipins extracted from plasma with acceptable sensitivities. Analysis of clinical samples revealed discriminative values for four oxylipins between the type 2 diabetes patients and the lean and obese control subjects, viz. PGF2α, PGE2, 15-keto-PGE2 and 13,14-dihydro-15-keto-PGE2. The combination of PGF2α and 15-keto-PGE2 had the most predictive value to discriminate type 2 diabetic patients from lean and obese controls. CONCLUSIONS This proof-of-principle study demonstrates the potential value of oxylipins as biomarkers to discriminate obese individuals from obese-type 2 diabetes patients.
Collapse
Affiliation(s)
- Roel Tans
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rieke Bande
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arno van Rooij
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Rinke Stienstra
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
28
|
Draycott SAV, Elmes MJ, Muhlhausler BS, Langley-Evans S. Omega-6:Omega-3 Fatty Acid Ratio and Total Fat Content of the Maternal Diet Alter Offspring Growth and Fat Deposition in the Rat. Nutrients 2020; 12:nu12092505. [PMID: 32825093 PMCID: PMC7551768 DOI: 10.3390/nu12092505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (LCPUFA) have been shown to inhibit lipogenesis and adipogenesis in adult rats. Their possible early life effects on offspring fat deposition, however, remain to be established. To investigate this, female Wistar rats (n = 6–9 per group) were fed either a 9:1 ratio of linoleic acid (LA) to alpha-linolenic acid (ALA) or a lower 1:1.5 ratio during pregnancy and lactation. Each ratio was fed at two total fat levels (18% vs. 36% fat w/w) and offspring were weaned onto standard laboratory chow. Offspring exposed to a 36% fat diet, irrespective of maternal dietary LA:ALA ratio, were lighter (male, 27 g lighter; female 19 g lighter; p < 0.0001) than those exposed to an 18% fat diet between 3 and 8 weeks of age. Offspring exposed to a low LA (18% fat) diet had higher proportions of circulating omega-3 LCPUFA and increased gonadal fat mass at 4 weeks of age (p < 0.05). Reduced Srebf1 mRNA expression of hepatic (p < 0.01), gonadal fat (p < 0.05) and retroperitoneal fat (p < 0.05) tissue was observed at 4 weeks of age in male and female offspring exposed to a 36% fat diet, and hepatic Srebf1 mRNA was also reduced in male offspring at 8 weeks of age (p < 0.05). Thus, while offspring fat deposition appeared to be sensitive to both maternal dietary LA:ALA ratio and total fat content, offspring growth and lipogenic capacity of tissues appeared to be more sensitive to maternal dietary fat content.
Collapse
Affiliation(s)
- Sally A. V. Draycott
- Sutton Bonington Campus, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; (M.J.E.); (S.L.-E.)
- Food and Nutrition Research Group, Department of Food and Wine Science, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia;
- Correspondence:
| | - Matthew J. Elmes
- Sutton Bonington Campus, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; (M.J.E.); (S.L.-E.)
| | - Beverly S. Muhlhausler
- Food and Nutrition Research Group, Department of Food and Wine Science, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia;
- Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia
| | - Simon Langley-Evans
- Sutton Bonington Campus, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; (M.J.E.); (S.L.-E.)
| |
Collapse
|
29
|
Sharma P, Agnihotri N. Fish oil and corn oil induced differential effect on beiging of visceral and subcutaneous white adipose tissue in high-fat-diet-induced obesity. J Nutr Biochem 2020; 84:108458. [PMID: 32738734 DOI: 10.1016/j.jnutbio.2020.108458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
Obesity is characterised by excessive accumulation of fat in white adipose tissue (WAT) which is compartmentalised into two anatomically and functionally diverse depots - visceral and subcutaneous. Advice to substitute essential polyunsaturated fatty acids (PUFAs) for saturated fatty acids is a cornerstone of various obesity management strategies. Despite an array of reports on the role of essential PUFAs on obesity, there still exists a lacuna on their mode of action in distinct depots i.e. visceral (VWAT) and subcutaneous (SWAT). The present study aimed to evaluate the effect of fish oil and corn oil on VWAT and SWAT in high-fat-diet-induced rodent model of obesity. Fish oil (FO) supplementation positively ameliorated the effects of HFD by regulating the anthropometrical and serum lipid parameters. FO led to an overall reduction in fat mass in both depots while specifically inducing beiging of adipocytes in SWAT as indicated by increased UCP1 and PGC1α. We also observed an upregulation of AMPKα and ACC1/2 phosphorylation on FO supplementation in SWAT suggesting a role of AMPK-PGC1α-UCP1 axis in beiging of adipose tissue. On the other hand, corn oil supplementation did not show any improvements in adipose tissue metabolism in both the depots of adipose tissue. The results were analysed using one-way ANOVA followed by Tukey's test in Graphpad Prism 5.0. Combined together our results suggest that n-3 PUFAs exert their anti-obesity effect by regulating adipokine secretion and inducing beiging of SWAT, hence increasing energy expenditure via thermogenic upregulation.
