1
|
Gounder SK, Chuturgoon AA, Ghazi T. Exploring the cardiotoxic potential of fumonisin B1 through inflammatory pathways and epigenetic modifications: A mini review. Toxicon 2025; 261:108374. [PMID: 40286825 DOI: 10.1016/j.toxicon.2025.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
This review is centered around the cardiotoxic effects of fumonisin B1 (FB1), particularly its impact on sphingolipid metabolism, inflammation, and epigenetics. FB1 is a mycotoxin produced by Fusarium fungi, which mainly contaminates cereal grains and poses an adverse health risk to both humans and animals; however, its disease-causing capabilities remain to be uncovered, specifically its ability to exacerbate and cause cardiovascular disease. It disrupts sphingolipid metabolism by inhibiting ceramide synthase, leading to cellular dysfunction and contributes to conditions such as hypertension and eventual heart failure. FB1 is responsible for an altered inflammatory response, whereby it increases pro-inflammatory cytokines such as IL-6 and IL-1β, which contribute to cardiovascular diseases. Moreover, FB1 induces significant epigenetic changes, including DNA hypermethylation, histone modifications such as increased H3K9me2 and H3K9me3, inhibition of histone acetyltransferase activity, and changes in microRNA expression profiles. These epigenetic alterations can silence or activate inflammatory genes, exacerbating disease progression. This review thus highlights the need for further research to elucidate the connections between FB1, inflammation, epigenetic modifications, and cardiotoxicity, which could lead to better strategies for managing FB1-related adverse health risks.
Collapse
Affiliation(s)
- Selwyn Kyle Gounder
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
2
|
Govender AC, Chuturgoon AA, Ghazi T. A review on fumonisin B 1-induced mitochondrial dysfunction and its impact on mitophagy and DNA methylation. Food Chem Toxicol 2025; 201:115458. [PMID: 40239833 DOI: 10.1016/j.fct.2025.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Fumonisin B1 (FB1) is a food-borne mycotoxin synthesized by Fusarium verticillioides and has been identified as a group 2B carcinogen. Recent research shows that the mitochondria and DNA in cells are targets of FB1. Mitophagy is a form of autophagy that functions to break down impaired mitochondria to preserve the overall functionality of the cell. DNA methylation is an epigenetic process that involves the enzymatic transfer of methyl groups from S-adenosylmethionine (SAM) to the C-5 region of the DNA cytosine ring by DNA methyltransferases (DNMTs). DNA methylation plays a key role in maintaining DNA integrity and FB1 disrupts DNA methylation via FB1-induced folate deficiency. However, there is limited research available on the impact of FB1 on mitophagy as well as FB1-induced oxidative stress and its influence on DNA methylation regulation. In this review, we aim to combine and summarize the current information on FB1-induced mitochondrial dysfunction, its impact on mitophagy as well as its DNA methylation effects.
Collapse
Affiliation(s)
- Anthia C Govender
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
3
|
Obafemi BA, Adedara IA, Delgado CP, Obafemi OT, Aschner M, Rocha JB. Fumonisin B1 neurotoxicity: Preclinical evidence, biochemical mechanisms and therapeutic strategies. Toxicol Rep 2025; 14:101931. [PMID: 39980663 PMCID: PMC11841125 DOI: 10.1016/j.toxrep.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
The neurotoxic effects of fungal toxins in both humans and animals have been well documented. Fumonisin B1 (FB1), a mycotoxin produced by fungi of the Fusarium species, is the most toxic fumonisin variant whose neurotoxic effect is still being elucidated. This review highlights the biochemical aspects of FB1 neurotoxicity, such as its mechanisms of action as well as therapeutic strategies. Both in vitro and in vivo studies have demonstrated that alteration in sphingolipid metabolism is a major event in FB-induced neurotoxicity. Studies have also shown that neurotoxicity due to FB1 involves dysregulation of several biochemical events in the brain, such as induction of oxidative stress and inflammation, mitochondrial dysfunction and associated programmed cell death, inhibition of acetylcholinesterase and alteration of neurotransmitter levels, decreased activity of Na+K+ ATPase, as well as disruption of blood-brain barrier. This review highlights the potential public health effects of FB1-induced neurotoxicity and the need to limit human and animal exposure to FB1in order to prevent its neurotoxic effect. Moreover, it is hoped that this review would stimulate studies aimed at filling the current research gaps such as delineating the effect of FB1 on the blood-brain barrier and appropriate therapies for neurotoxicity caused by FB1.
Collapse
Affiliation(s)
- Blessing A. Obafemi
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, Brazil
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaac A. Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Cássia Pereira Delgado
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, Brazil
| | - Olabisi T. Obafemi
- Department of Life and Consumer Sciences, University of South Africa, Florida 1710 Johannesburg, South Africa
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joao B.T. Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, Brazil
| |
Collapse
|
4
|
Incze DJ, Molnár Z, Nagy GN, Leveles I, Vértessy BG, Poppe L, Bata Z. Understanding the molecular mechanism of fumonisin esterases by kinetic and structural studies. Food Chem 2025; 473:143110. [PMID: 39892340 DOI: 10.1016/j.foodchem.2025.143110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Fumonisins are sphingolipid-like mycotoxins that cause serious damage by contaminating food and feed. The tricarballylic acid (TCA) units of fumonisin B1 (FB1; accounting for 70 % of fumonisin contamination) can be removed by fumonisin B1 esterase (FE, EC 3.1.1.87) providing a biotechnological FB1 detoxification possibility. Here, we report the regioselective cleavage of the TCA ester at C6 in the first step of FB1 hydrolysis and kinetic characterization for two FEs. The low KM values (4.76-44.3 μM) are comparable to concentrations of environmental contaminations, and the high catalytic efficiencies are promising for practical applications. The X-ray structure of one of the FEs enabled the understanding of the FB1 hydrolysis at molecular level and revealed an arginine pocket key for substrate binding, and the catalytic role of the glutamate preceding the catalytic serine. Computations showed that this FE is likely capable of detoxifying any fumonisin indicating its potential applicability in food and feed products.
Collapse
Affiliation(s)
- Dániel J Incze
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary; Dr. Bata Ltd., Research and Development Laboratory, Bajcsy-Zsilinszky u. 139, Ócsa 2364, Hungary
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary; Institute of Molecular Life Sciences, HUN-REN, Research Centre for Natural Sciences, Magyar Tudósok krt. 2, Budapest 1117, Hungary
| | - Gergely N Nagy
- Institute of Molecular Life Sciences, HUN-REN, Research Centre for Natural Sciences, Magyar Tudósok krt. 2, Budapest 1117, Hungary; Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Ibolya Leveles
- Institute of Molecular Life Sciences, HUN-REN, Research Centre for Natural Sciences, Magyar Tudósok krt. 2, Budapest 1117, Hungary; Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Beáta G Vértessy
- Institute of Molecular Life Sciences, HUN-REN, Research Centre for Natural Sciences, Magyar Tudósok krt. 2, Budapest 1117, Hungary; Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary; Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, Cluj-Napoca 400028, Romania.
| | - Zsófia Bata
- Dr. Bata Ltd., Research and Development Laboratory, Bajcsy-Zsilinszky u. 139, Ócsa 2364, Hungary.
| |
Collapse
|
5
|
Bergen J, Iriarte-Mesa C, Rieger J, Crudo F, Marko D, Kleitz F, Berthiller F, Del Favero G. Integrating physiologically-inspired nanoparticles with intestinal cell co-culture for enhanced activity profiling of food constituents and contaminants in vitro. Food Res Int 2025; 209:116206. [PMID: 40253175 DOI: 10.1016/j.foodres.2025.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Development of innovative in vitro test methods for the detection of potential health risks related to contaminants is imperative to food safety. Here we present an extended implementation for the intestinal model based on the human Caco-2/HT29-MTX-E12 co-culture which produces mucus and exhibits barrier function when differentiated. To simulate the presence of the microbiome, SiO2-based mesoporous rod-shaped nanoparticles (bacteria-like; bacNPs, 200 × 450 nm) were included adding an extra dimension to the system. Smaller SiO2-based mesoporous rod-shaped nanoparticles (srNPs, 35 × 160 nm) were used to mimic particulate matter present in the intestine as for the chyme transit. Synthetized and utilized to reproduce elements of the intestinal lumen, nanorods supported testing the interaction with the intestinal cells and mucus at the nanoscale. To start exploring the applicability of the model, the mycotoxin fumonisin B1 (10-100 μM) produced by Fusarium spp. was chosen as a test substance due to its wide occurrence and hazardous potential. As fumonisins are known to hamper lipid metabolism, palmitic acid (25-100 μM) - one of the most prevalent fatty acids in our diets - was additionally used. Significantly for the reproduction of in vivo physiology, srNPs penetrated through the mucus layer resulting in the modulation of intercellular distances and paracellular permeability in conjunction with exposure to fumonisin B1. This enabled the quantification of a response which was not detectable using exclusively the Caco-2/HT29-MTX-E12 model and paves the way toward the creation of systems that more efficiently support the screening of food contaminants in vitro.
