1
|
Ding Y, Zhang T, Ma HB, Han J, Zhu W, Zhao X, Lu XY, Zhou B, Shi XJ. Chronic Exposure to Environmental Concentrations of Tetrabromobisphenol A Disrupts Insulin and Lipid Homeostasis in Diet-Induced Obese Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4330-4343. [PMID: 39998957 PMCID: PMC11912329 DOI: 10.1021/acs.est.4c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in consumer products, has raised significant health concerns. However, the long-term metabolic effects of chronic exposure to environmentally relevant TBBPA concentrations, particularly in the context of modern high-calorie diets, remain poorly understood. Here, we show that C57BL/6J mice fed a high-fat diet and exposed to 20 or 50 nmol/kg/day TBBPA for 120 days exhibited increased body weight, aggravated fat accumulation, impaired glucose tolerance, insulin resistance, and dyslipidemia. Mechanistic investigations revealed that TBBPA exposure led to decreased norepinephrine levels, consequently reducing energy expenditure. It disrupts hepatic insulin signaling and upregulates G6Pase, thereby increasing the level of liver glucose production. Furthermore, TBBPA enhances hepatic cholesterol synthesis by elevating protein levels of HMGCR, which is the rate-limiting enzyme in cholesterol biosynthesis. This effect is mediated through increased expression of USP20, a specific deubiquitinating enzyme for HMGCR. Additionally, TBBPA modestly enhances fatty acid biosynthesis without significantly affecting lipolysis or fatty acid oxidation. Our research reveals novel molecular pathways through which environmental TBBPA exposure disrupts metabolic balance, potentially exacerbating obesity-related health issues. These findings highlight the synergistic effects between environmental pollutants and modern calorie-dense diets on metabolic health, emphasizing the importance of considering multiple factors in obesity-related disorders.
Collapse
Affiliation(s)
- Yi Ding
- Hubei
Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingfu Zhang
- Hubei
Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui-Bing Ma
- Hubei
Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Han
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenzhuo Zhu
- Hubei
Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaolu Zhao
- Hubei
Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Yi Lu
- Hubei
Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bingsheng Zhou
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong-Jie Shi
- Hubei
Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Jiang Y, Pang S, Liu X, Wang L, Liu Y. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J Cardiovasc Transl Res 2024; 17:624-637. [PMID: 38231373 DOI: 10.1007/s12265-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
3
|
Ryan CB, Choi JS, Kang B, Herr S, Pereira C, Moraes CT, Al-Ali H, Lee JK. PI3K signaling promotes formation of lipid-laden foamy macrophages at the spinal cord injury site. Neurobiol Dis 2024; 190:106370. [PMID: 38049013 PMCID: PMC10804283 DOI: 10.1016/j.nbd.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
After spinal cord injury (SCI), infiltrating macrophages undergo excessive phagocytosis of myelin and cellular debris, forming lipid-laden foamy macrophages. To understand their role in the cellular pathology of SCI, investigation of the foamy macrophage phenotype in vitro revealed a pro-inflammatory profile, increased reactive oxygen species (ROS) production, and mitochondrial dysfunction. Bioinformatic analysis identified PI3K as a regulator of inflammation in foamy macrophages, and inhibition of this pathway decreased their lipid content, inflammatory cytokines, and ROS production. Macrophage-specific inhibition of PI3K using liposomes significantly decreased foamy macrophages at the injury site after a mid-thoracic contusive SCI in mice. RNA sequencing and in vitro analysis of foamy macrophages revealed increased autophagy and decreased phagocytosis after PI3K inhibition as potential mechanisms for reduced lipid accumulation. Together, our data suggest that the formation of pro-inflammatory foamy macrophages after SCI is due to the activation of PI3K signaling, which increases phagocytosis and decreases autophagy.
Collapse
Affiliation(s)
- Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - James S Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Brian Kang
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Seth Herr
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Claudia Pereira
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Department of Medicine Katz Division of Nephrology and Hypertension, University of Miami, Miller School of Medicine, Miami, FL, United States of America; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, United States of America
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America.
| |
Collapse
|
4
|
Tian Y, Zhao Y, Yu W, Melak S, Niu Y, Wei W, Zhang L, Chen J. ACAT2 Is a Novel Negative Regulator of Pig Intramuscular Preadipocytes Differentiation. Biomolecules 2022; 12:biom12020237. [PMID: 35204738 PMCID: PMC8961576 DOI: 10.3390/biom12020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Intramuscular fat (IMF) is considered as the fat deposited between muscle fibers. The extracellular matrix microenvironment of adipose tissue is of critical importance for the differentiation, remodeling and function of adipocytes. Therefore, in this study we extracted the muscle tissue centrifugal fluid (MTF) of the longissimus dorsi of Erhualian pigs to mimic the microenvironment of intramuscular pre-adipocytes. MTF of pigs with low intramuscular fat level can inhibit pig intramuscular pre-adipocytes differentiation. Then, proteomics technology (iTRAQ) was used to analyze the MTF with different IMF content, and it was found that individuals with high IMF had low ACAT2 (Acyl-CoA: cholesterol acyltransferases 2) levels, while individuals with low IMF had high ACAT2 levels. Significant changes took place in the pathways involved in coenzyme A, which are closely related to fat and cholesterol metabolism. Therefore, we speculate that ACAT2, as an important element involved in cholesterol metabolism, may become a potential molecular marker for the mechanism of pig intramuscular preadipocytes differentiation. Overexpression of ACAT2 in pig intramuscular pre-adipocytes can inhibit their differentiation, while adding ACAT2 inhibitor avasimibe can rescue the process. Knockdown of srebp2 or ldlr, which are two key genes closely related to ACAT2 and cholesterol metabolism, can inhibit pig intramuscular pre-adipocytes differentiation. Overall, our results suggest that ACAT2 is a novel negative regulator of intramuscular adipocyte differentiation through regulation of pparγ, cebpα signaling and srebp2/ldlr signaling involved in cholesterol metabolism.
Collapse
Affiliation(s)
- Ye Tian
- Laboratory of Molecular Genetics and Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.T.); (Y.Z.); (W.Y.); (S.M.); (Y.N.); (W.W.); (L.Z.)
| | - Yuelei Zhao
- Laboratory of Molecular Genetics and Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.T.); (Y.Z.); (W.Y.); (S.M.); (Y.N.); (W.W.); (L.Z.)
| | - Wensai Yu
- Laboratory of Molecular Genetics and Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.T.); (Y.Z.); (W.Y.); (S.M.); (Y.N.); (W.W.); (L.Z.)
| | - Sherif Melak
- Laboratory of Molecular Genetics and Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.T.); (Y.Z.); (W.Y.); (S.M.); (Y.N.); (W.W.); (L.Z.)
