1
|
Cao L, Chen Q, Xiang YY, Xiao C, Tan YT, Li H. Effects of Oxygenation Targets on Mortality in Critically Ill Patients in Intensive Care Units: A Systematic Review and Meta-Analysis. Anesth Analg 2024; 139:734-742. [PMID: 38315626 DOI: 10.1213/ane.0000000000006859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
BACKGROUND The effects of oxygenation targets (partial pressure of arterial oxygen [Pa o2 ], arterial oxygen saturation [Sa o2 ]/peripheral oxygen saturation [Sp o2 ], or inspiratory oxygen concentration [Fi o2 ] on clinical outcomes in critically ill patients remains controversial. We reviewed the existing literature to assess the effects of lower and higher oxygenation targets on the mortality rates of critically ill intensive care unit (ICU) patients. METHODS MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science databases were searched from their dates of inception to December 31, 2022, for randomized controlled trials (RCTs) comparing lower and higher oxygenation targets for critically ill patients ≥18 years of age undergoing mechanical ventilation, nasal cannula, oxygen mask, or high-flow oxygen therapy in the ICU. Data extraction was conducted independently, and RoB 2.0 software was used to evaluate the quality of each RCT. A random-effects model was used for the meta-analysis to calculate the relative risk (RR). We used the I 2 statistic as a measure of statistical heterogeneity. Certainty of evidence was assessed according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines. RESULTS We included 12 studies with a total of 7416 patients participating in RCTs. Oxygenation targets were extremely heterogeneous between studies. The meta-analysis found no differences in mortality between lower and higher oxygenation targets for critically ill ICU patients (relative risk [RR], 1.00; 95% confidence interval [CI], 0.93-1.09; moderate certainty). The incidence of serious adverse events (RR, 0.93; 95% CI, 0.85-1.00; high certainty), mechanical ventilation-free days through day 28 (mean difference [MD], -0.05; 95%CI, -1.23 to 1.13; low certainty), the number of patients requiring renal replacement therapy (RRT) (RR, 0.96; 95% CI, 0.84-1.10; low certainty), and ICU length of stay (MD, 1.05; 95% CI, -0.04 to 2.13; very low certainty) also did not differ among patients with lower or higher oxygenation targets. CONCLUSIONS Critically ill ICU patients ≥18 years of age managed with lower and higher oxygenation targets did not differ in terms of mortality, RRT need, mechanical ventilation-free days through day 28, or ICU length of stay. However, due to considerable heterogeneity between specific targets in individual studies, no conclusion can be drawn regarding the effect of oxygenation targets on ICU outcomes.
Collapse
Affiliation(s)
- Lei Cao
- From the Department of Anaesthesiology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qi Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying-Ying Xiang
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Cheng Xiao
- From the Department of Anaesthesiology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yu-Ting Tan
- From the Department of Anaesthesiology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hong Li
- From the Department of Anaesthesiology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Lee H, Hwang KH. Focal incidental colorectal fluorodeoxyglucose uptake: Should it be spotlighted? World J Clin Cases 2024; 12:2466-2474. [PMID: 38817235 PMCID: PMC11135452 DOI: 10.12998/wjcc.v12.i15.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Fluorine-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) has emerged as a cornerstone in cancer evaluation imaging, with a well-established history spanning several years. This imaging modality, encompassing the examination of the body from the base of the skull to the upper thighs, comprehensively covers the chest and abdominopelvic regions in a singular scan, allowing for a holistic assessment of nearly the entire body, including areas of marginal interest. The inherent advantage of this expansive scan range lies in its potential to unveil unexpected incidental abnormal hypermetabolic areas. The identification of incidental focal FDG uptake within colorectal regions during PET/CT scans is not an uncommon occurrence, albeit fraught with challenges associated with non-specific FDG uptake. The presence of benign colorectal lesions or physiological uptake poses a particular obstacle, as these may manifest with FDG uptake levels that mimic malignancy. Consequently, physicians are confronted with a diagnostic dilemma when encountering abnormal FDG uptake in unexpected colorectal areas. Existing studies have presented divergent results concerning these uptakes. Standardized uptake value and its derivatives have served as pivotal metrics in quantifying FDG uptake in PET images. In this article, we aim to succinctly explore the distinctive characteristics of FDG, delve into imaging findings, and elucidate the clinical significance of incidental focal colorectal uptake. This discussion aims to contribute valuable insights into the nuanced interpretation of such findings, fostering a comprehensive understanding.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