Collapse
Affiliation(s)
- Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Claudia Iriarte-Mesa
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Joshua Rieger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Francesco Crudo
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Franz Berthiller
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, (BOKU), Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Hannun YA, Merrill AH, Luberto C. The Bioactive Sphingolipid Playbook. A Primer for the Uninitiated as well as Sphingolipidologists. J Lipid Res 2025:100813. [PMID: 40254066 DOI: 10.1016/j.jlr.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Sphingolipids and glycosphingolipids are among the most structurally diverse and complex compounds in the mammalian metabolome. They are well known to play important roles in biological architecture, cell-cell communication and cellular regulation, and for many biological processes, multiple sphingolipids are involved. Thus, it is not surprising that untargeted genetic/transcriptomic/pharmacologic/metabolomic screens have uncovered changes in sphingolipids and sphingolipid genes/proteins while studying physiological and pathological processes. Consequently, with increasing frequency, both targeted and untargeted mass spectrometry methodologies are being used to conduct sphingolipidomic analyses. Interpretation of such large data sets and design of follow-up experiments can be daunting for investigators with limited expertise with sphingolipids (and sometimes even for someone well-versed in sphingolipidology). Therefore, this review gives an overview of essential elements of sphingolipid structure and analysis, metabolism, functions, and roles in disease, and discusses some of the items to consider when interpreting lipidomics data and designing follow-up investigations.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Departments of Biochemistry, Medicine, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Chiara Luberto
- Department of Physiology and Biophysics, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Pascoa TC, Pike ACW, Tautermann CS, Chi G, Traub M, Quigley A, Chalk R, Štefanić S, Thamm S, Pautsch A, Carpenter EP, Schnapp G, Sauer DB. Structural basis of the mechanism and inhibition of a human ceramide synthase. Nat Struct Mol Biol 2025; 32:431-440. [PMID: 39528795 PMCID: PMC11919693 DOI: 10.1038/s41594-024-01414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Ceramides are bioactive sphingolipids crucial for regulating cellular metabolism. Ceramides and dihydroceramides are synthesized by six ceramide synthase (CerS) enzymes, each with specificity for different acyl-CoA substrates. Ceramide with a 16-carbon acyl chain (C16 ceramide) has been implicated in obesity, insulin resistance and liver disease and the C16 ceramide-synthesizing CerS6 is regarded as an attractive drug target for obesity-associated disease. Despite their importance, the molecular mechanism underlying ceramide synthesis by CerS enzymes remains poorly understood. Here we report cryo-electron microscopy structures of human CerS6, capturing covalent intermediate and product-bound states. These structures, along with biochemical characterization, reveal that CerS catalysis proceeds through a ping-pong reaction mechanism involving a covalent acyl-enzyme intermediate. Notably, the product-bound structure was obtained upon reaction with the mycotoxin fumonisin B1, yielding insights into its inhibition of CerS. These results provide a framework for understanding CerS function, selectivity and inhibition and open routes for future drug discovery.
Collapse
Affiliation(s)
- Tomas C Pascoa
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ashley C W Pike
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Traub
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany
| | - Andrew Quigley
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Membrane Protein Laboratory, Research Complex at Harwell, Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rod Chalk
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Saša Štefanić
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
- Nanobody Service Facility, University of Zürich, AgroVet-Strickhof, Lindau, Switzerland
| | - Sven Thamm
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany
| | | | - Elisabeth P Carpenter
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany.
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Aires C, Maioto R, Inês A, Dias AA, Rodrigues P, Egas C, Sampaio A. Microbiome and Microbiota Within Wineries: A Review. Microorganisms 2025; 13:538. [PMID: 40142431 PMCID: PMC11944700 DOI: 10.3390/microorganisms13030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The main goal of this work is to review the winery's microbiota, from the grape to the winery's microbial niches (fermentation tanks, surfaces, air), and their risks to wine and human health. The impact of climate change on the winery microbiome and related challenges are also discussed. Microbial diversity in wineries depends on several factors, such as the grape variety and its ripeness, temperature, relative humidity and the diverse activities of the winemaking process. Winery surfaces and equipment allow the establishment of a microbial community that can impact wine quality, the health of winery workers and visitors and even wine consumers. In the context of climate change, changes in the sugar content, phenolic compounds and the profile of hexoses and amino acids are already evident. These changes interfere with the fermentation microbiota and the quality of the wines, which are more alcoholic and less acidic. Furthermore, periods of drought or heavy rain favor species associated with berry diseases, including some capable of producing mycotoxins or harmful biogenic amines. In order to understand the impact of these changes on microbial communities, the use of various techniques will be discussed, such as flow cytometry, fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (qPCR) and metagenomic methods.
Collapse
Affiliation(s)
- Cristina Aires
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.A.); (R.M.); (A.A.D.)
| | - Rita Maioto
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.A.); (R.M.); (A.A.D.)
| | - António Inês
- Centro de Química Vila Real (CQ-VR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Albino Alves Dias
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.A.); (R.M.); (A.A.D.)
- Laboratório Associado Instituto para a Inovação, Capacitação e Sustentabilidade da Produção Agroalimentar (INOV4AGRO), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Conceição Egas
- Genoinseq—Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - Ana Sampaio
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.A.); (R.M.); (A.A.D.)
- Laboratório Associado Instituto para a Inovação, Capacitação e Sustentabilidade da Produção Agroalimentar (INOV4AGRO), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
9
|
Lassallette E, Pierron A, Tardieu D, Reymondaud S, Gallissot M, Rodriguez MA, Collén PN, Roy O, Guerre P. Biomarkers of Fumonisin Exposure in Pigs Fed the Maximum Recommended Level in Europe. Toxins (Basel) 2025; 17:69. [PMID: 39998086 PMCID: PMC11861712 DOI: 10.3390/toxins17020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
This study investigated biomarkers of fumonisin exposure in pigs fed diets contaminated with fumonisins at the European Union's maximum recommended level. Pigs were assigned to either a fumonisin (FB) diet or a fumonisin plus AlgoClay (FB + AC) diet for durations of 4, 9, and 14 days. At 14 days, the plasma Sa1P:So1P ratio increased in pigs fed the FB diet, while the Sa:So ratio remained unchanged. In the liver, FB1 was detected at four days of exposure, with the concentration tending to increase through day 14. The Sa:So and C22-24:C16 ratios of 18:1-, 18:2-, and m18:1-ceramides were elevated at 9 and 14 days, respectively. In the kidneys, FB1 was only detectable at 14 days, and the Sa:So and C22-24:C16 ratios of 18:1-ceramides were increased. In both the liver and kidneys, the increase in the C22-24:C16 ratio was attributed to a reduction of C16 ceramides. In the lungs, no FB1 was detected; however, the Sa:So and Sa1P:So1P ratios increased, and C16 ceramide concentrations decreased at 14 days. Feeding the pigs the FB + AC diet resulted in a reduction of the FB1 tissue-to-feed ratio in the liver and kidneys but did not affect the Sa:So or Sa1P:So1P ratios. Interestingly, the decreases in C16 ceramides observed in the FB diet group were no longer detectable in the FB + AC group. Overall, these findings highlight the complexity of the relationship between FB1 tissue concentrations and sphingolipid changes, suggesting that a comprehensive analysis of multiple biomarkers is required to fully understand fumonisin's effects.
Collapse
Affiliation(s)
- Elodie Lassallette
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | - Alix Pierron
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Solène Reymondaud
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Marie Gallissot
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | | | - Pi Nyvall Collén
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | - Olivier Roy
- Cebiphar, 1 Rue de la Bodinière, 37230 Fondettes, France;
| | - Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| |
Collapse
|
10
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
12
|
Anumudu CK, Ekwueme CT, Uhegwu CC, Ejileugha C, Augustine J, Okolo CA, Onyeaka H. A Review of the Mycotoxin Family of Fumonisins, Their Biosynthesis, Metabolism, Methods of Detection and Effects on Humans and Animals. Int J Mol Sci 2024; 26:184. [PMID: 39796041 PMCID: PMC11719890 DOI: 10.3390/ijms26010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Fumonisins, a class of mycotoxins predominantly produced by Fusarium species, represent a major threat to food safety and public health due to their widespread occurrence in staple crops including peanuts, wine, rice, sorghum, and mainly in maize and maize-based food and feed products. Although fumonisins occur in different groups, the fumonisin B series, particularly fumonisin B1 (FB1) and fumonisin B2 (FB2), are the most prevalent and toxic in this group of mycotoxins and are of public health significance due to the many debilitating human and animal diseases and mycotoxicosis they cause and their classification as by the International Agency for Research on Cancer (IARC) as a class 2B carcinogen (probable human carcinogen). This has made them one of the most regulated mycotoxins, with stringent regulatory limits on their levels in food and feeds destined for human and animal consumption, especially maize and maize-based products. Numerous countries have regulations on levels of fumonisins in foods and feeds that are intended to protect human and animal health. However, there are still gaps in knowledge, especially with regards to the molecular mechanisms underlying fumonisin-induced toxicity and their full impact on human health. Detection of fumonisins has been advanced through various methods, with immunological approaches such as Enzyme-Linked Immuno-Sorbent Assay (ELISA) and lateral flow immunoassays being widely used for their simplicity and adaptability. However, these methods face challenges such as cross-reactivity and matrix interference, necessitating the need for continued development of more sensitive and specific detection techniques. Chromatographic methods, including HPLC-FLD, are also employed in fumonisin analysis but require meticulous sample preparation and derivitization due to the low UV absorbance of fumonisins. This review provides a comprehensive overview of the fumonisin family, focusing on their biosynthesis, occurrence, toxicological effects, and levels of contamination found in foods and the factors affecting their presence. It also critically evaluates the current methods for fumonisin detection and quantification, including chromatographic techniques and immunological approaches such as ELISA and lateral flow immunoassays, highlighting the challenges associated with fumonisin detection in complex food matrices and emphasizing the need for more sensitive, rapid, and cost-effective detection methods.
