1
|
Medoro A, Graziano F, Cardinale G, Voccola S, Zotti T, Intrieri M, Scapagnini G, Davinelli S. The influence of FADS1 and ELOVL2 genetic polymorphisms on polyunsaturated fatty acid composition in response to fish oil supplementation. Lipids Health Dis 2025; 24:102. [PMID: 40114193 PMCID: PMC11924656 DOI: 10.1186/s12944-025-02513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Unhealthy dietary habits have been recognized as key contributors to the increasing incidence of non-communicable diseases. Among the healthy nutrients studied, omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have received considerable attention for their benefits in cardiovascular health and inflammation management. Their synthesis is regulated by enzymes encoded by FADS1 and ELOVL2 genes. Single nucleotide polymorphisms (SNPs) within these genes can modify the efficiency of fatty acid conversion, thereby influencing the Omega-3 Index, which reflects omega-3 status, particularly EPA and DHA. This study aimed to assess the impact of FADS1 (rs174537) and ELOVL2 (rs953413) polymorphisms on the effects on fatty acids profiles of fish oil supplementation in healthy individuals. METHODS Eighty-six healthy adults aged 20-70 participated in a quasi-experimental intervention involving a 4-week fish oil supplementation rich in EPA and DHA. Dried-blood spots (DBS) were collected before and after the intervention to evaluate lipid profiles. Genotyping for FADS1 and ELOVL2 SNPs was performed using high-resolution melting analysis. RESULTS Post-supplementation, the percentage of EPA and DHA increased significantly (p < 0.001), leading to an improved Omega-3 Index. Baseline omega-3 percentages did not differ significantly between FADS1 and ELOVL2 genotypes. However, individuals with the ELOVL2 minor allele (GA + AA) genotype benefited more from the fish oil supplementation with increased EPA and DBS Omega-3 Index, indicating a more favorable metabolic response. CONCLUSIONS Genetic variability may influence the metabolic response to fish oil supplementation. These findings underscore the importance of personalized nutrition strategies to optimize health outcomes and prevent non-communicable diseases.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c, Campobasso, 86100, Italy
| | - Francesca Graziano
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | | | - Tiziana Zotti
- Genus Biotech, University of Sannio, Benevento, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c, Campobasso, 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c, Campobasso, 86100, Italy.
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c, Campobasso, 86100, Italy
| |
Collapse
|
2
|
Khankari NK, Su T, Cai Q, Liu L, Jasper EA, Hellwege JN, Murff HJ, Shrubsole MJ, Long J, Edwards TL, Zheng W. Genetically Predicted Gene Expression Effects on Changes in Red Blood Cell and Plasma Polyunsaturated Fatty Acids. Genet Epidemiol 2025; 49:e22613. [PMID: 39812514 PMCID: PMC11734643 DOI: 10.1002/gepi.22613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers. Using colocalization, we identified shared variants associated with both increased gene expression and changes in RBC PUFA levels in relevant PUFA metabolism tissues (i.e., adipose, liver, muscle, and whole blood). We observed differences in RBC versus plasma PUFA levels for genetically predicted increase in FADS1 and FADS2 gene expression, primarily for omega-6 PUFAs linoleic acid (LA) and arachidonic acid (AA). The colocalization analysis identified rs102275 to be significantly associated with a 0.69% increase in total RBC membrane-bound LA levels (p = 5.4 × 10-12). Future PUFA genetic studies examining long-term PUFA biomarkers are needed to confirm our results.
Collapse
Affiliation(s)
- Nikhil K. Khankari
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleUSA
| | - Timothy Su
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Qiuyin Cai
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Lili Liu
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Elizabeth A. Jasper
- Division of Quantitative Sciences, Department of Obstetrics and GynecologyVanderbilt University Medical CenterNashvilleUSA
| | - Jacklyn N. Hellwege
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleUSA
| | - Harvey J. Murff
- Division of Geriatric Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Martha J. Shrubsole
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Jirong Long
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Todd L. Edwards
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Wei Zheng
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| |
Collapse
|
3
|
Khankari NK, Su T, Cai Q, Liu L, Jasper EA, Hellwege JN, Murff HJ, Shrubsole MJ, Long J, Edwards TL, Zheng W. Genetically predicted gene expression effects on changes in red blood cell and plasma polyunsaturated fatty acids. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.17.24319171. [PMID: 39763515 PMCID: PMC11702734 DOI: 10.1101/2024.12.17.24319171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short-to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase ( FADS1 ), delta-6 desaturase ( FADS2 ), and elongase ( ELOVL2 ) on changes in RBC and plasma biomarkers. Using colocalization, we identified shared variants associated with both increased gene expression and changes in RBC PUFA levels in relevant PUFA metabolism tissues (i.e., adipose, liver, muscle, and whole blood). We observed differences in RBC versus plasma PUFA levels for genetically predicted increase in FADS1 and FADS2 gene expression, primarily for omega-6 PUFAs linoleic acid (LA) and arachidonic acid (AA). The colocalization analysis identified rs102275 to be significantly associated with a 0.69% increase in total RBC membrane-bound LA levels ( P =5.4×10 -12 ). Future PUFA genetic studies examining long-term PUFA biomarkers are needed to confirm our results.
Collapse
|
4
|
Capece U, Gugliandolo S, Morciano C, Avolio A, Splendore A, Di Giuseppe G, Ciccarelli G, Soldovieri L, Brunetti M, Mezza T, Pontecorvi A, Giaccari A, Cinti F. Erythrocyte Membrane Fluidity and Omega-3 Fatty Acid Intake: Current Outlook and Perspectives for a Novel, Nutritionally Modifiable Cardiovascular Risk Factor. Nutrients 2024; 16:4318. [PMID: 39770939 PMCID: PMC11676811 DOI: 10.3390/nu16244318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Omega-3 fatty acids reduce triglycerides and have several positive effects on different organs and systems. They are also found in the plasma membrane in variable amounts in relation to genetics and diet. However, it is still unclear whether omega-3 supplementation can reduce the occurrence of major cardiovascular events (MACEs). Two trials, REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial), with highly purified EPA, and STRENGTH (Effect of High-Dose Omega-3 Fatty Acids vs. Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk), with a combination of EPA and DHA, have produced different outcomes, triggering a scientific debate on possible explanations for the discrepancies. Furthermore, doubts have arisen as to the anti-inflammatory and anti-aggregating activity of these compounds. Recent studies have, however, highlighted interesting effects of EPA and DHA on erythrocyte membrane fluidity (EMF). EMF is governed by a complex and dynamic biochemical framework, with fatty acids playing a central role. Furthermore, it can be easily measured in erythrocytes from a blood sample using fluorescent probes. Recent research has also shown that EMF could act as a possible cardiovascular risk factor biomarker. This review aims to synthetize the latest evidence on erythrocyte membrane fluidity, exploring its potential role as a biomarker of residual cardiovascular risk and discussing its clinical relevance. Further, we aim to dissect the possible biological mechanisms that link omega-3 modifiable membrane fluidity to cardiovascular health.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Shawn Gugliandolo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cassandra Morciano
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Adriana Avolio
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Amelia Splendore
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Mezza
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Vaittinen M, Ilha M, Sehgal R, Lankinen MA, Ågren J, Käkelä P, Virtanen KA, Laakso M, Schwab U, Pihlajamäki J. Modification in mitochondrial function is associated with the FADS1 variant and its interaction with alpha-linolenic acid-enriched diet-An exploratory study. J Lipid Res 2024; 65:100638. [PMID: 39218219 PMCID: PMC11459653 DOI: 10.1016/j.jlr.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Fatty acid desaturase (FADS1) variant-rs174550 strongly regulates polyunsaturated fatty acid (PUFA) biosynthesis. Additionally, the FADS1 is related to mitochondrial function. Thus, we investigated whether changes in mitochondrial function are associated with the genetic variation in FADS1 (rs174550) in human adipocytes isolated from individuals consuming diets enriched with either dietary alpha-linolenic (ALA) or linoleic acid (LA). Two cohorts of men homozygous for the genotype of FADS1 (rs174550) were studied: FADSDIET2 dietary intervention study with ALA- and LA-enriched diets and Kuopio Obesity Surgery study (KOBS), respectively. We could demonstrate that differentiated human adipose-derived stromal cells from subjects with the TT genotype had higher mitochondrial metabolism compared with subjects with the CC genotype of FADS1-rs174550 in the FADSDIET2. Responses to PUFA-enriched diets differed between the genotypes of FADS1-rs174550, showing that ALA, but not LA, -enriched diet stimulated mitochondrial metabolism more in subjects with the CC genotype when compared with subjects with the TT genotype. ALA, but not LA, proportion in plasma phospholipid fraction correlated positively with adipose tissue mitochondrial-DNA amount in subjects with the CC genotype of FADS1-rs174550 in the KOBS. These findings demonstrate that the FADS1-rs174550 is associated with modification in mitochondrial function in human adipocytes. Additionally, subjects with the CC genotype, when compared with the TT genotype, benefit more from the ALA-enriched diet, leading to enhanced energy metabolism in human adipocytes. Altogether, the FADS1-rs174550 could be a genetic marker to identify subjects who are most suitable to receive dietary PUFA supplementation, establishing also a personalized therapeutic strategy to improve mitochondrial function in metabolic diseases.
Collapse
Affiliation(s)
- Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Mariana Ilha
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA
| | - Ratika Sehgal
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Potsdam, Germany
| | - Maria A Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jyrki Ågren
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Pirjo Käkelä
- Department of Surgery, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kirsi A Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology, and Clinical Nutrition Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology, and Clinical Nutrition Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
6
|
Loukil I, Mutch DM, Plourde M. Genetic association between FADS and ELOVL polymorphisms and the circulating levels of EPA/DHA in humans: a scoping review. GENES & NUTRITION 2024; 19:11. [PMID: 38844860 PMCID: PMC11157910 DOI: 10.1186/s12263-024-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two omega-3 fatty acids that can be synthesized out of their precursor alpha-linolenic acid (ALA). FADS and ELOVL genes encode the desaturase and elongase enzymes required for EPA and DHA synthesis from ALA; however, single nucleotide polymorphisms (SNPs) in FADS and ELOVL genes could modify the levels of EPA and DHA synthesized from ALA although there is no consensus in this area. This review aims to investigate EPA and DHA circulating levels in human blood and their association with FADS or ELOVL. METHODS PubMed, Cochrane, and Scopus databases were used to identify research articles. They were subsequently reviewed by two independent investigators. RESULTS Initially, 353 papers were identified. After removing duplicates and articles not meeting inclusion criteria, 98 full text papers were screened. Finally, this review included 40 studies investigating FADS and/or ELOVL polymorphisms. A total of 47 different SNPs in FADS genes were reported. FADS1 rs174537, rs174547, rs174556 and rs174561 were the most studied SNPs, with minor allele carriers having lower levels of EPA and DHA. SNPs in the FADS genes were in high linkage disequilibrium. SNPs in FADS were correlated with levels of EPA and DHA. No conclusion could be drawn with the ELOVL polymorphisms since the number of studies was too low. CONCLUSION Specific SNPs in FADS gene, such as rs174537, have strong associations with circulating levels of EPA and DHA. Continued investigation regarding the impact of genetic variants related to EPA and DHA synthesis is warranted.
Collapse
Affiliation(s)
- Insaf Loukil
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, Guelph, ON, N1G 2W1, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada.
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
7
|
Ghooray DT, Xu M, Shi H, McClain CJ, Song M. Hepatocyte-Specific Fads1 Overexpression Attenuates Western Diet-Induced Metabolic Phenotypes in a Rat Model. Int J Mol Sci 2024; 25:4836. [PMID: 38732052 PMCID: PMC11084797 DOI: 10.3390/ijms25094836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.
