1
|
Grundler F, Palumbo M, Adorni MP, Zimetti F, Papotti B, Plonné D, Holley A, Mesnage R, Ruscica M, Wilhelmi de Toledo F. HDL cholesterol efflux capacity and cholesterol loading capacity in long-term fasting: Evidence from a prospective, single-arm interventional study in healthy individuals. Atherosclerosis 2024; 397:118548. [PMID: 39180960 DOI: 10.1016/j.atherosclerosis.2024.118548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AND AIMS Long-term fasting (LF) is increasingly emerging as a non-pharmacological approach to modulate risk factors associated with the development of atherosclerotic cardiovascular diseases (ASCVD). However, protection from ASCVD is more tied to the functionality of high-density lipoprotein (HDL) than its plasma levels. Our prospective interventional study focuses on the functional properties of lipoproteins in modulating cholesterol homeostasis on peripheral cells and examines how LF may influence this and lipoprotein subclass composition. For that purpose, we investigated its impact on HDL-cholesterol efflux capacity (CEC), and on serum cholesterol loading capacity (CLC). METHODS Forty healthy subjects (50 % females) underwent medically supervised 9-day fasting (250 kcal/day) in a specialised facility. Thirty-two subjects had a follow-up examination after one month of food reintroduction. RESULTS LF was well tolerated and increased self-reported energy levels. Fasting reduced triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and HDL cholesterol (HDL-C). Very-low-density lipoprotein cholesterol (VLDL-C) and LDL3-C showed sustained reductions at follow-up. Only HDL-C, specifically HDL2-C levels, increased at follow-up. Total HDL-CEC decreased during LF and increased above baseline at follow-up. Fasting decreased ATP binding cassette (ABC)A1-mediated HDL-CEC whereas ABCG1-mediated HDL-CEC remained unaffected. Aqueous diffusion increased at follow up. LF decreased serum CLC and then returned to baseline levels. CONCLUSIONS LF not only maintains lipoprotein functionality but also contributes to a favorable shift in the atherogenic risk profile, which persists even after food reintroduction. This further emphasizes the importance of considering HDL functionality alongside traditional lipid measurements to understand the potential for non-pharmacological interventions like LF to promote cardiovascular prevention and health. TRIAL REGISTRATION NUMBER NCT05031598.
Collapse
Affiliation(s)
- Franziska Grundler
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, 88662, Überlingen, Germany.
| | | | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | | | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dietmar Plonné
- MVZ Humangenetik Ulm, Karlstraße 31-33, 89073, Ulm, Germany
| | - Alfred Holley
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, 88662, Überlingen, Germany
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, 88662, Überlingen, Germany; Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH, London, UK
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | |
Collapse
|
2
|
Adorni MP, Papotti B, Borghi MO, Raschi E, Zimetti F, Bernini F, Meroni PL, Ronda N. Effect of the JAK/STAT Inhibitor Tofacitinib on Macrophage Cholesterol Metabolism. Int J Mol Sci 2023; 24:12571. [PMID: 37628747 PMCID: PMC10454555 DOI: 10.3390/ijms241612571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The impact of JAK/STAT inhibitors, which are used in various inflammatory diseases, on cardiovascular risk is controversial and has recently raised safety concerns. Our study investigates the direct effects of tofacitinib on macrophage cholesterol metabolism, which is crucial for atherosclerosis plaque development and stability. Cultured human macrophages THP-1 were used to assess the impact of tofacitinib on cell cholesterol efflux and synthesis via radioisotopic methods, and on cholesterol uptake by measuring the cell cholesterol content with a fluorometric assay. The cholesterol acceptors and donors were either standard lipoproteins or sera from patients with juvenile idiopathic arthritis (JIA) and from control subjects. Tofacitinib significantly increased the macrophage cholesterol efflux to all acceptors; it reduced cholesterol uptake from both the normal and hypercholesterolemic sera; and it reduced cholesterol synthesis. The treatment of macrophages with tofacitinib was able to increase the cholesterol efflux and decrease cholesterol uptake when using sera from untreated JIA patients with active disease as cholesterol acceptors and donors, respectively. In conclusion, our in vitro data support the concept that tofacitinib has a favorable impact on macrophage cholesterol metabolism, even in the presence of sera from rheumatologic patients, and suggest that other mechanisms may be responsible for the cardiovascular risk associated with tofacitinib use in selected patient populations.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Via Volturno 39/F, 43125 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (B.P.); (F.Z.); (F.B.)
| | - Maria Orietta Borghi
- Experimental Laboratory of Immuno-Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Via Zucchi 18, 20095 Milan, Italy; (M.O.B.); (E.R.); (P.L.M.)
| | - Elena Raschi
- Experimental Laboratory of Immuno-Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Via Zucchi 18, 20095 Milan, Italy; (M.O.B.); (E.R.); (P.L.M.)
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (B.P.); (F.Z.); (F.B.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (B.P.); (F.Z.); (F.B.)
| | - Pier Luigi Meroni
- Experimental Laboratory of Immuno-Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Via Zucchi 18, 20095 Milan, Italy; (M.O.B.); (E.R.); (P.L.M.)
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (B.P.); (F.Z.); (F.B.)
| |
Collapse
|
3
|
Miyakoshi T, Mutsuda Y, Horiuchi Y, Kameda T, Tozuka M, Ohkawa R. Improvement in bilirubin influence on cholesterol efflux capacity evaluation using the immobilized liposome-bound gel beads method. Biosci Rep 2023; 43:BSR20230393. [PMID: 37259987 PMCID: PMC10807951 DOI: 10.1042/bsr20230393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023] Open
Abstract
INTRODUCTION High-density lipoprotein (HDL) has a cholesterol efflux capacity (CEC) that protects against atherosclerosis. Recently, we developed an assay for CEC evaluation, named the immobilized liposome-bound gel beads (ILG) method, which is a highly accurate, simple, and safe method for CEC evaluation because it uses liposomes and BODIPY-labeled cholesterol instead of cultured cells and radioactive substances, respectively. Although the ILG method can be implemented in clinical settings, our previous study revealed that bilirubin causes a positive error in the CEC value. Therefore, in the present study, we attempted to improve the influence of bilirubin levels on the ILG method. METHODS To investigate why bilirubin caused a positive error in CEC values when using the ILG method, 3D fluorescence spectra of BODIPY-labeled cholesterol and bilirubin were measured. To avoid the fluorescence emitted by bilirubin, CEC was measured using the ILG method with shifting of excitation wavelength for BODIPY-labeled cholesterol quantification. In addition, we used bilirubin oxidase to oxidize bilirubin during the incubation time of the ILG method to weaken bilirubin fluorescence. RESULTS We found that bilirubin emitted fluorescence at the measurement setting of the ILG method. By shifting the excitation wavelength, the positive error caused by bilirubin was improved by approximately 70%. Furthermore, by utilizing bilirubin oxidase, the false-high values of CEC were improved by approximately 80%. CONCLUSIONS Bilirubin interferes with CEC assay using BODIPY-cholesterol, but we successfully improved the influence of bilirubin on CEC evaluation using the ILG method. These improvements will promote the clinical application of the ILG method.
Collapse
Affiliation(s)
- Tsunehiro Miyakoshi
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yume Mutsuda
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuna Horiuchi
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Clinical Laboratory Technology, Faculty of Medical Sciences, Juntendo University, 6-8-1, Hinode, Urayasu, Chiba 279-0013, Japan
| | - Takahiro Kameda
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Minoru Tozuka
- Life Science Research Center, Nagano Children’s Hospital, Nagano, Japan
| | - Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
4
|
Turri M, Conti E, Pavanello C, Gastoldi F, Palumbo M, Bernini F, Aprea V, Re F, Barbiroli A, Emide D, Galimberti D, Tremolizzo L, Zimetti F, Calabresi L. Plasma and cerebrospinal fluid cholesterol esterification is hampered in Alzheimer's disease. Alzheimers Res Ther 2023; 15:95. [PMID: 37210544 PMCID: PMC10199596 DOI: 10.1186/s13195-023-01241-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate cholesterol esterification and HDL subclasses in plasma and cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients. METHODS The study enrolled 70 AD patients and 74 cognitively normal controls comparable for age and sex. Lipoprotein profile, cholesterol esterification, and cholesterol efflux capacity (CEC) were evaluated in plasma and CSF. RESULTS AD patients have normal plasma lipids but significantly reduced unesterified cholesterol and unesterified/total cholesterol ratio. Lecithin:cholesterol acyltransferase (LCAT) activity and cholesterol esterification rate (CER), two measures of the efficiency of the esterification process, were reduced by 29% and 16%, respectively, in the plasma of AD patients. Plasma HDL subclass distribution in AD patients was comparable to that of controls but the content of small discoidal preβ-HDL particles was significantly reduced. In agreement with the reduced preβ-HDL particles, cholesterol efflux capacity mediated by the transporters ABCA1 and ABCG1 was reduced in AD patients' plasma. The CSF unesterified to total cholesterol ratio was increased in AD patients, and CSF CER and CEC from astrocytes were significantly reduced in AD patients. In the AD group, a significant positive correlation was observed between plasma unesterified cholesterol and unesterified/total cholesterol ratio with Aβ1-42 CSF content. CONCLUSION Taken together our data indicate that cholesterol esterification is hampered in plasma and CSF of AD patients and that plasma cholesterol esterification biomarkers (unesterified cholesterol and unesterified/total cholesterol ratio) are significantly associated to disease biomarkers (i.e., CSF Aβ1-42).
Collapse
Affiliation(s)
- Marta Turri
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | - Elisa Conti
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | - Francesco Gastoldi
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | | | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Vittoria Aprea
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Alberto Barbiroli
- Dipartimento Di Scienze Per Gli Alimenti, La Nutrizione E L'Ambiente, Università Degli Studi Di Milano, Milano, Italy
| | - Davide Emide
- Dipartimento Di Scienze Per Gli Alimenti, La Nutrizione E L'Ambiente, Università Degli Studi Di Milano, Milano, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy.
| |
Collapse
|
5
|
Development and validation of novel automatable assay for cholesterol efflux capacity. Biosci Rep 2023; 43:232455. [PMID: 36645426 PMCID: PMC9905788 DOI: 10.1042/bsr20221519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 01/17/2023] Open
Abstract
During the past decade, evaluation of high-density lipoprotein (HDL) functionality has been well studied for predicting cardiovascular disease (CVD) risk. Cholesterol efflux capacity (CEC) is the strongest candidate as the biomarker out of various HDL antiatherosclerotic functions. However, CEC has not yet been introduced clinically because of several technical issues, including the use of radioactive materials and differentiated cells in the assay. Previously, our laboratory developed a radioisotope- and cell-free CEC assay called the immobilized liposome-bound gel beads (ILGs) method to replace the conventional method. However, the separation process of the supernatant was not suitable for installation in an automatic analyzer. The present study aims to develop a new method that is easier to operate. We assumed that the use of magnetic beads instead of gel beads would enable the skip of the centrifugal process. First, similar to the ILG method, porous magnetic beads were treated with liposomes containing fluorescently labeled cholesterol. Fluorescence was observed inside the magnetic beads, and almost the same amount of liposomes as in the ILG method was immobilized successfully. These immobilized liposome-bound magnetic beads (ILMs) were available for CEC assay when HDL and apolipoprotein B-100-depleted serum (BDS) were used as cholesterol acceptors. The ILM method showed sufficient basic performance and a good correlation with the ILG method. Furthermore, when the CEC of 15 serum samples from healthy subjects was measured, a good correlation between HDL-cholesterol level and the ILG method was confirmed. Thus, it was confirmed that the ILM method was successfully developed and could be automated.