Collapse
Affiliation(s)
- Christian Kosisochukwu Anumudu
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
| | - Chiemerie T. Ekwueme
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
- School of Health and Life Sciences, Teeside University, Darlington TS1 3BX, UK
| | - Chijioke Christopher Uhegwu
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
- Bioinformatics and Genomics Research Unit, Genomac Institute, Ogbomosho, Oyo State, Nigeria
| | - Chisom Ejileugha
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK;
- Department of Science Laboratory Technology (Microbiology), Imo State Polytechnic, Omuma 474110, Imo State, Nigeria
| | - Jennifer Augustine
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
| | - Chioke Amaefuna Okolo
- Department of Food Science and Technology, Nnamdi Azikiwe University, Awka 420110, Anambra State, Nigeria;
- FOCAS Research Institute, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
13
|
Guerre P, Lassallette E, Guerre A, Tardieu D. Effects of the Maximum Recommended Levels of Fumonisins in the EU on Oxylipin Profiles in the Liver and Brain of Chickens. Antioxidants (Basel) 2024; 14:19. [PMID: 39857353 PMCID: PMC11762805 DOI: 10.3390/antiox14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
This study aimed to assess the effects of a diet containing 20.8 mg FB1 + FB2/kg over four and nine days on oxylipin (OL) profiles in the liver and brain of chickens. A total of 96 OLs, derived from seven polyunsaturated fatty acids (PUFAs) via the cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (P450), and non-enzymatic pathways, were measured using HPLC-MS/MS. In the liver, a significant increase in epoxide P450-derived OLs was detected by day 4, with smaller but notable increases in COX- and LOX-derived OLs by day 9. These alterations were independent of whether the parent PUFA was ω6 or ω3. However, OLs derived from 18-carbon (C18) PUFAs, such as linoleic acid and alpha-linolenic acid, showed greater increases compared to those derived from C20 or C22 PUFAs. The diol/epoxide ratios in the liver decreased at four and nine days, suggesting that fumonisins did not induce an inflammatory response. In the brain, at four days, the most discriminative OLs were derived from ω3-PUFAs, including docosahexaenoic acid, docosapentaenoic acid, and alpha-linolenic acid, via the LOX pathway. By nine days, several OLs derived from arachidonic acid, spanning all enzymatic pathways, became discriminative. In general, the diol/epoxide ratios in the brain were decreased at 4 days and then returned to the initial levels. Taken together, these results show strong effects of fumonisins on OLs in the liver and brain that are both specific and distinct.
Collapse
Affiliation(s)
- Philippe Guerre
- IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France; (E.L.); (A.G.); (D.T.)
| | | | | | | |
Collapse
|
14
|
Karaman EF, Abudayyak M, Guler ZR, Bektas S, Kaptan E, Ozden S. The effects of fumonisin B1 on intercellular communications and miRNA modulations: Non-genotoxic carcinogenesis mechanisms in human kidney cells. Toxicology 2024; 509:153968. [PMID: 39414224 DOI: 10.1016/j.tox.2024.153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Fumonisin B1 (FB1), which is produced by Fusarium species, is one of the most prevalent mycotoxins known to exert several toxic effects, particularly nephrotoxicity. While its genotoxic carcinogenic mechanisms have been extensively studied, its influence on non-genotoxic pathways including intercellular communication and microRNA (miRNA) regulation remain underexplored. The present study investigates the effects of FB1 on gap junctions, miRNA expression profiles, and their relationship in human kidney cells (HK-2 and HEK293). Both cell lines showed increased apoptosis rates at 50 and 100 µM, while FB1 exposure significantly reduced gap junctional intercellular communication (GJIC) and decreased the expression levels of related genes, including Cx43, Cx45, e-cadherin, Cadherin-2, and β-catenin. After FB1 treatments alteration on the regulation of miRNAs including let-7a-5p, miR-125a-5p, miR-222-3p, miR-92a-3p, let-7b-5p, let-7e-5p, miR-21-5p, miR-155-5p, let-7i-5p, let-7d-5p, let-7f-5p, miR-181b-5p, miR-15b-5p, miR-23b-3p, miR-20b-5p, miR-196a-5p miRNAs have been shown. Let-7a-5p was selected among the altered miRNAs to elucidate the relationship between miRNAs and GJIC after FB1 exposure as it is one of the common miRNAs that changes in both cell lines and one of its target genes is Cx45, which is an important gene for GJIC. However, transfection analysis did not show any differences, resulting in Cx45 not being a direct target of let-7a-5p in HK-2 and HEK-293 cells. Through comprehensive analysis, we elucidated that FB1's impact on intercellular signaling cascades and its regulatory role on miRNA expression profiles, offering valuable insights into carcinogenesis beyond traditional genotoxic paradigms. Understanding these mechanisms is crucial for elucidating the mechanisms of FB1-induced toxicity.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Topkapi, Istanbul 34015, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey.
| |
Collapse
|
15
|
González-Ramírez EJ, García-Arribas AB, Artetxe I, Shaw WA, Goñi FM, Alonso A, Jiménez-Rojo N. (1-Deoxy)ceramides in bilayers containing sphingomyelin and cholesterol. Colloids Surf B Biointerfaces 2024; 243:114155. [PMID: 39137529 DOI: 10.1016/j.colsurfb.2024.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The discovery of a novel sphingolipid subclass, the (1-deoxy)sphingolipids, which lack the 1-hydroxy group, attracted considerable attention in the last decade, mainly due to their involvement in disease. They differed in their physico-chemical properties from the canonical (or 1-hydroxy) sphingolipids and they were more toxic when accumulated in cells, inducing neurodegeneration and other dysfunctions. (1-Deoxy)ceramides, (1-deoxy)dihydroceramides, and (1- deoxymethyl)dihydroceramides, the latter two containing a saturated sphingoid chain, have been studied in this work using differential scanning calorimetry, confocal fluorescence and atomic force microscopy, to evaluate their behavior in bilayers composed of mixtures of three or four lipids. When compared to canonical ceramides (Cer), a C16:0 (1-deoxy)Cer shows a lower miscibility in mixtures of the kind C16:0 sphingomyelin/cholesterol/XCer, where XCer is any (1-deoxy)ceramide, giving rise to the coexistence of a liquid-ordered phase and a gel phase. The latter resembles, in terms of thermotropic behavior and nanomechanical resistance, the gel phase of the C16:0 sphingomyelin/cholesterol/C16:0 Cer mixture [Busto et al., Biophys. J. 2014, 106, 621-630]. Differences are seen between the various C16:0 XCer under study in terms of nanomechanical resistance, bilayer thickness and bilayer topography. When examined in a more fluid environment (bilayers based on C24:1 SM), segregated gel phases are still present. Probably related to such lateral separation, XCer preserve the capacity for membrane permeation, but their effects are significantly lower than those of canonical ceramides. Moreover, C24:1 XCer show significantly lower membrane permeation capacity than their C16:0 counterparts. The above data may be relevant in the pathogenesis of certain sphingolipid-related diseases, including certain neuropathies, diabetes, and glycogen storage diseases.