Collapse
Affiliation(s)
- Dushan T. Ghooray
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
| | - Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Inoue N, Morikawa S, Murohara T. Role of serum n-6 polyunsaturated fatty acids in the development of acute coronary syndromes. NAGOYA JOURNAL OF MEDICAL SCIENCE 2023; 85:592-601. [PMID: 37829479 PMCID: PMC10565587 DOI: 10.18999/nagjms.85.3.592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/01/2022] [Indexed: 10/14/2023]
Abstract
n-3 polyunsaturated fatty acids (PUFAs) have an inhibitory effect on the development of coronary artery disease (CAD). However, whether n-6 PUFAs, dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) play a role in the development of CAD remains unclear. This study investigated the association between PUFAs and the risk of developing acute coronary syndrome (ACS) using the lipid and PUFAs data of patients who received percutaneous coronary intervention (PCI) for either non-emergent conditions (staged group) or ACS (ACS group). We retrospectively evaluated 433 patients who underwent PCI between 2014 and 2021. The patients were divided into the ACS group (n = 18) and the staged group (n = 132). The lipid and PUFA values of each patient between the two groups were compared. Moreover, to investigate the correlation between n-6 PUFA levels and ACS, the effects of confounding factors such as the use of strong statins and low-density lipoprotein cholesterol (LDL-C) levels were adjusted. The ACS group had higher n-6 PUFAs levels than the staged group (DGLA: 36.8 µg/mL vs 29.6 µg/mL; AA: 203.3 µg/mL vs 145.8 µg/mL). Furthermore, the analysis of covariance adjusted for LDL-C levels showed a significant difference between the two groups in terms of DGLA and AA levels. The n-3 PUFA levels did not significantly differ between the staged and ACS groups. Moreover, the ACS group had higher DGLA and AA levels and lower n-3 PUFAs/AA ratios than the staged group. Therefore, excess n-6 PUFAs may be a risk factor for ACS.
Collapse
Affiliation(s)
- Naoya Inoue
- Department of Cardiology, Chutoen General Medical Center, Kakegawa, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Morikawa
- Department of Cardiology, Chutoen General Medical Center, Kakegawa, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Bäck M. Icosapent ethyl in cardiovascular prevention: Resolution of inflammation through the eicosapentaenoic acid - resolvin E1 - ChemR23 axis. Pharmacol Ther 2023:108439. [PMID: 37201735 DOI: 10.1016/j.pharmthera.2023.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular outcome trials on omega-3 fatty acids have generated contradictory results but indicate a dose-dependent beneficial effect of eicosapentaenoic acid (EPA). Beneficial cardiovascular effects of EPA may in addition to triglyceride lowering be mediated through alternative mechanisms of action. In this review, the link between EPA and a resolution of atherosclerotic inflammation is addressed. EPA is a substrate for the enzymatic metabolism into the lipid mediator resolvin E1 (RvE1), which activates the receptor ChemR23 to transduce an active resolution of inflammation. This has been shown to dampen the immune response and provide atheroprotective responses in different models. The intermediate EPA metabolite 18-HEPE emerges as a biomarker of EPA metabolism towards proresolving mediators in observational studies. Genetic variations within the EPA-RvE1-ChemR23 axis affecting the response to EPA may open up for precision medicine to identify responders and non-responders to EPA and fish oil supplementation. In conclusion, activation of the EPA-RvE1-ChemR23 axis towards a resolution of inflammation may contribute to beneficial effects in cardiovascular prevention.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden; Translational Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Université de Lorraine, Inserm, DCAC, Nancy, France; CHRU Nancy, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
10
|
Li P, Chen Y, Song J, Yan L, Tang T, Wang R, Fan X, Zhao Y, Qi K. Maternal DHA-rich n-3 PUFAs supplementation interacts with FADS genotypes to influence the profiles of PUFAs in the colostrum among Chinese Han population: a birth cohort study. Nutr Metab (Lond) 2022; 19:48. [PMID: 35871074 PMCID: PMC9308251 DOI: 10.1186/s12986-022-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background The single nucleotide polymorphisms (SNPs) in the fatty acid desaturases and elongases might associate with the endogenous synthesis of polyunsaturated fatty acids (PUFAs). However, the related epidemiological evidence is still conflicting. So we aimed to clearly evaluate the interactions between maternal DHA-rich n-3 PUFAs supplementation and the known 26 SNPs on the profiles of PUFAs in the colostrum using a Chinese birth cohort. Methods Totally, 1050 healthy mother-infant pairs were enrolled in this study at gestational 6–8 weeks when they established their pregnancy files at Fuxing Hospital affiliated to Capital Medical University in Beijing from January to December 2018. Meanwhile, their venous blood samples were obtained for DNA extraction to detect the genotypes of SNPs in the Fads1, Fads2, Fads3, Elovl2 and Elovl5 using the Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry. Then the colostrum samples were collected to determine the profiles of PUFAs by gas chromatography. Results Maternal DHA-rich n-3 PUFAs supplementation from the early and middle pregnancy could reduce the infant BMI at birth, and impact the profiles of PUFAs in the colostrum, as higher n-3 PUFAs (EPA, DHA, DHA/ALA and DHA/EPA), lower n-6 PUFAs (AA and AA/LA) and ∑-6/n-3ΣPUFAs. Moreover, there were significant correlations between multiple SNPs and the profiles of n-6 PUFAs (rs76996928 for LA, rs174550, rs174553 and rs174609 for AA, rs174550 and rs76996928 for AA/LA) and n-3 PUFAs in the colostrum (rs174448, rs174537, rs174550, rs174553, rs174598, rs3168072, rs174455 and rs174464 for ALA, rs174550, rs174553 and rs174598 for EPA, rs174455 and rs174464 for DHA, rs174448 and rs3168072 for DHA/EPA) using the multiple linear regressions by adjusting the maternal age, gestational week, mode of delivery, infant sex and BMI at birth, and all these above significant SNPs had the cumulative effects on the profiles of PUFAs. Furthermore, the pairwise comparisons also showed the meaningful interactions between maternal DHA-rich n-3 PUFAs supplementation and related genotypes of SNPs (rs76996928 for LA, rs174598 for EPA, rs174448 for DHA and DHA/EPA) on the contents of PUFAs in the colostrum. Conclusions Results from this birth cohort study proved that the pregnant women with the following SNPs such as Fads3 rs174455 T, Fads3 rs174464 A and Fads1 rs174448 G alleles should pay more attention on their exogenous DHA supplementation from the early and middle pregnancy for the blocked endogenous synthesis. Trial registration: This study was approved by the Ethics Committee of Beijing Pediatric Research Institution, Beijing Children’s Hospital affiliated to Capital Medical University (2016–08), which was also registered at the website of http://www.chictr.org.cn/showproj.aspx?proj=4673 (No: ChiCTR-OCH-14004900). Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00683-3.
Collapse
|
11
|
Mantha OL, Hankard R, Tea I, Schiphorst AM, Dumas JF, Berger V, Goupille C, Bougnoux P, De Luca A. N-3 Fatty Acid Supplementation Impacts Protein Metabolism Faster Than it Lowers Proinflammatory Cytokines in Advanced Breast Cancer Patients: Natural 15N/14N Variations during a Clinical Trial. Metabolites 2022; 12:metabo12100899. [PMID: 36295801 PMCID: PMC9609900 DOI: 10.3390/metabo12100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
While clinical evidence remains limited, an extensive amount of research suggests a beneficial role of n-3 polyunsaturated fatty acid supplementation in cancer treatment. One potential benefit is an improvement of protein homeostasis, but how protein metabolism depends on proinflammatory cytokines in this context remains unclear. Here, using the natural abundance of the stable isotopes of nitrogen as a marker of changes in protein metabolism during a randomized, double-blind, controlled clinical trial, we show that protein homeostasis is affected way faster than proinflammatory cytokines in metastatic breast cancer patients supplemented with n-3 polyunsaturated fatty acids. We provide some evidence that this response is unrelated to major changes in whole-body substrate oxidation. In addition, we demonstrate that more fatty acids were impacted by metabolic regulations than by differences in their intake levels during the supplementation. This study documents that the percentage of patients that complied with the supplementation decreased with time, making compliance assessment crucial for the kinetic analysis of the metabolic and inflammatory responses. Our results highlight the time-dependent nature of metabolic and inflammatory changes during long-chain n-3 fatty acid supplementation.
Collapse
Affiliation(s)
- Olivier L. Mantha
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
- Correspondence:
| | - Régis Hankard
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| | - Illa Tea
- Nantes University, CNRS, CEISAM, UMR6230, F-44000 Nantes, France
| | | | - Jean-François Dumas
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| | - Virginie Berger
- Department of Patient Education, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Caroline Goupille
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
- Department of Gynecology, Centre Hospitalier Régional Universitaire de Tours, Hôpital Bretonneau, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Philippe Bougnoux
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| | - Arnaud De Luca
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| |
Collapse
|
12
|
Aliev F, Barr PB, Davies AG, Dick DM, Bettinger J. Genes regulating levels of ω-3 long-chain polyunsaturated fatty acids are associated with alcohol use disorder and consumption, and broader externalizing behavior in humans. Alcohol Clin Exp Res 2022; 46:1657-1664. [PMID: 35904282 PMCID: PMC9509483 DOI: 10.1111/acer.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Individual variation in the physiological response to alcohol is predictive of an individual's likelihood to develop alcohol use disorder (AUD). Evidence from diverse model organisms indicates that the levels of long-chain polyunsaturated omega-3 fatty acids (ω-3 LC-PUFAs) can modulate the behavioral response to ethanol and therefore may impact the propensity to develop AUD. While most ω-3 LC-PUFAs come from diet, humans can produce these fatty acids from shorter chain precursors through a series of enzymatic steps. Natural variation in the genes encoding these enzymes has been shown to affect ω-3 LC-PUFA levels. We hypothesized that variation in these genes could contribute to the susceptibility to develop AUD. METHODS We identified nine genes (FADS1, FADS2, FADS3, ELOVL2, GCKR, ELOVL1, ACOX1, APOE, and PPARA) that are required to generate ω-3 LC-PUFAs and/or have been shown or predicted to affect ω-3 LC-PUFA levels. Using both set-based and gene-based analyses we examined their association with AUD and two AUD-related phenotypes, alcohol consumption, and an externalizing phenotype. RESULTS We found that the set of nine genes is associated with all three phenotypes. When examined individually, GCKR, FADS2, and ACOX1 showed significant association signals with alcohol consumption. GCKR was significantly associated with AUD. ELOVL1 and APOE were associated with externalizing. CONCLUSIONS Taken together with observations that dietary ω-3 LC-PUFAs can affect ethanol-related phenotypes, this work suggests that these fatty acids provide a link between the environmental and genetic influences on the risk of developing AUD.