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Giza 12618, Egypt
| | - Yingfang Niu
- Laboratory of Molecular Genetics and Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.T.); (Y.Z.); (W.Y.); (S.M.); (Y.N.); (W.W.); (L.Z.)
| | - Wei Wei
- Laboratory of Molecular Genetics and Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.T.); (Y.Z.); (W.Y.); (S.M.); (Y.N.); (W.W.); (L.Z.)
| | - Lifan Zhang
- Laboratory of Molecular Genetics and Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.T.); (Y.Z.); (W.Y.); (S.M.); (Y.N.); (W.W.); (L.Z.)
| | - Jie Chen
- Laboratory of Molecular Genetics and Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.T.); (Y.Z.); (W.Y.); (S.M.); (Y.N.); (W.W.); (L.Z.)
- Correspondence: ; Tel.: +86-25-84399269; Fax: +86-25-84399269
| |
Collapse
|
5
|
Eckhardt C, Sbiera I, Krebs M, Sbiera S, Spahn M, Kneitz B, Joniau S, Fassnacht M, Kübler H, Weigand I, Kroiss M. High expression of Sterol-O-Acyl transferase 1 (SOAT1), an enzyme involved in cholesterol metabolism, is associated with earlier biochemical recurrence in high risk prostate cancer. Prostate Cancer Prostatic Dis 2021; 25:484-490. [PMID: 34326474 PMCID: PMC9385470 DOI: 10.1038/s41391-021-00431-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023]
Abstract
Background Prostate cancer (PCa) is the most frequent cancer in men. The prognosis of PCa is heterogeneous with many clinically indolent tumors and rare highly aggressive cases. Reliable tissue markers of prognosis are lacking. Active cholesteryl ester synthesis has been associated with prostate cancer aggressiveness. Sterol-O-Acyl transferases (SOAT) 1 and 2 catalyze cholesterol esterification in humans. Objective To investigate the value of SOAT1 and SOAT2 tissue expression as prognostic markers in high risk PCa. Patients and methods Formalin-fixed paraffin-embedded tissue samples from 305 high risk PCa cases treated with radical prostatectomy were analyzed for SOAT1 and SOAT2 protein expression by semi-quantitative immunohistochemistry. The Kaplan–Meier method and Cox proportional hazards modeling were used to compare outcome. Main outcome measure Biochemical recurrence (BCR) free survival. Results SOAT1 expression was high in 73 (25%) and low in 219 (75%; not evaluable: 13) tumors. SOAT2 was highly expressed in 40 (14%) and at low levels in 249 (86%) samples (not evaluable: 16). By Kaplan–Meier analysis, we found significantly shorter median BCR free survival of 93 months (95% confidence interval 23.6–123.1) in patients with high SOAT1 vs. 134 months (112.6–220.2, Log-rank p < 0.001) with low SOAT1. SOAT2 expression was not significantly associated with BCR. After adjustment for age, preoperative PSA, tumor stage, Gleason score, resection status, lymph node involvement and year of surgery, high SOAT1 but not SOAT2 expression was associated with shorter BCR free survival with a hazard ratio of 2.40 (95% CI 1.57–3.68, p < 0.001). Time to clinical recurrence and overall survival were not significantly associated with SOAT1 and SOAT2 expression Conclusions SOAT1 expression is strongly associated with BCR free survival alone and after multivariable adjustment in high risk PCa. SOAT1 may serve as a histologic marker of prognosis and holds promise as a future treatment target.
Collapse
Affiliation(s)
- Carolin Eckhardt
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
| | - Iuliu Sbiera
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
| | - Markus Krebs
- University Hospital Würzburg, Department of Urology and Pediatric Urology, Würzburg, Germany.,University of Würzburg, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Silviu Sbiera
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
| | - Martin Spahn
- Lindenhofspital, Bern, Switzerland.,Department of Urology, University Hospital Essen, Essen, Germany
| | - Burkhard Kneitz
- University Hospital Würzburg, Department of Urology and Pediatric Urology, Würzburg, Germany
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Martin Fassnacht
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany.,University of Würzburg, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Hubert Kübler
- University Hospital Würzburg, Department of Urology and Pediatric Urology, Würzburg, Germany.,University of Würzburg, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Isabel Weigand
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany.,Department of Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, München, Germany
| | - Matthias Kroiss
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany. .,University of Würzburg, Comprehensive Cancer Center Mainfranken, Würzburg, Germany. .,Department of Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
6
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Liput KP, Lepczyński A, Nawrocka A, Poławska E, Ogłuszka M, Jończy A, Grzybek W, Liput M, Szostak A, Urbański P, Roszczyk A, Pareek CS, Pierzchała M. Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid (LA, C18:2n-6) to α-Linolenic Acid (ALA, C18:3n-3) Ratio on the Mouse Liver Proteome. Nutrients 2021; 13:1678. [PMID: 34063343 PMCID: PMC8156955 DOI: 10.3390/nu13051678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to evaluate the effect of different types of high-fat diets (HFDs) on the proteomic profile of mouse liver. The analysis included four dietary groups of mice fed a standard diet (STD group), a high-fat diet rich in SFAs (SFA group), and high-fat diets dominated by PUFAs with linoleic acid (LA, C18:2n-6) to α-linolenic acid (ALA, C18:3n-3) ratios of 14:1 (14:1 group) and 5:1 (5:1 group). After three months of diets, liver proteins were resolved by two-dimensional gel electrophoresis (2DE) using 17 cm non-linear 3-10 pH gradient strips. Protein spots with different expression were identified by MALDI-TOF/TOF. The expression of 13 liver proteins was changed in the SFA group compared to the STD group (↓: ALB, APOA1, IVD, MAT1A, OAT and PHB; ↑: ALDH1L1, UniProtKB-Q91V76, GALK1, GPD1, HMGCS2, KHK and TKFC). Eleven proteins with altered expression were recorded in the 14:1 group compared to the SFA group (↓: ARG1, FTL1, GPD1, HGD, HMGCS2 and MAT1A; ↑: APOA1, CA3, GLO1, HDHD3 and IVD). The expression of 11 proteins was altered in the 5:1 group compared to the SFA group (↓: ATP5F1B, FTL1, GALK1, HGD, HSPA9, HSPD1, PC and TKFC; ↑: ACAT2, CA3 and GSTP1). High-PUFA diets significantly affected the expression of proteins involved in, e.g., carbohydrate metabolism, and had varying effects on plasma total cholesterol and glucose levels. The outcomes of this study revealed crucial liver proteins affected by different high-fat diets.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str., 71-270 Szczecin, Poland;
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Weronika Grzybek
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute of the Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agnieszka Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Paweł Urbański
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Agnieszka Roszczyk
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| |
Collapse
|
8
|