Collapse
Affiliation(s)
- Prerna Sharma
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
30
|
Mamounis KJ, Shvedov NR, Margolies N, Yasrebi A, Roepke TA. The effects of dietary fatty acids in the physiological outcomes of maternal high-fat diet on offspring energy homeostasis in mice. J Dev Orig Health Dis 2020; 11:273-284. [PMID: 31556363 PMCID: PMC7096261 DOI: 10.1017/s2040174419000540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The early-life origins of disease hypothesis has been applied to obesity research and modeled through overnutrition, usually with a high-fat diet (HFD). Since the obesity epidemic coincided with societal change in dietary fat consumption, rather than amount, manipulation of fatty acid (FA) profile is an under-investigated area of study. Additionally, the binding of FAs to nuclear receptors may have persistent intergenerational, extranutritive endocrinological effects that interact with the actions of reproductive steroids causing sex-dependent effects. To determine the role of FA type in the effects underlying maternal HFD, we fed wild-type C57BL6/J mating pairs, from preconception through lactation, a HFD with high saturated fat levels from coconut oil or high linoleic acid (LA) levels from vegetable oil. Male and female offspring body weight and food intake were measured weekly for 25 weeks. Assays for glucose metabolism, body composition, and calorimetry were performed at 25 weeks. Plasma metabolic peptides and liver mRNA were measured terminally. Obesity was primarily affected by adult rather than maternal diet in males, yet in females, maternal HFD potentiated the effects of adult HFD. Maternal HFD high in LA impaired glucose disposal in males weaned onto HFD and insulin sensitivity of females. Plasma leptin correlated with adiposity, but insulin and insulin receptor expression in the liver were altered by maternal LA in males. Our results suggest that maternal FA profile is most influential on offspring glucose metabolism and that adult diet is more important than maternal diet for obesity and other parameters of metabolic syndrome.
Collapse
Affiliation(s)
- Kyle J. Mamounis
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Naomi R. Shvedov
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nicholas Margolies
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A. Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
31
|
Suara SB, Siassi F, Saaka M, Foroshani AR, Asadi S, Sotoudeh G. Dietary fat quantity and quality in relation to general and abdominal obesity in women: a cross-sectional study from Ghana. Lipids Health Dis 2020; 19:67. [PMID: 32276629 PMCID: PMC7149837 DOI: 10.1186/s12944-020-01227-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although relationships between obesity and total fat and fat types have been widely examined, the associations between the relative proportions of fatty acids calculated in the form of indices and obesity/overweight are lacking. The objective of this study was to assess associations between dietary fat quality indices and odds of obesity/overweight in women from Ghana. METHODS In this cross-sectional study, dietary information was obtained using 24-h dietary recall. The odds of obesity were evaluated across quintiles of specific DFQ indices [atherogenicity index (AI), thrombogenic index (TI), hypo- and hypercholesterolemic fatty acids ratio (h/H), omega-3 to omega-6 polyunsaturated fatty acids ratio (∑ω-3/∑ω-6), polyunsaturated fatty acids/saturated fatty acids ratio (PSR), dietary lipophilic index (LI) and percentage of energy from total fat (TF)]. RESULTS After adjustment for covariates, general obesity and overweight were inversely associated with ∑ω-3/∑ω-6 ratio (OR: 0.63; 95% CI: 0.24-1.63; P for trend (P) = 0.005) and positively with TI (4.14; 95% CI: 1.78-9.66; P = 0.01) and LI (2.49; 95% CI: 1.14-5.43; P = 0.01). The odds of abdominal obesity based on waist circumference (WC) were significantly higher among participants in the fifth quintile (Q) compared with those in the first Q of AI (1.24; 95% CI: 0.56-2.74; P = 0.01), TI (4.14; 95% CI: 1.78-9.66; P = 0.009), LI (2.11; 95% CI: 0.98-4.55; P = 0.02) and TF (1.59; 95% CI: (0.73-3.46; P = 0.003). Similarly, waist to height ratio (WHtR) was positively associated with AI (2.89; 95% CI: 1.32-6.31; P = 0.04), TI (2.65; 95% CI: 1.22-5.76; P = 0.03), LI (3.32; 95% CI: 1.52-7.28; P = 0.007) and TF (1.83; 95% CI: 0.85-3.93; P = 0.009). CONCLUSION There was an inverse association between ∑ω-3/∑ω-6 ratio and general obesity and WC. We also found positive associations between abdominal obesity and AI and TF. Furthermore, TI and LI showed positive relationships with both general and abdominal obesity. Therefore, intake of dietary fatty acids in favor of higher ratios of ∑ω-3/∑ω-6 may be important in obesity prevention.
Collapse
Affiliation(s)
- Sufyan Bakuri Suara
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, International Campus, Tehran University of Medical Sciences, Number 21, Dameshgh St. Vali-e Asr Ave., Tehran, 1416753955, Iran
| | - Fereydoun Siassi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Hojatdost street, Naderi street, Keshavarz Blv, Tehran, Iran.
| | - Mahama Saaka
- Department of Nutritional Sciences, School of Allied Health Sciences, University for Development Studies, Post Office Box 1350, Tamale, Ghana
| | - Abbas Rahimi Foroshani
- Department of Statistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Asadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Hojatdost street, Naderi street, Keshavarz Blv, Tehran, Iran
| | - Gity Sotoudeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Hojatdost street, Naderi street, Keshavarz Blv, Tehran, Iran.