Collapse
Affiliation(s)
- Fazil Aliev
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Peter B. Barr
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Psychiatry & Behavioral SciencesSUNY Downstate Health Sciences UniversityBrooklynNew YorkUSA
| | - Andrew G. Davies
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| | - Danielle M. Dick
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| | - Jill C. Bettinger
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| |
Collapse
|
13
|
Poultry Meat and Eggs as an Alternative Source of n-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022; 14:nu14091969. [PMID: 35565936 PMCID: PMC9099610 DOI: 10.3390/nu14091969] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
The beneficial effects of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on human health are widely known. Humans are rather inefficient in synthesizing n-3 LC-PUFA; thus, these compounds should be supplemented in the diet. However, most Western human diets have unbalanced n-6/n-3 ratios resulting from eating habits and the fact that fish sources (rich in n-3 LC-PUFA) are not sufficient (worldwide deficit ~347,956 t/y) to meet the world requirements. In this context, it is necessary to find new and sustainable sources of n-3 LC-PUFA. Poultry products can provide humans n-3 LC-PUFA due to physiological characteristics and the wide consumption of meat and eggs. The present work aims to provide a general overview of the main strategies that should be adopted during rearing and postproduction to enrich and preserve n-3 LC-PUFA in poultry products. The strategies include dietary supplementation of α-Linolenic acid (ALA) or n-3 LC-PUFA, or enhancing n-3 LC-PUFA by improving the LA (Linoleic acid)/ALA ratio and antioxidant concentrations. Moreover, factors such as genotype, rearing system, transport, and cooking processes can impact the n-3 LC-PUFA in poultry products. The use of a multifactorial view in the entire production chain allows the relevant enrichment and preservation of n-3 LC-PUFA in poultry products.
Collapse
|
14
|
Bäck M, Xhaard C, Rouget R, Thuillier Q, Plunde O, Larsson SC, Girerd N, Ferreira JP, Boivin JM, Bozec E, Mercklé L, Zannad F, Hoge A, Guillaume M, Dandine-Roulland C, Floch EL, Bacq-Daian D, Deleuze JF, Van den Berghe L, Nazare JA, Laville M, Branlant C, Behm-Ansmant I, Wagner S, Rossignol P. Fatty acid desaturase genetic variations and dietary omega-3 fatty acid intake associate with arterial stiffness. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac016. [PMID: 35919123 PMCID: PMC9242081 DOI: 10.1093/ehjopen/oeac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/11/2022] [Indexed: 11/13/2022]
Abstract
Aims Long-chain polyunsaturated fatty acids (PUFAs) generate diverse bioactive lipid mediators, which tightly regulate vascular inflammation. The effects of omega-3 PUFA supplementation in cardiovascular prevention however remain controversial. In addition to direct dietary intake, fatty acid desaturases (FADS) determine PUFA levels. Increased arterial stiffness represents an independent predictor of mortality and cardiovascular events. The aim of the present study was to determine the association of PUFA intake, FADS1 genotype, and FADS expression with arterial stiffness. Methods and results A cross-sectional population-based cohort study of 1464 participants without overt cardiovascular disease was conducted. Dietary intake was assessed using a food frequency questionnaire. Arterial stiffness was assessed by carotid-femoral pulse wave velocity (cfPWV), and the FADS1 locus variant was determined. Blood cell transcriptomics was performed in a subset of 410 individuals. Pulse wave velocity was significantly associated with the FADS1 locus variant. Differential associations between PWV and omega-3 PUFA intake were observed depending on the FADS1 genotype. High omega-3 PUFA intake attenuated the FADS1 genotype-dependent associations. Carriers of the minor FADS1 locus variant exhibited increased expression of FADS2, which is associated with PWV. Conclusion Taken together, these findings point to FADS1 genotype-dependent associations of omega-3 PUFA intake on subclinical cardiovascular disease. These findings may have implications for identifying responders and non-responders to omega-3 PUFA supplementation and open up for personalized dietary counselling in cardiovascular prevention.
Collapse
Affiliation(s)
- Magnus Bäck
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
- Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Constance Xhaard
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Raphael Rouget
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F54000 Nancy, France
| | | | - Oscar Plunde
- Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Nicolas Girerd
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - João Pedro Ferreira
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Jean-Marc Boivin
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Erwan Bozec
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Ludovic Mercklé
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Faiez Zannad
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Axelle Hoge
- Département des Sciences de la Santé publique, Université de Liège, Liège, Belgium
| | - Michèle Guillaume
- Département des Sciences de la Santé publique, Université de Liège, Liège, Belgium
| | | | - Edith Le Floch
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Delphine Bacq-Daian
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Laurie Van den Berghe
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre Bénite, Lyon, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre Bénite, Lyon, France
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre Bénite, Lyon, France
| | | | | | - Sandra Wagner
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Patrick Rossignol
- University of Lorraine, INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| |
Collapse
|
15
|
Kirk LM, Waits CMK, Bashore AC, Dosso B, Meyers AK, Renaldo AC, DePalma TJ, Simms KN, Hauser N, Chuang Key CC, McCall CE, Parks JS, Sergeant S, Langefeld CD, Skardal A, Rahbar E. Exploiting three-dimensional human hepatic constructs to investigate the impact of rs174537 on fatty acid metabolism. PLoS One 2022; 17:e0262173. [PMID: 35051193 PMCID: PMC8775235 DOI: 10.1371/journal.pone.0262173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
The Modern Western Diet has been associated with the rise in metabolic and inflammatory diseases, including obesity, diabetes, and cardiovascular disease. This has been attributed, in part, to the increase in dietary omega-6 polyunsaturated fatty acid (PUFA) consumption, specifically linoleic acid (LA), arachidonic acid (ARA), and their subsequent metabolism to pro-inflammatory metabolites which may be driving human disease. Conversion of dietary LA to ARA is regulated by genetic variants near and within the fatty acid desaturase (FADS) haplotype block, most notably single nucleotide polymorphism rs174537 is strongly associated with FADS1 activity and expression. This variant and others within high linkage disequilibrium may potentially explain the diversity in both diet and inflammatory mediators that drive chronic inflammatory disease in human populations. Mechanistic exploration into this phenomenon using human hepatocytes is limited by current two-dimensional culture models that poorly replicate in vivo functionality. Therefore, we aimed to develop and characterize a three-dimensional hepatic construct for the study of human PUFA metabolism. Primary human hepatocytes cultured in 3D hydrogels were characterized for their capacity to represent basic lipid processing functions, including lipid esterification, de novo lipogenesis, and cholesterol efflux. They were then exposed to control and LA-enriched media and reproducibly displayed allele-specific metabolic activity of FADS1, based on genotype at rs174537. Hepatocytes derived from individuals homozygous with the minor allele at rs174537 (i.e., TT) displayed the slowest metabolic conversion of LA to ARA and significantly reduced FADS1 and FADS2 expression. These results support the feasibility of using 3D human hepatic cultures for the study of human PUFA and lipid metabolism and relevant gene-diet interactions, thereby enabling future nutrition targets in humans.
Collapse
Affiliation(s)
- L. Madison Kirk
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Charlotte Mae K. Waits
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Alexander C. Bashore
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Beverly Dosso
- Department of Integrative Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Allison K. Meyers
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Antonio C. Renaldo
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Thomas J. DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Kelli N. Simms
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Nathaniel Hauser
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Chia-Chi Chuang Key
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - John S. Parks
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
16
|
Tian H, Yu H, Lin Y, Li Y, Xu W, Chen Y, Liu G, Xie L. Association between FADS Gene Expression and Polyunsaturated Fatty Acids in Breast Milk. Nutrients 2022; 14:nu14030457. [PMID: 35276817 PMCID: PMC8839397 DOI: 10.3390/nu14030457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Polyunsaturated fatty acid (PUFA) in breast milk provides physiological benefits for offspring and is closely related to endogenous biosynthesis in lactating women. Few studies have addressed the association between fatty acid desaturase (FADS) gene expression patterns and fatty acids in breast milk. This research aimed to explore the differences in PUFA levels among breast milk groups with different levels of FADS gene expression and provide a scientific basis for precision nutrition strategies. A total of 50 healthy women 42–45 days postpartum were included in this study. A basic information questionnaire and breast milk samples were collected. Eight types of PUFA were detected, and RNA was extracted from breast milk. The transcription level of the FADS gene was detected using real-time quantitative PCR. Significant differences in the content of gamma-linolenic acid and eicosatrienoic acid (C20:3n6) were found in breast milk among FADS1 gene transcription groups (p = 0.009, p = 0.042, respectively). No significant differences in PUFA were found among the FADS2 and FADS3 gene expression groups. The results demonstrated that n-6 PUFA was associated with the mRNA expression levels of the FADS1 gene. They are of great significance in developing new methods and diets to optimize infant feeding using breast milk.
Collapse
Affiliation(s)
- Huimin Tian
- Department of Pediatric Nursing, School of Nursing, Jilin University, Changchun 130021, China;
| | - Haitao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (H.Y.); (Y.L.); (W.X.); (Y.C.); (G.L.)
| | - Yiqi Lin
- Jilin Women and Children Health Hospital, Changchun 130061, China;
| | - Yueting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (H.Y.); (Y.L.); (W.X.); (Y.C.); (G.L.)
| | - Wenhui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (H.Y.); (Y.L.); (W.X.); (Y.C.); (G.L.)
| | - Yiru Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (H.Y.); (Y.L.); (W.X.); (Y.C.); (G.L.)
| | - Guoliang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (H.Y.); (Y.L.); (W.X.); (Y.C.); (G.L.)
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (H.Y.); (Y.L.); (W.X.); (Y.C.); (G.L.)
- Correspondence: ; Tel.: +86-431-8561-9455
| |
Collapse
|
17
|
Vaittinen M, Lankinen MA, Käkelä P, Ågren J, Wheelock CE, Laakso M, Schwab U, Pihlajamäki J. The FADS1 genotypes modify the effect of linoleic acid-enriched diet on adipose tissue inflammation via pro-inflammatory eicosanoid metabolism. Eur J Nutr 2022; 61:3707-3718. [PMID: 35701670 PMCID: PMC9464166 DOI: 10.1007/s00394-022-02922-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/24/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE Fatty acid desaturase (FADS) variants associate with fatty acid (FA) and adipose tissue (AT) metabolism and inflammation. Thus, the role of FADS1 variants in the regulation of dietary linoleic acid (LA)-induced effects on AT inflammation was investigated. METHODS Subjects homozygotes for the TT and CC genotypes of the FADS1-rs174550 (TT, n = 25 and CC, n = 28) or -rs174547 (TT, n = 42 and CC, n = 28), were either recruited from the METabolic Syndrome In Men cohort to participate in an intervention with LA-enriched diet (FADSDIET) or from the Kuopio Obesity Surgery (KOBS) study. GC and LC-MS for plasma FA proportions and eicosanoid concentrations and AT gene expression for AT inflammatory score (AT-InSc) was determined. RESULTS We observed a diet-genotype interaction between LA-enriched diet and AT-InSc in the FADSDIET. In the KOBS study, interleukin (IL)1 beta mRNA expression in AT was increased in subjects with the TT genotype and highest LA proportion. In the FADSDIET, n-6/LA proportions correlated positively with AT-InSc in those with the TT genotype but not with the CC genotype after LA-enriched diet. Specifically, LA- and AA-derived pro-inflammatory eicosanoids related to CYP450/sEH-pathways correlated positively with AT-InSc in those with the TT genotype, whereas in those with the CC genotype, the negative correlations between pro-inflammatory eicosanoids and AT-InSc related to COX/LOX-pathways. CONCLUSIONS LA-enriched diet increases inflammatory AT gene expression in subjects with the TT genotype, while CC genotype could play a protective role against LA-induced AT inflammation. Overall, the FADS1 variant could modify the dietary LA-induced effects on AT inflammation through the differential biosynthesis of AA-derived eicosanoids.