Lee KH, Jeong ES, Jang G, Na JR, Park S, Kang WS, Kim E, Choi H, Kim JS, Kim S. Unripe Rubus coreanus Miquel Extract Containing Ellagic Acid Regulates AMPK, SREBP-2, HMGCR, and INSIG-1 Signaling and Cholesterol Metabolism In Vitro and In Vivo. Nutrients 2020; 12:nu12030610. [PMID: 32110925 PMCID: PMC7146129 DOI: 10.3390/nu12030610] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Our previous study demonstrated that a 5% ethanol extract of unripe Rubus coreanus (5-uRCK) has hypo-cholesterolemic and anti-obesity activity. However, the molecular mechanisms of its effects are poorly characterized. We hypothesized that 5-uRCK and one of its major bioactive compounds, ellagic acid, decrease cellular and plasma cholesterol levels. Thus, we investigated the hypocholesterolemic activity and mechanism of 5-uRCK in both hepatocytes and a high-cholesterol diet (HCD)-induced rat model. Cholesterol in the liver and serum was significantly reduced by 5-uRCK and ellagic acid. The hepatic activities of HMG-CoA and CETP were reduced, and the hepatic activity of LCAT was increased by both 5-uRCK extract and ellagic acid, which also caused histological improvements. The MDA content in the aorta and serum was significantly decreased after oral administration of 5-uRCK or ellagic acid. Further immunoblotting analysis showed that AMPK phosphorylation in the liver was induced by 5-uRCK and ellagic acid, which activated AMPK, inhibiting the activity of HMGCR by inhibitory phosphorylation. In contrast, 5-uRCK and ellagic acid suppressed the nuclear translocation and activation of SREBP-2, which is a key transcription factor in cholesterol biosynthesis. In conclusion, our results suggest that 5-uRCK and its bioactive compound, ellagic acid, are useful alternative therapeutic agents to regulate blood cholesterol.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sunoh Kim
- Correspondence: ; Tel.: +82-62-528-2201; Fax: +82-62-528-2202
| |
Collapse
|
9
|
Ohshiro T, Imuta S, Hijikuro I, Yagyu H, Takahashi T, Doi T, Ishibashi S, Tomoda H. The Anti-atherogenic Activity of Beauveriolide Derivative BVD327, a Sterol O-Acyltransferase 2-Selective Inhibitor, in Apolipoprotein E Knockout Mice. Biol Pharm Bull 2020; 43:951-958. [PMID: 32475917 DOI: 10.1248/bpb.b19-00913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fungal 13-membered cyclodepsipeptides, beauveriolides I and III, were previously reported to be atheroprotective activity in mouse models via inhibiting sterol O-acyltransferase (SOAT) activity. A total of 149 beauveriolide derivatives (BVDs) synthesized combinatorially were evaluated in in silico absorption, distribution, metabolism and excretion (ADME) analysis and inhibitory activity toward the two SOAT isozymes, SOAT1 and SOAT2. Hence, only 11 BVDs exhibited SOAT2-selective inhibition. Among these, we chose BVD327, which had the highest ADME score, for further evaluation. BVD327 administration (50 mg/kg/d, per os (p.o.)) significantly decreased atherosclerotic lesions in the aorta and heart (25.4 ± 6.9 and 20.6 ± 2.9%, respectively) in apolipoprotein E knockout (Apoe-/-) mice fed a cholesterol-enriched diet (0.2% cholesterol and 21% fat) for 12 weeks. These findings indicate that beauveriolide derivatives can be used as anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Taichi Ohshiro
- Graduate School of Pharmaceutical Sciences, Kitasato University
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University
| | | | | | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University
| | | | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences, Kitasato University
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University
| |
Collapse
|
10
|
Xu Y, Du X, Turner N, Brown AJ, Yang H. Enhanced acyl-CoA:cholesterol acyltransferase activity increases cholesterol levels on the lipid droplet surface and impairs adipocyte function. J Biol Chem 2019; 294:19306-19321. [PMID: 31727739 DOI: 10.1074/jbc.ra119.011160] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/11/2019] [Indexed: 01/21/2023] Open
Abstract
Cholesterol plays essential structural and signaling roles in mammalian cells, but too much cholesterol can cause cytotoxicity. Acyl-CoA:cholesterol acyltransferases 1 and 2 (ACAT1/2) convert cholesterol into its storage form, cholesteryl esters, regulating a key step in cellular cholesterol homeostasis. Adipose tissue can store >50% of whole-body cholesterol. Interestingly, however, almost no ACAT activity is present in adipose tissue, and most adipose cholesterol is stored in its free form. We therefore hypothesized that increased cholesterol esterification may have detrimental effects on adipose tissue function. Here, using several approaches, including protein overexpression, quantitative RT-PCR, immunofluorescence, and various biochemical assays, we found that ACAT1 expression is significantly increased in the adipose tissue of the ob/ob mice. We further demonstrated that ACAT1/2 overexpression partially inhibited the differentiation of 3T3-L1 preadipocytes. In mature adipocytes, increased ACAT activity reduced the size of lipid droplets (LDs) and inhibited lipolysis and insulin signaling. Paradoxically, the amount of free cholesterol increased on the surface of LDs in ACAT1/2-overexpressing adipocytes, accompanied by increased LD localization of caveolin-1. Moreover, cholesterol depletion in adipocytes by treating the cells with cholesterol-deficient media or β-cyclodextrins induced changes in cholesterol distribution that were similar to those caused by ACAT1/2 overexpression. Our results suggest that ACAT1/2 overexpression increases the level of free cholesterol on the LD surface, thereby impeding adipocyte function. These findings provide detailed insights into the role of free cholesterol in LD and adipocyte function and suggest that ACAT inhibitors have potential utility for managing disorders associated with extreme obesity.
Collapse
Affiliation(s)
- Yanqing Xu
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nigel Turner
- School of Medical Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Nam DE, Yun JM, Kim D, Kim OK. Policosanol Attenuates Cholesterol Synthesis via AMPK Activation in Hypercholesterolemic Rats. J Med Food 2019; 22:1110-1117. [PMID: 31613687 DOI: 10.1089/jmf.2019.4491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to investigate the effects of policosanol on high-fat and high-cholesterol diet-induced hypercholesterolemic rats to provide strong evidence in support of its hypocholesterolemic effect. The hypercholesterolemic rats showed elevations in liver weight, total triglycerides, total cholesterol, and low-density lipoprotein (LDL) cholesterol in serum; however, policosanol supplementation reduced these markers significantly. In addition, we found that policosanol supplementation stimulated an increase in fecal cholesterol and bile acid contents and deactivated 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase by AMP-activated protein kinase (AMPK) phosphorylation during high-fat and high-cholesterol-containing diet-induced development of hypercholesterolemia. Policosanol supplementation decreased ApoB levels and increased LDL-receptor expression, but it did not affect the hepatic ACAT2 level in livers from hypercholesterolemic rats. Moreover, supplementation with policosanol significantly decreased aortic wall thickness and levels of P-selectin and soluble vascular cell adhesion molecule (sVCAM-1) in serum. In conclusion, we suggest that policosanol supplementation induces antihypercholesterolemia by inhibiting cholesterol biosynthesis, LDL cholesterol uptake, and cholesterol excretion.