3
|
Lee H, Hwang KH. Unexpected focal fluorodeoxyglucose uptake in main organs; pass through or pass by? World J Clin Cases 2024; 12:1885-1899. [PMID: 38660550 PMCID: PMC11036514 DOI: 10.12998/wjcc.v12.i11.1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Since the inception of fluorine-18 fluorodeoxyglucose (F-18 FDG), positron emission tomography/computed tomography (PET/CT) utilizing F-18 FDG has become widely accepted as a valuable imaging modality in the field of oncology, with global prevalence in clinical practice. Given that a single Torso PET/CT scan encompasses the anatomical region from the skull base to the upper thigh, the detection of incidental abnormal focal hypermetabolism in areas of limited clinical interest is both feasible and not uncommon. Numerous investigations have been undertaken to delineate the distinctive features of these findings, yet the outcomes have proven inconclusive. The incongruent results of these studies present a challenge for physicians, leaving them uncertain about the appropriate course of action. This article provides a succinct overview of the characteristics of fluorodeoxyglucose, followed by a comprehensive discussion of the imaging findings and clinical significance associated with incidental focal abnormal F-18 FDG activity in several representative organs. In conclusion, while the prevalence of unrecognized malignancy varies across organs, malignancies account for a substantial proportion, ranging from approximately one-third to over half, of incidental focal uptake. In light of these rates, physicians are urged to exercise vigilance in not disregarding unexpected uptake, facilitating more assured clinical decisions, and advocating for further active evaluation.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
4
|
Yukioka S, Kitadume T, Chatterjee S, Ning G, Ooya T, Yusa SI. Amphiphilic Block Copolymers Bearing Hydrophobic γ-Tocopherol Groups with Labile Acetal Bond. Polymers (Basel) 2019; 12:polym12010036. [PMID: 31881658 PMCID: PMC7023524 DOI: 10.3390/polym12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
High concentrations of γ-tocopherol (γTCP) tend to show antioxidant, anti-inflammatory, and anticancer effects. In this study, we prepared polymer micelles under acidic conditions with a controlled release of γTCP due to the decomposition of pendant acetal bonds. First, a precursor diblock copolymer composed of poly(ethylene glycol) (PEG) and acrylic acid (AA) was prepared. This was followed by the synthesis of an amphiphilic diblock copolymer (PEG54-P(AA/VE6/γTCP29)140), incorporated into hydrophobic γTCP pendant groups attached to the main chain through an acetal bond. The prepared PEG54-P(AA/VE6/γTCP29)140 was further dispersed in water to form polymer micelles composed of hydrophobic cores that were generated from a hydrophobic block containing γTCPs and hydrophilic shells on the surface. Under acidic conditions, γTCP was then released from the core of the polymer micelles due to the decomposition of the pendant acetal bonds. In addition, polymer micelles swelled under acidic conditions due to hydration of the core.
Collapse
Affiliation(s)
- Shotaro Yukioka
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan;
| | - Takuya Kitadume
- Graduate School of Engineering, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan; (T.K.); (G.N.); (T.O.)
| | - Suchismita Chatterjee
- Institute of Material Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan;
| | - Gan Ning
- Graduate School of Engineering, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan; (T.K.); (G.N.); (T.O.)
| | - Tooru Ooya
- Graduate School of Engineering, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan; (T.K.); (G.N.); (T.O.)
| | - Shin-ichi Yusa
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan;
- Correspondence:
| |
Collapse
|
5
|
Baumann R, Depping R, Delaperriere M, Dunst J. Targeting hypoxia to overcome radiation resistance in head & neck cancers: real challenge or clinical fairytale? Expert Rev Anticancer Ther 2016; 16:751-8. [PMID: 27253509 DOI: 10.1080/14737140.2016.1192467] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Tumor hypoxia is a major cause for failure of therapy in patients with inoperable head and neck cancers. AREAS COVERED Various anti-hypoxic treatment strategies (e.g. hyperbaric oxygenation, hypoxic cell sensitizers) have been tested in clinical trials in head and neck cancer over the past 30 years and have shown modest improvements in combination with radiotherapy in meta-analyses. Anemia worsens tumor hypoxia, but anemia correction had no significant effect. New approaches (e.g. anti-HIF-directed molecular therapies) have just entered early clinical studies and data are lacking. Expert commentary: A new attractive and promising approach derives from recent advances in imaging and radiotherapy delivery. Progress in imaging of hypoxia (e.g. by positron emission tomography) can select patients for specific therapies and may, in particular, facilitate anti-hypoxia-directed radiotherapy which has become feasible with advanced radiotherapy techniques (IMRT with 'dose-painting'). The combination of both methods may offer a powerful tool for effective targeting of hypoxia in the near future.