| |
Collapse
|
32
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
33
|
The effect of maternal dietary fat content and n-6: n-3 ratio on offspring growth and hepatic gene expression in the rat. Br J Nutr 2020; 123:1227-1238. [PMID: 32051042 DOI: 10.1017/s000711452000046x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
n-6 Fatty acids have been shown to exert pro-adipogenic effects, whereas n-3 fatty acids work in opposition. Increasing intakes of linoleic acid (LA; n-6) v. α-linolenic acid (ALA; n-3) in Western diets has led to the hypothesis that consumption of this diet during pregnancy may be contributing to adverse offspring health. This study investigated the effects of feeding a maternal dietary LA:ALA ratio similar to that of the Western diet (9:1) compared with a proposed 'ideal' ratio (about 1:1·5), at two total fat levels (18 v. 36 % fat, w/w), on growth and lipogenic gene expression in the offspring. Female Wistar rats were assigned to one of the four experimental groups throughout gestation and lactation. Offspring were culled at 1 and 2 weeks of age for sample collection. Offspring of dams consuming a 36 % fat diet were approximately 20 % lighter than those exposed to an 18 % fat diet (P < 0·001). Male, but not female, liver weight at 1 week was approximately 13 % heavier and had increased glycogen (P < 0·05), in offspring exposed to high LA (P < 0·01). Hepatic expression of lipogenic genes suggested an increase in lipogenesis in male offspring exposed to a 36 % fat maternal diet and in female offspring exposed to a low-LA diet, via increases in the expression of fatty acid synthase and sterol regulatory element-binding protein. Sexually dimorphic responses to altered maternal diet appeared to persist until 2 weeks of age. In conclusion, whilst maternal total fat content predominantly affected offspring growth, fatty acid ratio and total fat content had sexually dimorphic effects on offspring liver weight and composition.
Collapse
|
34
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
35
|
Shrestha N, Sleep SL, Cuffe JSM, Holland OJ, Perkins AV, Yau SY, McAinch AJ, Hryciw DH. Role of omega-6 and omega-3 fatty acids in fetal programming. Clin Exp Pharmacol Physiol 2020; 47:907-915. [PMID: 31883131 DOI: 10.1111/1440-1681.13244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Maternal nutrition plays a critical role in fetal development and can influence adult onset of disease. Linoleic acid (LA) and alpha-linolenic acid (ALA) are major omega-6 (n-6) and n-3 polyunsaturated fatty acids (PUFA), respectively, that are essential in our diet. LA and ALA are critical for the development of the fetal neurological and immune systems. However, in recent years, the consumption of n-6 PUFA has increased gradually worldwide, and elevated n-6 PUFA consumption may be harmful to human health. Consumption of diets with high levels of n-6 PUFA before or during pregnancy may have detrimental effects on fetal development and may influence overall health of offspring in adulthood. This review discusses the role of n-6 PUFA in fetal programming, the importance of a balance between n-6 and n-3 PUFAs in the maternal diet, and the need of further animal models and human studies that critically evaluate both n-6 and n-3 PUFA contents in diets.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Simone L Sleep
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - James S M Cuffe
- School of Medical Science, Griffith University, Southport, Qld, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.,University Research Facility in Behavioural and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Vic., Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,School of Environment and Science, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
36
|
Xing Y, Wu X, Xie C, Xiao D, Zhang B. Meat Quality and Fatty Acid Profiles of Chinese Ningxiang Pigs Following Supplementation with N-Carbamylglutamate. Animals (Basel) 2020; 10:ani10010088. [PMID: 31935807 PMCID: PMC7023016 DOI: 10.3390/ani10010088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary N-carbamylglutamate (NCG) has been demonstrated to promote the synthesis of endogenous arginine and improve reproductive performance. In the present study, we found that dietary NCG supplementation improved meat quality of a Chinese fat-type pig by increasing muscle tenderness and Phe concentration, and optimizing fatty acid profiles in different tissues. These results provided scientific evidence for the application of NCG as a feed additive in finishing pigs. Abstract The present study evaluated the effects of dietary N-carbamylglutamate (NCG) on carcass traits, meat quality, and fatty acid profiles in the longissimus dorsi muscle and adipose tissues of Chinese Ningxiang pigs. A total of 36 castrated female pigs with a similar initial weight (43.21 ± 0.57 kg) were randomly assigned to two treatments (with six pens per treatment and three pigs per pen) and fed either a basal diet or a basal diet supplemented with 0.08% NCG for 56 days. Results showed that dietary NCG reduced shear force (p = 0.004) and increased drip loss (p = 0.044) in longissimus dorsi muscle of Ningxiang pigs. Moreover, increased levels of oleic acid (C18:1n9c) (p = 0.009), paullinic acid (C20:1) (p = 0.004), and α-linolenic acid (C18:3n3) (p < 0.001), while significant reduction in the proportions of arachidonic acid (C20:4n6) (p < 0.001) and polyunsaturated fatty acid (PUFA) (p = 0.017) were observed in the longissimus dorsi muscle of pigs fed NCG when compared with those fed the control diet. As for adipose tissues, the C20:1 (p = 0.045) proportion in dorsal subcutaneous adipose (DSA), as well as the stearic acid (C18:0) (p = 0.018) level in perirenal adipose (PA) were decreased when pigs were fed the NCG diet compared with those of the control diet. In contrast, the margaric acid (C17:0) (p = 0.043) proportion in PA were increased. Moreover, the NCG diet produced PA with a greater proportion of total PUFAs (p = 0.001) (particularly linoleic acid (C18:2n6c) (p = 0.001)) compared with those produced by the control diet. These findings suggest that dietary NCG has beneficial effects by decreasing the shear force and improving the healthfulness of fatty acid profiles, providing a novel strategy for enhancing meat quality of pigs.