Collapse
Affiliation(s)
- E J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - A B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - I Artetxe
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - W A Shaw
- Avanti Polar Lipids, Alabaster, AL, USA
| | - F M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - A Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain.
| | - N Jiménez-Rojo
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain.
| |
Collapse
|
16
|
van Drie RWA, van de Wouw J, Zandbergen LM, Dehairs J, Swinnen JV, Mulder MT, Verhaar MC, MaassenVanDenBrink A, Duncker DJ, Sorop O, Merkus D. Vasodilator reactive oxygen species ameliorate perturbed myocardial oxygen delivery in exercising swine with multiple comorbidities. Basic Res Cardiol 2024; 119:869-887. [PMID: 38796544 PMCID: PMC11461570 DOI: 10.1007/s00395-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Multiple common cardiovascular comorbidities produce coronary microvascular dysfunction. We previously observed in swine that a combination of diabetes mellitus (DM), high fat diet (HFD) and chronic kidney disease (CKD) induced systemic inflammation, increased oxidative stress and produced coronary endothelial dysfunction, altering control of coronary microvascular tone via loss of NO bioavailability, which was associated with an increase in circulating endothelin (ET). In the present study, we tested the hypotheses that (1) ROS scavenging and (2) ETA+B-receptor blockade improve myocardial oxygen delivery in the same female swine model. Healthy female swine on normal pig chow served as controls (Normal). Five months after induction of DM (streptozotocin, 3 × 50 mg kg-1 i.v.), hypercholesterolemia (HFD) and CKD (renal embolization), swine were chronically instrumented and studied at rest and during exercise. Sustained hyperglycemia, hypercholesterolemia and renal dysfunction were accompanied by systemic inflammation and oxidative stress. In vivo ROS scavenging (TEMPOL + MPG) reduced myocardial oxygen delivery in DM + HFD + CKD swine, suggestive of a vasodilator influence of endogenous ROS, while it had no effect in Normal swine. In vitro wire myography revealed a vasodilator role for hydrogen peroxide (H2O2) in isolated small coronary artery segments from DM + HFD + CKD, but not Normal swine. Increased catalase activity and ceramide production in left ventricular myocardial tissue of DM + HFD + CKD swine further suggest that increased H2O2 acts as vasodilator ROS in the coronary microvasculature. Despite elevated ET-1 plasma levels in DM + HFD + CKD swine, ETA+B blockade did not affect myocardial oxygen delivery in Normal or DM + HFD + CKD swine. In conclusion, loss of NO bioavailability due to 5 months exposure to multiple comorbidities is partially compensated by increased H2O2-mediated coronary vasodilation.
Collapse
Affiliation(s)
- R W A van Drie
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - L M Zandbergen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany
| | - J Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - M T Mulder
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A MaassenVanDenBrink
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - O Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - D Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), University Clinic Munich, LMU, Munich, Germany.
| |
Collapse
|
17
|
Zhang Z, Fang Q, Xie T, Gong X. Mechanism of ceramide synthase inhibition by fumonisin B 1. Structure 2024; 32:1419-1428.e4. [PMID: 38964337 DOI: 10.1016/j.str.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Ceramide synthases (CerSs) play crucial roles in sphingolipid metabolism and have emerged as promising drug targets for metabolic diseases, cancers, and antifungal therapy. However, the therapeutic targeting of CerSs has been hindered by a limited understanding of their inhibition mechanisms by small molecules. Fumonisin B1 (FB1) has been extensively studied as a potent inhibitor of eukaryotic CerSs. In this study, we characterize the inhibition mechanism of FB1 on yeast CerS (yCerS) and determine the structures of both FB1-bound and N-acyl-FB1-bound yCerS. Through our structural analysis and the observation of N-acylation of FB1 by yCerS, we propose a potential ping-pong catalytic mechanism for FB1 N-acylation by yCerS. Lastly, we demonstrate that FB1 exhibits lower binding affinity for yCerS compared to the C26- coenzyme A (CoA) substrate, suggesting that the potent inhibitory effect of FB1 on yCerS may primarily result from the N-acyl-FB1 catalyzed by yCerS, rather than through direct binding of FB1.
Collapse
Affiliation(s)
- Zike Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qi Fang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xin Gong
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
18
|
Hu K, Cao Y. Ping, pong, and freeze: Structural insights into the inhibition of ceramide synthase by Fumonisin B1. Structure 2024; 32:1296-1298. [PMID: 39241761 DOI: 10.1016/j.str.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Fumonisin B1 (FB1) targets sphingolipid biosynthesis, inhibiting ceramide synthases. In this issue of Structure, Zhang et al.1 determined the cryoelectron microscopic structures of yeast ceramide synthase in complex with FB1 and its acylated derivative, acyl-FB1, revealing a two-step "ping-pong" mechanism for the N-acylation of FB1 and how it inhibits ceramide synthase.
Collapse
Affiliation(s)
- Kexin Hu
- Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China.
| | - Yu Cao
- Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China; Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
19
|
Tsouloufi TK. An overview of mycotoxicoses in rabbits. J Vet Diagn Invest 2024; 36:638-654. [PMID: 38804173 PMCID: PMC11457744 DOI: 10.1177/10406387241255945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycotoxicoses are usually a consideration in large animal species but can affect companion animals as well. Due to increasing interest and the ease of using rabbits as laboratory models, a growing number of published experimental studies discuss the effects of various mycotoxins on this species. However, the available evidence is fragmented and heterogeneous, and has not recently been collated in a review, to my knowledge. Although mycotoxicoses in rabbits are typically subclinical, clinical signs can include weight loss, anorexia, gastrointestinal disorders, stunted growth, reproductive abnormalities, and susceptibility to infections. An antemortem diagnosis typically relies on a comprehensive clinical history, and assessment of clinical signs and relevant laboratory findings, with confirmation of exposure achieved through the measurement of mycotoxin concentrations in feed or target organs. My review focuses on the clinicopathologic and histopathologic effects of the mycotoxins most important in rabbits, including fumonisins, ochratoxins, aflatoxins, trichothecenes, and zearalenone. This review offers a thorough overview of the effects of mycotoxins in rabbits, serving as a one-stop resource for veterinary practitioners, diagnosticians, and researchers.
Collapse
|
20
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
21
|
Mary VS, Vélez PA, Quiroz S, Beccacece I, Otaiza-González SN, Chiapello LS, Rubinstein HR, Theumer MG. Involvement of aryl hydrocarbon receptor in the aflatoxin B 1 and fumonisin B 1 effects on in vitro differentiation of murine regulatory-T and Th17 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48758-48772. [PMID: 39039370 DOI: 10.1007/s11356-024-34421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely found as cereal contaminants, and their co-consumption is associated with liver cancer. Both are immunotoxic, but their interactions have been little studied. This work was aimed to evaluate in mouse spleen mononuclear cells (SMC) the effects of the exposure to AFB1 (5-50 µM), FB1 (25-250 µM), and AFB1-FB1 mixtures (MIX) on the in vitro differentiation of regulatory T cells (Treg and Tr1-like) and Th17 cells, as well as elucidate the contribution of aryl hydrocarbon receptor (Ahr) in such effects. AFB1 and mainly MIX induced cytotoxicity in activated CD4 cells via Ahr signaling. AFB1 (5 µM) increased the Treg cell differentiation, but its combination with FB1 (25 µM) also reduced Th17 cell expansion by Ahr-dependent mechanisms. Therefore, this mixture could enhance the Treg/Th17 cell ratio and favor immunosuppression and escape from tumor immunosurveillance to a greater extent than individual mycotoxins. Whereas, AFB1-FB1 mixtures at medium-high doses inhibited the Tr1-like cell expansion induced by the individual mycotoxins and affected Treg and Th17 cell differentiation in Ahr-independent and dependent manners, respectively, which could alter anti-inflammatory and Th17 immune responses. Moreover, individual FB1 altered regulatory T and Th17 cell development independently of Ahr. In conclusion, AFB1 and FB1 interact by modifying Ahr signaling, which is involved in the immunotoxicity as well as in the alteration of the differentiation of Treg, Tr1-like, and Th17 cells induced by AFB1-FB1 mixtures. Therefore, Ahr is implicated in the regulation of the anti- and pro-inflammatory responses caused by the combination of AFB1 and FB1.
Collapse
Affiliation(s)
- Verónica Sofía Mary
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Pilar Andrea Vélez
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Sol Quiroz
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ignacio Beccacece
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Santiago Nicolás Otaiza-González
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Laura Silvina Chiapello
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Héctor Ramón Rubinstein
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Martín Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
22
|
Li T, Li J, Wang J, Xue KS, Su X, Qu H, Duan X, Jiang Y. The occurrence and management of fumonisin contamination across the food production and supply chains. J Adv Res 2024; 60:13-26. [PMID: 37544477 PMCID: PMC11156612 DOI: 10.1016/j.jare.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Fumonisins (FUMs) are among the most common mycotoxins in plant-derived food products. FUMs contamination has considerably impacted human and animal health, while causing significant economic losses. Hence, management of FUMs contamination in food production and supply chains is needed. The toxicities of FUMs have been widely investigated. FUMs management has been reported and several available strategies have been developed successfully to mitigate FUMs contamination present in foods. However, currently available management of FUMs contamination from different phases of food chains and the mechanisms of some major strategies are not comprehensively summarized. AIM OF REVIEW This review comprehensively characterize the occurrence, impacts, and management of FUMs contamination across food production and supply chains. Pre- and post-harvest strategies to prevent FUMs contamination also are reviewed, with an emphasis on the potential applications and the mechanisms of major mitigation strategies. The presence of modified FUMs products and their potential toxic effects are also considered. Importantly, the potential application of biotechnological approaches and emerging technologies are enunciated. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently available pre- and post-harvest management of FUMs contamination primarily involves prevention and decontamination. Prevention strategies are mainly based on limiting fungal growth and FUMs biosynthesis. Decontamination strategies are implemented through alkalization, hydrolysis, thermal or chemical transformation, and enzymatic or chemical degradation of FUMs. Concerns have been raised about toxicities of modified FUMs derivatives, which presents challenges for reducing FUMs contamination in foods with conventional methodologies. Integrated prevention and decontamination protocols are recommended to control FUMs contamination across entire value chains in developed countries. In developing countries, several other approaches, including cultivating, introducing Bt maize, simple sorting/cleaning, and dehulling, are suggested. Future studies should focus on biotechnological approaches, emerging technologies, and metagenomic/genomic identification of new degradation enzymes that could allow better opportunities to manage FUMs contamination in the entire food system.