Collapse
Affiliation(s)
- Da-Eun Nam
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jeong-Moon Yun
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Dakyung Kim
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| |
Collapse
|
12
|
Rajapakse D, Peterson K, Mishra S, Wistow G. Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. Exp Cell Res 2017; 361:333-341. [PMID: 29097185 PMCID: PMC5701823 DOI: 10.1016/j.yexcr.2017.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 11/29/2022]
Abstract
Retinal pigment epithelium (RPE) has been implicated as key source of cholesterol-rich deposits at Bruch's membrane (BrM) and in drusen in aging human eye. We have shown that serum-deprivation of confluent RPE cells is associated with upregulation of cholesterol synthesis and accumulation of unesterified cholesterol (UC). Here we investigate the cellular processes involved in this response. We compared the distribution and localization of UC and esterified cholesterol (EC); the age-related macular degeneration (AMD) associated EFEMP1/Fibulin3 (Fib3); and levels of acyl-coenzyme A (CoA): cholesterol acyltransferases (ACAT) ACAT1, ACAT2 and Apolipoprotein B (ApoB) in ARPE-19 cells cultured in serum-supplemented and serum-free media. The results were compared with distributions of these lipids and proteins in human donor eyes with AMD. Serum deprivation of ARPE-19 was associated with increased formation of FM dye-positive membrane vesicles, many of which co-labeled for UC. Additionally, UC colocalized with Fib3 in distinct granules. By day 5, serum-deprived cells grown on transwells secreted Fib3 basally into the matrix. While mRNA and protein levels of ACTA1 were constant over several days of serum-deprivation, ACAT2 levels increased significantly after serum-deprivation, suggesting increased formation of EC. The lower levels of intracellular EC observed under serum-deprivation were associated with increased formation and secretion of ApoB. The responses to serum-deprivation in RPE-derived cells: accumulation and secretion of lipids, lipoproteins, and Fib3 are very similar to patterns seen in human donor eyes with AMD and suggest that this model mimics processes relevant to disease progression.
Collapse
Affiliation(s)
- Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 6 Room 106, Bethesda, MD, USA.
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 6 Room 106, Bethesda, MD, USA.
| | - Sanghamitra Mishra
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 6 Room 106, Bethesda, MD, USA.
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 6 Room 106, Bethesda, MD, USA.
| |
Collapse
|
13
|
Pal P, Gandhi HP, Kanhed AM, Patel NR, Mankadia NN, Baldha SN, Barmade MA, Murumkar PR, Yadav MR. Vicinal diaryl azole-based urea derivatives as potential cholesterol lowering agents acting through inhibition of SOAT enzymes. Eur J Med Chem 2017; 130:107-123. [PMID: 28242547 DOI: 10.1016/j.ejmech.2017.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
A novel series of vicinal diaryl azole-urea derivatives were synthesized and evaluated for their potential to inhibit SOAT enzyme. Among the reported compounds, compound (12d) emerged as the most potent compound with an IC50 value of 2.43 μM. In polaxamer-407 induced lipoprotein lipase inhibition model, compound (12d) reduced triglyceride turnover in vivo. Compound (12d) also showed dose-dependent prevention of serum total cholesterol and prevention of LDL-C elevation at a dose of 30 mg/kg. Furthermore, compound (12d) showed potential to stop falling levels of serum HDL-C dose-dependently and improved the atherogenic index. Effect of 12d on body weight, plaque formation and development of atherogenic lesions were studied. Toxicological study of compound (12d) indicated that at a dose of 2000 mg/kg, 12d was devoid of any signs of toxicity or mortality.
Collapse
Affiliation(s)
- Palash Pal
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Hardik P Gandhi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Ashish M Kanhed
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Nirali R Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Niraj N Mankadia
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Satish N Baldha
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Mahesh A Barmade
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, India.
| |
Collapse
|
14
|
Scott Kiss R, Sniderman A. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. J Biomed Res 2017; 31:95-107. [PMID: 28808191 PMCID: PMC5445212 DOI: 10.7555/jbr.31.20160139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Allan Sniderman
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
15
|
Potential protective function of the sterol regulatory element binding factor 1-fatty acid desaturase 1/2 axis in early-stage age-related macular degeneration. Heliyon 2017; 3:e00266. [PMID: 28367511 PMCID: PMC5362043 DOI: 10.1016/j.heliyon.2017.e00266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of vision loss in elderly individuals throughout the developed world. Inhibitors of vascular endothelial growth factor have been successfully used to treat choroidal neovascularization in late-stage AMD. The pathogenesis of early-stage AMD, however, remains largely unknown, impairing efforts to develop effective therapies that prevent progression to late-stage AMD. To address this, we performed comparative transcriptomics of macular and extramacular retinal pigmented epithelium-choroid (RPE-choroid) tissue from early-stage AMD patients. We found that expression of fatty acid desaturase 1 (FADS1), FADS2, and acetyl-CoA acetyltransferase 2 (ACAT2) is increased in macular but not extramacular tissue, possibly through activation of sterol regulatory element binding factor 1 (SREBF1). Consistent with this, we also found that expression of Fads1 is increased in RPE-choroid in a mouse model of early-stage AMD. In zebrafish, deletion of fads2, which encodes a protein that functions as both Fads1 and Fads2 in other species, enhanced apoptosis in the retina upon exposure to intense light. Similarly, pharmacological inhibition of Srebf1 enhanced apoptosis and reduced fads2 expression in zebrafish exposed to intense light. These results suggest that the SREBF1-FADS1/2 axis may be activated in macular RPE-choroid as a protective response during early-stage AMD and could thus be a therapeutic target for early-stage AMD.
Collapse
|
16
|
Ohshiro T, Ohtawa M, Nagamitsu T, Matsuda D, Yagyu H, Davis MA, Rudel LL, Ishibashi S, Tomoda H. New pyripyropene A derivatives, highly SOAT2-selective inhibitors, improve hypercholesterolemia and atherosclerosis in atherogenic mouse models. J Pharmacol Exp Ther 2015; 355:299-307. [PMID: 26338984 PMCID: PMC4613958 DOI: 10.1124/jpet.115.227348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/28/2015] [Indexed: 12/26/2022] Open
Abstract
Sterol O-acyltransferase 2 (SOAT2; also known as ACAT2) is considered as a new therapeutic target for the treatment or prevention of hypercholesterolemia and atherosclerosis. Fungal pyripyropene A (PPPA: 1,7,11-triacyl type), the first SOAT2-selective inhibitor, proved orally active in vivo using atherogenic mouse models. The purpose of the present study was to demonstrate that the PPPA derivatives (PRDs) prove more effective in the mouse models than PPPA. Among 196 semisynthetic PPPA derivatives, potent, SOAT2-selective, and stable PRDs were selected. In vivo antiatherosclerotic activity of selected PRDs was tested in apolipoprotein E knockout (Apoe(-/-)) mice or low-density lipoprotein receptor knockout (Ldlr(-/-)) mice fed a cholesterol-enriched diet (0.2% cholesterol and 21% fat) for 12 weeks. During the PRD treatments, no detrimental side effects were observed. Among three PRDs, Apoe(-/-) mice treated with PRD125 (1-,11-O-benzylidene type) at 1 mg/kg/day had significantly lower total plasma cholesterol concentration by 57.9 ± 9.3%; further, the ratio of cholesteryl oleate to cholesteryl linoleate in low-density lipoprotein was lower by 55.6 ± 7.5%, respectively. The hepatic cholesteryl ester levels and SOAT2 activity in the small intestines and livers of the PRD-treated mice were selectively lowered. The atherosclerotic lesion areas in the aortae of PRD125-treated mice were significantly lower at 62.2 ± 13.1%, respectively. Furthermore, both PRDs were also orally active in atherogenic Ldlr(-/-) mice. Among the PRDs tested, PRD125 was the most potent in both mouse models. These results suggest that SOAT2-selective inhibitors such as PRD125 have a high potential as poststatin agents for treatment and/or prevention in patients with atherosclerosis and hypercholesterolemia.