Collapse
|
6
|
Effects of Antirheumatic Treatment on Cell Cholesterol Efflux and Loading Capacity of Serum Lipoproteins in Spondylarthropathies. J Clin Med 2022; 11:jcm11247330. [PMID: 36555946 PMCID: PMC9780876 DOI: 10.3390/jcm11247330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Spondyloarthropathies (SpA) are associated with increased cardiovascular risk. Among possible mechanisms is the dysfunction of serum lipoproteins in regulating cell cholesterol homeostasis. Cholesterol efflux capacity (CEC)-the atheroprotective ability of HDL (high density lipoproteins) to accept cholesterol from macrophages-might predict cardiovascular disease independently of HDL-cholesterol levels. We aimed at evaluating modifications of CEC and of the atherogenic cholesterol loading capacity (CLC) of serum lipoproteins in psoriatic arthritis (PsA) and ankylosing spondylitis (AS) following anti-rheumatic treatment. A total of 62 SpA patients (37 PsA and 25 AS) were evaluated before and after treatment with tumor necrosis factor inhibitor and/or methotrexate. CEC and CLC were measured by radioisotopic and fluorometric techniques, respectively. Endothelial function was assessed by finger plethysmography (Endopat). In the whole SpA group, total and HDL-cholesterol increased after treatment, while lipoprotein(a) decreased and CLC was unchanged. Treatment was associated with increased Scavenger Receptor class B type I (SR-BI)-mediated CEC in the AS group. SR-BI- and ABCG1-mediated CEC were negatively associated with inflammatory parameters and positively related to coffee consumption. SR-BI CEC and CLC were positively and negatively associated with endothelial function, respectively. Our pilot study suggests that anti-rheumatic treatment is associated with favorable modulation of lipoprotein quality and function in SpA, particularly in AS, in spite of the induced increase in total cholesterol levels. If confirmed in a larger population, this might represent an atheroprotective benefit beyond what is reflected by conventional serum lipid profile.
Collapse
|
7
|
Pisciotta L, Ossoli A, Ronca A, Garuti A, Fresa R, Favari E, Calabresi L, Calandra S, Bertolini S. Plasma HDL pattern, cholesterol efflux and cholesterol loading capacity of serum in carriers of a novel missense variant (Gly176Trp) of endothelial lipase. J Clin Lipidol 2022; 16:694-703. [PMID: 36002365 DOI: 10.1016/j.jacl.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Loss of function variants of LIPG gene encoding endothelial lipase (EL) are associated with primary hyperalphalipoproteinemia (HALP), a lipid disorder characterized by elevated plasma levels of high density lipoprotein cholesterol (HDL-C). OBJECTIVE Aim of the study was the phenotypic and genotypic characterization of a family with primary HALP. METHODS HDL subclasses distribution was determined by polyacrylamide gradient gel electrophoresis. Serum content of preβ-HDL was assessed by (2D)-electrophoresis. Cholesterol efflux capacity (CEC) of serum mediated by ABCA1, ABCG1 or SR-BI was assessed using cells expressing these proteins. Cholesterol loading capacity (CLC) of serum was assayed using cultured human macrophages. Next generation sequencing was used for DNA analysis. Plasma EL mass was determined by ELISA. RESULTS Three family members had elevated plasma HDL-C, apoA-I and total phospholipids, as well as a reduced content of preβ-HDL. These subjects were heterozygous carriers of a novel variant of LIPG gene [c.526 G>T, p.(Gly176Trp)] found to be deleterious in silico. Plasma EL mass in carriers was lower than in controls. CEC of sera mediated by ABCA1 and ABCG1 transporters was substantially reduced in the carriers. This effect was maintained after correction for serum HDL concentration. The sera of carriers were found to have a higher CLC in cultured human macrophages than control sera. CONCLUSION The novel p.(Gly176Trp) variant of endothelial lipase is associated with changes in HDL composition and subclass distribution as well as with functional changes affecting cholesterol efflux capacity of serum which suggest a defect in the early steps of revere cholesterol transport.
Collapse
Affiliation(s)
- Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini); Dietetics and Clinical Nutrition Unit, IRCCS-Polyclinic Hospital San Martino, Genoa, Italy (Dr Pisciotta).
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Dr Ossoli)
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy (Drs Ronca and Favari)
| | - Anna Garuti
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| | - Raffaele Fresa
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy (Drs Ronca and Favari)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Dr Ossoli)
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (Dr Calandra)
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| |
Collapse
|
8
|
Adorni MP, Biolo M, Zimetti F, Palumbo M, Ronda N, Scarinzi P, Simioni P, Lupo MG, Ferri N, Previato L, Bernini F, Zambon A. HDL Cholesterol Efflux and Serum Cholesterol Loading Capacity Alterations Associate to Macrophage Cholesterol Accumulation in FH Patients with Achilles Tendon Xanthoma. Int J Mol Sci 2022; 23:ijms23158255. [PMID: 35897824 PMCID: PMC9332368 DOI: 10.3390/ijms23158255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/05/2023] Open
Abstract
Achilles tendon xanthoma (ATX) formation involves macrophage cholesterol accumulation within the tendon, similar to that occurring in atheroma. Macrophage cholesterol homeostasis depends on serum lipoprotein functions, namely the high-density lipoprotein (HDL) capacity to promote cell cholesterol efflux (cholesterol efflux capacity, CEC) and the serum cholesterol loading capacity (CLC). We explored the HDL-CEC and serum CLC, comparing 16 FH patients with ATX to 29 FH patients without ATX. HDL-CEC through the main efflux mechanisms mediated by the transporters ATP binding cassette G1 (ABCG1) and A1 (ABCA1) and the aqueous diffusion (AD) process was determined by a cell-based radioisotopic technique and serum CLC fluorimetrically. Between the two groups, no significant differences were found in terms of plasma lipid profile. A trend toward reduction of cholesterol efflux via AD and a significant increase in ABCA1-mediated HDL-CEC (+18.6%) was observed in ATX compared to no ATX patients. In ATX-presenting patients, ABCG1-mediated HDL-CEC was lower (−11%) and serum CLC was higher (+14%) compared to patients without ATX. Considering all the patients together, ABCG1 HDL-CEC and serum CLC correlated with ATX thickness inversely (p = 0.013) and directly (p < 0.0001), respectively. In conclusion, lipoprotein dysfunctions seem to be involved in ATX physiopathology and progression in FH patients.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Marta Biolo
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.Z.); (M.P.); (N.R.)
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.Z.); (M.P.); (N.R.)
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.Z.); (M.P.); (N.R.)
| | - Paolo Scarinzi
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Paolo Simioni
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Maria Giovanna Lupo
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Nicola Ferri
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Lorenzo Previato
- Department of Medicine, University of Padua, 35128 Padua, Italy; (M.B.); (P.S.); (P.S.); (M.G.L.); (N.F.); (L.P.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.Z.); (M.P.); (N.R.)
- Correspondence: ; Tel.: +39-0521-905039
| | | |
Collapse
|
9
|
Palumbo M, Giammanco A, Purrello F, Pavanello C, Mombelli G, Di Pino A, Piro S, Cefalù AB, Calabresi L, Averna M, Bernini F, Zimetti F, Adorni MP, Scicali R. Effects of PCSK9 inhibitors on HDL cholesterol efflux and serum cholesterol loading capacity in familial hypercholesterolemia subjects: a multi-lipid-center real-world evaluation. Front Mol Biosci 2022; 9:925587. [PMID: 35928226 PMCID: PMC9343790 DOI: 10.3389/fmolb.2022.925587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 01/03/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), beyond regulating LDL cholesterol (LDL-c) plasma levels, exerts several pleiotropic effects by modulating lipid metabolism in extrahepatic cells such as macrophages. Macrophage cholesterol homeostasis depends on serum lipoprotein functions, including the HDL capacity to promote cell cholesterol efflux (CEC) and the serum capacity to promote cell cholesterol loading (CLC). The aim of this observational study was to investigate the effect of PCSK9 inhibitors (PCSK9-i) treatment on HDL-CEC and serum CLC in patients with familial hypercholesterolemia (FH). 31 genetically confirmed FH patients were recruited. Blood was collected and serum isolated at baseline and after 6 months of PCSK9-i treatment. HDL-CEC was evaluated through the main pathways with a radioisotopic cell-based assay. Serum CLC was assessed fluorimetrically in human THP-1 monocyte-derived macrophages. After treatment with PCSK9-i, total cholesterol and LDL-c significantly decreased (−41.6%, p < 0.0001 and −56.7%, p < 0.0001, respectively). Total HDL-CEC was not different between patients before and after treatment. Conversely, despite no changes in HDL-c levels between the groups, ABCG1 HDL-CEC significantly increased after treatment (+22.2%, p < 0.0001) as well as HDL-CEC by aqueous diffusion (+7.8%, p = 0.0008). Only a trend towards reduction of ABCA1 HDL-CEC was observed after treatment. PCSK9-i significantly decreased serum CLC (−6.6%, p = 0.0272). This effect was only partly related to the reduction of LDL-c levels. In conclusion, PCSK9-i treatment significantly increased HDL-CEC through ABCG1 and aqueous diffusion pathways and reduced the serum CLC in FH patients. The favorable effect of PCSK9-i on functional lipid profile could contribute to the cardiovascular benefit of these drugs in FH patients.
Collapse
Affiliation(s)
| | - Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE)—University of Palermo, Palermo, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
- Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giuliana Mombelli
- Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angelo Baldassare Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE)—University of Palermo, Palermo, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE)—University of Palermo, Palermo, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parma, Italy
- *Correspondence: Francesca Zimetti,
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Effect of glycated HDL on oxidative stress and cholesterol homeostasis in a human bladder cancer cell line, J82. Exp Mol Pathol 2022; 126:104777. [DOI: 10.1016/j.yexmp.2022.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
|
11
|
Horiuchi Y, Lai SJ, Kameda T, Tozuka M, Ohkawa R. Novel cholesterol efflux assay using immobilized liposome-bound gel beads: Confirmation and improvement for application in clinical laboratory. Ann Clin Biochem 2021; 59:134-143. [PMID: 34719976 DOI: 10.1177/00045632211054406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cholesterol efflux capacity (CEC), an atheroprotective function of high-density lipoprotein, is expected to be a potential biomarker for cardiovascular disease. However, CEC has not been widely introduced for application in clinical laboratories because of the complexity of the conventional CEC assay using cells and radioactive materials. Previously, we developed a novel CEC assay using immobilized liposome-bound gel beads (ILG), which solves these issues. We aimed to confirm the validation and further improve the ILG method for application in the clinical setting. METHODS Cholesterol efflux capacity values by the ILG method assayed for shorter incubation time (4 h) were compared to those assayed for 16 h (our previous ILG method). To investigate a reference material that can correct the variation between ILG manufacturing lots, bovine serum albumin, human gamma-globulins, and globulin complexes were evaluated. CEC values were also estimated in plasmas obtained with different anticoagulants, serum treated with freeze-thaw cycles, and serum mixed with several interference substances. RESULTS The CEC of 4- and 16-h incubation times were well correlated. Globulin complexes may be used as a reference material. Plasma can be used as the specimen. The serum and stored temperature of the specimen did not largely affect CEC. Hemoglobin and chyle did not have an effect on CEC, whereas high-bilirubin serum showed elevated CEC. The effect of bilirubin was nearly canceled by subtracting basal fluorescence intensity. CONCLUSIONS Present ILG method further fulfills some requirements for application in clinical laboratory. Using this reliable simple method, evaluation for clinical significance of CEC is expected.