Collapse
Affiliation(s)
- Yueteng Xing
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
- Correspondence: (X.W.); (B.Z.); Tel.: +86-731-84619767 (X.W.); +86-731-84618088 (B.Z.); Fax: +86-731-84612685 (X.W.)
| | - Chunyan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Dingfu Xiao
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
| | - Bin Zhang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
- Correspondence: (X.W.); (B.Z.); Tel.: +86-731-84619767 (X.W.); +86-731-84618088 (B.Z.); Fax: +86-731-84612685 (X.W.)
| |
Collapse
|
37
|
Haylett WL, Ferris WF. Adipocyte-progenitor cell communication that influences adipogenesis. Cell Mol Life Sci 2020; 77:115-128. [PMID: 31352534 PMCID: PMC11104918 DOI: 10.1007/s00018-019-03256-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Adipose tissue is located in discrete depots that are differentially associated with elevated risk of metabolic complications, with fat accretion in visceral depots being most detrimental to metabolic health. Currently, the regulation of specific adipose depot expansion, by adipocyte hypertrophy and hyperplasia and consequently fat distribution, is not well understood. However, a growing body of evidence from in vitro investigations indicates that mature adipocytes secrete factors that modulate the proliferation and differentiation of progenitor, adipose-derived stem cells (ADSCs). It is therefore plausible that endocrine communication between adipocytes and ADSCs located in different depots influences fat distribution, and may therefore contribute to the adverse health outcomes associated with visceral adiposity. This review will explore the available evidence of paracrine and endocrine crosstalk between mature adipocytes and ADSCs that affects adipogenesis, as a better understanding of the regulatory roles of the extracellular signalling mechanisms within- and between adipose depots may profoundly change the way we view adipose tissue growth in obesity and related comorbidities.
Collapse
Affiliation(s)
- William Lloyd Haylett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
38
|
Abstract
In order to better understand the events that precede and precipitate the onset of type 2 diabetes (T2DM), several nutritional animal models have been developed. These models are generated by manipulating the diet of either the animal itself, or its mother during her pregnancy, and in comparison to traditional genetic and knock out models, have the advantage that they more accurately reflect the etiology of human T2DM. This chapter will discuss some of the most widely used nutritional models of T2DM: Diet-induced obesity (DIO) in adult rodents, and studies of offspring of mothers fed a low-protein, high-fat and/or high-sugar diet during pregnancy and/or lactation. Several common mechanisms have been identified through which these nutritional manipulations can lead to metabolic disease, including pancreatic beta-cell dysfunction, impaired insulin signaling in skeletal muscle, and the excess accumulation of visceral adipose tissue and consequent deposition of nonesterified fatty acids in peripheral tissues. In addition, there is an emerging concept that obesity/poor quality diets result in increased production and release of pro-inflammatory cytokines from adipose tissue leading to a state of chronic low-grade inflammation, and that this is likely to represent an important link between obesity/diet and metabolic dysfunction. The following chapter will discuss the most common nutritional models of T2DM in experimental animals, their application, and relationship to human etiology, and will highlight the important insights these models have provided into the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Beverly Sara Mühlhäusler
- Food and Nutrition Research Group, Department of Food and Wine Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia.
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia.
- CSIRO, Health and Biosecurity, Adelaide, SA, Australia.
| | - Carla Toop
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sheridan Gentili
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
39
|
Farahnak Z, Yuan Y, Vanstone CA, Weiler HA. Maternal and neonatal red blood cell n-3 polyunsaturated fatty acids inversely associate with infant whole-body fat mass assessed by dual-energy X-ray absorptiometry. Appl Physiol Nutr Metab 2019; 45:318-326. [PMID: 31437414 DOI: 10.1139/apnm-2019-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research regarding polyunsaturated fatty acid (PUFA) status and body composition in neonates is limited. This study tested the relationship between newborn docosahexaenoic acid (DHA) status and body composition. Healthy mothers and their term-born infants (n = 100) were studied within 1 month postpartum for anthropometry and whole-body composition using dual-energy X-ray absorptiometry. Maternal and infant red blood cell (RBC) membrane PUFA profiles were measured using gas chromatography (expressed as percentage of total fatty acids). Data were grouped according to infant RBC DHA quartiles and tested for differences in n-3 status and infant body composition using mixed-model ANOVA, Spearman correlations, and regression analyses (P < 0.05). Mothers were 32.2 ± 4.6 years (mean ± SD) of age, infants (54% males) were 0.68 ± 0.23 month of age, and 80% exclusively breastfed. Infant RBC DHA (ranged 3.96% to 7.75% of total fatty acids) inversely associated with infant fat mass (r = -0.22, P = 0.03). Infant and maternal RBC n-6/n-3 PUFA ratio (r2 = 0.28, P = 0.043; r2 = 0.28, P = 0.041 respectively) were positively associated with fat mass. These results demonstrate that both maternal and infant long-chain PUFA status are associated with neonatal body composition. Novelty Our findings support an early window to further explore the relationship between infant n-3 PUFA status and body composition. Maternal and infant n-3 PUFA status is inversely related to neonatal whole-body fat mass. DHA appears to be the best candidate to test in the development of a lean body phenotype.