Collapse
Affiliation(s)
- Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.
| | - Maria A. Lankinen
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland
| | - Pirjo Käkelä
- grid.9668.10000 0001 0726 2490Department of Surgery, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jyrki Ågren
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Craig E. Wheelock
- grid.4714.60000 0004 1937 0626Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Markku Laakso
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Ursula Schwab
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
18
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA. Associations Of Delta Fatty Acid Desaturase Gene Polymorphisms With Lipid Metabolism Disorders. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Overweight, obesity, type 2 diabetes mellitus, metabolic syndrome, cardiovascular diseases, and non-alcoholic fatty liver disease are common chronic ailments associated with lipid metabolism disorders. One of the mechanisms of these disorders is related to the deficiency and/or change in the balance of essential fatty acids (FAs). At the same time, the provision of ω3 and ω6 polyunsaturated fatty acids (PUFAs) depends, besides sufficient dietary intake, on efficiency of their endogenous biosynthesis by desaturation and elongation processes regulated by FA elongases and FA desaturases. Desaturases are encoded by PUFA desaturase genes (FADSs): FADS1 and FADS2. Alteration of FA desaturase activity and single nucleotide polymorphisms (SNPs) in the FADS1 and FADS2 gene cluster are associated with lipid metabolism dysfunction and may affect the pathogenesis of lipid-related diseases. People of different ages, from different ethnic backgrounds and countries may exhibit varying degrees of response to dietary supplements of ω3 and ω6 PUFAs. The study of the relationship between lipid metabolism disorders and genetic factors controlling FA metabolism is an important research area since the health effects of alimentary ω3 and ω6 PUFAs can depend on genetic variants of the FADS genes. This review summarizes the literature data on the association of FADS gene polymorphisms with lipid metabolism disorders and their role in the development of chronic non-communicable pathologies associated with changes in lipid metabolism.
Collapse
Affiliation(s)
- Oksana Yu. Kytikova
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | | | - Yulia K. Denisenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Marina V. Antonyuk
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
19
|
Castor K, Dawlaty J, Arakaki X, Gross N, Woldeamanuel YW, Harrington MG, Cowan RP, Fonteh AN. Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migraine. Front Mol Neurosci 2021; 14:691733. [PMID: 34531722 PMCID: PMC8438335 DOI: 10.3389/fnmol.2021.691733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. Methods We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. Results Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. Conclusions Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.
Collapse
Affiliation(s)
- Katherine Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Jessica Dawlaty
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Noah Gross
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Robert P Cowan
- Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
20
|
Murff HJ, Shrubsole MJ, Cai Q, Su T, Dooley JH, Cai SS, Zheng W, Dai Q. N-3 Long Chain Fatty Acids Supplementation, Fatty Acids Desaturase Activity, and Colorectal Cancer Risk: A Randomized Controlled Trial. Nutr Cancer 2021; 74:1388-1398. [PMID: 34291724 PMCID: PMC8782932 DOI: 10.1080/01635581.2021.1955286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION n-3 long-chain polyunsaturated fatty acids (LCPUFA) have anti-inflammatory effects and may reduce colorectal cancer risk. The purpose of this study was to evaluate the effects of n-3 LCPUFA supplementation on markers of rectal cell proliferation and apoptosis and examine how genetic variation in desaturase enzymes might modify this effect. METHODS We conducted a randomized, double-blind, control six-month trial of 2.5 grams of n-3 LCPUFA per day compared to olive oil. Study participants had a history of colorectal adenomas. Randomization was stratified based on the gene variant rs174535 in the fatty acid desaturase 1 enzyme (FADS1). Our primary outcome was change in markers of rectal epithelial proliferation and apoptosis. RESULTS A total of 141 subjects were randomized. We found no difference in apoptosis markers between participants randomized to n-3 LCPUFA compared to olive oil (P = 0.41). N-3 LCPUFA supplementation increased cell proliferation in the lower colonic crypt compared to olive oil (P = 0.03) however baseline indexes of proliferation were different between the groups at randomization. We found no evidence that genotype modified the effect. CONCLUSIONS Our study did not show evidence of a proliferative or pro-apoptotic effect on n-3 LCPUFA supplementation on rectal mucosa regardless of the FADS genotype.ClinicalTrials.gov Identifier: NCT01661764Supplemental data for this article is available online at https://dx.doi.org/10.1080/01635581.2021.1955286.
Collapse
Affiliation(s)
- Harvey J. Murff
- Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| | - Martha J. Shrubsole
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Division of Epidemiology, Vanderbilt University Medical Center
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University Medical Center
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| | - Timothy Su
- Division of Epidemiology, Vanderbilt University Medical Center
| | | | - Sunny S. Cai
- Tulane University School of Medicine, New Orleans, LA
| | - Wei Zheng
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Division of Epidemiology, Vanderbilt University Medical Center
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University Medical Center
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| |
Collapse
|
21
|
Unger AL, Jetton TL, Kraft J. Tissue and Circulating Fatty Acids as Biomarkers to Evaluate Long-Term Fat Intake Are Tissue and Sex Dependent in CD-1 Mice. J Nutr 2021; 151:1779-1790. [PMID: 33982087 DOI: 10.1093/jn/nxab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is currently no consensus on which tissues are optimal for assessing specific diet-derived fatty acids (FAs) as biomarkers for long-term dietary studies. OBJECTIVES This study measured the content of unique diet-derived FAs from dairy, echium, and fish in tissues (adipose, muscle, liver, erythrocyte membranes, and plasma phospholipids, cholesterol esters, triglycerides, and free fatty acids) after long-term feeding in CD-1 mice. METHODS Beginning at weaning, mice (n = 10-11/sex/diet) were fed 1 of 4 diets (40% kcal/total energy) that only differed in FA composition: control fat blend (CON), reflecting the FA profile of the average US American diet, or CON supplemented with 30% of fish oil (FO), dairy fat (DF), or echium oil (EO). After 13 mo, tissues were collected to determine FAs via gas-liquid chromatography. Tissue FAs were analyzed via 2-factor ANOVA, and relationships between FA intake and tissue content were assessed with Spearman correlations. RESULTS As anticipated, 20:5n-3 (ω-3) tissue content was ≤32-fold greater in FO- compared with CON-fed mice (P < 0.05). In addition, 20:5n-3 intake strongly correlated with its content in all tissues (ρ = 0.67-0.76; P < 0.05). Echium oil intake also influenced tissue FA content in mice as expected. For example, 18:3n-6 was ≤25-fold greater in adipose, muscle, and liver tissues of EO-fed compared with CON-fed mice (P < 0.05). Tissue content of FAs typically considered biomarkers of dairy fat intake (15:0, 16:1 t9, and 17:0) was often not greater in mice fed DF than other diet groups, although 18:2 c9, t11 content was ≤6-fold greater in tissues from DF-fed compared with CON-fed mice (P < 0.05). The content of dairy-derived FAs in blood fractions of females was up to 2-fold greater compared with males, whereas docosapentaenoic acid content was up to 1-fold greater in all blood fractions and in liver tissue of males compared with females (P < 0.05). In adipose, muscle, and liver tissue, the content of γ-linolenic acid and stearidonic acid was less than 1-fold greater in females than in males (P < 0.05). CONCLUSIONS Our study indicates that the distribution of dietary FAs is tissue and sex dependent in aged CD-1 mice. Research using FA biomarkers should assess a combination of FA biomarkers to accurately validate patterns of FA intake and source.
Collapse
Affiliation(s)
- Allison L Unger
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Thomas L Jetton
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Vermont, Colchester, VT, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA.,Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Vermont, Colchester, VT, USA
| |
Collapse
|
22
|
Martinat M, Rossitto M, Di Miceli M, Layé S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021; 13:1185. [PMID: 33918517 PMCID: PMC8065891 DOI: 10.3390/nu13041185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain functions. They constitute crucial elements of cellular membranes, especially in the brain. They are the precursors of several metabolites with different effects on inflammation and neuron outgrowth. Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal periods. In this review, we discuss how they accumulate in the developing brain, considering the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the differences linked to gender. We also report the mechanisms linking their bioavailability in the developing brain, their transfer from the mother to the embryo through the placenta, and their role in brain development. In addition, data on the potential role of altered bioavailability of long-chain n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and hyperactivity disorder, and schizophrenia, are reviewed.
Collapse
|
23
|
Conway MC, McSorley EM, Mulhern MS, Spence T, Wijngaarden EV, Watson GE, Wahlberg K, Pineda D, Broberg K, Hyland BW, Cobice DF, Strain JJ, Yeates AJ. The influence of fish consumption on serum n-3 polyunsaturated fatty acid (PUFA) concentrations in women of childbearing age: a randomised controlled trial (the iFish Study). Eur J Nutr 2021; 60:1415-1427. [PMID: 32725293 PMCID: PMC7987591 DOI: 10.1007/s00394-020-02326-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/01/2020] [Indexed: 01/28/2023]
Abstract
PURPOSE Long-chain polyunsaturated fatty acids (LCPUFA) can be synthesised endogenously from linoleic acid (LA) and α-linolenic acid (ALA) in a pathway involving the fatty acid desaturase (FADS) genes. Endogenous synthesis is inefficient; therefore, dietary intake of preformed LCPUFA from their richest source of fish is preferred. This study investigated the effect of fish consumption on PUFA concentrations in women of childbearing age while stratifying by FADS genotype. The influence of fish consumption on lipid profile, and markers of inflammation and oxidative stress was also examined. METHODS Healthy women (n = 49) provided a buccal swab which was analysed for FADS2 genotype (rs3834458; T/deletion). Participants were stratified according to genotype and randomised to an intervention group to receive either no fish (n = 18), 1 portion (n = 14) or 2 portions (n = 17) (140 g per portion) of fish per week for a period of 8 weeks. Serum PUFA was analysed at baseline and post-intervention. Lipid profile, and markers of inflammation and oxidative stress were also analysed. RESULTS Participants consuming 2 portions of fish per week had significantly higher concentrations of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and total n-3 PUFA, and a lower n-6:n-3 ratio compared to those in the no fish or 1 portion per week group (all p < 0.05). Fish consumption did not have a significant effect on biomarkers of oxidative stress, inflammation and lipid profile in the current study. CONCLUSION Consumption of 2 portions of fish per week has beneficial effects on biological n-3 PUFA concentrations in women of childbearing age; however, no effects on oxidative stress, inflammation or lipid profile were observed. This trial was registered at www.clinicaltrials.gov (NCT03765580), registered December 2018.
Collapse
Affiliation(s)
- Marie C. Conway
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA Northern Ireland UK
| | - Emeir M. McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA Northern Ireland UK
| | - Maria S. Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA Northern Ireland UK
| | - Toni Spence
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA Northern Ireland UK
| | | | - Gene E. Watson
- School of Medicine and Dentistry, University of Rochester, Rochester, USA
| | - Karin Wahlberg
- The Laboratory of Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- The Laboratory of Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- The Laboratory of Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden ,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Barry W. Hyland
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), Ulster University, Coleraine, Northern Ireland UK
| | - Diego F. Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), Ulster University, Coleraine, Northern Ireland UK
| | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA Northern Ireland UK
| | - Alison J. Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA Northern Ireland UK
| |
Collapse
|
24
|
Schulze MB, Minihane AM, Saleh RNM, Risérus U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinol 2020; 8:915-930. [PMID: 32949497 DOI: 10.1016/s2213-8587(20)30148-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Prospective observational studies support the use of long-chain omega-3 polyunsaturated fatty acids (PUFAs) in the primary prevention of atherosclerotic cardiovascular disease; however, randomised controlled trials, have often reported neutral findings. There is a long history of debate about the potential harmful effects of a high intake of omega-6 PUFAs, although this idea is not supported by prospective observational studies or randomised controlled trials. Health effects of PUFAs might be influenced by Δ-5 and Δ-6 desaturases, the key enzymes in the metabolism of PUFAs. The activity of these enzymes and modulation by variants in encoding genes (FADS1-2-3 gene cluster) are linked to several cardiometabolic traits. This Review will further consider non-genetic determinants of desaturase activity, which have the potential to modify the availability of PUFAs to tissues. Finally, we discuss the consequences of altered desaturase activity in the context of PUFA intake, that is, gene-diet interactions and their clinical and public health implications.