Collapse
Affiliation(s)
- Taichi Ohshiro
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| | - Masaki Ohtawa
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| | - Tohru Nagamitsu
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| | - Daisuke Matsuda
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| | - Hiroaki Yagyu
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| | - Matthew A Davis
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| | - Lawrence L Rudel
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| | - Shun Ishibashi
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (T.O., M.O., T.N., D.M., H.T.); Department of Medicine, Jichi Medical University, Tochigi, Japan (T.O., H.Y., S.I.); and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina (T.O., M.A.D., L.L.R.)
| |
Collapse
|
17
|
Thacker SG, Rousset X, Esmail S, Zarzour A, Jin X, Collins HL, Sampson M, Stonik J, Demosky S, Malide DA, Freeman L, Vaisman BL, Kruth HS, Adelman SJ, Remaley AT. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice. J Lipid Res 2015; 56:1282-95. [PMID: 25964513 PMCID: PMC4479333 DOI: 10.1194/jlr.m048629] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(-/-)] mice, which have a secondary defect in cholesterol esterification. Scarab(-/-)×LCAT-null [Lcat(-/-)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(-/-)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(-/-)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(-/-)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(-/-) mice (P < 0.05). In summary, we demonstrate that increased cholesterol esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles.
Collapse
Affiliation(s)
- Seth G. Thacker
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xavier Rousset
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Safiya Esmail
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Abdalrahman Zarzour
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xueting Jin
- Experimental Atherosclerosis Section, Center for Molecular, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Maureen Sampson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - John Stonik
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Demosky
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniela A. Malide
- Light Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lita Freeman
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Boris L. Vaisman
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Howard S. Kruth
- Experimental Atherosclerosis Section, Center for Molecular, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Alan T. Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Nakayama H, Yuito N, Miyata Y, Tamaya K, Tanaka T, Saito Y, Matsui T, Aramaki S, Nagata Y, Tamaru S, Tanaka K. Hypolipidemic Property of a New Fermented Tea Made with Third Crop Green Tea ( Camellia sinensis) Leaves and Unripe Satsuma Mandarin ( Citrus unshiu) Fruits. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hisayuki Nakayama
- Nagasaki Agricultural and Forestry Technical Development Center
- Graduate School of Human Health Science, University of Nagasaki
| | - Naho Yuito
- Department of Nutrition, University of Nagasaki
| | - Yuji Miyata
- Nagasaki Agricultural and Forestry Technical Development Center
| | - Kei Tamaya
- Industrial Technology Center of Nagasaki
| | - Takashi Tanaka
- Graduate School of Biochemical Science, Nagasaki University
| | | | - Toshiro Matsui
- Faculty of Agriculture, Graduate School of Kyushu University
| | | | - Yasuo Nagata
- Center for Industry, University and Government Cooperation, Nagasaki University
- Department of Nutrition, University of Nagasaki
| | | | - Kazunari Tanaka
- Department of Nutrition, University of Nagasaki
- Graduate School of Human Health Science, University of Nagasaki
| |
Collapse
|
19
|
Wang YX, Li Y, Sun AM, Wang FJ, Yu GP. Hypolipidemic and antioxidative effects of aqueous enzymatic extract from rice bran in rats fed a high-fat and -cholesterol diet. Nutrients 2014; 6:3696-710. [PMID: 25230211 PMCID: PMC4179183 DOI: 10.3390/nu6093696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/04/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022] Open
Abstract
Purpose: The aqueous enzymatic extract from rice bran (AEERB) was rich in protein, γ-oryzanol and tocols. The aim of this study was to investigate the effects of AEERB on the regulation of lipid metabolism and the inhibition of oxidative damage. Methods: The antioxidant activity of AEERB in vitro was measured in terms of radical scavenging capacity, ferric reducing ability power (FRAP) and linoleic acid emulsion system-ferric thiocyanate method (FTC). Male Wistar rats were fed with a normal diet and a high-fat and high-cholesterol diet with or without AEERB. After treatment, biochemical assays of serum, liver and feces lipid levels, the antioxidant enzyme activity, malondialdehyde (MDA) and protein carbonyl were determined. Result: AEERB is completely soluble in water and rich in hydrophilic and lipophilic functional ingredients. AEERB scavenged DPPH• and ABTS•+ and exhibited antioxidant activity slightly lower than that of ascorbic acid in the linoleic acid system. The administration of AEERB reduced serum lipid levels and the atherogenic index compared with those of the hyperlipidemic diet group (HD). The administration of AEERB significantly lowered liver lipid levels, inhibited hepatic 3-hydroxyl-3-methylglutaryl CoA reductase activity, and efficiently promoted the fecal excretion of total lipids and total cholesterol (TC) (p < 0.05). Dietary AEERB enhanced antioxidant status in the serum, liver and brain by increasing the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and decreasing the content of MDA and protein carbonyl. Conclusions: The results indicated that AEERB might act as a potent hypolipidemic and antioxidant functional food.
Collapse
Affiliation(s)
- Yu-Xin Wang
- College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Li
- Department of Respiratory Medicine, Daxing Hospital Affiliated to Capital Medical University, Beijing 102600, China.
| | - An-Min Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Feng-Jiao Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Guo-Ping Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Read SA, Tay E, Shahidi M, George J, Douglas MW. Hepatitis C virus infection mediates cholesteryl ester synthesis to facilitate infectious particle production. J Gen Virol 2014; 95:1900-1910. [PMID: 24859394 DOI: 10.1099/vir.0.065300-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Cholesterol is a critical component of the hepatitis C virus (HCV) life cycle, as demonstrated by its accumulation within infected hepatocytes and lipoviral particles. To cope with excess cholesterol, hepatic enzymes ACAT1 and ACAT2 produce cholesteryl esters (CEs), which are destined for storage in lipid droplets or for secretion as apolipoproteins. Here we demonstrate in vitro that cholesterol accumulation following HCV infection induces upregulation of the ACAT genes and increases CE synthesis. Analysis of human liver biopsy tissue showed increased ACAT2 mRNA expression in liver infected with HCV genotype 3, compared with genotype 1. Inhibiting cholesterol esterification using the potent ACAT inhibitor TMP-153 significantly reduced production of infectious virus, but did not inhibit virus RNA replication. Density gradient analysis showed that TMP-153 treatment caused a significant increase in lipoviral particle density, suggesting reduced lipidation. These data suggest that cholesterol accumulation following HCV infection stimulates the production of CE, a major component of lipoviral particles. Inhibition of CE synthesis reduces HCV particle density and infectivity, suggesting that CEs are required for optimal infection of hepatocytes.