Collapse
Affiliation(s)
- Zahra Farahnak
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.,School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Ye Yuan
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.,School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Catherine A Vanstone
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.,School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Hope A Weiler
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.,School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
40
|
Beigrezaei S, Ghiasvand R, Feizi A, Iraj B. Relationship between Dietary Patterns and Incidence of Type 2 Diabetes. Int J Prev Med 2019; 10:122. [PMID: 31367285 PMCID: PMC6639850 DOI: 10.4103/ijpvm.ijpvm_206_17] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction Increasing rate of type 2 diabetes (T2D) prevalence during the recent years has caused concern about significant risks for the public health. Dietary patterns have recently attracted great attention in the evaluation of the relationship between diet and health. In the present study, we investigated the relationship between the major identified dietary patterns and T2D. Methods In this matched case-control study, 315 individuals (125 newly diagnosed cases and 190 controls); 18-60 years of age were selected. A valid semiquantitative food frequency questionnaire was used to collect dietary intakes of individuals. Anthropometric characteristics and blood pressure were measured with standard instructions and body mass index and waist to hip ratio were calculated. Factor analysis was used to identify major dietary patterns. The relationship between major food patterns and T2D was assessed by logistic regression analysis. Results Two dietary patterns were identified: healthy and Western dietary patterns. The second tertile of the healthy dietary pattern had significantly association with decreased risk of T2D in the crude model (Odds ratios [OR]: 0.51, 95% Confidence interval [CI]: 0.29-0.9; P for trend = 0.018), Model II (OR: 0.5, 95% CI: 0.27-0.9; P for trend = 0.019), and Model III (OR: 0.56, 95% CI: 0.23-1.4 P for trend = 0.048). The inverse association of the second tertile of Western dietary pattern score with the T2D was significant in crude (OR: 9.25, 95% CI: 4.95-17.4; P for trend <0.001) and multivariable-adjusted model (OR: 16.65, 95% CI: 2.99-92.84; P for trend <0001). Conclusions Our study found an inverse relationship between adherence of healthy pattern and direct association with Western dietary pattern and the risk of T2D.
Collapse
Affiliation(s)
- Sara Beigrezaei
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan, Iran
| | - Reza Ghiasvand
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan, Iran
| | - Bijan Iraj
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Asano M, Kushida M, Yamamoto K, Tomata Y, Tsuji I, Tsuduki T. Abdominal Fat in Individuals with Overweight Reduced by Consumption of a 1975 Japanese Diet: A Randomized Controlled Trial. Obesity (Silver Spring) 2019; 27:899-907. [PMID: 30985996 DOI: 10.1002/oby.22448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This study aimed to investigate whether the intake of the 1975 Japanese diet (JD) could reduce the amount of abdominal fat in people with overweight. METHODS Using a single-blind randomized controlled trial, the modern diet (MD) was compared with the 1975-type JD, which is based on the MD but includes five characteristics of the 1975 JD in an enhanced form. Overweight people were randomly assigned to an MD group (n = 30) and a JD group (n = 30). The participants consumed test diets that were provided three times a day for 28 days. Body composition measurements and blood biochemical examinations were performed before and after the test diet intake, and the proportions of change were compared. RESULTS Those in the JD group had significantly decreased BMI, fat mass, and levels of low-density lipoprotein cholesterol, glycated hemoglobin, and C-reactive protein (P = 0.002, 0.015, 0.014, 0.012, and 0.039, respectively) and significantly increased high-density lipoprotein cholesterol levels compared with those in the MD group (P = 0.020). CONCLUSIONS The intake of a diet with the characteristics of the 1975 JD may have beneficial effects on lipid metabolism in people with overweight and reduce the onset risk of metabolism-related disorders, such as obesity and diabetes.
Collapse
Affiliation(s)
- Masaki Asano
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | - Mamoru Kushida
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | - Kazushi Yamamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | - Yasutake Tomata
- Division of Epidemiology, Department of Health Informatics & Public Health, Graduate School of Medicine, Tohoku University School of Public Health, Sendai, Japan
| | - Ichiro Tsuji
- Division of Epidemiology, Department of Health Informatics & Public Health, Graduate School of Medicine, Tohoku University School of Public Health, Sendai, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Colson C, Ghandour RA, Dufies O, Rekima S, Loubat A, Munro P, Boyer L, Pisani DF. Diet Supplementation in ω3 Polyunsaturated Fatty Acid Favors an Anti-Inflammatory Basal Environment in Mouse Adipose Tissue. Nutrients 2019; 11:nu11020438. [PMID: 30791540 PMCID: PMC6412622 DOI: 10.3390/nu11020438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022] Open
Abstract
Oxylipins are metabolized from dietary ω3 and ω6 polyunsaturated fatty acids and are involved in an inflammatory response. Adipose tissue inflammatory background is a key factor of metabolic disorders and it is accepted that dietary fatty acids, in terms of quality and quantity, modulate oxylipin synthesis in this tissue. Moreover, it has been reported that diet supplementation in ω3 polyunsaturated fatty acids resolves some inflammatory situations. Thus, it is crucial to assess the influence of dietary polyunsaturated fatty acids on oxylipin synthesis and their impact on adipose tissue inflammation. To this end, mice fed an ω6- or ω3-enriched standard diet (ω6/ω3 ratio of 30 and 3.75, respectively) were analyzed for inflammatory phenotype and adipose tissue oxylipin content. Diet enrichment with an ω3 polyunsaturated fatty acid induced an increase in the oxylipins derived from ω6 linoleic acid, ω3 eicosapentaenoic, and ω3 docosahexaenoic acids in brown and white adipose tissues. Among these, the level of pro-resolving mediator intermediates, as well as anti-inflammatory metabolites, were augmented. Concomitantly, expressions of M2 macrophage markers were increased without affecting inflammatory cytokine contents. In vitro, these metabolites did not activate macrophages but participated in macrophage polarization by inflammatory stimuli. In conclusion, we demonstrated that an ω3-enriched diet, in non-obesogenic non-inflammatory conditions, induced synthesis of oxylipins which were involved in an anti-inflammatory response as well as enhancement of the M2 macrophage molecular signature, without affecting inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Cecilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | | | - Océane Dufies
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Samah Rekima
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | - Patrick Munro
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Laurent Boyer
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
- Didier Pisani, Laboratoire de PhysioMédecine Moléculaire-LP2M, Univ. Nice Sophia Antipolis, 28 Avenue de Valombrose, 06107 Nice CEDEX 2, France.