Collapse
Affiliation(s)
- Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rasha Noureldin M Saleh
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK; Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Waits CMK, Bower A, Simms KN, Feldman BC, Kim N, Sergeant S, Chilton FH, VandeVord PJ, Langefeld CD, Rahbar E. A Pilot Study Assessing the Impact of rs174537 on Circulating Polyunsaturated Fatty Acids and the Inflammatory Response in Patients with Traumatic Brain Injury. J Neurotrauma 2020; 37:1880-1891. [PMID: 32253986 DOI: 10.1089/neu.2019.6734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in persons under age 45. The hallmark secondary injury profile after TBI involves dynamic interactions between inflammatory and metabolic pathways including fatty acids. Omega-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) have been shown to provide neuroprotective benefits by minimizing neuroinflammation in rodents. These effects have been less conclusive in humans, however. We postulate genetic variants influencing PUFA metabolism in humans could contribute to these disparate findings. Therefore, we sought to (1) characterize the circulating PUFA response and (2) evaluate the impact of rs174537 on inflammation after TBI. A prospective, single-center, observational pilot study was conducted to collect blood samples from Level-1 trauma patients (N = 130) on admission and 24 h post-admission. Plasma was used to quantify PUFA levels and inflammatory cytokines. Deoxyribonucleic acid was extracted and genotyped at rs174537. Associations between PUFAs and inflammatory cytokines were analyzed for all trauma cases and stratified by race (Caucasians only), TBI (TBI: N = 47; non-TBI = 83) and rs174537 genotype (GG: N = 33, GT/TT: N = 44). Patients with TBI had higher plasma DHA levels compared with non-TBI at 24 h post-injury (p = 0.013). The SNP rs174537 was associated with both PUFA levels and inflammatory cytokines (p < 0.05). Specifically, TBI patients with GG genotype exhibited the highest plasma levels of DHA (1.33%) and interleukin-8 (121.5 ± 43.3 pg/mL), which were in turn associated with poorer outcomes. These data illustrate the impact of rs174537 on the post-TBI response. Further work is needed to ascertain how this genetic variant directly influences inflammation after trauma.
Collapse
Affiliation(s)
- Charlotte Mae K Waits
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| | - Aaron Bower
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kelli N Simms
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| | - Bradford C Feldman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Nathan Kim
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Pamela J VandeVord
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| |
Collapse
|
26
|
Zec MM, Stojković L, Zeković M, Pokimica B, Zivkovic M, Stankovic A, Glibetic M. FADS2 polymorphisms are associated with plasma arachidonic acid and estimated desaturase-5 activity in a cross-sectional study. Nutr Res 2020; 83:49-62. [PMID: 33011673 DOI: 10.1016/j.nutres.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Polymorphisms in FADS genes are associated with plasma long-chain polyunsaturated fatty acids (LC-PUFA) and modulate omega-6/omega-3 balance. We hypothesized that the FADS2 gene variants will be associated with lower product-to-precursor ratio in the fatty acid metabolic pathways. Thus, we explored FADS2 rs174593, rs174616, and rs174576 effects on plasma phospholipid fatty acid profile, markers of desaturase activities, and risk factors in a sample of apparently healthy Serbian adults. Food and nutrient intake data were compiled through 24 h recalls. Plasma phospholipid fatty acid content was assessed by gas-chromatography. Estimated desaturase activities were calculated as conversion rates towards LC-PUFA in omega-6 pathway. During the selection of FADS2 polymorphisms, we accounted for their positional and functional aspect. Genotyping was performed by Real-Time PCR. Multivariable-adjusted general linear and hierarchical regression models were applied. Study subjects (mean age = 40 ± 7 years, 70% who were overweight) had a median dietary omega-6/omega-3 ratio of 16.29. Alternative allele frequencies were 33%, 36%, and 51% for rs174593, rs174576, and rs174616, respectively. Addition of FADS2 alternative alleles was associated with lower plasma arachidonic acid (AA, C20:4 n-6, P < .001) and estimated desaturase-5 activity (P < .001), irrespective of gender, age, daily polyunsaturated/saturated fatty acid intake, and obesity. The rs174576 association with AA withstood multiple testing and additional adjustments for other variants (multivariable-adjusted β = -1.14 [95% CI: -2.25, -0.43]). None of the variants was associated with dietary intake, serum lipids, or obesity. We observed inverse associations between FADS2 variants and plasma AA but not omega-3 fatty acids in Serbian subjects, with rs174576 exhibiting the strongest relation.
Collapse
Affiliation(s)
- Manja M Zec
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia.
| | - Ljiljana Stojković
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia
| | - Milica Zeković
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Biljana Pokimica
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia
| | - Maria Glibetic
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
27
|
de Groot RHM, Meyer BJ. ISSFAL Official Statement Number 6: The importance of measuring blood omega-3 long chain polyunsaturated fatty acid levels in research. Prostaglandins Leukot Essent Fatty Acids 2020; 157:102029. [PMID: 31740196 DOI: 10.1016/j.plefa.2019.102029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 11/21/2022]
Abstract
A statement on measuring blood omega-3 long chain polyunsaturated fatty acid levels was developed and edited based on input from ISSFAL members and accepted by vote of the ISSFAL Board of Directors. Summary of Statement: Omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) levels at baseline and post-intervention should be assessed and reported in future research to evaluate the efficacy of n-3 LCPUFA supplementation: b ecause; 1. there are numerous factors that affect n-3 LCPUFA levels in humans as described in the systematic literature review [1]; 2. assessing intake of n-3 LCPUFA from the diet and/or supplements is not sufficient to accurately determine n-3 LCPUFA levels in humans; 3. some studies do not provide sufficient doses of n-3 LCPUFA to produce a significant impact on bloodstream/organ content and there is substantial variability in the uptake of n-3 LPCUFA into tissues between individuals. In secondary analyses, clinical trials should consider the influence of fatty acid status (baseline, endpoint and change from baseline to endpoint) on the outcome variables.
Collapse
Affiliation(s)
- Renate H M de Groot
- Faculty of Psychology and Educational Sciences, Welten Institute, Research Centre for Learning, Teaching and Technology, Open University of the Netherlands, Valkenburgerweg 177, 6419AT Heerlen, the Netherlands
| | - Barbara J Meyer
- School of Medicine, Lipid Research Centre, Molecular Horizons, University of Wollongong and Illawarra Health & Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
28
|
Bio-synthesized sardine oil concentrate alters the composition of hepatic lipids in rats: A lipidomic approach. Food Res Int 2020; 130:108874. [PMID: 32156343 DOI: 10.1016/j.foodres.2019.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
Both preventive and curative therapies have created a considerable demand for n-3 PUFAs (polyunsaturated fatty acids) from fish oil, such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, for human use. Bio-synthesized sardine oil (bioSO) concentrate containing an acylglycerols mixture with 50% n-3 PUFAs was obtained by Candida cylindracea lipase hydrolysis and subsequently used for in vivo tests in animals. Wistar rats received, by gavage, a dose of 0.2 g/kg/day of bioSO or unmodified sardine oil (unSO) or saline solution (control) for three consecutive days and the liver tissue was evaluated by a selective and sensitive lipidomic approach based on ultra-performance liquid chromatography-quadruple time-of-flight mass spectrometry (UPLC-QTOF-MSE) and gas chromatography (GC). In addition, antioxidant parameters, response of oxidative stress marker and estimated fatty acid desaturase indexes were determined. The use of bioSO led to an increase in Cer d18:1/16:0, PE-Cer d14:2/18:0 and highly unsaturated phosphatylcholines (PC 38:4, PC 40:6 and PC 42:8) in the hepatic tissue membranes. There was also an increase in DHA incorporation in animals that received bioSO in comparison with the control animals. No differences in superoxide dismutase and catalase activity levels were observed between the groups, and malondialdehyde levels and delta 5-desaturase activity were higher in animals supplemented with bioSO. These results indicate that bioSO increase the hepatic incorporation of DHA, especially those esterified as PCs, and are probably absorbed and transported more effectively than the unSO. Enzymatically hydrolyzed compounds containing antioxidants may be a viable alternative for obtaining n-3 PUFA-enriched functional lipids.
Collapse
|
29
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, Summerbell CD, Worthington HV, Song F, Hooper L, Cochrane Heart Group. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177. [PMID: 32114706 PMCID: PMC7049091 DOI: 10.1002/14651858.cd003177.pub5] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Teesside UniversitySchool of Social Sciences, Humanities and LawMiddlesboroughUKTS1 3BA
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Sciences42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
30
|
Chen X, Wu Y, Zhang Z, Zheng X, Wang Y, Yu M, Liu G. Effects of the rs3834458 Single Nucleotide Polymorphism in FADS2 on Levels of n-3 Long-chain Polyunsaturated Fatty Acids: A Meta-analysis. Prostaglandins Leukot Essent Fatty Acids 2019; 150:1-6. [PMID: 31487670 DOI: 10.1016/j.plefa.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Evaluate the effects of the single nucleotide polymorphism (SNP) rs3834458 in the fatty acid desaturase 2 gene (FADS2) on n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels using statistical meta-analysis. METHODS Literatures pertaining to the relationship between the SNP rs3834458 and LC-PUFA were retrieved from three electronic databases. Original information was analyzed using RevMan 5.3, including single statistics, test for heterogeneity, summary statistics and evaluation of publication bias. RESULTS In total, five pieces of literature were retrieved and divided into seven trials. We observed that the minor allele (Tdel+deldel) carriers of rs3834458 had higher linolenic acid levels (P < 0.00001) and lower eicosapentaenoic acid (P < 0.00001), docosapentenoic acid (P = 0.005) and docosahexaenoic acid (P < 0.00001) levels compared to those of carrying major allele homozygote (TT). CONCLUSION This meta-analysis indicates that minor allele of rs3834458 in FADS2 may result in lower activity of delta-6 desaturase leading to higher ALA and lower EPA, DPA and DHA in blood.
Collapse
Affiliation(s)
- Xueyan Chen
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China; Children's Hospital of Changchun, Changchun, Jilin 130051, China
| | - Yixia Wu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Zilin Zhang
- School of Mathematics, Jilin University, Changchun, Jilin 130012, China
| | - Xiaolei Zheng
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Yan Wang
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Miao Yu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Guoliang Liu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China.
| |
Collapse
|
31
|
Carvalho GQ, Pereira-Santos M, Marcon LD, Louro ID, Peluzio MCG, Santos DB. Maternal polymorphisms in the FADS1 and FADS2 genes modify the association between PUFA ingestion and plasma concentrations of omega-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2019; 150:38-46. [PMID: 31568926 DOI: 10.1016/j.plefa.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
Abstract
There is a lack of studies about polymorphisms in FADS genes in pregnant women. We aimed to verify the interaction between three FADS gene polymorphisms (rs174561; rs174575; rs3834458) and dietary α-linolenic acid (ALA) or linoleic/α-linolenic acid ratio (LA/ALA) and plasma concentrations of omega-3 (n-3) PUFAs in pregnant women. Of the 250 women evaluated, the homozygous for the rs174561 and rs3834458 minor allele had high plasma ALA concentrations at the highest ALA and LA/ALA ratio tertile (p < 0.05). Plasma concentrations of EPA and DHA were not influenced by diet. For the rs174575 SNP, pregnant women who carried the minor allele presented lower proportions of plasma EPA in the second LA/ALA ratio tertile (p < 0.05). Increased dietary intake of ALA and LA/ALA ratio promoted plasma ALA accumulation in homozygotes for the minor allele rs174561 and rs3834458. Moderate intake of LA/ALA ratio may reduce plasma concentration of EPA in pregnants carrying the rs174575 minor allele.