Collapse
Affiliation(s)
- Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiajia Li
- College of Tourism and Planning, Pingdingshan University, Pingdingshan 467000, China
| | - Jiasheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Xinguo Su
- Tropical Agriculture and Forestry College, Guangdong AIB Polytechnic, No. 198, Yueken Road, Tianhe District, Guangzhou 510507, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
23
|
Guerre P, Lassallette E, Beaujardin-Daurian U, Travel A. Fumonisins alone or mixed with other fusariotoxins increase the C22-24:C16 sphingolipid ratios in chicken livers, while deoxynivalenol and zearalenone have no effect. Chem Biol Interact 2024; 395:111005. [PMID: 38615975 DOI: 10.1016/j.cbi.2024.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Poultry feed is often contaminated with fumonisins, deoxynivalenol, and zearalenone, which can result in oxidative damage, inflammation and change in lipid metabolism. Although sphingolipids play key roles in cells, only the effects of fumonisins on the sphingolipidome are well-documented. In chickens, fumonisins have been shown to increase the sphinganine to sphingosine ratio and the C22-24:C16 sphingolipid ratio, which has been proposed as a new biomarker of toxicity. In this study, we used UHPLC-MSMS targeted analysis to measure the effect of fusariotoxins on sphingolipids in the livers of chickens fed with diets containing fusariotoxins administered individually and in combination, at the maximum levels recommended by the European Commission. Chickens were exposed from hatching until they reached 35 days of age. This study revealed for the first time that fumonisins, deoxynivalenol, and zearalenone alone and in combination have numerous effects on the sphingolipidome in chicken livers. A 30-50 % decrease in ceramide, dihydroceramide, sphingomyelin, dihydrosphingomyelin, monohexosylceramide and lactosylceramide measured at the class level was observed when fusariotoxins were administered alone, whereas a 30-100 % increase in dihydroceramide, sphingomyelin, dihydrosphingomyelin, and monohexosylceramide was observed when the fusariotoxins were administered in combination. For these different variables, strong significant interactions were observed between fumonisins and zearalenone and between fumonisins and deoxynivalenol, whereas interactions between deoxynivalenol and zearalenone were less frequent and less significant. Interestingly, an increase in the C22-24:C16 ratio of ceramides, sphingomyelins, and monohexosylceramides was observed in chickens fed the diets containing fumonisins only, and this increase was close when the toxin was administered alone or in combination with deoxynivalenol and zearalenone. This effect mainly corresponded to a decrease in sphingolipids with a fatty acid chain length of 16 carbons, whereas C22-24 sphingolipids were unaffected or increased. In conclusion the C22-24:C16 ratio emerged as a specific biomarker, with variations dependent only on the presence of fumonisins.
Collapse
Affiliation(s)
- Philippe Guerre
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | | | | |
Collapse
|
24
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
25
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
26
|
Seth T, Asija S, Umar S, Gupta R. The intricate role of lipids in orchestrating plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111904. [PMID: 37925973 DOI: 10.1016/j.plantsci.2023.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Plants are exposed to a variety of pests and pathogens that reduce crop productivity. Plants respond to such attacks by activating a sophisticated signaling cascade that initiates with the recognition of pests/pathogens and may culminate into a resistance response. Lipids, being the structural components of cellular membranes, function as mediators of these signaling cascades and thus are instrumental in the regulation of plant defense responses. Accumulating evidence indicates that various lipids such as oxylipins, phospholipids, glycolipids, glycerolipids, sterols, and sphingolipids, among others, are involved in mediating cell signaling during plant-pathogen interaction with each lipid exhibiting a specific biological relevance, follows a distinct biosynthetic mechanism, and contributes to specific signaling cascade(s). Omics studies have further confirmed the involvement of lipid biosynthetic enzymes including the family of phospholipases in the production of defense signaling molecules subsequent to pathogen attack. Lipids participate in stress signaling by (1) mediating the signal transduction, (2) acting as precursors for bioactive molecules, (3) regulating ROS formation, and (4) interacting with various phytohormones to orchestrate the defense response in plants. In this review, we present the biosynthetic pathways of different lipids, their specific functions, and their intricate roles upstream and downstream of phytohormones under pathogen attack to get a deeper insight into the molecular mechanism of lipids-mediated regulation of defense responses in plants.
Collapse
Affiliation(s)
- Tanashvi Seth
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sejal Asija
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea.
| |
Collapse
|
27
|
Vishwakarma M, Haider T, Soni V. Update on fungal lipid biosynthesis inhibitors as antifungal agents. Microbiol Res 2024; 278:127517. [PMID: 37863019 DOI: 10.1016/j.micres.2023.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Fungal diseases today represent a world-wide problem. Poor hygiene and decreased immunity are the main reasons behind the manifestation of this disease. After COVID-19, an increase in the rate of fungal infection has been observed in different countries. Different classes of antifungal agents, such as polyenes, azoles, echinocandins, and anti-metabolites, as well as their combinations, are currently employed to treat fungal diseases; these drugs are effective but can cause some side effects and toxicities. Therefore, the identification and development of newer antifungal agents is a current need. The fungal cell comprises many lipids, such as ergosterol, phospholipids, and sphingolipids. Ergosterol is a sterol lipid that is only found in fungal cells. Various pathways synthesize all these lipids, and the activities of multiple enzymes govern these pathways. Inhibiting these enzymes will ultimately impede the lipid synthesis pathway, and this phenomenon could be a potential antifungal therapy. This review will discuss various lipid synthesis pathways and multiple antifungal agents identified as having fungal lipid synthesis inhibition activity. This review will identify novel compounds that can inhibit fungal lipid synthesis, permitting researchers to direct further deep pharmacological investigation and help develop drug delivery systems for such compounds.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India; Amity Institute of Pharmacy, Amity University, Gwalior, M.P., India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India.
| |
Collapse
|
28
|
Wang Z, Lv Z, Czabany T, Nagl V, Krska R, Wang X, Han B, Tao H, Liu J, Wang J. Comparison Study of Two Fumonisin-Degrading Enzymes for Detoxification in Piglets. Toxins (Basel) 2023; 16:3. [PMID: 38276527 PMCID: PMC10819594 DOI: 10.3390/toxins16010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Fumonisins (FBs), particularly fumonisin B1 (FB1) and fumonisin B2 (FB2) produced mainly by Fusarium verticillioide and Fusarium proliferatum, are common contaminants in animal feed and pose a serious threat to both animal and human health. The use of microbial enzymes to efficiently and specifically convert fumonisins into non-toxic or low-toxic metabolites has emerged as the most promising approach. However, most of the available enzymes have only been evaluated in vitro and lack systematic evaluation in vivo. In this study, the detoxification efficacy of two carboxylesterases, FumD (FUMzyme®) and FumDSB, was evaluated comparatively in piglets. The results show that feeding piglets 4.4 mg/kg FBs-contaminated diets for 32 days did not significantly affect the average daily gain, organ indices, and immunoglobulins of the piglets. However, a significant reduction (21.2%) in anti-inflammatory cytokine interleukin-4 was observed in the FBs group, and supplementation with FUMzyme® and FumDSB significantly increased interleukin-4 by 62.1% and 28.0%, respectively. In addition, FBs-contaminated diets resulted in a 3-fold increase in the serum sphinganine/sphingosine (Sa/So) ratio, which is a specific biomarker that has been used to accurately reflect fumonisin levels. The serum Sa/So ratio was significantly reduced by 48.8% after the addition of FUMzyme®, and was insignificantly reduced by 8.2% in the FumDSB group. These results suggested that FUMzyme was more effective than FumDSB in mitigating FBs toxicity in piglets by down-regulating the Sa/So ratio.
Collapse
Affiliation(s)
- Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Zonghao Lv
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Furong District, Changsha 410128, China
| | - Tibor Czabany
- dsm-firmenich, Animal Nutrition and Health R&D Center, Technopark 1, 3430 Tulln, Austria (V.N.)
| | - Veronika Nagl
- dsm-firmenich, Animal Nutrition and Health R&D Center, Technopark 1, 3430 Tulln, Austria (V.N.)
| | - Rudolf Krska
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria;
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast BT7 1NN, UK
- Austrian Competence Centre for Feed and Food Quality, Safety & InnovationFFoQSI GmbH, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jie Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
29
|
Lassallette E, Collén PN, Guerre P. Targeted sphingolipidomics indicates increased C22-C24:16 ratios of virtually all assayed classes in liver, kidney, and plasma of fumonisin-fed chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115697. [PMID: 37979349 DOI: 10.1016/j.ecoenv.2023.115697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The biological properties of sphinganine-(d18:0)-, sphingosine-(d18:1)-, deoxysphinganine-(m18: 0)-, deoxysphingosine-(m18:1)-, deoxymethylsphinganine-(m17:0)-, deoxymethylsphingosine-(m17:1)-, sphingadienine-(d18:2)-, and phytosphingosine-(t18:0)-sphingolipids have been reported to vary, but little is known about the effects of fumonisins, which are mycotoxins that inhibit ceramide synthase, on sphingolipids other than those containing d18:0 and d18:1. Thirty chickens divided into three groups received a control diet or a diet containing 14.6 mg FB1 + FB2/kg for 14 and 21 days. No effects on health or performance were observed, while the effects on sphingoid bases, ceramides, sphingomyelins, and glycosylceramides in liver, kidney, and plasma varied. The t18:0 forms were generally unaffected by fumonisins, while numerous effects were found for m18:0, m18:1, d18:2, and the corresponding ceramides, and these effects appeared to be similar to those observed for d18:0-, and d18:1-ceramides. Partial least square discriminant analysis showed that d18:1- and d18:0-sphingolipids are important variables for explaining the partitioning of chickens into different groups according to fumonisins feeding, while m17:1-, m18:0-, m18:1-, d18:2-, and t18:0-sphingolipids are not. Interestingly, the C22-C24:C16 ratios measured for each class of sphingolipid increased in fumonisin-fed chickens in the three assayed matrices, whereas the total amounts of the sphingolipid classes varied. The potential use of C22-C24:C16 ratios as biomarkers requires further study.