Collapse
Affiliation(s)
- Yuna Horiuchi
- Analytical Laboratory Chemistry, 92190Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Shao-Jui Lai
- Analytical Laboratory Chemistry, 92190Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Kameda
- Analytical Laboratory Chemistry, 92190Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Minoru Tozuka
- Analytical Laboratory Chemistry, 92190Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.,Life Science Research Center, Nagano Children's Hospital, Toyoshina, Azumino, Japan
| | - Ryunosuke Ohkawa
- Analytical Laboratory Chemistry, 92190Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Kudinov VA, Torkhovskaya TI, Zakharova TS, Morozevich GE, Artyushev RI, Zubareva MY, Markin SS. High-density lipoprotein remodeling by phospholipid nanoparticles improves cholesterol efflux capacity and protects from atherosclerosis. Biomed Pharmacother 2021; 141:111900. [PMID: 34328100 DOI: 10.1016/j.biopha.2021.111900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
The efficiency of cholesterol efflux from cells promoted by high-density lipoproteins (HDLs) depends on HDL concentration and functional properties. The term "dysfunctional HDL" describes HDLs with impaired protective properties. Cholesterol efflux capacity (CEC) of HDL is reduced in patients with atherosclerosis, but the exact mechanisms underlying this impairment are not well characterized. Enriching HDLs with phospholipids (PLs) improves CEC. Herein, we assessed the potential of PL nanoparticles in improving HDL functionality. We lipidated HDL subfractions by incubating with PL nanoparticles containing soybean polyunsaturated phosphatidylcholine. Incubating blood plasma with PL nanoparticles resulted in the dose-dependent lipidation of all HDL subfractions. Changes in apolipoprotein A1 (apoA-1) and PL concentrations were the most prominent in the HDL2 fraction. Concentrations of PL in the HDL3 fraction and the fraction with a density > 1.21 g/mL increased by 30-50%, whereas apoA-1 levels decreased. We hypothesized that PL nanoparticles may cause HDL remodeling that can improve their functions. The CECs of lipidated HDLs were analyzed by incubating apolipoprotein B (apoB)-depleted plasma with 3H-cholesterol-labeled THP-1 macrophages. The findings revealed a two-fold increase in cholesterol efflux compared with native apoB-depleted plasma. Moreover, intravenous administration of PL nanoparticles restored lipid profiles and effectively protected blood vessels from atherosclerosis progression in cholesterol-fed rabbits compared with that of fenofibrate and atorvastatin. PL nanoparticles also protected against atherosclerosis and decreased the atherogenic index. Altogether, these results indicate that PL nanoparticles can be used to correct the lipid composition and CEC of HDLs. DATA AVAILABILITY: Additional data can be provided upon reasonable request from the date of publication of this article within 5 years. The request should be sent to the author-correspondent at the address cd95@mail.ru.
Collapse
Affiliation(s)
- Vasily A Kudinov
- Scientific Group of Phospholipid Drugs, Institute of Biomedical Chemistry, 119121 Moscow, Russia; Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia.
| | - Tatiana I Torkhovskaya
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Tamara S Zakharova
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Galina E Morozevich
- Laboratory of Protein Biosynthesis, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Rafael I Artyushev
- Scientific Group of Phospholipid Drugs, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Marina Yu Zubareva
- Department of Atherosclerosis Problems, FSBI National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Sergey S Markin
- Clinical Research Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| |
Collapse
|
13
|
Comparison of a novel cholesterol efflux assay using immobilized liposome-bound gel beads with the conventional method. Biosci Rep 2021; 40:225884. [PMID: 32706025 PMCID: PMC7403950 DOI: 10.1042/bsr20201495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cholesterol efflux capacity (CEC) is an atheroprotective function of high-density lipoprotein (HDL). CEC is currently measured using artificially prepared foam cells composed of cultured macrophage and 3H-cholesterol. However, this conventional method is not suitable for clinical laboratory use due to poor repeatability, complexity, and low safety. Recently, we reported a novel CEC assay, called the immobilized liposome-bound gel beads (ILG) method. The ILG method is an alternative to foam cells, comprising gel beads and 4,4-diflioro-4-bora-3a,4a-s-indacene labeled cholesterol (BODIPY-cholesterol) instead of macrophage and 3H-cholesterol, respectively. The ILG method has shown adequate basic properties and strong correlation with the conventional method. Here, we aimed to compare this new ILG method with the conventional method in-depth. When apoB-depleted serum was used as the cholesterol acceptor (CA), the ILG method had far better reproducibility than the conventional method. The CEC of major HDL subclasses HDL2 and HDL3 had similar results in both the ILG and conventional method. However, the ILG method did not reflect the CEC of apolipoprotein (apo) A–I and a minor HDL subclass which uses ATP-binding cassette transporter A1 on foam cells. Superior reproducibility of the ILG method, which is a limitation of the conventional method, and similar CEC results for major HDL subclasses in the ILG and conventional methods, provide further evidence that the ILG method is promising for measuring CEC clinically. However, some HDL subclasses or apo might have poor CEC correlation between these methods. Further research is therefore needed to confirm the clinical significance of estimating CEC by the ILG method.
Collapse
|
14
|
van Velzen DM, Adorni MP, Zimetti F, Strazzella A, Simsek S, Sirtori CR, Heijer MD, Ruscica M. The effect of transgender hormonal treatment on high density lipoprotein cholesterol efflux capacity. Atherosclerosis 2021; 323:44-53. [PMID: 33836456 DOI: 10.1016/j.atherosclerosis.2021.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS A decrease in high-density lipoprotein (HDL)-cholesterol concentrations during transgender hormone therapy has been shown. However, the ability of HDL to remove cholesterol from arterial wall macrophages, termed cholesterol efflux capacity (CEC), has proven to be a better predictor of cardiovascular disease (CVD) largely independently of HDL-concentrations. In addition, the serum capacity to load macrophages with cholesterol (cholesterol loading capacity, CLC) represents an index of pro-atherogenic potential. As transgender individuals are exposed to lifelong exogenous hormone therapy (HT), it becomes of interest to study whether HDL-CEC and serum CLC are affected by HT. HDL-CEC and serum CLC have been evaluated in 15 trans men treated with testosterone and in 15 trans women treated with estradiol and cyproterone acetate at baseline and after 12 months of HT. METHODS Total HDL-CEC from macrophages and its major contributors, the ATP-binding cassette transporters (ABC) A1 and ABCG1 HDL-CEC and HDL-CEC by aqueous diffusion were determined by a radioisotopic assay. CLC was evaluated in human THP-1 macrophages. RESULTS In trans women, total HDL-CEC decreased by 10.8% (95%CI: -14.3;-7.3; p < 0.001), ABCA1 HDL-CEC by 23.8% (-34.7; -12.9; p < 0.001) and aqueous diffusion HDL-CEC by 4.8% (-8.4;-1.1; p < 0.01). In trans men, only aqueous diffusion HDL-CEC decreased significantly, -9.8% (-15.7;-3.9; p < 0.01). ABCG1 HDL-CEC did not change in either group. Serum CLC and HDL subclass distribution were not modified by HT in both groups. CONCLUSIONS Total HDL-CEC decreased during HT in trans women, with a specific reduction in ABCA1 CEC. This finding might contribute to a higher CVD risk.
Collapse
Affiliation(s)
- Daan M van Velzen
- Department of Internal Medicine, Division of Endocrinology, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Maria Pia Adorni
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | | | - Arianna Strazzella
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Suat Simsek
- Department of Internal Medicine, Division of Endocrinology, Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Endocrinology, Northwest Clinics, Alkmaar, the Netherlands
| | - Cesare R Sirtori
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Martin den Heijer
- Department of Internal Medicine, Division of Endocrinology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Massimiliano Ruscica
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
15
|
Formisano E, Pasta A, Cremonini AL, Favari E, Ronca A, Carbone F, Semino T, Di Pierro F, Sukkar SG, Pisciotta L. Efficacy of Nutraceutical Combination of Monacolin K, Berberine, and Silymarin on Lipid Profile and PCSK9 Plasma Level in a Cohort of Hypercholesterolemic Patients. J Med Food 2020; 23:658-666. [PMID: 31663806 DOI: 10.1089/jmf.2019.0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The guidelines for the treatment of dyslipidemias include the use of nutraceuticals (NUTs) in association with lifestyle modifications to achieve therapeutic goals. In NUT pill, different substances may be associated; in this study we investigated a combined NUT containing monacolin K (MonK)+KA (1:1), berberine (BBR), and silymarin. The aim of the study was to evaluate low-density lipoprotein cholesterol (LDL-C) reduction in 53 patients suffering from polygenic hypercholesterolemia, characterized by a low/intermediate cardiovascular risk calculated with SCORE algorithm. The effects on lipid profile of 2-month treatment with NUT containing MonK+KA (1:1), BBR, and sylimarin, were compared with Atorvastatin (ATO) 10 mg administrated in a matched control group. Serum proprotein convertase subtilisin/kexin type 9 (PCSK9) levels and the cholesterol loading capacity (CLC) were determined at baseline and at the end of the study in NUT-treated group; variations were assessed. NUT was effective as lipid-lowering agent with a wide interindividual response variability (mean LDL-C from 170.8 ± 19.9 to 123.8 ± 20.0 with a change of -47.0 ± 21.5 mg/dL; P < .001) and the effect was similar to that induced by ATO. The use of NUT significantly modified PCSK9 levels (P < .01) and CLC (P < .001), ultimately suppressing the serum-mediated foam cell generation directly measured on human macrophages. NUT reduces LDL-C levels with an effect similar to what is induced by 10 mg of ATO and ex vivo improves the functional profile of lipoproteins with antiatherogenic action.