Collapse
Affiliation(s)
- Scott A Read
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Enoch Tay
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Mahsa Shahidi
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| | - Mark W Douglas
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Sydney, Australia
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, Australia
| |
Collapse
|
21
|
Marshall SM, Gromovsky AD, Kelley KL, Davis MA, Wilson MD, Lee RG, Crooke RM, Graham MJ, Rudel LL, Brown JM, Temel RE. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion. PLoS One 2014; 9:e98953. [PMID: 24901470 PMCID: PMC4047063 DOI: 10.1371/journal.pone.0098953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/09/2014] [Indexed: 02/05/2023] Open
Abstract
The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2) increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD), the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.
Collapse
Affiliation(s)
- Stephanie M. Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Anthony D. Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation – Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Kathryn L. Kelley
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Matthew A. Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Martha D. Wilson
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Richard G. Lee
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Rosanne M. Crooke
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Lawrence L. Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - J. Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation – Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ryan E. Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
22
|
Fryer LGD, Jones B, Duncan EJ, Hutchison CE, Ozkan T, Williams PA, Alder O, Nieuwdorp M, Townley AK, Mensenkamp AR, Stephens DJ, Dallinga-Thie GM, Shoulders CC. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis. J Biol Chem 2013; 289:4244-61. [PMID: 24338480 PMCID: PMC3924288 DOI: 10.1074/jbc.m113.479980] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions.
Collapse
Affiliation(s)
- Lee G D Fryer
- From the Endocrinology Centre, William Harvey Research Institute, Queen Mary University of London and Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boon CJ, van de Ven JP, Hoyng CB, den Hollander AI, Klevering BJ. Cuticular drusen: Stars in the sky. Prog Retin Eye Res 2013; 37:90-113. [DOI: 10.1016/j.preteyeres.2013.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/24/2022]
|
24
|
Involvement of lipid droplets in hepatic responses to lipopolysaccharide treatment in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1357-67. [DOI: 10.1016/j.bbalip.2013.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/05/2013] [Accepted: 04/30/2013] [Indexed: 01/07/2023]
|
25
|
Yang L, Han G, Liu QH, Wu Q, He HJ, Cheng CZ, Duan YJ. Rice protein exerts a hypocholesterolemic effect through regulating cholesterol metabolism-related gene expression and enzyme activity in adult rats fed a cholesterol-enriched diet. Int J Food Sci Nutr 2013; 64:836-42. [PMID: 23763670 DOI: 10.3109/09637486.2013.804038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The major aim of this study is to elucidate the hypocholesterolemic mechanism exerted by rice protein (RP) in adult rats under cholesterol-enriched dietary condition. Compared with casein, the cholesterol levels in plasma and the liver were significantly reduced by RP, accompanying significant inhibition of cholesterol absorption. RP increased the activity and mRNA level of cholesterol 7α-hydroxylase, whereas acyl-CoA:cholesterol acyltransferase activity and gene expression were significantly depressed with consumption of RP. Neither the activity nor gene expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase of RP differed from that of casein. The gene expression of the peroxisome proliferator-activated receptor α and liver X receptor α were significantly activated by consumption of RP. RP did not modify the mRNA level of sterol regulatory element-binding protein-2 with respect to casein. These results suggest RP can induce a cholesterol-lowering effect through modifying cholesterol metabolism-related gene expression and enzyme activity in adult rats.
Collapse
Affiliation(s)
- Lin Yang
- Department of Food Science, School of Food Science and Engineering, Harbin Institute of Technology , Harbin , China
| | | | | | | | | | | | | |
Collapse
|
26
|
Yang L, Chen JH, Xu T, Nie MH, Yang HK. Hypocholesterolemic effect of rice protein is due to regulating hepatic cholesterol metabolism in adult rats. Gene 2013; 512:470-6. [PMID: 23107769 DOI: 10.1016/j.gene.2012.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/11/2012] [Indexed: 01/04/2023]
Abstract
Aging is one of major risk factors for developing hypercholesterolemia. To elucidate the cholesterol-lowering mechanism exerted by rice protein (RP), the effects on hepatic cholesterol outputs and cholesterol metabolism related enzymes were investigated in adult rats, which were fed by casein (CAS) and RP without cholesterol in diets. After 2 weeks of feeding, the significant cholesterol-lowering effect was observed in adult rats fed by RP compared to CAS. The hepatic total- and VLDL-cholesterol secretions into circulation were significantly depressed in RP group, whereas biliary outputs of bile acids and cholesterol were effectively stimulated by RP-feeding, causing an increase in fecal sterol excretion compared to CAS. As a result, the apparent cholesterol absorption was significantly inhibited by RP. RP-feeding significantly increased the activity and gene expression of cholesterol 7α-hydroxylase, whereas acyl-CoA:cholesterol acyltransferase-2 activity and gene expression were significantly decreased by RP as compared with CAS. Neither activity nor gene expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase of RP did differ from CAS in the liver. The present study demonstrates that rice protein can prevent hypercholesterolemia through modifying hepatic cholesterol metabolism under cholesterol-free dietary condition. The findings suggest that hypocholesterolemic action induced by rice protein is attributed in part to the inhibition of cholesterol absorption during the adult period.
Collapse
Affiliation(s)
- Lin Yang
- Department of Food Science, School of Food Science and Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | | | | | | | | |
Collapse
|
27
|
Nguyen TM, Sawyer JK, Kelley KL, Davis MA, Kent CR, Rudel LL. ACAT2 and ABCG5/G8 are both required for efficient cholesterol absorption in mice: evidence from thoracic lymph duct cannulation. J Lipid Res 2012; 53:1598-609. [PMID: 22669916 PMCID: PMC3540850 DOI: 10.1194/jlr.m026823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/24/2012] [Indexed: 11/20/2022] Open
Abstract
The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2(-/-), G5G8(-/-), ACAT2(-/-)G5G8(-/-) (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [(3)H]sitosterol and [(14)C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [(14)C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2(-/-), G5G8(-/-), and DKO mice, respectively. [(3)H]sitosterol absorption was <2% in WT and ACAT2(-/-) mice, whereas it was up to 6.8% in G5G8(-/-) and DKO mice. G5G8(-/-) mice also produced chylomicrons with ∼70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency.