Collapse
Affiliation(s)
| | | | - Philippe Guerre
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
30
|
Yoo HJ, Yi Y, Kang Y, Kim SJ, Yoon YI, Tran PH, Kang T, Kim MK, Han J, Tak E, Ahn CS, Song GW, Park GC, Lee SG, Kim JJ, Jung DH, Hwang S, Kim N. Reduced Ceramides Are Associated with Acute Rejection in Liver Transplant Patients and Skin Graft and Hepatocyte Transplant Mice, Reducing Tolerogenic Dendritic Cells. Mol Cells 2023; 46:688-699. [PMID: 37968983 PMCID: PMC10654454 DOI: 10.14348/molcells.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
We set up this study to understand the underlying mechanisms of reduced ceramides on immune cells in acute rejection (AR). The concentrations of ceramides and sphingomyelins were measured in the sera from hepatic transplant patients, skin graft mice and hepatocyte transplant mice by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Serum concentrations of C24 ceramide, C24:1 ceramide, C16:0 sphingomyelin, and C18:1 sphingomyelin were lower in liver transplantation (LT) recipients with than without AR. Comparisons with the results of LT patients with infection and cardiac transplant patients with cardiac allograft vasculopathy in humans and in mouse skin graft and hepatocyte transplant models suggested that the reduced C24 and C24:1 ceramides were specifically involved in AR. A ceramide synthase inhibitor, fumonisin B1 exacerbated allogeneic immune responses in vitro and in vivo, and reduced tolerogenic dendritic cells (tDCs), while increased P3-like plasmacytoid DCs (pDCs) in the draining lymph nodes from allogeneic skin graft mice. The results of mixed lymphocyte reactions with ceranib-2, an inhibitor of ceramidase, and C24 ceramide also support that increasing ceramide concentrations could benefit transplant recipients with AR. The results suggest increasing ceramides as novel therapeutic target for AR, where reduced ceramides were associated with the changes in DC subsets, in particular tDCs.
Collapse
Affiliation(s)
- Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Digestive Disease Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yeogyeong Yi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yoorha Kang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
| | - Young-In Yoon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Phuc Huu Tran
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Taewook Kang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min Kyung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jaeseok Han
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chul-Soo Ahn
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gil-Chun Park
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae-Joong Kim
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Nayoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
31
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Incze DJ, Poppe L, Bata Z. Optimization Workflow of Fumonisin Esterase Production for Biocatalytic Degradation of Fumonisin B 1. Life (Basel) 2023; 13:1885. [PMID: 37763289 PMCID: PMC10533188 DOI: 10.3390/life13091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Industrial enzyme production with the Pichia pastoris expression system requires a well-characterized production strain and a competitively priced fermentation medium to meet the expectations of the industry. The present work shows a workflow that allows the rapid and reliable screening of transformants of single copy insertion of the target production cassette. A constitutive expression system with the glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP) with homology arms for the glycerol kinase 1 (GUT1) was constructed for the targeted integration of the expression plasmid in a KU70 deficient Pichia pastoris and the production of a bacterial fumonisin esterase enzyme (CFE). A robust colony qPCR method was developed for the copy number estimation of the expression cassette. Optimization of the protein production medium and the scale-up ability was aided by design of experiments (DOE) approach resulting in optimized production conditions at a semi-industrial scale. A novel fermentation medium containing 3% inactivated yeast and 2% dextrose in an ammonium-citrate buffer (IYD) was shown to be a promising alternative to YPD media (containing yeast extract, peptone, and dextrose), as similar protein titers could be obtained, while the cost of the medium was reduced 20-fold. In a demonstration-scale 48 h long fed-batch fermentation, the IYD media outperformed the small-scale YPD cultivation by 471.5 ± 22.6%.
Collapse
Affiliation(s)
- Dániel János Incze
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem Rakpart 3, H-1111 Budapest, Hungary;
- Research and Development Laboratory, Dr. Bata Ltd., Bajcsy-Zsilinszky utca 139, H-2364 Ócsa, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem Rakpart 3, H-1111 Budapest, Hungary;
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Strada Arany János 11, RO-400028 Cluj-Napoca, Romania
| | - Zsófia Bata
- Research and Development Laboratory, Dr. Bata Ltd., Bajcsy-Zsilinszky utca 139, H-2364 Ócsa, Hungary
| |
Collapse
|
33
|
Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B 1-induced toxicity in human kidney cells. Mycotoxin Res 2023:10.1007/s12550-023-00494-2. [PMID: 37328702 DOI: 10.1007/s12550-023-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010, Topkapi, Istanbul, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
34
|
Vásquez-Trincado C, Navarro-Márquez M, Morales PE, Westermeier F, Chiong M, Parra V, Espinosa A, Lavandero S. Myristate induces mitochondrial fragmentation and cardiomyocyte hypertrophy through mitochondrial E3 ubiquitin ligase MUL1. Front Cell Dev Biol 2023; 11:1072315. [PMID: 37051468 PMCID: PMC10083258 DOI: 10.3389/fcell.2023.1072315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Cardiovascular diseases, especially metabolic-related disorders, are progressively growing worldwide due to high-fat-containing foods, which promote a deleterious response at the cellular level, termed lipotoxicity, or lipotoxic stress. At the cardiac level, saturated fatty acids have been directly associated with cardiomyocyte lipotoxicity through various pathological mechanisms involving mitochondrial dysfunction, oxidative stress, and ceramide production, among others. However, integrative regulators connecting saturated fatty acid-derived lipotoxic stress to mitochondrial and cardiomyocyte dysfunction remain elusive.Methods: Here, we worked with a cardiomyocyte lipotoxicity model, which uses the saturated fatty acid myristate, which promotes cardiomyocyte hypertrophy and insulin desensitization.Results: Using this model, we detected an increase in the mitochondrial E3 ubiquitin ligase, MUL1, a mitochondrial protein involved in the regulation of growth factor signaling, cell death, and, notably, mitochondrial dynamics. In this context, myristate increased MUL1 levels and induced mitochondrial fragmentation, associated with the decrease of the mitochondrial fusion protein MFN2, and with the increase of the mitochondrial fission protein DRP1, two targets of MUL1. Silencing of MUL1 prevented myristate-induced mitochondrial fragmentation and cardiomyocyte hypertrophy.Discussion: These data establish a novel connection between cardiomyocytes and lipotoxic stress, characterized by hypertrophy and fragmentation of the mitochondrial network, and an increase of the mitochondrial E3 ubiquitin ligase MUL1.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Mario Navarro-Márquez
- Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Pablo E. Morales
- Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Francisco Westermeier
- Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Sergio Lavandero,
| |
Collapse
|
35
|
Fumonisin B 1 disrupts mitochondrial function in oxidatively poised HepG2 liver cells by disrupting oxidative phosphorylation complexes and potential participation of lincRNA-p21. Toxicon 2023; 225:107057. [PMID: 36796496 DOI: 10.1016/j.toxicon.2023.107057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Fumonisin B1 (FB1) is etiologically linked to cancer, yet the underlying mechanisms remain largely unclear. It is also not known if mitochondrial dysfunction is involved as a contributor to FB1-induced metabolic toxicity. This study investigated the effects of FB1 on mitochondrial toxicity and its implications in cultured human liver (HepG2) cells. HepG2 cells poised to undergo oxidative and glycolytic metabolism were exposed to FB1 for 6 h. We determined mitochondrial toxicity, reducing equivalent levels and mitochondrial sirtuin activity using luminometric, fluorometric and spectrophotometric methods. Molecular pathways involved were determined using western blots and PCR. Our data confirm that FB1 is a mitochondrial toxin capable of disrupting the stability of complexes I and V of the mitochondrial electron transport and decreasing the NAD:NADH ratio in galactose supplemented HepG2 cells. We further showed that in cells treated with FB1, p53 acts as a metabolic stress-responsive transcription factor that induces the expression of lincRNA-p21, which plays a crucial role in stabilising HIF-1α. The findings provide novel insights into the impact of this mycotoxin in the dysregulation of energy metabolism and may contribute to the growing body of evidence of its tumor promoting effects.