Collapse
Affiliation(s)
| | - Andrea Pasta
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Anna L Cremonini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Tommaso Semino
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | | | - Livia Pisciotta
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Stefanutti C, Pisciotta L, Favari E, Di Giacomo S, Vacondio F, Zenti MG, Morozzi C, Berretti D, Mesce D, Vitale M, Pasta A, Ronca A, Garuti A, Manfredini M, Anglés-Cano E, Marcovina SM, Watts GF. Lipoprotein(a) concentration, genetic variants, apo(a) isoform size, and cellular cholesterol efflux in patients with elevated Lp(a) and coronary heart disease submitted or not to lipoprotein apheresis: An Italian case-control multicenter study on Lp(a). J Clin Lipidol 2020; 14:487-497.e1. [PMID: 32718857 DOI: 10.1016/j.jacl.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) risk is greater with higher plasma lipoprotein(a)[Lp(a)] concentrations or smaller apoisoform size and putatively with increased cellular cholesterol loading capacity (CLC). The relationship between Lp(a) and CLC is not known. Information on Lp(a) polymorphisms in Italian patients is lacking. OBJECTIVE The objective of this study was to determine relationships between Lp(a) and CLC, the impact of lipoprotein apheresis (LA), and describe the genetic profile of Lp(a). METHODS We conducted a multicenter, observational study in Italian patients with hyperLp(a) and premature CAD with (n = 18)/without (n = 16) LA in which blood samples were analyzed for Lp(a) parameter and CLC. Genetic profiling of LPA was conducted in patient receiving LA. RESULTS Mean macrophage CLC of the pre-LA serum was significantly higher than that of normolipidemic controls (19.7 ± 0.9 μg/mg vs 16.01 ± 0.98 μg/mg of protein, respectively). After LA, serum macrophage CLC was markedly lower relative to preapheresis (16.1 ± 0.8 μg/mg protein; P = .003) and comparable with CLC of the normolipidemic serum. LA did not significantly affect average apo(a) isoform size distribution. No anthropometric or lipid parameters studied were related to serum CLC, but there was a relationship between CLC and the Lp(a) plasma concentration (P = .035). DNA analysis revealed a range of common genetic variants. Two rare, new variants were identified: LPA exon 21, c.3269C>G, p.Pro1090Arg, and rs41259144 p.Arg990Gln, c.2969G>A CONCLUSIONS: LA reduces serum Lp(a) and also reduces macrophage CLC. Novel genetic variants of the LPA gene were identified, and geographic variations were noted. The complexity of these polymorphisms means that genetic assessment is not a predictor of CAD risk in hyperLp(a).
Collapse
Affiliation(s)
- Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy.
| | - Livia Pisciotta
- Department of Internal Medicine - Polyclinic Hospital San Martino, University of Genoa, Genoa, Italy
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Serafina Di Giacomo
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy
| | | | - Maria Grazia Zenti
- Endocrinology and Metabolic Diseases, Civile Maggiore Hospital of Verona, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Claudia Morozzi
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy
| | | | - Dario Mesce
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy
| | - Marco Vitale
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy
| | - Andrea Pasta
- Department of Internal Medicine, University of Genoa, Italy
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy; Endocrinology and Metabolic Diseases, Civile Maggiore Hospital of Verona, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Anna Garuti
- Department of Internal Medicine, University of Genoa, Italy
| | | | - Eduardo Anglés-Cano
- Inserm UMR_S1140 "Innovative Therapies in Haemostasis" Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; French Institute of Health and Medical Research (Inserm), France
| | - Santica Marija Marcovina
- Department of Medicine, Northwest Lipid Research Laboratories, University of Washington, Seattle, WA, USA
| | - Gerald Francis Watts
- School of Medicine, Faculty of Health and Medical Sciences - Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
17
|
Averill M, Rubinow KB, Cain K, Wimberger J, Babenko I, Becker JO, Foster-Schubert KE, Cummings DE, Hoofnagle AN, Vaisar T. Postprandial remodeling of high-density lipoprotein following high saturated fat and high carbohydrate meals. J Clin Lipidol 2020; 14:66-76.e11. [PMID: 31859127 PMCID: PMC7085425 DOI: 10.1016/j.jacl.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Humans spend most of the time in the postprandial state, yet most knowledge about high-density lipoproteins (HDL) derives from the fasted state. HDL protein and lipid cargo mediate HDL's antiatherogenic effects, but whether these HDL constituents change in the postprandial state and are affected by dietary macronutrients remains unknown. OBJECTIVES This study aimed to assess changes in HDL protein and lipid composition after the consumption of a high-carbohydrate or high saturated fat (HSF) meal. METHODS We isolated HDL from plasma collected during a randomized, cross-over study of metabolically healthy subjects. Subjects consumed isocaloric meals consisting predominantly of either carbohydrate or fat. At baseline and at 3 and 6 hours postprandial, we quantified HDL protein and lipid composition by liquid chromatography-mass spectrometry. RESULTS A total of 15 subjects were included (60% female, aged 34 ± 15 years, body mass index: 24.1 ± 2.7 kg/m2). Consumption of the HSF meal led to HDL enrichment in total lipid (P = .006), triglyceride (P = .02), and phospholipid (P = .008) content and a corresponding depletion in protein content. After the HSF meal, 16 of the 25 measured phosphatidylcholine species significantly increased in abundance (P values range from .027 to <.001), along with several sphingolipids including ceramides (P < .004), lactosylceramide (P = .023), and sphingomyelin-14 (P = .013). Enrichment in apolipoprotein A-I (P = .001) was the only significant change in HDL protein composition after the HSF meal. The high-carbohydrate meal conferred only minimal changes in HDL composition. CONCLUSION Meal macronutrient content acutely affects HDL composition in the postprandial state, with the HSF meal resulting in enrichment of HDL phospholipid content with possible consequences for HDL function.
Collapse
Affiliation(s)
- Michelle Averill
- Nutritional Sciences Department, University of Washington, Seattle, WA, USA
| | - Katya B Rubinow
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Kevin Cain
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jake Wimberger
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Ilona Babenko
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jessica O Becker
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - David E Cummings
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Abstract
Cholesterol homeostasis is of central importance for life. Therefore, cells have developed a divergent set of pathways to meet their cholesterol needs. In this review, we focus on the direct transfer of cholesterol from lipoprotein particles to the cell membrane. More molecular details on the transfer of lipoprotein-derived lipids were gained by recent studies using phospholipid bilayers. While amphiphilic lipids are transferred right after contact of the lipoprotein particle with the membrane, the transfer of core lipids is restricted. Amphiphilic lipid transfer gains special importance in genetic diseases impairing lipoprotein metabolism like familial hypercholesterolemia. Taken together, these data indicate that there is a constant exchange of amphiphilic lipids between lipoprotein particles and the cell membrane.
Collapse
|
19
|
Adorni MP, Zimetti F, Cangiano B, Vezzoli V, Bernini F, Caruso D, Corsini A, Sirtori CR, Cariboni A, Bonomi M, Ruscica M. High-Density Lipoprotein Function Is Reduced in Patients Affected by Genetic or Idiopathic Hypogonadism. J Clin Endocrinol Metab 2019; 104:3097-3107. [PMID: 30835274 DOI: 10.1210/jc.2018-02027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Low testosterone levels are associated with an increased incidence of cardiovascular (CV) events, but the underlying biochemical mechanisms are not fully understood. The clinical condition of hypogonadism offers a unique model to unravel the possible role of lipoprotein-associated abnormalities in CV risk. In particular, the assessment of the functional capacities of high-density lipoproteins (HDLs) may provide insights besides traditional risk factors. DESIGN To determine whether reduced testosterone levels correlate with lipoprotein function, HDL cholesterol (HDL-C) efflux capacity (CEC) and serum cholesterol loading capacity (CLC). PARTICIPANTS Genetic and idiopathic hypogonadal patients (n = 20) and control subjects (n = 17). RESULTS Primary and secondary hypogonadal patients presented with lower HDL ATP-binding cassette transporter A1 (ABCA1)-, ATP-binding cassette transporter G1 (ABCG1)-, and aqueous diffusion-mediated CEC (-19.6%, -40.9%, and -12.9%, respectively), with a 16.2% decrement of total CEC. In the whole series, positive correlations between testosterone levels and both total HDL CEC (r2 = 0.359, P = 0.0001) and ABCG1 HDL CEC (r2 = 0.367, P = 0.0001) were observed. Conversely, serum CLC was markedly raised (+43%) in hypogonadals, increased, to a higher extent, in primary vs secondary hypogonadism (18.45 ± 2.78 vs 15.15 ± 2.10 µg cholesterol/mg protein) and inversely correlated with testosterone levels (r2 = 0.270, P = 0.001). HDL-C concentrations did not correlate with either testosterone levels, HDL CEC (total, ABCG1, and ABCA1) or serum CLC. CONCLUSIONS In hypogonadal patients, proatherogenic lipoprotein-associated changes are associated with lower cholesterol efflux and increased influx, thus offering an explanation for a potentially increased CV risk.
Collapse
Affiliation(s)
| | | | - Biagio Cangiano
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Valeria Vezzoli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Multimedica Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Cesare R Sirtori
- Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Cholesterol efflux capacity assay using immobilized liposomes and apolipoprotein B-depleted serum. Biosci Rep 2019; 39:BSR20190619. [PMID: 31152112 PMCID: PMC6579979 DOI: 10.1042/bsr20190619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Cholesterol efflux capacity (CEC), an important functional step in reverse cholesterol transport, is the main anti-atherosclerotic function of high-density lipoprotein (HDL). Assays that improve the determination of CEC ex vivo for clinical applications are constantly explored. In the accompanying article, Horiuchi et al. (Biosci. Rep. (2019) 39(4), BSR20190213) evaluate the availability of apolipoprotein B-depleted serum for CEC assays. Using their recently developed immobilized liposome-bound gel beads (ILG) method, Horiuchi et al. demonstrate that apolipoprotein B-depleted serum obtained with poly ethylene glycol precipitation enables CEC assays to be easily and accurately introduced into laboratory medicine.
Collapse
|
21
|
Usefulness of apolipoprotein B-depleted serum in cholesterol efflux capacity assays using immobilized liposome-bound gel beads. Biosci Rep 2019; 39:BSR20190213. [PMID: 30867253 PMCID: PMC6443949 DOI: 10.1042/bsr20190213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol efflux capacity (CEC) in atherosclerotic lesions is the main anti-atherosclerotic function of high-density lipoprotein (HDL). In recent studies, apolipoprotein (apo) B-depleted serum (BDS) obtained with the polyethylene glycol (PEG) precipitation method is used as a cholesterol acceptor (CA) substitution for HDL isolated by ultracentrifugation. However, the suitability of BDS as a CA is controversial. In the present study, CEC obtained from BDS (BDS-CEC) was evaluated based on a parameter, defined as whole-CEC, which was calculated by multiplying CEC obtained using fixed amounts of HDL by cholesterol concentration to HDL-cholesterol (HDL-C) levels in the serum. Significant correlation (r = 0.633) was observed between both CECs. To eliminate systematic errors from possible contamination with serum proteins and low-density lipoprotein (LDL) or very-LDL (VLDL) in BDS-CEC, the deviation of each CEC-BDS from the regression equation was compared with serum protein, LDL, and triglyceride (TG) levels. No correlation was observed between the deviation and the levels of each of these serum components, indicating that the deviations do not derive from systematic error. Further, to evaluate the effects of serum protein on the results, we measured BDS-CEC of reconstituted serum samples prepared using combinations of five levels of serum proteins with five levels of HDL-C. No significant change in BDS-CEC was observed in any combination. These results indicate that BDS-CEC reflects not only the function of HDL but also its concentration in serum.