| |
Collapse
|
43
|
The Association between Plasma Omega-6/Omega-3 Ratio and Anthropometric Traits Differs by Racial/Ethnic Groups and NFKB1 Genotypes in Healthy Young Adults. J Pers Med 2019; 9:jpm9010013. [PMID: 30781516 PMCID: PMC6462983 DOI: 10.3390/jpm9010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Evidence for a relationship between omega-6/omega-3 (n-6/n-3) polyunsaturated fatty acid (PUFA) ratio and obesity in humans is inconsistent, perhaps due to differences in dietary intake or metabolism of PUFAs between different subsets of the population. Since chronic inflammation is central to obesity and inflammatory pathways are regulated by PUFAs, the objective of this study was to examine whether variants in the NFKB1 gene, an upstream regulator of the inflammatory response, modify the association between the n-6/n-3 ratio (from diet and plasma) and anthropometric traits in a multiethnic/multiracial population of young adults. Participants' (n = 898) dietary PUFA intake was assessed using a food frequency questionnaire and plasma PUFA concentrations by gas chromatography. Nine tag single nucleotide polymorphisms (SNP) in NFKB1 were genotyped. Significant interactions were found between racial/ethnic groups and plasma n-6/n-3 ratio for body mass index (BMI) (p = 0.02) and waist circumference (WC) (p = 0.007). Significant interactions were also observed between racial/ethnic groups and three NFKB1 genotypes (rs11722146, rs1609798, and rs230511) for BMI and WC (all p ≤ 0.04). Significant interactions were found between two NFKB1 genotypes and plasma n-6/n-3 ratio for BMI and WC (rs4648090 p = 0.02 and 0.03; rs4648022 p = 0.06 and 0.04, respectively). Our findings suggest that anthropometric traits may be influenced by a unique combination of n-6/n-3 ratio, racial/ethnic background, and NFKB1 genotypes.
Collapse
|
44
|
Draycott SAV, Liu G, Daniel ZC, Elmes MJ, Muhlhausler BS, Langley-Evans SC. Maternal dietary ratio of linoleic acid to alpha-linolenic acid during pregnancy has sex-specific effects on placental and fetal weights in the rat. Nutr Metab (Lond) 2019; 16:1. [PMID: 30622622 PMCID: PMC6318840 DOI: 10.1186/s12986-018-0330-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/20/2018] [Indexed: 01/30/2023] Open
Abstract
Background Increased consumption of linoleic acid (LA, omega-6) in Western diets coupled with the pro-inflammatory and adipogenic properties of its derivatives has led to suggestions that fetal exposure to this dietary pattern could be contributing to the intergenerational cycle of obesity. Method This study aimed to evaluate the effects of maternal consumption of a LA to alpha-linolenic acid (ALA) ratio similar to modern Western diets (9:1) compared to a lower ratio (1:1.5) on placental and fetal growth, and to determine any cumulative effects by feeding both diets at two total fat levels (18% vs 36% fat w/w). Female Wistar rats (n = 5–7/group) were assigned to one of the four experimental diets prior to mating until 20d of gestation. Results Fatty acid profiles of maternal and fetal blood and placental tissue at 20d gestation were different between dietary groups, and largely reflected dietary fatty acid composition. Female fetuses were heavier (2.98 ± 0.06 g vs 3.36 ± 0.07 g, P < 0.01) and male placental weight was increased (0.51 ± 0.02 g vs 0.58 ± 0.02 g, P < 0.05) in the low LA:ALA groups. Female fetuses of dams exposed to a 36% fat diet had a reduced relative liver weight irrespective of LA:ALA ratio (7.61 ± 0.22% vs 6.93 ± 0.19%, P < 0.05). These effects occurred in the absence of any effect of the dietary treatments on maternal bodyweight, fat deposition or expression of key lipogenic genes in maternal and fetal liver or maternal adipose tissue. Conclusion These findings suggest that both the total fat content as well as the LA:ALA ratio of the maternal diet have sex-specific implications for the growth of the developing fetus.