Collapse
Affiliation(s)
- Tam M. Nguyen
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Janet K. Sawyer
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Kathryn L. Kelley
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Matthew A. Davis
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Carol R. Kent
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Lawrence L. Rudel
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
28
|
|
29
|
Zhang Z, Liu J, Xi Y, Yang R, Chen H, Li Z, Liu D, Liang C. Two novel cis-elements involved in hepatocyte nuclear factor 4α regulation of acyl-coenzyme A:cholesterol acyltransferase 2 expression. Acta Biochim Biophys Sin (Shanghai) 2012; 44:162-71. [PMID: 22155889 DOI: 10.1093/abbs/gmr102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) is important for cholesterol ester synthesis and secretion. A previous study revealed that ACAT2 gene promoter activity was upregulated by hepatocyte nuclear factor 4α (HNF4α) through two sites around -247 and -311 of ACAT2 gene promoter. Here, we identified two novel cis-elements, site I (-1006 to -898) and site II (-38 to -29), which are important for HNF4α effect. In HepG2 cells, mutation of site I decreased ACAT2 gene promoter activity to one-fifth of that of the wild type, while mutation of site II reduced promoter activity to less than one-tenth of that of the wild type. In 293T cells, mutation of these two cis-elements profoundly impaired the HNF4α induction effect. When either of these two elements was inserted into pGL3-promoter, HNF4α induced promoter activity through the inserted element, while mutation of the element impaired HNF4α induction effect. In electrophoretic mobility shift assay and chromatin immunoprecipitation experiment, HNF4α bound to these two elements. Thus, the two cis-elements are important for HNF4α effect on ACAT2 gene transcription. We also showed that HNF4α positively regulates ACAT2 gene expression at mRNA level. Overexpression of HNF4α increased ACAT2 expression, whereas knockdown of HNF4α decreased ACAT2 expression. Peroxisome proliferator-activated receptor gamma coactivator 1α (PCG1α), a coactivator of HNF4α, increased ACAT2 expression, while small heterodimer partner (SHP), a corepressor of HNF4α, decreased ACAT2 expression. These results provide more insights into transcriptional regulation of ACAT2 expression.
Collapse
Affiliation(s)
- Zhuqin Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nguyen TM, Sawyer JK, Kelley KL, Davis MA, Rudel LL. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. J Lipid Res 2012; 53:95-104. [PMID: 22045928 PMCID: PMC3243485 DOI: 10.1194/jlr.m018820] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/11/2011] [Indexed: 01/21/2023] Open
Abstract
The hypothesis tested in this study was that cholesterol esterification by ACAT2 would increase cholesterol absorption efficiency by providing cholesteryl ester (CE) for incorporation into chylomicrons. The assumption was that absorption would be proportional to Acat2 gene dosage. Male ACAT2⁺/⁺, ACAT2⁺/⁻, and ACAT2⁻/⁻ mice were fed a diet containing 20% of energy as palm oil with 0.2% (w/w) cholesterol. Cholesterol absorption efficiency was measured by fecal dual-isotope and thoracic lymph duct cannulation (TLDC) methods using [³H]sitosterol and [¹⁴C]cholesterol tracers. Excellent agreement among individual mice was found for cholesterol absorption measured by both techniques. Cholesterol absorption efficiency in ACAT2⁻/⁻ mice was 16% compared with 46-47% in ACAT2⁺/⁺ and ACAT2⁺/⁻ mice. Chylomicrons from ACAT2⁺/⁺ and ACAT2⁺/⁻ mice carried ∼80% of total sterol mass as CE, whereas ACAT2⁻/⁻ chylomicrons carried >90% of sterol mass in the unesterified form. The total percentage of chylomicron mass as CE was reduced from 12% in the presence of ACAT2 to ∼1% in ACAT2⁻/⁻ mice. Altogether, the data demonstrate that ACAT2 increases cholesterol absorption efficiency by providing CE for chylomicron transport, but one copy of the Acat2 gene, providing ∼50% of ACAT2 mRNA and enzyme activity, was as effective as two copies in promoting cholesterol absorption.
Collapse
Affiliation(s)
| | - Janet K. Sawyer
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kathryn L. Kelley
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Matthew A. Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Lawrence L. Rudel
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
31
|
Kiss RS, You Z, Genest J, Behm DJ, Giaid A. Urotensin II differentially regulates macrophage and hepatic cholesterol homeostasis. Peptides 2011; 32:956-63. [PMID: 21376094 DOI: 10.1016/j.peptides.2011.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 12/12/2022]
Abstract
Urotensin II (UII) is a vasoactive peptide with pleiotropic activity. Interestingly, UII levels are elevated in hyperlipidemic patients, and UII induces lipase activity in some species. However, the exact role UII plays in cholesterol homeostasis remains to be elucidated. UII knockout (UII KO) mice were generated and a plasma lipoprotein profile, and hepatocytes and macrophages cholesterol uptake, storage and synthesis was determined. UII KO had a decreased LDL cholesterol profile and liver steatosis compared to wildtype mice (WT). UII KO macrophages demonstrated enhanced ACAT activity and LDL uptake in the short term (up to 4h), of which more LDL-delivered exogenously derived cholesterol was incorporated into cholesteryl ester (CE) than the WT macrophages. UII KO macrophages generated more than two times the amount of de novo endogenously synthesized cholesterol, and of this cholesterol more than two times the relative amount was esterified to CE. In comparison, results in hepatocytes demonstrated that far more exogenously derived cholesterol was incorporated into CE in the WT cells, generating almost ten times the amount of CE than UII KO. WT cells synthesize de novo almost ten times the amount of cholesterol than UIIKO, and of that cholesterol, almost two times the amount of CE in WT than UII KO hepatocytes. In addition, more ApoB lipoproteins were secreted from WT than UII KO hepatocytes. These results demonstrate a fundamental difference between macrophages and hepatocytes in terms of cholesterol homeostasis, and suggest an important role for UII in modulating cholesterol regulation.
Collapse
Affiliation(s)
- Robert S Kiss
- Division of Cardiology, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
32
|
Zhu-qin Z, Hou-zao C, Rui-feng Y, Ran Z, Yu-yan J, Yang X, De-pei L, Chih-chuan L. Regulation of acyl-coenzyme A: cholesterol acyltransferase 2 expression by saturated fatty acids. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2010; 25:222-7. [PMID: 21232182 DOI: 10.1016/s1001-9294(11)60006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To verify the regulation of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT 2), which is associated with cholesterol metabolism, by saturated fatty acids (SFAs). METHODS Palmitic acid (PA), the most abundant saturated fatty acid in plasma, and oleic acid (OA), a widely distributed unsaturated fatty acid, were used to treat hepatic cells HepG2, HuH7, and mouse primary hepatocytes. In addition, PA at different concentrations and PA treatment at different durations were applied in HepG2 cells. In in vivo experiment, three-month male C57/BL6 mice were fed with control diet and SFA diet containing hydrogenated coconut oil rich of SFAs. The mRNA level of ACAT2 in those hepatic cells and the mouse livers was detected with real-time polymerase chain reaction (PCR). RESULTS In the three types of hepatic cells treated with PA, that SFA induced significant increase of ACAT2 expression (Pü0.01), whereas treatment with OA showed no significant effect. That effect of PA was noticed gradually rising along with the increase of PA concentration and the extension of PA treatment duration (both Pü0.05). SFA diet feeding in mice resulted in a short-term and transient increase of ACAT2 expression in vivo, with a peak level appearing in the mice fed with SFA diet for two days (Pü0.05). CONCLUSION SFA may regulate ACAT2 expression in human and mouse hepatic cells and in mouse livers.