Collapse
|
36
|
Gao Z, Luo K, Zhu Q, Peng J, Liu C, Wang X, Li S, Zhang H. The natural occurrence, toxicity mechanisms and management strategies of Fumonisin B1:A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121065. [PMID: 36639041 DOI: 10.1016/j.envpol.2023.121065] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Fumonisin B1 (FB1) contaminates various crops, causing huge losses to agriculture and livestock worldwide. This review summarizes the occurrence regularity, toxicity, toxic mechanisms and management strategies of FB1. Specifically, FB1 contamination is particularly serious in developing countries, humid and hot regions. FB1 exposure can produce different toxic effects on the nervous system, respiratory system, digestive system and reproductive system. Furthermore, FB1 can also cause systemic immunotoxicity. The mechanism of toxic effects of FB1 is to interfere with the normal pathway of sphingolipid de novo biosynthesis by acting as a competitive inhibitor of ceramide synthase. Meanwhile, the toxic products of sphingolipid metabolic disorders can cause oxidative stress and apoptosis. FB1 also often causes feed contamination by mixing with other mycotoxins, and then exerts combined toxicity. For detection, lateral flow dipstick technology and enzyme linked immunosorbent assay are widely used in the detection of FB1 in commercial feeds, while mainstream detection methods such as high performance liquid chromatography and liquid chromatography-mass spectrometry are widely used in the laboratory theoretical study of FB1. For purification means of FB1, some natural plant extracts (such as Zingiber officinale and Litsea Cubeba essential oil) and their active compounds have been proved to inhibit the toxic effects of FB1 and protect livestock due to their antifungal and antioxidant effects. Natural plant extract has the advantages of high efficiency, low cost and no contamination residue. This review can provide information for comprehensive understanding of FB1, and provide reference for formulating reasonable treatment and management strategies in livestock production.
Collapse
Affiliation(s)
- Zhicheng Gao
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Kangxin Luo
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Qiuxiang Zhu
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Jinghui Peng
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Xiaoyue Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Shoujun Li
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Haiyang Zhang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| |
Collapse
|
37
|
Zymosan-Induced Murine Peritonitis Is Associated with an Increased Sphingolipid Synthesis without Changing the Long to Very Long Chain Ceramide Ratio. Int J Mol Sci 2023; 24:ijms24032773. [PMID: 36769096 PMCID: PMC9917615 DOI: 10.3390/ijms24032773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Sphingolipids are key molecules in inflammation and defense against pathogens. Their role in dectin-1/TLR2-mediated responses is, however, poorly understood. This study investigated the sphingolipidome in the peritoneal fluid, peritoneal cells, plasma, and spleens of mice after intraperitoneal injection of 0.1 mg zymosan/mouse or PBS as a control. Samples were collected at 2, 4, 8, and 16 h post-injection, using a total of 36 mice. Flow cytometry analysis of peritoneal cells and measurement of IL-6, IL-1β, and TNF-α levels in the peritoneal lavages confirmed zymosan-induced peritonitis. The concentrations of sphingoid bases, dihydroceramides, ceramides, dihydrosphingomyelins, sphingomyelins, monohexosylceramides, and lactosylceramides were increased after zymosan administration, and the effects varied with the time and the matrix measured. The greatest changes occurred in peritoneal cells, followed by peritoneal fluid, at 8 h and 4 h post-injection, respectively. Analysis of the sphingolipidome suggests that zymosan increased the de novo synthesis of sphingolipids without change in the C14-C18:C20-C26 ceramide ratio. At 16 h post-injection, glycosylceramides remained higher in treated than in control mice. A minor effect of zymosan was observed in plasma, whereas sphinganine, dihydrosphingomyelins, and monohexosylceramides were significantly increased in the spleen 16 h post-injection. The consequences of the observed changes in the sphingolipidome remain to be established.
Collapse
|
38
|
Wang Y, Sun J, Zhang M, Pan K, Liu T, Zhang T, Luo X, Zhao J, Li Z. Detoxification of Fumonisins by Three Novel Transaminases with Diverse Enzymatic Characteristics Coupled with Carboxylesterase. Foods 2023; 12:foods12020416. [PMID: 36673508 PMCID: PMC9858248 DOI: 10.3390/foods12020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Fumonisin (FB) is one of the most common mycotoxins contaminating feed and food, causing severe public health threat to human and animals worldwide. Until now, only several transaminases were found to reduce FB toxicity, thus, more fumonisin detoxification transaminases with excellent catalytic properties required urgent exploration for complex application conditions. Herein, through gene mining and enzymatic characterization, three novel fumonisin detoxification transaminases-FumTSTA, FumUPTA, FumPHTA-were identified, sharing only 61-74% sequence identity with reported fumonisin detoxification transaminases. Moreover, the recombinant proteins shared diverse pH reaction ranges, good pH stability and thermostability, and the recombinant protein yields were also improved by condition optimum. Furthermore, the final products were analyzed by liquid chromatography-mass spectrometry. This study provides ideal candidates for fumonisin detoxification and meets diverse required demands in food and feed industries.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junhao Sun
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengwei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kungang Pan
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianhui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongcun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuegang Luo
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junqi Zhao
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, China
- Correspondence: (J.Z.); (Z.L.)
| | - Zhongyuan Li
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (J.Z.); (Z.L.)
| |
Collapse
|
39
|
Ráduly Z, Szabó A, Mézes M, Balatoni I, Price RG, Dockrell ME, Pócsi I, Csernoch L. New perspectives in application of kidney biomarkers in mycotoxin induced nephrotoxicity, with a particular focus on domestic pigs. Front Microbiol 2023; 14:1085818. [PMID: 37125184 PMCID: PMC10140568 DOI: 10.3389/fmicb.2023.1085818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Zsolt Ráduly,
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - Miklós Mézes
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
- Department of Food Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Robert G. Price
- Department of Nutrition, Franklin-Wilkins Building, King’s College London, London, United Kingdom
| | - Mark E. Dockrell
- SWT Institute of Renal Research, London, United Kingdom
- Department of Molecular and Clinical Sciences, St. George’s University, London, United Kingdom
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
40
|
Guzman G, Creek C, Farley S, Tafesse FG. Genetic Tools for Studying the Roles of Sphingolipids in Viral Infections. Methods Mol Biol 2022; 2610:1-16. [PMID: 36534277 DOI: 10.1007/978-1-0716-2895-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingolipids are a critical family of membrane lipids with diverse functions in eukaryotic cells, and a growing body of literature supports that these lipids play essential roles during the lifecycles of viruses. While small molecule inhibitors of sphingolipid synthesis and metabolism are widely used, the advent of CRISPR-based genomic editing techniques allows for nuanced exploration into the manners in which sphingolipids influence various stages of viral infections. Here we describe some of these critical considerations needed in designing studies utilizing genomic editing techniques for manipulating the sphingolipid metabolic pathway, as well as the current body of literature regarding how viruses depend on the products of this pathway. Here, we highlight the ways in which sphingolipids affect viruses as these pathogens interact with and influence their host cell and describe some of the many open questions remaining in the field.
Collapse
Affiliation(s)
- Gaelen Guzman
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Cameron Creek
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Scotland Farley
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
41
|
Guerre P, Matard-Mann M, Nyvall Collén P. Targeted sphingolipid analysis in chickens suggests different mechanisms of fumonisin toxicity in kidney, lung, and brain. Food Chem Toxicol 2022; 170:113467. [DOI: 10.1016/j.fct.2022.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
42
|
Guerre P, Gilleron C, Matard-Mann M, Nyvall Collén P. Targeted Sphingolipid Analysis in Heart, Gizzard, and Breast Muscle in Chickens Reveals Possible New Target Organs of Fumonisins. Toxins (Basel) 2022; 14:toxins14120828. [PMID: 36548725 PMCID: PMC9783176 DOI: 10.3390/toxins14120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alteration of sphingolipid synthesis is a key event in fumonisins toxicity, but only limited data have been reported regarding the effects of fumonisins on the sphingolipidome. Recent studies in chickens found that the changes in sphingolipids in liver, kidney, lung, and brain differed greatly. This study aimed to determine the effects of fumonisins on sphingolipids in heart, gizzard, and breast muscle in chickens fed 20.8 mg FB1 + FB2/kg for 9 days. A significant increase in the sphinganine:sphingosine ratio due to an increase in sphinganine was observed in heart and gizzard. Dihydroceramides and ceramides increased in the hearts of chickens fed fumonisins, but decreased in the gizzard. The dihydrosphingomyelin, sphingomyelin, and glycosylceramide concentrations paralleled those of ceramides, although the effects were less pronounced. In the heart, sphingolipids with fatty acid chain lengths of 20 to 26 carbons were more affected than those with 14-16 carbons; this difference was not observed in the gizzard. Partial least squares-discriminant analysis on sphingolipids in the heart allowed chickens to be divided into two distinct groups according to their diet. The same was the case for the gizzard. Pearson coefficients of correlation among all the sphingolipids assayed revealed strong positive correlations in the hearts of chickens fed fumonisins compared to chickens fed a control diet, as well as compared to gizzard, irrespective of the diet fed. By contrast, no effect of fumonisins was observed on sphingolipids in breast muscle.