Collapse
Affiliation(s)
- Sally A V Draycott
- 1Food and Nutrition Research Group, Department of Food and Wine Science, School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia.,2School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ge Liu
- 1Food and Nutrition Research Group, Department of Food and Wine Science, School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia.,3Healthy Mothers, Babies and Children's Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, 5001 Australia
| | - Zoe C Daniel
- 2School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Matthew J Elmes
- 2School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Beverly S Muhlhausler
- 1Food and Nutrition Research Group, Department of Food and Wine Science, School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia
| | - Simon C Langley-Evans
- 2School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
45
|
Maurer SF, Dieckmann S, Kleigrewe K, Colson C, Amri EZ, Klingenspor M. Fatty Acid Metabolites as Novel Regulators of Non-shivering Thermogenesis. Handb Exp Pharmacol 2019; 251:183-214. [PMID: 30141101 DOI: 10.1007/164_2018_150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fatty acids are essential contributors to adipocyte-based non-shivering thermogenesis by acting as activators of uncoupling protein 1 and serving as fuel for mitochondrial heat production. Novel evidence suggests a contribution to this thermogenic mechanism by their conversion to bioactive compounds. Mammalian cells produce a plethora of oxylipins and endocannabinoids, some of which have been identified to affect the abundance or thermogenic activity of brown and brite adipocytes. These effectors are produced locally or at distant sites and signal toward thermogenic adipocytes via a direct interaction with these cells or indirectly via secondary mechanisms. These interactions are evoked by the activation of receptor-mediated pathways. The endogenous production of these compounds is prone to modulation by the dietary intake of the respective precursor fatty acids. The effect of nutritional interventions on uncoupling protein 1-derived thermogenesis may thus at least in part be conferred by the production of a supportive oxylipin and endocannabinoid profile. The manipulation of this system in future studies will help to elucidate the physiological potential of these compounds as novel, endogenous regulators of non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Sebastian Dieckmann
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | | | | | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
46
|
Shin S, Ajuwon KM. Lipopolysaccharide Alters Thermogenic and Inflammatory Genes in White Adipose Tissue in Mice Fed Diets with Distinct 18-Carbon Fatty-Acid Composition. Lipids 2018; 53:885-896. [PMID: 30460700 DOI: 10.1002/lipd.12101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sunhye Shin
- Interdepartmental Nutrition Program, Purdue University; West Lafayette IN 47907 USA
| | - Kolapo M. Ajuwon
- Interdepartmental Nutrition Program, Purdue University; West Lafayette IN 47907 USA
- Department of Animal Sciences; Purdue University; 270S Russell Street, West Lafayette IN 47907 USA
| |
Collapse
|
47
|
Rahman MS, Syeda PK, Nartey MNN, Chowdhury MMI, Shimizu H, Nishimura K, Jisaka M, Shono F, Yokota K. Comparison of pro-adipogenic effects between prostaglandin (PG) D 2 and its stable, isosteric analogue, 11-deoxy-11-methylene-PGD 2, during the maturation phase of cultured adipocytes. Prostaglandins Other Lipid Mediat 2018; 139:71-79. [PMID: 30393164 DOI: 10.1016/j.prostaglandins.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Prostaglandin (PG) D2 is relatively unstable and dehydrated non-enzymatically into PGJ2 derivatives, which are known to serve as pro-adipogenic factors by activating peroxisome proliferator-activated receptor (PPAR) γ, a master regulator of adipogenesis. 11-Deoxy-11-methylene-PGD2 (11d-11m-PGD2) is a novel, chemically stable, isosteric analogue of PGD2 in which the 11-keto group is replaced by an exocyclic methylene. Here we attempted to investigate pro-adipogenic effects of PGD2 and 11d-11m-PGD2 and to compare the difference in their ways during the maturation phase of cultured adipocytes. The dose-dependent study showed that 11d-11m-PGD2 was significantly more potent than natural PGD2 to stimulate the storage of fats suppressed in the presence of indomethacin, a cyclooxygenase inhibitor. These pro-adipogenic effects were caused by the up-regulation of adipogenesis as evident with higher gene expression levels of adipogenesis markers. Analysis of transcript levels revealed the enhanced gene expression of two subtypes of cell-surface membrane receptors for PGD2, namely the prostanoid DP1 and DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)) receptors together with lipocalin-type PGD synthase during the maturation phase. Specific agonists for DP1, CRTH2, and PPARγ were appreciably effective to rescue adipogenesis attenuated by indomethacin. The action of PGD2 was attenuated by specific antagonists for DP1 and PPARγ. By contrast, the effect of 11d-11m-PGD2 was more potently interfered by a selective antagonist for CRTH2 than that for DP1 while PPARγ antagonist GW9662 had almost no inhibitory effects. These results suggest that PGD2 exerts its pro-adipogenic effect principally through the mediation of DP1 and PPARγ, whereas the stimulatory effect of 11d-11m-PGD2 on adipogenesis occurs preferentially by the interaction with CRTH2.
Collapse
Affiliation(s)
- Mohammad Shahidur Rahman
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Michael N N Nartey
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Md Mazharul Islam Chowdhury
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Hidehisa Shimizu
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Kohji Nishimura
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Mitsuo Jisaka
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Fumiaki Shono
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima-shi, Tokushima 770-8514, Japan
| | - Kazushige Yokota
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
48
|
Ellsworth L, Harman E, Padmanabhan V, Gregg B. Lactational programming of glucose homeostasis: a window of opportunity. Reproduction 2018; 156:R23-R42. [PMID: 29752297 PMCID: PMC6668618 DOI: 10.1530/rep-17-0780] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The window of lactation is a critical period during which nutritional and environmental exposures impact lifelong metabolic disease risk. Significant organ and tissue development, organ expansion and maturation of cellular functions occur during the lactation period, making this a vulnerable time during which transient insults can have lasting effects. This review will cover current literature on factors influencing lactational programming such as milk composition, maternal health status and environmental endocrine disruptors. The underlying mechanisms that have the potential to contribute to lactational programming of glucose homeostasis will also be addressed, as well as potential interventions to reduce offspring metabolic disease risk.