Collapse
Affiliation(s)
- G Q Carvalho
- Department of Nutrition, Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Av. Dr. Raimundo Monteiro Rezende, 330 - Centro, CEP: 35.010-177, Governador Valadares, MG - Brazil.
| | - M Pereira-Santos
- Collective Health Institute, Universidade Federal da Bahia, Brazil; Institute of Public Health, Universidade Federal da Bahia, Brazil
| | - L D Marcon
- Nutrition and Health Department, Universidade Federal de Viçosa, Brazil
| | - I D Louro
- Center of Human and Molecular Genetics, Universidade Federal do Espírito Santo, Brazil
| | - M C G Peluzio
- Nutrition and Health Department, Universidade Federal de Viçosa, Brazil
| | - D B Santos
- Center of Health Sciences, Universidade Federal do Recôncavo da Bahia, Brazil
| |
Collapse
|
32
|
Walker RE, Jackson KH, Tintle NL, Shearer GC, Bernasconi A, Masson S, Latini R, Heydari B, Kwong RY, Flock M, Kris-Etherton PM, Hedengran A, Carney RM, Skulas-Ray A, Gidding SS, Dewell A, Gardner CD, Grenon SM, Sarter B, Newman JW, Pedersen TL, Larson MK, Harris WS. Predicting the effects of supplemental EPA and DHA on the omega-3 index. Am J Clin Nutr 2019; 110:1034-1040. [PMID: 31396625 DOI: 10.1093/ajcn/nqz161] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Supplemental long-chain omega-3 (n-3) fatty acids (EPA and DHA) raise erythrocyte EPA + DHA [omega-3 index (O3I)] concentrations, but the magnitude or variability of this effect is unclear. OBJECTIVE The purpose of this study was to model the effects of supplemental EPA + DHA on the O3I. METHODS Deidentified data from 1422 individuals from 14 published n-3 intervention trials were included. Variables considered included dose, baseline O3I, sex, age, weight, height, chemical form [ethyl ester (EE) compared with triglyceride (TG)], and duration of treatment. The O3I was measured by the same method in all included studies. Variables were selected by stepwise regression using the Bayesian information criterion. RESULTS Individuals supplemented with EPA + DHA (n = 846) took a mean ± SD of 1983 ± 1297 mg/d, and the placebo controls (n = 576) took none. The mean duration of supplementation was 13.6 ± 6.0 wk. The O3I increased from 4.9% ± 1.7% to 8.1% ± 2.7% in the supplemented individuals ( P < 0.0001). The final model included dose, baseline O3I, and chemical formulation type (EE or TG), and these explained 62% of the variance in response (P < 0.0001). The model predicted that the final O3I (and 95% CI) for a population like this, with a baseline concentration of 4.9%, given 850 mg/d of EPA + DHA EE would be ∼6.5% (95% CI: 6.3%, 6.7%). Gram for gram, TG-based supplements increased the O3I by about 1 percentage point more than EE products. CONCLUSIONS Of the factors tested, only baseline O3I, dose, and chemical formulation were significant predictors of O3I response to supplementation. The model developed here can be used by researchers to help estimate the O3I response to a given EPA + DHA dose and chemical form.
Collapse
Affiliation(s)
- Rachel E Walker
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Nathan L Tintle
- Department of Mathematics and Statistics, Dordt College, Sioux Center, IA, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Aldo Bernasconi
- Global Organization for EPA and DHA, Salt Lake City, UT, USA
| | - Serge Masson
- Department of Cardiovascular Research, Institute of Pharmacological Research "Mario Negri," Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Research, Institute of Pharmacological Research "Mario Negri," Milan, Italy
| | - Bobak Heydari
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Raymond Y Kwong
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Flock
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Anne Hedengran
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
| | - Robert M Carney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ann Skulas-Ray
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Antonella Dewell
- Stanford Prevention Research Center, Stanford University, Stanford, CA, USA
| | | | - S Marlene Grenon
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Sarter
- Department of Naturopathic Medicine, Bastyr University, San Diego, CA, USA
| | - John W Newman
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Theresa L Pedersen
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Mark K Larson
- Department of Biology, Augustana University, Sioux Falls, SD, USA
| | - William S Harris
- OmegaQuant Analytics, LLC, Sioux Falls, SD, USA
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
33
|
Proskura WS, Liput M, Zaborski D, Sobek Z, Yu YH, Cheng YH, Dybus A. The effect of polymorphism in the FADS2 gene on the fatty acid composition of bovine milk. Arch Anim Breed 2019; 62:547-555. [PMID: 31807666 PMCID: PMC6852874 DOI: 10.5194/aab-62-547-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/21/2019] [Indexed: 01/23/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play a role in a wide
variety of physiological processes. They are produced by a series of
desaturation and elongation reactions. Δ-6-desaturase is a
membrane-bound enzyme that catalyzes the conversion of α-linolenic acid
(C18:3n-3) and linoleic acid (C18:2n-6) to stearidonic acid (18:4n-3) and
γ-linolenic acid (18:3n-6). It is encoded by the FADS2 gene located on bovine
chromosome 29. The aim of this study was to identify a single nucleotide
polymorphism in the FADS2 gene and to determine possible associations with milk
fatty acid composition in two breeds of dairy cattle, i.e., Jersey and Polish
Holstein-Friesian. Direct DNA sequencing revealed the presence of an A-to-G
substitution in intron 3 of the FADS2 gene (rs209202414). Both populations were
genotyped with an appropriate PCR-RFLP assay. The following genotype
distributions were observed: for Jerseys, AA = 0.24, AG = 0.63, and GG = 0.13; for
Polish Holstein-Friesians, AA = 0.17, AG = 0.40, and GG = 0.43. In Jerseys,
statistically significant relationships were found between the FASD2 genotypes
and the following milk fatty acids: lauric (P=0.0486), behenic (P=0.0199),
lignoceric (P=0.0209), oleic (P=0.0386), eicosatrienoic (P=0.0113), and
docosadienoic (P=0.0181). In Polish Holstein-Friesian cows, significant
associations were observed for erucic (P=0.0460) and docosahexaenoic (P=0.0469)
acids. The study indicated the A-to-G substitution (rs209202414) in the bovine
FADS2 gene as a potential genetic marker for fatty acid composition in cattle
milk.
Collapse
Affiliation(s)
- Witold Stanisław Proskura
- Laboratory of Molecular Cytogenetics, Department of Ruminants Science, West Pomeranian University of Technology, Szczecin 71-270, Poland
| | - Michał Liput
- Laboratory of Molecular Cytogenetics, Department of Ruminants Science, West Pomeranian University of Technology, Szczecin 71-270, Poland
| | - Daniel Zaborski
- Laboratory of Biostatistics, Department of Ruminants Science, West Pomeranian University of Technology, Szczecin 71-270, Poland
| | - Zbigniew Sobek
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, I-Lan 260, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, I-Lan 260, Taiwan
| | - Andrzej Dybus
- Laboratory of Molecular Cytogenetics, Department of Ruminants Science, West Pomeranian University of Technology, Szczecin 71-270, Poland
| |
Collapse
|
34
|
The Effect of an Infant Formula Supplemented with AA and DHA on Fatty Acid Levels of Infants with Different FADS Genotypes: The COGNIS Study. Nutrients 2019; 11:nu11030602. [PMID: 30871048 PMCID: PMC6470942 DOI: 10.3390/nu11030602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
Polymorphisms in the fatty acid desaturase (FADS) genes influence the arachidonic (AA) and docosahexaenoic (DHA) acid concentrations (crucial in early life). Infants with specific genotypes may require different amounts of these fatty acids (FAs) to maintain an adequate status. The aim of this study was to determine the effect of an infant formula supplemented with AA and DHA on FAs of infants with different FADS genotypes. In total, 176 infants from the COGNIS study were randomly allocated to the Standard Formula (SF; n = 61) or the Experimental Formula (EF; n = 70) group, the latter supplemented with AA and DHA. Breastfed infants were added as a reference group (BF; n = 45). FAs and FADS polymorphisms were analyzed from cheek cells collected at 3 months of age. FADS minor allele carriership in formula fed infants, especially those supplemented, was associated with a declined desaturase activity and lower AA and DHA levels. Breastfed infants were not affected, possibly to the high content of AA and DHA in breast milk. The supplementation increased AA and DHA levels, but mostly in major allele carriers. In conclusion, infant FADS genotype could contribute to narrow the gap of AA and DHA concentrations between breastfed and formula fed infants.
Collapse
|
35
|
Abstract
Numerous health benefits are attributed to the n-3 long-chain PUFA (n-3 LCPUFA); EPA and DHA. A systematic literature review was conducted to investigate factors, other than diet, that are associated with the n-3 LCPUFA levels. The inclusion criteria were papers written in English, carried out in adult non-pregnant humans, n-3 LCPUFA measured in blood or tissue, data from cross-sectional studies, or baseline data from intervention studies. The search revealed 5076 unique articles of which seventy were included in the qualitative synthesis. Three main groups of factors potentially associated with n-3 LCPUFA levels were identified: (1) unmodifiable factors (sex, genetics, age), (2) modifiable factors (body size, physical activity, alcohol, smoking) and (3) bioavailability factors (chemically bound form of supplements, krill oil v. fish oil, and conversion of plant-derived α-linolenic acid (ALA) to n-3 LCPUFA). Results showed that factors positively associated with n-3 LCPUFA levels were age, female sex (women younger than 50 years), wine consumption and the TAG form. Factors negatively associated with n-3 LCPUFA levels were genetics, BMI (if erythrocyte EPA and DHA levels are <5·6 %) and smoking. The evidence for girth, physical activity and krill oil v. fish oil associated with n-3 LCPUFA levels is inconclusive. There is also evidence that higher ALA consumption leads to increased levels of EPA but not DHA. In conclusion, sex, age, BMI, alcohol consumption, smoking and the form of n-3 LCPUFA are all factors that need to be taken into account in n-3 LCPUFA research.