Collapse
|
22
|
Torkhovskaya TI, Kudinov VA, Zakharova TS, Ipatova OM, Markin SS. High Density Lipoproteins Phosphatidylcholine as a Regulator of Reverse Cholesterol Transport. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Plochberger B, Axmann M, Röhrl C, Weghuber J, Brameshuber M, Rossboth BK, Mayr S, Ros R, Bittman R, Stangl H, Schütz GJ. Direct observation of cargo transfer from HDL particles to the plasma membrane. Atherosclerosis 2018; 277:53-59. [PMID: 30173079 DOI: 10.1016/j.atherosclerosis.2018.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/02/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND AIMS Exchange of cholesterol between high-density lipoprotein (HDL) particles and cells is a key process for maintaining cellular cholesterol homeostasis. Recently, we have shown that amphiphilic cargo derived from HDL can be transferred directly to lipid bilayers. Here we pursued this work using a fluorescence-based method to directly follow cargo transfer from HDL particles to the cell membrane. METHODS HDL was either immobilized on surfaces or added directly to cells, while transfer of fluorescent cargo was visualized via fluorescence imaging. RESULTS In Chinese hamster ovary (CHO) cells expressing the scavenger receptor class B type 1 (SR-B1), transfer of amphiphilic cargo from HDL particles to the plasma membrane was observed immediately after contact, whereas hydrophobic cargo remained associated with the particles; about 60% of the amphiphilic cargo of surface-bound HDL was transferred to the plasma membrane. Essentially no cargo transfer was observed in cells with low endogenous SR-B1 expression. Interestingly, transfer of fluorescently-labeled cholesterol was also facilitated by using an artificial linker to bind HDL to the cell surface. CONCLUSIONS Our data hence indicate that the tethering function of SR-B1 is sufficient for efficient transfer of free cholesterol to the plasma membrane.
Collapse
Affiliation(s)
- Birgit Plochberger
- TU Wien, Institute of Applied Physics, Vienna, 1040, Austria; Upper Austria University of Applied Sciences, Campus Linz, Garnisonstrasse 21, 4020, Linz, Austria
| | - Markus Axmann
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna, 1090, Austria
| | - Clemens Röhrl
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna, 1090, Austria
| | - Julian Weghuber
- Upper Austria University of Applied Sciences, Campus Wels, Stelzhamerstraße 23, 4600, Wels, Austria
| | | | | | - Sandra Mayr
- Upper Austria University of Applied Sciences, Campus Linz, Garnisonstrasse 21, 4020, Linz, Austria
| | - Robert Ros
- Arizona State University, Department of Physics, Tempe, AZ, 85287-1504, USA
| | - Robert Bittman
- Queens College of the City University of New York, Department of Chemistry and Biochemistry, Flushing, NY, 11367, USA
| | - Herbert Stangl
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna, 1090, Austria.
| | | |
Collapse
|
24
|
Anastasius M, Luquain-Costaz C, Kockx M, Jessup W, Kritharides L. A critical appraisal of the measurement of serum 'cholesterol efflux capacity' and its use as surrogate marker of risk of cardiovascular disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1257-1273. [PMID: 30305243 DOI: 10.1016/j.bbalip.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.
Collapse
Affiliation(s)
- Malcolm Anastasius
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Wendy Jessup
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia; Cardiology Department, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Kudinov VA, Zakharova TS, Torkhovskaya TI, Kashirtseva VA, Morosevich GE, Ipatova OM, Archakov AI. [Improving of HDL capacity for macrophages cholesterol efflux after plasma incubation with phospholipid nanoparticles]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:253-256. [PMID: 29964261 DOI: 10.18097/pbmc20186403253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In connection with recent data about antiatherogenic importance of not only plasma HDL concentration, but of their cell cholesterol efflux capacity as well, the possibility of its correction by phospholipid (PL) nanoparticles was studied. Blood plasma was incubated with earlier elaborated PL nanoparticles emulsion with the particle diameter up to 30 nm, and HDL cholesterol efflux capacity of apo B-depleted plasma was studied. Using macrophages THP-1 preloaded 3H-cholesterol were used. The addition of incubated plasma supernatants with the elevated PL/apo A-1 ratio to cell media resulted in almost increase in two fold 3H-cholesterol efflux as compared with native HDL. The maximal efflux was observed at the PL/apo A-1 ratio of 1.06 as compared with native apo B-depleted plasma (the PL/apo A-1 ratio of 0.85). Results suggest possible usage of ultrasmall PL nanoparticles for regeneration of impaired antiatherogenic HDL functionality. This approach seems to be predominant compared with the usage of PL emulsions with detergent or apoprotein A1.
Collapse
Affiliation(s)
- V A Kudinov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | | | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
26
|
Andersen CJ. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease. Nutrients 2018; 10:E764. [PMID: 29899295 PMCID: PMC6024721 DOI: 10.3390/nu10060764] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 01/02/2023] Open
Abstract
Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015⁻2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.
Collapse
|
27
|
Adorni MP, Ferri N, Marchianò S, Trimarco V, Rozza F, Izzo R, Bernini F, Zimetti F. Effect of a novel nutraceutical combination on serum lipoprotein functional profile and circulating PCSK9. Ther Clin Risk Manag 2017; 13:1555-1562. [PMID: 29270015 PMCID: PMC5729828 DOI: 10.2147/tcrm.s144121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background A beneficial effect on cardiovascular risk may be obtained by improving lipid-related serum lipoprotein functions such as high-density lipoproteins (HDLs) cholesterol efflux capacity (CEC) and serum cholesterol loading capacity (CLC) and by reducing proprotein convertase subtilisin kexin type 9 (PCSK9), independently of lipoprotein concentrations. Aim We aimed to evaluate the effect of an innovative nutraceutical (NUT) combination containing red yeast rice (monacolin K 3.3 mg), berberine 531.25 mg and leaf extract of Morus alba 200 mg (LopiGLIK®), on HDL-CEC, serum CLC and on circulating PCSK9 levels. Materials and methods Twenty three dyslipidemic subjects were treated for 4 weeks with the above NUT combination. HDL-CEC was measured using specific cell-based radioisotopic assays; serum CLC and PCSK9 concentrations were measured fluorimetrically and by enzyme-linked immunosorbent assay, respectively. Results The NUT combination significantly reduced plasma level of the total cholesterol and low-density lipoprotein cholesterol (−9.8% and −12.6%, respectively). Despite no changes in HDL-cholesterol, the NUT combination improved total HDL-CEC in 83% of the patients, by an average of 16%, as a consequence of the increase mainly of the ATP-binding cassette A1-mediated CEC (+28.5%). The NUT combination significantly reduced serum CLC (−11.4%) while it did not change PCSK9 plasma levels (312.9±69.4 ng/mL vs 334.8±103.5 mg/L, before and after treatment, respectively). Conclusion The present NUT combination improves the serum lipoprotein functional profile providing complementary beneficial effects, without any detrimental increase of PCSK9 plasma levels.
Collapse
Affiliation(s)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua
| | - Silvia Marchianò
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan
| | | | - Francesco Rozza
- Hypertension Research Center, Federico II University, Naples, Italy
| | - Raffaele Izzo
- Hypertension Research Center, Federico II University, Naples, Italy
| | | | | |
Collapse
|
28
|
Zimetti F, De Vuono S, Gomaraschi M, Adorni MP, Favari E, Ronda N, Ricci MA, Veglia F, Calabresi L, Lupattelli G. Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction. J Lipid Res 2017; 58:2051-2060. [PMID: 28830907 DOI: 10.1194/jlr.p076463] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/19/2017] [Indexed: 12/18/2022] Open
Abstract
Acute phase reaction (APR) is a systemic inflammation triggered by several conditions associated with lipid profile alterations. We evaluated whether APR also associates with changes in cholesterol synthesis and absorption, HDL structure, composition, and cholesterol efflux capacity (CEC). We analyzed 59 subjects with APR related to infections, oncologic causes, or autoimmune diseases and 39 controls. We detected no difference in markers of cholesterol synthesis and absorption. Conversely, a significant reduction of LpA-I- and LpAI:AII-containing HDL (-28% and -44.8%, respectively) and of medium-sized HDL (-10.5%) occurred in APR. Total HDL CEC was impaired in APR subjects (-18%). Evaluating specific CEC pathways, we found significant reductions in CEC by aqueous diffusion and by the transporters scavenger receptor B-I and ABCG1 (-25.5, -41.1 and -30.4%, respectively). ABCA1-mediated CEC was not affected. Analyses adjusted for age and gender provided similar results. In addition, correcting for HDL-cholesterol (HDL-C) levels, the differences in aqueous diffusion total and ABCG1-CEC remained significant. APR subjects displayed higher levels of HDL serum amyloid A (+20-folds; P = 0.003). In conclusion, APR does not associate with cholesterol synthesis and absorption changes but with alterations of HDL composition and a marked impairment of HDL CEC, partly independent of HDL-C serum level reduction.
Collapse
Affiliation(s)
| | - Stefano De Vuono
- Department of Medicine, Internal Medicine, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | - Monica Gomaraschi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milano, Italy
| | | | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Maria Anastasia Ricci
- Department of Medicine, Internal Medicine, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | | | - Laura Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milano, Italy
| | - Graziana Lupattelli
- Department of Medicine, Internal Medicine, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Brodeur MR, Rhainds D, Charpentier D, Mihalache-Avram T, Mecteau M, Brand G, Chaput E, Perez A, Niesor EJ, Rhéaume E, Maugeais C, Tardif JC. Dalcetrapib and anacetrapib differently impact HDL structure and function in rabbits and monkeys. J Lipid Res 2017; 58:1282-1291. [PMID: 28515138 PMCID: PMC5496027 DOI: 10.1194/jlr.m068940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/12/2017] [Indexed: 12/21/2022] Open
Abstract
Inhibition of cholesteryl ester transfer protein (CETP) increases HDL cholesterol (HDL-C) levels. However, the circulating CETP level varies and the impact of its inhibition in species with high CETP levels on HDL structure and function remains poorly characterized. This study investigated the effects of dalcetrapib and anacetrapib, the two CETP inhibitors (CETPis) currently being tested in large clinical outcome trials, on HDL particle subclass distribution and cholesterol efflux capacity of serum in rabbits and monkeys. New Zealand White rabbits and vervet monkeys received dalcetrapib and anacetrapib. In rabbits, CETPis increased HDL-C, raised small and large α-migrating HDL, and increased ABCA1-induced cholesterol efflux. In vervet monkeys, although anacetrapib produced similar results, dalcetrapib caused opposite effects because the LDL-C level was increased by 42% and HDL-C decreased by 48% (P < 0.01). The levels of α- and preβ-HDL were reduced by 16% (P < 0.001) and 69% (P < 0.01), resulting in a decrease of the serum cholesterol efflux capacity. CETPis modulate the plasma levels of mature and small HDL in vivo and consequently the cholesterol efflux capacity. The opposite effects of dalcetrapib in different species indicate that its impact on HDL metabolism could vary greatly according to the metabolic environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne Perez
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Eric Rhéaume
- Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Swertfeger DK, Li H, Rebholz S, Zhu X, Shah AS, Davidson WS, Lu LJ. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma. Mol Cell Proteomics 2017; 16:680-693. [PMID: 28223350 DOI: 10.1074/mcp.m116.066290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux (r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions (r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux and antioxidation.