Collapse
Affiliation(s)
- Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
- Correspondence:
| | | | | | | |
Collapse
|
43
|
Alvito P, Assunção RM, Bajard L, Martins C, Mengelers MJB, Mol H, Namorado S, van den Brand AD, Vasco E, Viegas S, Silva MJ. Current Advances, Research Needs and Gaps in Mycotoxins Biomonitoring under the HBM4EU-Lessons Learned and Future Trends. Toxins (Basel) 2022; 14:826. [PMID: 36548723 PMCID: PMC9783896 DOI: 10.3390/toxins14120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Mycotoxins are natural metabolites produced by fungi that contaminate food and feed worldwide. They can pose a threat to human and animal health, mainly causing chronic effects, e.g., immunotoxic and carcinogenic. Due to climate change, an increase in European population exposure to mycotoxins is expected to occur, raising public health concerns. This urges us to assess the current human exposure to mycotoxins in Europe to allow monitoring exposure and prevent future health impacts. The mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) were considered as priority substances to be studied within the European Human Biomonitoring Initiative (HBM4EU) to generate knowledge on internal exposure and their potential health impacts. Several policy questions were addressed concerning hazard characterization, exposure and risk assessment. The present article presents the current advances attained under the HBM4EU, research needs and gaps. Overall, the knowledge on the European population risk from exposure to DON was improved by using new harmonised data and a newly derived reference value. In addition, mechanistic information on FB1 was, for the first time, organized into an adverse outcome pathway for a congenital anomaly. It is expected that this knowledge will support policy making and contribute to driving new Human Biomonitoring (HBM) studies on mycotoxin exposure in Europe.
Collapse
Affiliation(s)
- Paula Alvito
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Manuel Assunção
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- NOVA National School of Public Health, NOVA University of Lisbon, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center, CHRC, 1600-560 Lisbon, Portugal
| | - Marcel J. B. Mengelers
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6708 WB Wageningen, The Netherlands
| | - Sónia Namorado
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- Comprehensive Health Research Center, CHRC, 1600-560 Lisbon, Portugal
| | - Annick D. van den Brand
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Elsa Vasco
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
| | - Susana Viegas
- NOVA National School of Public Health, NOVA University of Lisbon, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center, CHRC, 1600-560 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- ToxOmics—NOVA Medical School, NOVA University of Lisbon, 1150-082 Lisboa, Portugal
| |
Collapse
|
44
|
Fumonisin B Series Mycotoxins' Dose Dependent Effects on the Porcine Hepatic and Pulmonary Phospholipidome. Toxins (Basel) 2022; 14:toxins14110803. [PMID: 36422977 PMCID: PMC9696778 DOI: 10.3390/toxins14110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose-response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats.
Collapse
|
45
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
46
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
47
|
Raguž L, Peng C, Rutaganira FUN, Krüger T, Stanišić A, Jautzus T, Kries H, Kniemeyer O, Brakhage AA, King N, Beemelmanns C. Total Synthesis and Functional Evaluation of IORs, Sulfonolipid-based Inhibitors of Cell Differentiation in Salpingoeca rosetta. Angew Chem Int Ed Engl 2022; 61:e202209105. [PMID: 35901418 PMCID: PMC9825905 DOI: 10.1002/anie.202209105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/11/2023]
Abstract
The choanoflagellate Salpingoeca rosetta is an important model system to study the evolution of multicellularity. In this study we developed a new, modular, and scalable synthesis of sulfonolipid IOR-1A (six steps, 27 % overall yield), which acts as bacterial inhibitor of rosette formation in S. rosetta. The synthesis features a decarboxylative cross-coupling reaction of a sulfonic acid-containing tartaric acid derivative with alkyl zinc reagents. Synthesis of 15 modified IOR-1A derivatives, including fluorescent and photoaffinity-based probes, allowed quantification of IOR-1A, localization studies within S. rosetta cells, and evaluation of structure-activity relations. In a proof of concept study, an inhibitory bifunctional probe was employed in proteomic profiling studies, which allowed to deduce binding partners in bacteria and S. rosetta. These results showcase the power of synthetic chemistry to decipher the biochemical basis of cell differentiation processes within S. rosetta.
Collapse
Affiliation(s)
- Luka Raguž
- Chemical Biology of Microbe-Host InteractionsLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Chia‐Chi Peng
- Chemical Biology of Microbe-Host InteractionsLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | | | - Thomas Krüger
- Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Aleksa Stanišić
- Biosynthetic Design of Natural ProductsLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Theresa Jautzus
- Chemical Biology of Microbe-Host InteractionsLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Hajo Kries
- Biosynthetic Design of Natural ProductsLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Olaf Kniemeyer
- Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Axel A. Brakhage
- Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany,Microbiology and Molecular BiologyInstitute of MicrobiologyFriedrich Schiller University (FSU)Neugasse 2507743JenaGermany
| | - Nicole King
- Life Sciences AdditionUniversity of California, BerkeleyBerkeleyCA 94720USA
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host InteractionsLeibniz Institute for Natural Product Research and Infection BiologyHans-Knöll-Institute (HKI)Beutenbergstraße 11a07745JenaGermany,Biochemistry of Microbial MetabolismInstitute of BiochemistryLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| |
Collapse
|
48
|
Wang L, Liu Q, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z, Hu S, Tang S, Hu P. Genomic footprints related with adaptation and fumonisins production in Fusarium proliferatum. Front Microbiol 2022; 13:1004454. [PMID: 36212817 PMCID: PMC9532532 DOI: 10.3389/fmicb.2022.1004454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium proliferatum is the principal etiological agent of rice spikelet rot disease (RSRD) in China, causing yield losses and fumonisins contamination in rice. The intraspecific variability and evolution pattern of the pathogen is poorly understood. Here, we performed whole-genome resequencing of 67 F. proliferatum strains collected from major rice-growing regions in China. Population structure indicated that eastern population of F. proliferatum located in Yangtze River with the high genetic diversity and recombinant mode that was predicted as the putative center of origin. Southern population and northeast population were likely been introduced into local populations through gene flow, and genetic differentiation between them might be shaped by rice-driven domestication. A total of 121 distinct genomic loci implicated 85 candidate genes were suggestively associated with variation of fumonisin B1 (FB1) production by genome-wide association study (GWAS). We subsequently tested the function of five candidate genes (gabap, chsD, palA, hxk1, and isw2) mapped in our association study by FB1 quantification of deletion strains, and mutants showed the impact on FB1 production as compared to the wide-type strain. Together, this is the first study to provide insights into the evolution and adaptation in natural populations of F. proliferatum on rice, as well as the complex genetic architecture for fumonisins biosynthesis.
Collapse
|
49
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
50
|
Szabó A, Omeralfaroug A, Bjellaas T, Kövér G, Turbók J, Kovács M. The effects of fumonisin B 1 at the No Observed Adverse Effect Level (NOAEL) and 5-times above on the renal histology and lipidome of rats. Food Chem Toxicol 2022:113333. [PMID: 35988863 DOI: 10.1016/j.fct.2022.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
Fumonisin B1 (FB1) mycotoxin was intraperitoneally (IP) administered at the No Observed Adverse Effect Level (NOAEL = 0.2 mg/kg BW/day as IP equivalent, "L") and 5-times above ("H") to male rats, in a controlled ("C"), 5-day study (n = 10/group, total n = 30). BW (bodyweight) of H rats decreased after day 4, kidney weight after 5 days. Renal histology revealed tubular epithelial desquamation, tubular dilatation, nuclear swelling, pale chromatin, cell vacuolation and casual karyopycnosis (H). Lipidomic analysis was performed with liquid chromatography - time-of-flight mass spectrometry (LC-TOF). Renal sphinganine (Sa) concentration increased 500 (L) to 1000-fold (H) and Sa-1-P to over 200 and 350-fold, respectively), with FB1 dose-dependence. Renal triacyclglycerols, diacylglycerols, ceramides and sphingomyelins were depleted, while cholesterol and cholesterol ester concentrations increased. Spearman correlation of free sphingoid bases (Sa, Sa-1-P, sphingosine (So) and So-1-P) was positive with histopathological damage severity, sphingomyelins and ceramides provided negative relationship (-0.78 and -0.8, resp.). Two-way cluster analysis and sparse partial least squares discriminant analysis (sPLS-DA) was used for experimental group classification. Fully effective group separation was achieved for ceramides, sphingomyelins and phosphatidyl-cholines, highlighting molecular species of possible diagnostic value. Lipidomic results highlight possible re-consideration of the NOAEL.
Collapse
Affiliation(s)
- András Szabó
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | - Ali Omeralfaroug
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | | | - György Kövér
- Hungarian University of Agriculture and Life Sciences, Institute of Animal Breeding Sciences, Department of Animal Breeding, Hungary.
| | - Janka Turbók
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | - Melinda Kovács
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary; ELKH - MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary.
| |
Collapse
|