Collapse
|
36
|
Lamantia V, Bissonnette S, Provost V, Devaux M, Cyr Y, Daneault C, Rosiers CD, Faraj M. The Association of Polyunsaturated Fatty Acid δ-5-Desaturase Activity with Risk Factors for Type 2 Diabetes Is Dependent on Plasma ApoB-Lipoproteins in Overweight and Obese Adults. J Nutr 2019; 149:57-67. [PMID: 30535058 PMCID: PMC6351138 DOI: 10.1093/jn/nxy238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023] Open
Abstract
Background δ-5 and δ-6 desaturases (D5D and D6D) catalyze the endogenous conversion of n-3 (ω-3) and n-6 (ω-6) polyunsaturated fatty acids (PUFAs). Their activities are negatively and positively associated with type 2 diabetes (T2D), respectively, by unclear mechanisms. Elevated plasma apoB-lipoproteins (measured as plasma apoB), which can be reduced by n-3 PUFA intake, promote T2D risk factors. Objective The aim of this study was to test the hypothesis that the association of D5D and D6D activities with T2D risk factors is dependent on plasma apoB. Methods This is a pooled analysis of 2 populations recruited for 2 different metabolic studies. It is a post hoc analysis of baseline data of these subjects [n = 98; 60% women (postmenopausal); mean ± SD body mass index (in kg/m2): 32.8 ± 4.7; mean ± SD age: 57.6 ± 6.3 y]. Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured using Botnia clamps. Plasma clearance of a high-fat meal (600 kcal/m2, 66% fat) and white adipose tissue (WAT) function (storage of 3H-triolein-labeled substrate) were assessed in a subpopulation (n = 47). Desaturase activities were estimated from plasma phospholipid fatty acids. Associations were examined using Pearson and partial correlations. Results While both desaturase activities were positively associated with percentage of eicosapentaenoic acid, only D5D was negatively associated with plasma apoB (r = -0.30, P = 0.003). Association of D5D activity with second-phase GIIS (r = -0.23, P = 0.029), IS (r = 0.33, P = 0.015, in women) and 6-h area-under-the-curve (AUC6h) of plasma chylomicrons (apoB48, r = -0.47, P = 0.020, in women) was independent of age and adiposity, but was eliminated after adjustment for plasma apoB. D6D activity was associated in the opposite direction with GIIS (r = 0.24, P = 0.049), IS (r = -0.36, P = 0.004) and AUC6h chylomicrons (r = 0.52, P = 0.004), independent of plasma apoB. Both desaturases were associated with plasma interleukin-1-receptor antagonist (D5D: r = -0.45, P < 0.001 in women; D6D: r = -0.33, P = 0.007) and WAT function (trend for D5D: r = 0.30, P = 0.05; D6D: r = 0.39, P = 0.027) independent of any adjustment. Conclusions Association of D5D activity with IS, lower GIIS, and plasma chylomicron clearance is dependent on plasma apoB in overweight and obese adults.
Collapse
Affiliation(s)
- Valérie Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Viviane Provost
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Marie Devaux
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Yannick Cyr
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | | | - Christine Des Rosiers
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Cardiologie de Montréal (ICM), Montréal, Québec
| | - May Faraj
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec,Montreal Diabetes Research Center (MDRC), Montréal, Québec,Address correspondence to MF (e-mail: )
| |
Collapse
|
37
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L, Cochrane Heart Group. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD003177. [PMID: 30521670 PMCID: PMC6517311 DOI: 10.1002/14651858.cd003177.pub4] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
38
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L, Cochrane Heart Group. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD012345. [PMID: 30484282 PMCID: PMC6517012 DOI: 10.1002/14651858.cd012345.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake probably slightly decreases triglycerides (by 15%, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants), high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably has little or no effect on adiposity (body weight MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via TG reduction.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Nicole Martin
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
39
|
Lankinen M, Uusitupa M, Schwab U. Genes and Dietary Fatty Acids in Regulation of Fatty Acid Composition of Plasma and Erythrocyte Membranes. Nutrients 2018; 10:nu10111785. [PMID: 30453550 PMCID: PMC6265745 DOI: 10.3390/nu10111785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The fatty acid compositions of plasma lipids and cell membranes of certain tissues are modified by dietary fatty acid composition. Furthermore, many other factors (age, sex, ethnicity, health status, genes, and gene × diet interactions) affect the fatty acid composition of cell membranes or plasma lipid compartments. Therefore, it is of great importance to understand the complexity of mechanisms that may modify fatty acid compositions of plasma or tissues. We carried out an extensive literature survey of gene × diet interaction in the regulation of fatty acid compositions. Most of the related studies have been observational studies, but there are also a few intervention trials that tend to confirm that true interactions exist. Most of the studies deal with the desaturase enzyme cluster (FADS1, FADS2) in chromosome 11 and elongase enzymes. We expect that new genetic variants are being found that are linked with the genetic regulation of plasma or tissue fatty acid composition. This information is of great help to understanding the contribution of dietary fatty acids and their endogenic metabolism to the development of some chronic diseases.
Collapse
Affiliation(s)
- Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland.
| |
Collapse
|
40
|
In a pilot study, reduced fatty acid desaturase 1 function was associated with nonalcoholic fatty liver disease and response to treatment in children. Pediatr Res 2018; 84:696-703. [PMID: 30120404 PMCID: PMC6726123 DOI: 10.1038/s41390-018-0132-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND FADS1 gene encodes delta 5 desaturase, a rate-limiting enzyme in the metabolism of n-3 and n-6 polyunsaturated fatty acids (PUFAs). Minor alleles of FADS1 locus polymorphisms are associated with reduced FADS1 expression and intra-hepatic fat accumulation. However, the relationship between FADS1 expression and pediatric nonalcoholic fatty liver disease (NAFLD) risk remains to be explored. METHODS We analyzed FADS1 transcription levels and their association with intra-hepatic fat and histology in children, and we performed pathway enrichment analysis on transcriptomic profiles associated with FADS1 polymorphisms. We also evaluated the weight of FADS1 alleles on the response to combined docosahexaenoic acid, choline, and vitamin E (DHA-CHO-VE) treatment. RESULTS FADS1 mRNA level was significantly and inversely associated with intra-hepatic fat (p = 0.004), degree of steatosis (p = 0.03), fibrosis (p = 0.05), and NASH (p = 0.008) among pediatric livers. Transcriptomics demonstrated a significant enrichment of a number of pathways strongly related to NAFLD (e.g., liver damage, fibrosis, and hepatic stellate cell activation). Compared to children who are common allele homozygotes, children with FADS1 minor alleles had a greater reduction in steatosis, fibrosis, and NAFLD activity score after DHA-CHO-VE. CONCLUSION This study suggests that decreased FADS1 expression may be associated with NAFLD in children but an increased response to DHA-CHO-VE.
Collapse
|
41
|
Sandford FM, Sanders TA, Wilson H, Lewis JS. A randomised controlled trial of long-chain omega-3 polyunsaturated fatty acids in the management of rotator cuff related shoulder pain. BMJ Open Sport Exerc Med 2018; 4:e000414. [PMID: 30364577 PMCID: PMC6196970 DOI: 10.1136/bmjsem-2018-000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
Study design Multicentre, double-blind, placebo-controlled randomised clinical trial. Objectives To compare the effectiveness of long chain omega-3 polyunsaturated fatty acids (PUFAs) as part of the management for people diagnosed with rotator cuff related shoulder pain (RCRSP). Summary of background Although there is no robust evidence to support their use, omega-3 PUFAs have been recommended for those with tendinopathy due to their potential to moderate inflammation. Methods Participants with RCRSP (n=73) were randomised to take either nine MaxEPA capsules providing 1.53 g eicosapentaenoic acid, 1.04 g docosahexaenoic acid or nine matching placebo capsules containing oleic acid per day for 8 weeks. In addition, participants attended an exercise/education programme for 8 weeks. Participants were assessed at prerandomisation, 8 weeks (primary outcome point), 3 months, 6 months and 12 months (secondary outcome point). Primary outcome was the Oxford Shoulder Score (OSS). Secondary outcomes included the Shoulder Pain and Disability Index (SPADI), Patient Specific Functional Score, Euro Qol 5D-3L, Short Form 36, global rating of change and impairment measurements. Analysis was by intention to treat. Results Difference in the change in the OSS between the two groups at 2 months was –0.1 (95% CI −2.6 to 2.5, p=0.95). The change in SPADI scores was −8.3 (95% CI −15.6 to −0.94, p=0.03, analysed by analysis of covariance adjusted for baseline) at 3 months. Conclusion Omega-3 PUFA supplementation may have a modest effect on disability and pain outcomes in RCRSP.
Collapse
Affiliation(s)
- Fiona M Sandford
- Guys and St Thomas' NHS Foundation Trust, Hand Therapy Department, London, UK
| | - Thomas A Sanders
- King's College London, Department of Nutritional Sciences, London, UK
| | - Hannah Wilson
- Royal Free London NHS Foundation Trust, Physiotherapy Department, London, UK
| | - Jeremy S Lewis
- School of Health and Social Work, University of Hertfordshire, Hatfield, UK.,Central London Community Healthcare, NHS Trust, London, UK
| |
Collapse
|
42
|
AbuMweis SS, Panchal SK, Jones PJH. Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids 2018; 53:897-908. [PMID: 30407633 DOI: 10.1002/lipd.12096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 11/11/2022]
Abstract
The triacylglycerol (TAG)-lowering effects of long-chain n-3 fatty acids, and in particular docosahexaenoic acid (DHA), are well documented, although these effects manifest large interindividual variability. The objective of this secondary analysis is to investigate whether common single-nucleotide polymorphisms (SNP) in genes involved in DHA synthesis and TAG metabolism are associated with the responsiveness of blood lipids, lipoprotein, and apolipoprotein concentration to dietary treatment by DHA supplied in high-oleic canola oil (HOCO). In a randomized, crossover-controlled feeding trial, 129 subjects with metabolic syndrome received high-oleic canola oil (HOCO) and high-oleic canola oil supplemented with DHA (HOCO-DHA), each for 4 weeks. During the HOCO-DHA phase, the intake of DHA ranged from 1 to 2.5 g/day. The subjects were genotyped for apolipoprotein E (APOE) isoforms, and SNP including FADS1-rs174561, FADS2-rs174583, ELOVL2-rs953413, ELOVL5-rs2397142, CETP-rs5882, SCD1-rs2234970, PPARA-rs6008259, and LIPF-rs814628 were selected as important genes controlling fatty acid metabolism. Overall, consumption of HOCO-DHA oil reduced blood concentrations of TAG by 24% compared to HOCO oil. The reduction in TAG was independent of genetic variations in the studied genes. Similarly, no treatment-by-gene interactions were evident in the response to other lipids, lipoproteins, or apolipoproteins to DHA supplementation. Nevertheless, a lower interindividual variation in the TAG response to DHA supplementation compared to other studies was observed in this analysis. The TAG-lowering effect of a supplemental body-weight-based dose of DHA was not influenced by genetic variations in APOE, FADS1, FADS2, ELOVL2, ELOVL5, CETP, SCD1, PPARA, and LIPF.
Collapse
Affiliation(s)
- Suhad S AbuMweis
- Department of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences, The Hashemite University, Damascus Hwy, Zarqa 13133, Jordan
| | - Sunil K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, West Street, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
| | - Peter J H Jones
- Department of Foods and Human Nutritional Sciences, University of Manitoba, Dafoe Road, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Innovation Drive, Winnipeg, MB R3T 6C5, Canada
| |
Collapse
|
43
|
Identification of a functional FADS1 3′UTR variant associated with erythrocyte n-6 polyunsaturated fatty acids levels. J Clin Lipidol 2018; 12:1280-1289. [DOI: 10.1016/j.jacl.2018.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/14/2018] [Accepted: 07/13/2018] [Indexed: 11/22/2022]
|
44
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD012345. [PMID: 30019767 PMCID: PMC6513571 DOI: 10.1002/14651858.cd012345.pub2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake slightly reduces total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants) and probably slightly decreases triglycerides (MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably causes slight weight gain (MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via lipid reduction, but increasing PUFA probably slightly increases weight.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Nicole Martin
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
45
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD003177. [PMID: 30019766 PMCID: PMC6513557 DOI: 10.1002/14651858.cd003177.pub3] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
46
|
Carrying minor allele of FADS1 and haplotype of FADS1 and FADS2 increased the risk of metabolic syndrome and moderate but not low fat diets lowered the risk in two Korean cohorts. Eur J Nutr 2018; 58:831-842. [PMID: 29779171 DOI: 10.1007/s00394-018-1719-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Delta-5-desaturase (fatty acid desaturase-1, FADS1) and delta-6 desaturase (fatty acid desaturase-2, FADS2), rate-limiting enzymes in the biosynthesis of long-chain polyunsaturated fatty acids, may be associated with the risk of metabolic syndrome (MetS). We investigated how FADS1 rs174547 and FADS2 rs2845573 variants modify the prevalence of MetS and whether the risk is modulated by interactions with dietary fat. METHODS Genetic, anthropometric, biochemical, and dietary data were collected from the Ansan/Ansung (8842 adults) and City-Rural (5512 adults) cohorts in Korea. The association between FADS1 rs174547(C/T) and FADS2 rs2845573(C/T) variants and MetS was analyzed, as was the interaction of genotypes and fatty acid intake and the risk of MetS after adjusting for MetS-related confounders. RESULTS Carriers of FADS1 rs174547 and FADS2 rs2845573 minor alleles had lower serum HDL-cholesterol and glucose levels and higher triglyceride levels than those with major alleles. Ansan/Ansung cohort individuals with FADS1 minor alleles or haplotypes of FADS1 and FADS2 minor alleles had increased risk of MetS, including lower serum HDL-cholesterol and triglyceride levels and blood pressure after adjusting for MetS-related confounders. The City-Rural cohort showed similar results. Total fat intake showed interactions with FADS1 and haplotype variants on MetS risk: MetS frequency was reduced in people consuming moderate fat diets as compared to low fat diets in FADS1 and haplotype of FADS1 and FADS2 major alleles. CONCLUSION Korean carriers of the FADS1 rs174547 and FADS2 rs2845573 minor alleles have a greater susceptibility to MetS and moderate fat intake protected against the risk of MetS in carriers of the FADS1 major alleles.