Collapse
Affiliation(s)
- Debi K Swertfeger
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Hailong Li
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Sandra Rebholz
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039.,¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Xiaoting Zhu
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Amy S Shah
- ‖Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - W Sean Davidson
- ¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Long J Lu
- From the ‡School of Information Management, Wuhan University, Wuhan 430072, China; .,§Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| |
Collapse
|
31
|
Cholesterol efflux capacity: An introduction for clinicians. Am Heart J 2016; 180:54-63. [PMID: 27659883 DOI: 10.1016/j.ahj.2016.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Epidemiologic studies have shown an inverse correlation between high-density lipoprotein (HDL) cholesterol (HDL-C) levels and cardiovascular disease outcomes. However, the hypothesis of a causal relationship between HDL-C and cardiovascular disease has been challenged by genetic and clinical studies. Serum cholesterol efflux capacity (CEC) is an important measure of HDL function in humans. Recent large clinical studies have shown a correlation between in vitro CEC and cardiovascular disease prevalence and incidence, which appears to be independent of HDL-C concentration. The present review summarizes recent large clinical studies and introduces important methodological considerations. Further studies are required to standardize and establish the reproducibility of this measure of HDL function and clarify whether modulating CEC will emerge as a useful therapeutic target.
Collapse
|
32
|
Zimetti F, Favari E, Cagliero P, Adorni MP, Ronda N, Bonardi R, Gomaraschi M, Calabresi L, Bernini F, Guardamagna O. Cholesterol trafficking-related serum lipoprotein functions in children with cholesteryl ester storage disease. Atherosclerosis 2015; 242:443-9. [DOI: 10.1016/j.atherosclerosis.2015.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/06/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
|
33
|
Hafiane A, Bielicki JK, Johansson JO, Genest J. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro. PLoS One 2015. [PMID: 26207756 PMCID: PMC4514675 DOI: 10.1371/journal.pone.0131997] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are potentially anti-atherogenic.
Collapse
Affiliation(s)
- Anouar Hafiane
- Cardiovascular Research Laboratories Laboratory, Research Institute of the McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - John K. Bielicki
- Lawrence Berkeley National Laboratory, Donner Laboratory, MS1-267, Berkeley, CA, United States of America
| | | | - Jacques Genest
- Cardiovascular Research Laboratories Laboratory, Research Institute of the McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
- * E-mail:
| |
Collapse
|
34
|
Zimetti F, Adorni MP, Ronda N, Gatti R, Bernini F, Favari E. The natural compound berberine positively affects macrophage functions involved in atherogenesis. Nutr Metab Cardiovasc Dis 2015; 25:195-201. [PMID: 25240689 DOI: 10.1016/j.numecd.2014.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS We investigated the effect of berberine (BBR), an alkaloid showing antiatherogenic properties beyond the cholesterol lowering capacity, on macrophage cholesterol handling upon exposure to human serum and on macrophage responses to excess free cholesterol (FC) loading. METHODS AND RESULTS Mouse and human macrophages were utilized as cellular models. Cholesterol content was measured by a fluorimetric assay; cholesterol efflux, cytotoxicity and membrane FC distribution were evaluated by radioisotopic assays. Monocyte chemotactic protein-1 (MCP-1) secretion was measured by ELISA; membrane ruffling and macropinocytosis were visualized by confocal microscopy. Exposure of cholesterol-enriched MPM to serum in the presence of 1 μM BBR resulted in a reduction of intracellular cholesterol content twice greater than exposure to serum alone (-52%; p < 0.01 and -21%; p < 0.05), an effect not mediated by an increase of cholesterol efflux, but rather by the inhibition of cholesterol uptake from serum. Consistently, BBR inhibited in a dose-dependent manner cholesterol accumulation in human macrophages exposed to hypercholesterolemic serum. Confocal microscope analysis revealed that BBR inhibited macropinocytosis, an independent-receptor process involved in LDL internalization. Macrophage FC-enrichment increased MCP-1 release by 1.5 folds, increased cytotoxicity by 2 fold, and induced membrane ruffling; all these responses were markedly inhibited by BBR. FC-enrichment led to an increase in plasma membrane cholesterol by 4.5 folds, an effect counteracted by BBR. CONCLUSION We showed novel potentially atheroprotective activities of BBR in macrophages, consisting in the inhibition of serum-induced cholesterol accumulation, occurring at least in part through an impairment of macropinocytosis, and of FC-induced deleterious effects.
Collapse
Affiliation(s)
- F Zimetti
- Department of Pharmacy, University of Parma, Parma, Italy
| | - M P Adorni
- Department of Pharmacy, University of Parma, Parma, Italy
| | - N Ronda
- Department of Pharmacy, University of Parma, Parma, Italy
| | - R Gatti
- Department of Biomedical, Biotechnology and Translational Sciences, University of Parma, Parma, Italy
| | - F Bernini
- Department of Pharmacy, University of Parma, Parma, Italy.
| | - E Favari
- Department of Pharmacy, University of Parma, Parma, Italy
| |
Collapse
|
35
|
Hafiane A, Bielicki JK, Johansson JO, Genest J. Apolipoprotein E derived HDL mimetic peptide ATI-5261 promotes nascent HDL formation and reverse cholesterol transport in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1498-512. [PMID: 25091998 DOI: 10.1016/j.bbalip.2014.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 01/24/2023]
Abstract
Modulation of the reverse cholesterol transport (RCT) pathway may provide a therapeutic target for the prevention and treatment of atherosclerotic cardiovascular disease (CVD). In the present study, we evaluated a novel 26-amino acid apolipoprotein mimetic peptide (ATI-5261) designed from the carboxyl terminal of apoE, in its ability to mimic apoA-I functionality in RCT in vitro. Our data shows that nascent HDL-like (nHDL) particles generated by incubating cells over-expressing ABCA1 with ATI-5261 increase the rate of specific ABCA1 dependent lipid efflux, with high affinity interactions with ABCA1. We also show that these nHDL particles interact with membrane micro-domains in a manner similar to nHDL apoA-I. These nHDL particles then interact with the ABCG1 transporter and are remodeled by plasma HDL-modulating enzymes. Finally, we show that these mature HDL-like particles are taken up by SR-BI for cholesterol delivery to liver cells. This ATI-5621-mediated process mimics apoA-I and may provide a means to prevent cholesterol accumulation in the artery wall. In this study, we propose an integrative physiology approach of HDL biogenesis with the synthetic peptide ATI-5261. These experiments provide new insights for potential therapeutic use of apolipoprotein mimetic peptides.
Collapse
Affiliation(s)
- Anouar Hafiane
- Cardiovascular Genetics Laboratory, Cardiology Division, McGill University Health Centre/Royal Victoria Hospital, Montréal, Québec H3A 1A1, Canada
| | - John K Bielicki
- Lawrence Berkeley National Laboratory, Donner Laboratory, MS1-267 Berkeley, CA, USA
| | | | - Jacques Genest
- Cardiovascular Genetics Laboratory, Cardiology Division, McGill University Health Centre/Royal Victoria Hospital, Montréal, Québec H3A 1A1, Canada.
| |
Collapse
|
36
|
Vigna GB, Satta E, Bernini F, Boarini S, Bosi C, Giusto L, Pinotti E, Tarugi P, Vanini A, Volpato S, Zimetti F, Zuliani G, Favari E. Flow-mediated dilation, carotid wall thickness and HDL function in subjects with hyperalphalipoproteinemia. Nutr Metab Cardiovasc Dis 2014; 24:777-783. [PMID: 24680225 DOI: 10.1016/j.numecd.2014.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS The relationships between very high plasma HDLc and subclinical atherosclerosis are still a matter of debate. METHODS AND RESULTS Twenty subjects with primary hyperalphalipoproteinemia (HAL, with HDLc in the highest 10th percentile and absence of overt secondary causes of this condition), aged 30-65 years, were compared with 20 age and sex-matched controls. Lipid determination, lipoprotein particle distribution (Lipoprint(®)), Cholesterol Efflux Capacity (CEC), plasma adhesion molecule, analyses of CETP, SRB1 and LIPG genes and of different markers of subclinical vascular disease (ankle-brachial index, ABI; carotid intima-media thickness, cIMT; brachial-artery flow mediated dilation, FMD) were performed. Fasting HDLc levels were 40 mg/dl higher in HAL subjects while LDLc concentration was comparable to control group. CETP gene analysis in HAL subjects identified one novel rare Single Nucleotide Polymorphism (SNP, Asp131Asn), possibly damaging, while the common SNP p.Val422Ile was highly prevalent (50% vs. 27.4% in a control population). No rare mutations associated with HAL were found in SR-B1 and LIPG genes. Polyacrylamide gel electrophoresis in HAL subjects disclosed larger and more buoyant HDL particles than in controls, while LDL profile was much more similar. ABI, cIMT and arterial plaques did not differ in cases and controls and the two groups showed comparable FMD at brachial artery examination. Similarly, ABCA1 and ABCG1 HDL-mediated CEC, the most relevant for atheroprotection, did not discriminate between the groups and only ABCG1 pathway seemed somewhat related to arterial reactivity. CONCLUSIONS HDL dimension, function and genetics seem scarcely related to subclinical atherosclerosis and vascular reactivity in middle-aged HAL subjects.
Collapse
Affiliation(s)
- G B Vigna
- Medical Department, Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy.
| | - E Satta
- Medical Department, Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - F Bernini
- Department of Pharmacy, University of Parma, Parma, Italy
| | - S Boarini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - C Bosi
- Medical Department, Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - L Giusto
- Medical Department, Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - E Pinotti
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - P Tarugi
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - A Vanini
- Medical Department, Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - S Volpato
- Medical Department, Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - F Zimetti
- Department of Pharmacy, University of Parma, Parma, Italy
| | - G Zuliani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - E Favari
- Department of Pharmacy, University of Parma, Parma, Italy
| |
Collapse
|
37
|
El Khoury P, Plengpanich W, Frisdal E, Le Goff W, Khovidhunkit W, Guerin M. Improved plasma cholesterol efflux capacity from human macrophages in patients with hyperalphalipoproteinemia. Atherosclerosis 2014; 234:193-9. [PMID: 24674903 DOI: 10.1016/j.atherosclerosis.2014.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/20/2014] [Accepted: 02/27/2014] [Indexed: 11/25/2022]
|
38
|
Weibel GL, Drazul-Schrader D, Shivers DK, Wade AN, Rothblat GH, Reilly MP, de la Llera-Moya M. Importance of evaluating cell cholesterol influx with efflux in determining the impact of human serum on cholesterol metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 34:17-25. [PMID: 24202308 DOI: 10.1161/atvbaha.113.302437] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Cholesterol efflux relates to cardiovascular disease but cannot predict cellular cholesterol mass changes. We asked whether influx and net flux assays provide additional insights. APPROACH AND RESULTS Adapt a bidirectional flux assay to cells where efflux has clinical correlates and examine the association of influx, efflux, and net flux to serum triglycerides (TGs). Apolipoprotein B-depleted (high-density lipoprotein-fraction) serum from individuals with unfavorable lipids (median [interquartile range]; high-density lipoprotein-cholesterol=39 [32-42], low-density lipoprotein-cholesterol=109 [97-137], TGs=258 [184-335] mg/dL; n=13) promoted greater ATP-binding cassette transporter A1-mediated [1,2-(3H)] cholesterol efflux (3.8±0.3%/4 hour versus 1.2±0.4%/4 hour; P<0.0001) from cyclic 3',5'-amp(CTP-amp)-treated J774 macrophages than from individuals with favorable lipids (high-density lipoprotein-cholesterol=72 [58-88], low-density lipoprotein-cholesterol=111 [97-131], TGs=65 [56-69] mg/dL; n=10). Thus, high TGs associated with more ATP-binding cassette transporter A1 acceptors. Efflux of cholesterol mass (μg free cholesterol/mg cell protein per 8 hour) to serum was also higher (7.06±0.33 versus 5.83±0.48; P=0.04). However, whole sera from individuals with unfavorable lipids promoted more influx (5.14±0.65 versus 2.48±0.85; P=0.02) and lower net release of cholesterol mass (1.93±0.46 versus 3.36±0.47; P=0.04). The pattern differed when mass flux was measured using apolipoprotein B-depleted serum rather than serum. Although individuals with favorable lipids tended to have greater influx than those with unfavorable lipids, efflux to apolipoprotein B-depleted serum was markedly higher (6.81±0.04 versus 2.62±0.14; P<0.0001), resulting in an efflux:influx ratio of ≈3-fold. Thus both serum and apolipoprotein B-depleted serum from individuals with favorable lipids promoted greater net cholesterol mass release despite increased ATP-binding cassette transporter A1-mediated efflux in samples of individuals with high TGs/unfavorable lipids. CONCLUSIONS When considering the efficiency of serum specimens to modulate cell cholesterol content, both influx and efflux need to be measured.