Collapse
Affiliation(s)
- René Baumann
- a Department of Radiation Oncology , Christian-Albrechts-University Kiel , Kiel , Germany
| | - Reinhard Depping
- b Institute of Physiology , University of Luebeck , Luebeck , Germany
| | - Marc Delaperriere
- a Department of Radiation Oncology , Christian-Albrechts-University Kiel , Kiel , Germany
| | - Juergen Dunst
- a Department of Radiation Oncology , Christian-Albrechts-University Kiel , Kiel , Germany
| |
Collapse
|
6
|
Dragowska WH, Ginj M, Kozlowski P, Yung A, Ruth TJ, Adam MJ, Sossi V, Bally MB, Yapp DTT. Overexpression of HER-2 in MDA-MB-435/LCC6 Tumours is Associated with Higher Metabolic Activity and Lower Energy Stress. Sci Rep 2016; 6:18537. [PMID: 26727049 PMCID: PMC4698760 DOI: 10.1038/srep18537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022] Open
Abstract
Overexpresssion of HER-2 in the MDA-MB-435/LCC6 (LCC6HER-2) tumour model is associated with significantly increased hypoxia and reduced necrosis compared to isogenic control tumours (LCC6Vector); this difference was not related to tumour size or changes in vascular architecture. To further evaluate factors responsible for HER-2-associated changes in the tumour microenvironment, small animal magnetic resonance imaging (MRI) and positron emission tomography (PET) were used to measure tumour tissue perfusion and metabolism, respectively. The imaging data was further corroborated by analysis of molecular markers pertaining to energy homeostasis, and measurements of hypoxia and glucose consumption. The results showed a strong trend towards higher perfusion rates (~58% greater, p = 0.14), and significantly higher glucose uptake in LCC6HER-2 (~2-fold greater; p = 0.025), relative to control tumours. The expression of proteins related to energy stress (P-AMPK, P-ACC) and glucose transporters (GLUT1) were lower in LCC6HER-2 tumours (~2- and ~4-fold, respectively). The in vitro analysis showed that LCC6HER-2 cells become more hypoxic in 1% oxygen and utilise significantly more glucose in normoxia compared to LCC6Vectorcells (p < 0.005). Amalgamation of all the data points suggests a novel metabolic adaptation driven by HER-2 overexpression where higher oxygen and glucose metabolic rates produce rich energy supply but also a more hypoxic tumour mass.
Collapse
Affiliation(s)
- Wieslawa H Dragowska
- The Department of Experimental Therapeutics, The BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Mihaela Ginj
- The Joint Department of Medical Imaging, University Health Network, 200 Elizabeth St., Toronto, Ont Canada M5G 2C4
| | - Piotr Kozlowski
- The High Field MRI Centre at UBC, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Andrew Yung
- The High Field MRI Centre at UBC, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Thomas J Ruth
- The TRI-University Meson Facility (TRIUMF), 4004 Wesbrook Mall, Vancouver, BC Canada V6T 2A3
| | - Michael J Adam
- The TRI-University Meson Facility (TRIUMF), 4004 Wesbrook Mall, Vancouver, BC Canada V6T 2A3
| | - Vesna Sossi
- The Faculty of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC Canada V6T 1Z1
| | - Marcel B Bally
- The Department of Experimental Therapeutics, The BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3.,The Faculty of Pathology and Laboratory Sciences, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Donald T T Yapp
- The Department of Experimental Therapeutics, The BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3.,The Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC Canada V6T 1Z3
| |
Collapse
|
7
|
ALPHA Glycolytic Vasculogenesis Better Correlates With MRI and CT Imaging Techniques Than the Traditional Oxygen Vasculogenesis Theory. AJR Am J Roentgenol 2014; 203:W724-34. [DOI: 10.2214/ajr.13.11762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Li YZ, Li SL, Li X, Wang LJ, Wang JL, Xu JW, Wu ZH, Gong L, Zhang XD. Expression of endogenous hypoxia markers in vulvar squamous cell carcinoma. Asian Pac J Cancer Prev 2013; 13:3675-80. [PMID: 23098453 DOI: 10.7314/apjcp.2012.13.8.3675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the expression of endogenous hypoxia-related markers identified as being involved in vulvar squamous cell carcinoma (VSCC). METHODS We performed immunohistochemical staining of hypoxia-inducible factor-1α(HIF-1α), glucose transporter-1 (GLUT-1), carbonic anhydrase 9 (CA-9) and vascular endothelial growth factor (VEGF), on tissue sections of 25 VSCC patients, 10 vulvar intraepithelial neoplasia (VIN) patients and 12 healthy controls. RESULTS HIF-1α expression was found in all sections, with no significant difference between controls, VIN and VSCC sections (all P<0.05). Glut-1 expression was found in 25% of control, 90% of VIN and 100% of VSCC sections. A significant difference between control and VIN or VSCC was observed (all P<0.05), while no difference was found between VIN and VSCC sections (P>0.05). CA-9 expression was negative in control sections, but it was found in 30% of VIN sections and 52% of VSCC sections with strong staining. Similarly, CA-9 expression also showed obvious differences between controls and VIN or VSCC sections (all P<0.05). However, there was no significant difference between VIN and VSCC (P>0.05). There were only 25% of control sections with weak VEGF expression, while strong staining was found in about 60% of VIN sections and 25% of VSCC sections (all P<0.05). In addition, a difference was also found between VIN and VSCC sections (P<0.05). CONCLUSION Expression of endogenous hypoxia markers (HIF-1α, GLUT-1, CA-9 and VEGF) might be involved in the malignant progression of VSCC.