Collapse
Affiliation(s)
- Zhang Zhu-qin
- Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang J, Tabbi-Anneni I, Gunda V, Wang L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1211-21. [PMID: 20930048 PMCID: PMC3006243 DOI: 10.1152/ajpgi.00322.2010] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) plays a pivotal role in cytoprotection against both endogenous and exogenous stresses. Here, we establish a novel molecular link between Nrf2, nuclear receptor small heterodimer partner (SHP; NROB2), lipogenic genes, and hepatic lipid homeostasis. Deletion of Nrf2 (Nrf2⁻(/)⁻) in mice resulted in a reduced liver weight, a decrease in fatty acid content of hepatic triacylglycerol, as well as concomitant increases in the levels of serum VLDL-triglyceride (TG), HDL cholesterol, and ketone bodies at 6 mo of age. Liver weight and hepatic TG content were consistently lower in Nrf2⁻(/)⁻ mice upon a high-fat challenge. This phenotype was accompanied by downregulation of genes in lipid synthesis and uptake and upregulation of genes in lipid oxidation in older Nrf2⁻(/)⁻ mice. Interestingly, SHP expression was induced with age in Nrf2(+/+) mice but decreased by Nrf2 deficiency. Forced expression and activation of Nrf2 by Nrf2 activators consistently induced SHP expression, and Nrf2 was identified as a novel activator of the SHP gene transcription. We also identified PPAR-γ, Fas, Scd1, and Srebp-1 as direct targets of Nrf2 activation. These findings provide evidence for a role of Nrf2 in the modulation of hepatic lipid homeostasis through transcriptional activation of SHP and lipogenic gene expression.
Collapse
Affiliation(s)
- Jiansheng Huang
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Imene Tabbi-Anneni
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Viswanath Gunda
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Li Wang
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
34
|
García-Arcos I, González-Kother P, Aspichueta P, Rueda Y, Ochoa B, Fresnedo O. Lipid Analysis Reveals Quiescent and Regenerating Liver-Specific Populations of Lipid Droplets. Lipids 2010; 45:1101-8. [DOI: 10.1007/s11745-010-3492-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 10/19/2010] [Indexed: 12/29/2022]
|
35
|
Devlin AM, Singh R, Bottiglieri T, Innis SM, Green TJ. Hepatic acyl-coenzyme a:cholesterol acyltransferase-2 expression is decreased in mice with hyperhomocysteinemia. J Nutr 2010; 140:231-7. [PMID: 20018805 DOI: 10.3945/jn.109.112920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Alterations in lipid metabolism may contribute to the pathology of hyperhomocysteinemia (HHcy). Our objective in this study was to test the hypothesis that HHcy is associated with changes in liver acyl CoA:cholesterol acyl transferase 2 (ACAT2) expression and cholesteryl esters (CE) in mice with HHcy. ACAT2 is encoded by Soat2 and functions to catalyze the esterification of cholesterol with acyl-CoA. Mice heterozygous for disruption of the cystathionine-beta-synthase gene (Cbs +/-) and C57BL/6 mice (Cbs +/+) were fed a control diet or a diet high in l-methionine (8.60 g/kg) and low in folic acid (0.20 mg/kg) to induce HHcy (HH diet). Lower Soat2 mRNA (P < 0.05) and ACAT protein (P < 0.001), higher total oleic acid [18:1(n-9)], and lower CE 18:1(n-9) was found in liver from Cbs +/- mice fed the HH diet, with higher plasma total homocysteine concentrations, than Cbs +/+ mice fed the control diet (35.01 +/- 5.6 vs. 2.21 +/- 0.6 mumol/L, respectively). In silico searches identified a CpG-rich region in the 5' portion of the Soat2 gene, which was differentially methylated (P < 0.05) in Cbs +/- mice fed the HH diet than in Cbs +/+ mice fed the control diet and was accompanied by higher (P < 0.05) B1 repeat element methylation, an indicator of global de novo methylation. These findings show altered methylation and expression of Soat2/ACAT2 in liver from mice with HHcy and suggest a role for changes in liver CE in the pathology of HHcy.
Collapse
Affiliation(s)
- Angela M Devlin
- Department of Pathology and Laboratory Medicine, Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver V5Z 4H4, Canada.
| | | | | | | | | |
Collapse
|
36
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
37
|
Wang L, Li CM, Rudolf M, Belyaeva OV, Chung BH, Messinger JD, Kedishvili NY, Curcio CA. Lipoprotein particles of intraocular origin in human Bruch membrane: an unusual lipid profile. Invest Ophthalmol Vis Sci 2009; 50:870-7. [PMID: 18806290 PMCID: PMC2692837 DOI: 10.1167/iovs.08-2376] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Throughout adulthood, Bruch membrane (BrM) accumulates esterified cholesterol (EC) associated with abundant 60- to 80-nm-diameter lipoprotein-like particles (LLP), putative apolipoprotein B (apoB) lipoproteins secreted by the retinal pigment epithelium (RPE). In the present study, neutral lipid, phospholipids, and retinoid components of human BrM-LLP were assayed. METHODS Particles isolated from paired choroids of human donors were subjected to comprehensive lipid profiling (preparative liquid chromatography [LC] gas chromatography [GC]), thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), Western blot analysis, and negative stain electron microscopy. Results were compared to plasma lipoproteins isolated from normolipemic volunteers and to conditioned medium from RPE-J cells supplemented with palmitate to induce particle synthesis and secretion. RESULTS EC was the largest component (32.4+/-7.9 mol%) of BrM-LLP lipids. EC was 11.3-fold more abundant than triglyceride (TG), unlike large apoB lipoproteins in plasma. Of the fatty acids (FA) esterified to cholesterol, linoleate (18:2n6) was the most abundant (41.7+/-4.7 mol%). Retinyl ester (RE) was detectable at picomolar levels in BrM-LLP. Notably scarce in any BrM-LLP lipid class was the photoreceptor-abundant FA docosahexaenoate (DHA, 22:6n3). RPE-J cells synthesized apoB and numerous EC-rich spherical particles. CONCLUSIONS BrM-LLP composition resembles plasma LDL more than it does photoreceptors. An EC-rich core is possible for newly synthesized lipoproteins as well as those processed in plasma. Abundant EC could contribute to a transport barrier in aging and lesion formation in age-related maculopathy (ARM). Analysis of BrM-LLP composition has revealed new aspects of retinal cholesterol and retinoid homeostasis.
Collapse
Affiliation(s)
- Lan Wang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chuan-Ming Li
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin Rudolf
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Olga V. Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Byung Hong Chung
- Department of Nutritional Biochemistry and Genomics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D. Messinger
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalia Y. Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|