Collapse
|
47
|
Juan J, Huang H, Jiang X, Ardisson Korat AV, Song M, Sun Q, Willett WC, Jensen MK, Kraft P. Joint effects of fatty acid desaturase 1 polymorphisms and dietary polyunsaturated fatty acid intake on circulating fatty acid proportions. Am J Clin Nutr 2018; 107:826-833. [PMID: 29722844 PMCID: PMC6692647 DOI: 10.1093/ajcn/nqy025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Background Polyunsaturated fatty acids (PUFAs) are associated with a lower risk of multiple diseases. Fatty acid desaturase 1 gene (FADS1) polymorphisms and dietary PUFA intake are both established determinants of circulating PUFA proportions. Objective We explored the joint effects of FADS1 polymorphisms and dietary PUFA intake on circulating PUFA proportions. Design We studied 2288 participants from a nested case-control study of coronary artery disease among participants who provided blood samples in the Nurses' Health Study and the Health Professionals Follow-Up Study. Dietary PUFA intake was obtained from semiquantitative food-frequency questionnaires. FADS1 rs174546 was genotyped by using the Affymetrix 6.0 platform, and circulating PUFA proportions were measured with gas-liquid chromatography. Linear regression models were used to examine the associations between rs174546 and circulating proportions of each fatty acid. Gene-diet interactions were tested by including a cross-product term of dietary intake of each PUFA by rs174546 genotype in the linear regression models. Results After adjustment for sex and ancestry, each copy of the C allele of rs174546 was associated with higher circulating proportions of arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) and lower proportions of linoleic acid and α-linolenic acid. The magnitude of positive association between higher consumption of dietary EPA or DHA and circulating proportions of EPA increased with each copy of the rs174546_T allele (P-interaction = 0.01 and 0.007, respectively). Each 1-SD increment in EPA intake was associated with an average 3.7% increase in circulating EPA proportions among participants with the rs174546_CC genotype and an average 7.8% increase among participants with the TT genotype. Conclusions Carriers of the T allele at FADS1 rs174546 may need higher doses of dietary EPA and DHA to achieve the same circulating proportions of EPA as carriers of the C allele. The implications of these findings on disease risk and dietary guidelines require further study.
Collapse
Affiliation(s)
- Juan Juan
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
- Program in Genetic Epidemiology and Statistical Genetics
| | - Hongyan Huang
- Program in Genetic Epidemiology and Statistical Genetics
| | - Xia Jiang
- Program in Genetic Epidemiology and Statistical Genetics
| | - Andres V Ardisson Korat
- Departments of Nutrition, Epidemiology, and Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Departments of Epidemiology, and Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
| | - Mingyang Song
- Departments of Nutrition, Epidemiology, and Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Qi Sun
- Departments of Nutrition, Epidemiology, and Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Walter C Willett
- Departments of Nutrition, Epidemiology, and Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Departments of Epidemiology, and Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Majken K Jensen
- Departments of Nutrition, Epidemiology, and Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics
- Departments of Epidemiology, and Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Departments of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
| |
Collapse
|
48
|
Rahbar E, Waits CMK, Kirby EH, Miller LR, Ainsworth HC, Cui T, Sergeant S, Howard TD, Langefeld CD, Chilton FH. Allele-specific methylation in the FADS genomic region in DNA from human saliva, CD4+ cells, and total leukocytes. Clin Epigenetics 2018; 10:46. [PMID: 29636834 PMCID: PMC5889567 DOI: 10.1186/s13148-018-0480-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background Genetic variants within the fatty acid desaturase (FADS) gene cluster (human Chr11) are important regulators of long-chain (LC) polyunsaturated fatty acid (PUFA) biosynthesis in the liver and consequently have been associated with circulating LC-PUFA levels. More recently, epigenetic modifications such as DNA methylation, particularly within the FADS cluster, have been shown to affect LC-PUFA levels. Our lab previously demonstrated strong associations of allele-specific methylation (ASM) between a single nucleotide polymorphism (SNP) rs174537 and CpG sites across the FADS region in human liver tissues. Given that epigenetic signatures are tissue-specific, we aimed to evaluate the methylation status and ASM associations between rs174537 and DNA methylation obtained from human saliva, CD4+ cells and total leukocytes derived from whole blood. The goals were to (1) determine if DNA methylation from these peripheral samples would display similar ASM trends as previously observed in human liver tissues and (2) evaluate the associations between DNA methylation and circulating LC-PUFAs. Results DNA methylation at six CpG sites spanning FADS1 and FADS2 promoter regions and a putative FADS enhancer region were determined in two Caucasian cohorts of healthy volunteers: leukocytes in cohort 1 (n = 89, median age = 43, 35% male) and saliva and CD4+ cells in cohort 2 (n = 32, median age = 41, 41% male). Significant ASM between rs174537 and DNA methylation at three CpG sites located in the FADS2 promoter region (i.e., chr11:61594865, chr11:61594876, chr11:61594907) and one CpG site in the putative enhancer region (chr11:61587979) were observed with leukocytes. In CD4+ cells, significant ASM was observed at CpG sites chr11:61594876 and chr11:61584894. Genotype at rs174537 was significantly associated with DNA methylation from leukocytes. Similar trends were observed with CD4+ cells, but not with saliva. DNA methylation from leukocytes and CD4+ cells also significantly correlated with circulating omega-6 LC-PUFAs. Conclusions We observed significant ASM between rs174537 and DNA methylation at key regulatory regions in the FADS region from leukocyte and CD4+ cells. DNA methylation from leukocytes also correlated with circulating omega-6 LC-PUFAs. These results support the use of peripheral whole blood samples, with leukocytes showing the most promise for future nutrigenomic studies evaluating epigenetic modifications affecting LC-PUFA biosynthesis in humans.
Collapse
Affiliation(s)
- Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA USA
| | - Charlotte Mae K. Waits
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA USA
| | - Edward H. Kirby
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| | - Leslie R. Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| | - Hannah C. Ainsworth
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd/525 Vine Street, Winston-Salem, NC 27157-1063 USA
| | - Tao Cui
- Department of Urology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd/525 Vine Street, Winston-Salem, NC 27157-1063 USA
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| |
Collapse
|
49
|
Scorletti E, Byrne CD. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. Mol Aspects Med 2018; 64:135-146. [PMID: 29544992 DOI: 10.1016/j.mam.2018.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
For many years it has been known that high doses of long chain omega-3 fatty acids are beneficial in the treatment of hypertriglyceridaemia. Over the last three decades, there has also been a wealth of in vitro and in vivo data that has accumulated to suggest that long chain omega-3 fatty acid treatment might be beneficial to decrease liver triacylglycerol. Several biological mechanisms have been identified that support this hypothesis; notably, it has been shown that long chain omega-3 fatty acids have a beneficial effect: a) on bioactive metabolites involved in inflammatory pathways, and b) on alteration of nuclear transcription factor activities such as peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP), involved in inflammatory pathways and liver lipid metabolism. Since the pathogenesis of non alcoholic fatty liver disease (NAFLD) begins with the accumulation of liver lipid and progresses with inflammation and then several years later with development of fibrosis; it has been thought in patients with NAFLD omega-3 fatty acid treatment would be beneficial in treating liver lipid and possibly also in ameliorating inflammation. Meta-analyses (of predominantly dietary studies and small trials) have tended to support the assertion that omega-3 fatty acids are beneficial in decreasing liver lipid, but recent randomised controlled trials have produced conflicting data. These trials have suggested that omega-3 fatty acid might be beneficial in decreasing liver triglyceride (docosahexanoic acid also possibly being more effective than eicosapentanoic acid) but not in decreasing other features of steatohepatitis (or liver fibrosis). The purpose of this review is to discuss recent evidence regarding biological mechanisms by which long chain omega-3 fatty acids might act to ameliorate liver disease in NAFLD; to consider the recent evidence from randomised trials in both adults and children with NAFLD; and finally to discuss key 'known unknowns' that need to be considered, before planning future studies that are focussed on testing the effects of omega-3 fatty acid treatment in patients with NAFLD.
Collapse
Affiliation(s)
- Eleonora Scorletti
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Christopher D Byrne
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
50
|
Kim M, Kim M, Yoo HJ, Lee A, Jeong S, Lee JH. Associations among FADS1 rs174547, eicosapentaenoic acid/arachidonic acid ratio, and arterial stiffness in overweight subjects. Prostaglandins Leukot Essent Fatty Acids 2018; 130:11-18. [PMID: 29549917 DOI: 10.1016/j.plefa.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/29/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023]
Abstract
We aimed to evaluate the longitudinal interaction effects between the minor allele of FADS1 rs174547 and overweight on n-3 and n-6 long-chain polyunsaturated fatty acid (PUFA) levels and pulse wave velocity (PWV). Plasma PUFA levels were measured via GC-MS, and arterial stiffness was determined as brachial-ankle PWV (ba-PWV) at baseline and after a mean follow-up of 3 years. The FADS1 rs174547 T > C genotype was analyzed. At 3-years of follow-up, after adjustment for age, sex, smoking and drinking, there were interaction effects between the FADS1 rs174547 T > C genotype and baseline BMI on the changes (from baseline) in plasma arachidonic acid (AA) levels, in the eicosapentaenoic acid (EPA)/AA ratio, and in ba-PWV (p for interaction = 0.036, 0.022, and 0.001, respectively). There were smaller increases in AA levels from baseline among normal-weight C allele carriers (n = 112) and overweight TT subjects (n = 47) than among normal-weight TT subjects (n = 91). Overweight C allele carriers (n = 37) showed greater reductions in the plasma EPA/AA ratio and greater increases in ba-PWV than the 3 other populations studied. The minor allele of the FADS1 rs174547 polymorphism is associated with age-related decreases in the EPA/AA ratio and increases in ba-PWV among overweight subjects.
Collapse
Affiliation(s)
- M Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Republic of Korea
| | - M Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Republic of Korea
| | - H J Yoo
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - A Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea; Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - S Jeong
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea; Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - J H Lee
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Republic of Korea; National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea; Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|