Collapse
Affiliation(s)
- Ginny L Weibel
- From the Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, PA (G.L.W., D.D.-S., D.K.S., G.H.R., M.d.l.L.-M.); Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.P.R.); and School of Public Health and School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (A.N.W.)
| | | | | | | | | | | | | |
Collapse
|
39
|
Sankaranarayanan S, de la Llera-Moya M, Drazul-Schrader D, Phillips MC, Kellner-Weibel G, Rothblat GH. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells. J Lipid Res 2013; 54:671-676. [PMID: 23288948 DOI: 10.1194/jlr.m031336] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important mechanism contributing to cell cholesterol efflux is aqueous transfer in which cholesterol diffuses from cells into the aqueous phase and becomes incorporated into an acceptor particle. Some compounds can enhance diffusion by acting as shuttles transferring cholesterol to cholesterol acceptors, which act as cholesterol sinks. We have examined whether particles in serum can enhance cholesterol efflux by acting as shuttles. This task was accomplished by incubating radiolabeled J774 cells with increasing concentrations of lipoprotein-depleted sera (LPDS) or components present in serum as shuttles and a constant amount of LDL, small unilamellar vesicles, or red blood cells (RBC) as sinks. Synergistic efflux was measured as the difference in fractional efflux in excess of that predicted by the addition of the individual efflux values of sink and shuttle alone. Synergistic efflux was obtained when LPDS was incubated with cells and LDL. When different components of LPDS were used as shuttles, albumin produced synergistic efflux, while apoA-I did not. A synergistic effect was also obtained when RBC was used as the sink and albumin as shuttle. The previously observed negative association of albumin with coronary artery disease might be linked to reduced cholesterol shuttling that would occur when serum albumin levels are low.
Collapse
Affiliation(s)
- Sandhya Sankaranarayanan
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Margarita de la Llera-Moya
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Denise Drazul-Schrader
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael C Phillips
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ginny Kellner-Weibel
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - George H Rothblat
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
40
|
Meyer JM, Ji A, Cai L, van der Westhuyzen DR. High-capacity selective uptake of cholesteryl ester from native LDL during macrophage foam cell formation. J Lipid Res 2012; 53:2081-2091. [PMID: 22833685 PMCID: PMC3435541 DOI: 10.1194/jlr.m026534] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.
Collapse
Affiliation(s)
- Jason M Meyer
- Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | - Ailing Ji
- Department of Veterans Affairs Medical Center, Lexington, KY 40502; Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536; Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536
| | - Lei Cai
- Department of Veterans Affairs Medical Center, Lexington, KY 40502; Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536; Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536
| | - Deneys R van der Westhuyzen
- Department of Veterans Affairs Medical Center, Lexington, KY 40502; Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536; Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536.
| |
Collapse
|
41
|
Twiddy AL, Cox ME, Wasan KM. Knockdown of scavenger receptor class B type I reduces prostate specific antigen secretion and viability of prostate cancer cells. Prostate 2012; 72:955-65. [PMID: 22025344 DOI: 10.1002/pros.21499] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/19/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND Scavenger Receptor Class B Type I (SR-BI) facilitates influx of cholesterol to the cell from lipoproteins in the circulation. This influx of cholesterol may be important for many cellular functions, including synthesis of androgens. Castration-resistant prostate cancer tumors are able to synthesize androgens de novo in order to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-BI may impact the ability of prostate cancer cells, particularly those of castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. METHODS SR-BI expression was knocked down using small interfering RNA in LNCaP and C4-2 cells. The effect of down-regulation of SR-BI on PSA production, cell toxicity, and cell viability was measured in both cell types. In addition, compensatory cholesterol synthesis activity was measured using the radiolabeled precursor, (14) C-acetate. RESULTS SR-BI protein expression is higher basally in C4-2 cells than LNCaP cells. Silencing of SR-BI expression to greater than 85% reduced PSA production in LNCaP and C4-2 SRBI-KD cells by 55% and 58% compared to negative control cells, respectively. SR-BI-KD C4-2 cells demonstrated significantly reduced cell viability (>25%) compared the NC cells. CONCLUSIONS The down-regulation of SR-BI significantly impacts PSA production of prostate cancer cells, as well as the viability of C4-2 cells in the presence and absence of HDL. This may indicate a deficiency in cholesterol availability to the androgen synthesis pathway or may implicate a role for SR-BI in prostate cancer signal transduction pathways.
Collapse
Affiliation(s)
- Alexis L Twiddy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
42
|
Storey SM, McIntosh AL, Huang H, Landrock KK, Martin GG, Landrock D, Payne HR, Atshaves BP, Kier AB, Schroeder F. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 302:G824-39. [PMID: 22241858 PMCID: PMC3355564 DOI: 10.1152/ajpgi.00195.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/07/2012] [Indexed: 01/31/2023]
Abstract
A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Physiology and Pharmacology, Texas Veterinary Medical Center, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Adorni MP, Zimetti F, Puntoni M, Bigazzi F, Sbrana F, Minichilli F, Bernini F, Ronda N, Favari E, Sampietro T. Cellular cholesterol efflux and cholesterol loading capacity of serum: effects of LDL-apheresis. J Lipid Res 2012; 53:984-989. [PMID: 22414482 DOI: 10.1194/jlr.p024810] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
High LDL-cholesterol (LDL-C) characterizes familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH). LDL-apheresis, used in these patients to reduce LDL-C levels, has been shown to also affect HDL levels and composition. We studied LDL-apheresis effects on six FH and nine FCH subjects' serum capacity to modulate cellular cholesterol efflux, an index of HDL functionality, and to load macrophages with cholesterol. Serum cholesterol efflux capacity (CEC) and macrophage cholesterol loading capacity (CLC) were measured before, immediately after, and two days after LDL-apheresis. The procedure reduced total cholesterol (TC), LDL-C, and apoB plasma levels (-69%, -80% and -74%, respectively), parameters only partially restored two days later. HDL-C and apoA-I plasma levels, reduced after LDL-apheresis (-27% and -16%, respectively), were restored to almost normal levels two days later. LDL-apheresis reduced serum aqueous diffusion (AD) CEC, SR-BI-CEC, and ABCA1-CEC. AD and SR-BI were fully restored whereas ABCA1-CEC remained low two days later. Sera immediately and two days after LDL-apheresis had a lower CLC than pre-LDL-apheresis sera. In conclusion, LDL-apheresis transiently reduces HDL-C levels and serum CEC, but it also reduces also serum capacity to deliver cholesterol to macrophages. Despite a potentially negative effect on HDL levels and composition, LDL-apheresis may counteract foam cells formation.
Collapse
Affiliation(s)
- M P Adorni
- Department of Pharmacological and Biological Sciences and Applied Chemistries, University of Parma, Parma, Italy
| | - F Zimetti
- Department of Pharmacological and Biological Sciences and Applied Chemistries, University of Parma, Parma, Italy
| | - M Puntoni
- Department of Pharmacological and Biological Sciences and Applied Chemistries, CNR Institute of Clinical Physiology, Pisa, Italy
| | - F Bigazzi
- Department of Pharmacological and Biological Sciences and Applied Chemistries, Dyslipidemias and Atherosclerosis Laboratory, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - F Sbrana
- Department of Pharmacological and Biological Sciences and Applied Chemistries, Dyslipidemias and Atherosclerosis Laboratory, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - F Minichilli
- Department of Pharmacological and Biological Sciences and Applied Chemistries, CNR Institute of Clinical Physiology, Pisa, Italy
| | - F Bernini
- Department of Pharmacological and Biological Sciences and Applied Chemistries, University of Parma, Parma, Italy.
| | - N Ronda
- Department of Pharmacological and Biological Sciences and Applied Chemistries, University of Parma, Parma, Italy
| | - E Favari
- Department of Pharmacological and Biological Sciences and Applied Chemistries, University of Parma, Parma, Italy
| | - T Sampietro
- Department of Pharmacological and Biological Sciences and Applied Chemistries, CNR Institute of Clinical Physiology, Pisa, Italy; Department of Pharmacological and Biological Sciences and Applied Chemistries, Dyslipidemias and Atherosclerosis Laboratory, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
44
|
Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, Rothblat GH. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res 2011; 52:2332-2340. [PMID: 21957199 DOI: 10.1194/jlr.d018051] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantitating cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for the development of a high-throughput assay to screen large numbers of serum as would be required in studying the link between efflux and CAD. We compared efflux using a fluorescent sterol (boron dipyrromethene difluoride linked to sterol carbon-24, BODIPY-cholesterol) with that of [(3)H]cholesterol in J774 macrophages. Fractional efflux of BODIPY-cholesterol was significantly higher than that of [(3)H]cholesterol when apo A-I, HDL(3), or 2% apoB-depleted human serum were used as acceptors. BODIPY-cholesterol efflux correlated significantly with [(3)H]cholesterol efflux (p < 0.0001) when apoB-depleted sera were used. The BODIPY-cholesterol efflux correlated significantly with preβ-1 (r(2) = 0.6) but not with total HDL-cholesterol. Reproducibility of the BODIPY-cholesterol efflux assay was excellent between weeks (r(2) = 0.98, inter-assay CV = 3.31%). These studies demonstrate that BODIPY-cholesterol provides an efficient measurement of efflux compared with [(3)H]cholesterol and is a sensitive probe for ABCA1-mediated efflux. The increased sensitivity of BODIPY-cholesterol assay coupled with the simplicity of measuring fluorescence results in a sensitive, high-throughput assay that can screen large numbers of sera, and thus establish the relationship between cholesterol efflux and atherosclerosis.