Collapse
Affiliation(s)
- Lindsay Ellsworth
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Emma Harman
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | | | - Brigid Gregg
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
49
|
Rudolph MC, Jackman MR, Presby DM, Houck JA, Webb PG, Johnson GC, Soderborg TK, de la Houssaye BA, Yang IV, Friedman JE, MacLean PS. Low Neonatal Plasma n-6/n-3 PUFA Ratios Regulate Offspring Adipogenic Potential and Condition Adult Obesity Resistance. Diabetes 2018; 67:651-661. [PMID: 29138256 PMCID: PMC5860857 DOI: 10.2337/db17-0890] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023]
Abstract
Adipose tissue expansion progresses rapidly during postnatal life, influenced by both prenatal maternal factors and postnatal developmental cues. The ratio of omega-6 (n-6) relative to n-3 polyunsaturated fatty acids (PUFAs) is believed to regulate perinatal adipogenesis, but the cellular mechanisms and long-term effects are not well understood. We lowered the fetal and postnatal n-6/n-3 PUFA ratio exposure in wild-type offspring under standard maternal dietary fat amounts to test the effects of low n-6/n-3 ratios on offspring adipogenesis and adipogenic potential. Relative to wild-type pups receiving high perinatal n-6/n-3 ratios, subcutaneous adipose tissue in 14-day-old wild-type pups receiving low n-6/n-3 ratios had more adipocytes that were smaller in size; decreased Pparγ2, Fabp4, and Plin1; several lipid metabolism mRNAs; coincident hypermethylation of the PPARγ2 proximal promoter; and elevated circulating adiponectin. As adults, offspring that received low perinatal n-6/n-3 ratios were diet-induced obesity (DIO) resistant and had a lower positive energy balance and energy intake, greater lipid fuel preference and non-resting energy expenditure, one-half the body fat, and better glucose clearance. Together, the findings support a model in which low early-life n-6/n-3 ratios remodel adipose morphology to increase circulating adiponectin, resulting in a persistent adult phenotype with improved metabolic flexibility that prevents DIO.
Collapse
Affiliation(s)
- Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - David M Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Julie A Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Patricia G Webb
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Taylor K Soderborg
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO
| | - Becky A de la Houssaye
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO
| | - Ivana V Yang
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Jacob E Friedman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
50
|
Hastert TA, de Oliveira Otto MC, Lê-Scherban F, Steffen BT, Steffen LM, Tsai MY, Jacobs DR, Baylin A. Association of plasma phospholipid polyunsaturated and trans fatty acids with body mass index: results from the Multi-Ethnic Study of Atherosclerosis. Int J Obes (Lond) 2018; 42:433-440. [PMID: 29151597 PMCID: PMC5876070 DOI: 10.1038/ijo.2017.282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/15/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVE Previous research has focused on associations between dietary fat and body mass index (BMI), but the contributions of different types of fat to BMI remain unclear. The purpose of this study is to estimate whether plasma phospholipid omega-3 (n-3), omega-6 (n-6) or trans fatty acids are associated with BMI at baseline and with subsequent BMI changes over time; and whether total phospholipid n-6 or trans fatty acids modify any association between phospholipid n-3 and BMI. METHODS Cross-sectional and longitudinal linear mixed models include 6243 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort. Participants were 45-84 years old, had no history of cardiovascular disease at baseline (2000-2002) and were followed for up to 10 years. Plasma phospholipid fatty acids were measured using fasting plasma samples at baseline. Fully adjusted models include demographics, health behaviors and other fatty acids (n-3, n-6 and trans) as appropriate. RESULTS In fully adjusted models, phospholipid n-3 fatty acid levels were inversely associated with baseline BMI (Ptrend <0.001). Baseline BMI was 1.14 (95% confidence interval (CI): 0.71, 1.57) kg m-2 lower among participants with total n-3 values in the highest vs the lowest quartiles, but was not associated with changes in BMI. Total phospholipid n-6 was positively associated with baseline BMI in partially adjusted but not fully adjusted models. No overall association was observed between fatty acid levels and changes in BMI. No clear association was observed between trans fatty acids and baseline BMI or BMI change. No effect modification in the association between phospholipid n-3 and baseline BMI or BMI change was observed by either phospholipid n-6 or trans fatty acids. CONCLUSIONS Phospholipid total and specific n-3 fatty acid levels were inversely associated with BMI at baseline, whereas associations tended to be positive for total n-6 fatty acids. Significant associations between fatty acid levels and BMI changes were not observed.
Collapse
Affiliation(s)
- Theresa A. Hastert
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Population Studies and Disparities Research Program, Karmanos Cancer Institute, Detroit, MI, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Marcia C. de Oliveira Otto
- Division of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Félice Lê-Scherban
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Brian T. Steffen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lyn M. Steffen
- Division of Epidemiology & Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - David R. Jacobs
- Division of Epidemiology & Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ana Baylin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Global Health, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|