Collapse
Affiliation(s)
- Sandhya Sankaranarayanan
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ginny Kellner-Weibel
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Margarita de la Llera-Moya
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michael C Phillips
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Bela F Asztalos
- Lipid Metabolism Laboratory (B.F.A.), Tufts University, Boston, MA 02111; and Department of Chemistry and Biochemistry (R.B)
| | - Robert Bittman
- Department of Chemistry and Biochemistry (R.B), Queens College of The City University of New York, Flushing, NY 11367-1597
| | - George H Rothblat
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
| |
Collapse
|
45
|
Francone OL, Ishida BY, de la Llera-Moya M, Royer L, Happe C, Zhu J, Chalkey RJ, Schaefer P, Cox C, Burlingame A, Kane JP, Rothblat GH. Disruption of the murine procollagen C-proteinase enhancer 2 gene causes accumulation of pro-apoA-I and increased HDL levels. J Lipid Res 2011; 52:1974-83. [PMID: 21771977 DOI: 10.1194/jlr.m016527] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given the increased prevalence of cardiovascular disease in the world, the search for genetic variations that impact risk factors associated with the development of this disease continues. Multiple genetic association studies demonstrate that procollagen C-proteinase enhancer 2 (PCPE2) modulates HDL levels. Recent studies revealed an unexpected role for this protein in the proteolytic processing of pro-apolipoprotein (apo) A-I by enhancing the cleavage of the hexapeptide extension present at the N-terminus of apoA-I. To investigate the role of the PCPE2 protein in an in vivo model, PCPE2-deficient (PCPE2 KO) mice were examined, and a detailed characterization of plasma lipid profiles, apoA-I, HDL speciation, and function was done. Results of isoelectric focusing (IEF) electrophoresis together with the identification of the amino terminal peptides DEPQSQWDK and WHVWQQDEPQSQWDVK, representing mature apoA-I and pro-apoA-I, respectively, in serum from PCPE2 KO mice confirmed that PCPE2 has a role in apoA-I maturation. Lipid profiles showed a marked increase in plasma apoA-I and HDL-cholesterol (HDL-C) levels in PCPE2 KO mice compared with wild-type littermates, regardless of gender or diet. Changes in HDL particle size and electrophoretic mobility observed in PCPE2 KO mice suggest that the presence of pro-apoA-I impairs the maturation of HDL. ABCA1-dependent cholesterol efflux is defective in PCPE2 KO mice, suggesting that the functionality of HDL is altered.
Collapse
Affiliation(s)
- Omar L Francone
- Department of Cardiovascular and Metabolic Diseases, Global Research and Development, Pfizer, Inc., Groton, CT, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Alexander ET, Vedhachalam C, Sankaranarayanan S, de la Llera-Moya M, Rothblat GH, Rader DJ, Phillips MC. Influence of apolipoprotein A-I domain structure on macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol 2010; 31:320-7. [PMID: 21071688 DOI: 10.1161/atvbaha.110.216226] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The goal of this study was to determine the influence of apolipoprotein A-I (apoA-I) tertiary structure domain properties on the antiatherogenic properties of the protein. Two chimeric hybrids with the N-terminal domains swapped (human-mouse apoA-I and mouse-human apoA-I) were expressed in apoA-I-null mice with adeno-associated virus (AAV) and used to study macrophage reverse cholesterol transport (RCT) in vivo. METHODS AND RESULTS The different apoA-I variants were expressed in apoA-I-null mice that were injected with [H(3)]cholesterol-labeled J774 mouse macrophages to measure RCT. Significantly more cholesterol was removed from the macrophages and deposited in the feces via the RCT pathway in mice expressing mouse-H apoA-I compared with all other groups. Analysis of the individual components of the RCT pathway demonstrated that mouse-H apoA-I promoted ATP-binding cassette transporter A1-mediated cholesterol efflux more efficiently than all other variants, as well as increasing the rate of cholesterol uptake into liver cells. CONCLUSIONS The structural domain properties of apoA-I affect the ability of the protein to mediate macrophage RCT. Replacement of the N-terminal helix bundle domain in the human apoA-I with the mouse apoA-I counterpart causes a gain of function with respect to macrophage RCT, suggesting that engineering some destabilization into the N-terminal helix bundle domain or increasing the hydrophobicity of the C-terminal domain of human apoA-I would enhance the antiatherogenic properties of the protein.
Collapse
Affiliation(s)
- Eric T Alexander
- Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Millar JS, Ikewaki K, Bloedon LT, Wolfe ML, Szapary PO, Rader DJ. Effect of rosiglitazone on HDL metabolism in subjects with metabolic syndrome and low HDL. J Lipid Res 2010; 52:136-42. [PMID: 20971975 DOI: 10.1194/jlr.p008136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Treatment with the peroxisome proliferator-activated receptor γ agonist rosiglitazone has been reported to increase HDL-cholesterol (HDL-C) levels, although the mechanism responsible for this is unknown. We sought to determine the effect of rosiglitazone on HDL apolipoprotein A-I (apoA-I) and apoA-II metabolism in subjects with metabolic syndrome and low HDL-C. Subjects were treated with placebo followed by rosiglitazone (8 mg) once daily. At the end of each 8 week treatment, subjects (n = 15) underwent a kinetic study to measure apoA-I and apoA-II production rate (PR) and fractional catabolic rate. Rosiglitazone significantly reduced fasting insulin and high-sensitivity C-reactive protein (hsCRP) and increased apoA-II levels. Mean apoA-I and HDL-C levels were unchanged following rosiglitazone treatment, although there was considerable individual variability in the HDL-C response. Rosiglitazone had no effect on apoA-I metabolism, whereas the apoA-II PR was increased by 23%. The change in HDL-C in response to rosiglitazone was significantly correlated with the change in apoA-II concentration but not to changes in apoA-I, measures of glucose homeostasis, or hsCRP. Treatment with rosiglitazone significantly increased apoA-II production in subjects with metabolic syndrome and low HDL-C but had no effect on apoA-I metabolism. The change in HDL-C in response to rosiglitazone treatment was unrelated to effects on apoA-I, instead being related to the change in the metabolism of apoA-II.
Collapse
Affiliation(s)
- John S Millar
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Sankaranarayanan S, de la Llera-Moya M, Drazul-Schrader D, Asztalos BF, Weibel GL, Rothblat GH. Importance of macrophage cholesterol content on the flux of cholesterol mass. J Lipid Res 2010; 51:3243-9. [PMID: 20713652 DOI: 10.1194/jlr.m008441] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Net flux of cholesterol represents the difference between efflux and influx and can result in net cell-cholesterol accumulation, net cell-cholesterol depletion, or no change in cellular cholesterol content. We measured radiolabeled cell-cholesterol efflux and cell-cholesterol mass using cholesterol-normal and -enriched J774 and elicited mouse peritoneal macrophage cells. Net cell-cholesterol effluxes were observed when cholesterol-enriched J774 cells were incubated with 3.5% apolipoprotein (apo) B depleted human serum, HDL(3), and apo A-I. Net cell-cholesterol influxes were observed when cholesterol-normal J774 cells were incubated with the same acceptors except apo A-I. When incubated with 2.5% individual sera, cholesterol mass efflux in free cholesterol (FC)-enriched J774 cells correlated with the HDL-cholesterol (HDL-C) concentrations (r(2) = 0.4; P=0.003), whereas cholesterol mass influx in cholesterol-normal J774 cells correlated with the LDL cholesterol (LDL-C) concentrations (r(2) = 0.6; P<0.0001) of the individual sera. A positive correlation was observed between measurements of [(3)H]cholesterol efflux and reductions in cholesterol mass (r(2) = 0.4; P=0.001) in FC-enriched J774 cells. In conclusion, isotopic efflux measurements from cholesterol-normal or cholesterol-enriched cells provide an accurate measurement of relative ability of an acceptor to remove labeled cholesterol under a specific set of experimental conditions, i.e., efflux potential. Moreover, isotopic efflux measurements can reflect changes in cellular cholesterol mass if the donor cells are enriched with cholesterol.
Collapse
Affiliation(s)
- Sandhya Sankaranarayanan
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Twiddy AL, Leon CG, Wasan KM. Cholesterol as a Potential Target for Castration-Resistant Prostate Cancer. Pharm Res 2010; 28:423-37. [DOI: 10.1007/s11095-010-0210-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/28/2010] [Indexed: 01/15/2023]
|
50
|
Storey SM, Atshaves BP, McIntosh AL, Landrock KK, Martin GG, Huang H, Ross Payne H, Johnson JD, Macfarlane RD, Kier AB, Schroeder F. Effect of sterol carrier protein-2 gene ablation on HDL-mediated cholesterol efflux from cultured primary mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2010; 299:G244-54. [PMID: 20395534 PMCID: PMC2904118 DOI: 10.1152/ajpgi.00446.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/13/2010] [Indexed: 01/31/2023]
Abstract
Although HDL-mediated cholesterol transport to the liver is well studied, cholesterol efflux from hepatocytes back to HDL is less well understood. Real-time imaging of efflux of 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol), which is poorly esterified, and [(3)H]cholesterol, which is extensively esterified, from cultured primary hepatocytes of wild-type and sterol carrier protein-2 (SCP-2) gene-ablated mice showed that 1) NBD-cholesterol efflux was affected by the type of lipoprotein acceptor, i.e., HDL3 over HDL2; 2) NBD-cholesterol efflux was rapid (detected in 1-2 min) and resolved into fast [half time (t((1/2))) = 2.4 min, 6% of total] and slow (t((1/2)) = 26.5 min, 94% of total) pools, consistent with protein- and vesicle-mediated cholesterol transfer, respectively; 3) SCP-2 gene ablation increased efflux of NBD-cholesterol, as well as [(3)H]cholesterol, albeit less so due to competition by esterification of [(3)H]cholesterol, but not NBD-cholesterol; and 4) SCP-2 gene ablation increased initial rate (2.3-fold) and size (9.7-fold) of rapid effluxing sterol, suggesting an increased contribution of molecular cholesterol transfer. In addition, colocalization, double-immunolabeling fluorescence resonance energy transfer, and electron microscopy, as well as cross-linking coimmunoprecipitation, indicated that SCP-2 directly interacted with the HDL receptor, scavenger receptor class B type 1 (SRB1), in hepatocytes. Other membrane proteins in cholesterol efflux [SRB1 and ATP-binding cassettes (ABC) A-1, ABCG-1, ABCG-5, and ABCG-8] and several soluble/vesicle-associated proteins facilitating intracellular cholesterol trafficking (StARDs, NPCs, ORPs) were not upregulated. However, loss of SCP-2 elicited twofold upregulation of liver fatty acid-binding protein (L-FABP), a protein with lower affinity for cholesterol but higher cytosolic concentration than SCP-2. Ablation of SCP-2 and L-FABP decreased HDL-mediated NBD-cholesterol efflux. These results indicate that SCP-2 expression plays a significant role in HDL-mediated cholesterol efflux by regulating the size of rapid vs. slow cholesterol efflux pools and/or eliciting concomitant upregulation of L-FABP in cultured primary hepatocytes.
Collapse
Affiliation(s)
- Stephen M Storey
- Departmens of Physiology and Pharmacology, Texas Veterinary Medical Center, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|