Collapse
Affiliation(s)
- Yu-Zhu Li
- Department of Integrated Traditional Chinese and Western Medicine, Qilu Hospital, Shandong University, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Waerzeggers Y, Ullrich RT, Monfared P, Viel T, Weckesser M, Stummer W, Schober O, Winkeler A, Jacobs AH. Specific biomarkers of receptors, pathways of inhibition and targeted therapies: clinical applications. Br J Radiol 2012; 84 Spec No 2:S179-95. [PMID: 22433828 DOI: 10.1259/bjr/76389842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. In particular, the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. This first part of the review focuses on imaging biomarkers of general biochemical and physiological processes related to tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. These imaging biomarkers are an integral part of current clinical practice in the management of primary brain tumours. The second article of the review discusses the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways. Current applications of these biomarkers are mostly confined to experimental small animal research to develop and validate these novel imaging strategies with future extrapolation in the clinical setting as the primary objective.
Collapse
Affiliation(s)
- Y Waerzeggers
- European Institute for Molecular Imaging, Westfaelische Wilhelms-University, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Treatment of cancer is often confounded by tumor heterogeneity.Variations in perfusion inhibit drug delivery to all parts of the tumor (1). Differences in oxygen tension (Po2)cause variations in response to radiation therapy (2).Understanding this tumor heterogeneity, which is caused by the interplay between the cancer cell's gene makeup and the tumor's environment (eg, stromal matrix, tissue vascularity),will likely enable improved treatment strategies.Whole-mount studies, in which the excised tumor is fixed or frozen and then sliced into thin sections - with subsequent staining and microscopic examination of the multiple sections—provide much information about tumor heterogeneity but cannot provide information about dynamic events, perfusion, metabolism, or those processes that exist in the tumor in vivo (including Po2). Intravital microscopy(3), in which a tumor or organ is exteriorized or viewed through a window cut in overlying tissue, can provide information on such dynamic processes; however, those studies are limited by scattering and diffusion of light as it penetrates tissue and so can only enable differentiation of surface structures and events.
Collapse
Affiliation(s)
- Reuben Mezrich
- Department of Radiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Yu L, Hales CA. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice. BMC Cancer 2011; 11:331. [PMID: 21812995 PMCID: PMC3199866 DOI: 10.1186/1471-2407-11-331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 08/03/2011] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Methods Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. Results We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na+-K+ ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na+-K+ ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. Conclusions This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na+-K+ ATPase was involved in hypoxic inhibition of tumor progression. The results from this study provide new insights into the role of hypoxia in tumor progression and therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Lunyin Yu
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
12
|
Abstract
Cancer occurs as a result of misregulation of cell growth, which appears to be a consequence of alteration in the function of oncogenes and tumour suppressor genes. Ionising radiation has been used, since the discovery of X-rays in 1896 by Roentgen, both in cancer research and treatment of the disease. The main purpose of cancer research is to understand the molecular alterations involved in the development and progression of the disease in order to improve diagnosis and develop personalised therapies, by focusing on the features of the tumoral cell and the biological events associated to carcinogenesis. Radioisotopic techniques have been used routinely for in vitro research in the molecular and cellular biology of cancer for more than 20 years and are in the process of being substituted by alternative non-radioactive techniques. However in vivo techniques such as irradiation of cells in culture and/or experimental animal models and radioactive labelling are in development, due in part to advances in molecular imaging technologies. The objective of this review is to analyse in an integrative way the applications of ionising radiation in cancer research and therapy. It had been divided into two parts. The first one will approach the techniques applied to cancer research and the second will summarise how ionising radiation is applied to the treatment of neoplastic disease.
Collapse
Affiliation(s)
- M T Macías
- Servicio de Protección Radiológica, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.
| |
Collapse
|
13
|
Abrantes AM, Serra ME, Murtinho D, Gonsalves AR, Botelho MF. An insight into tumoral hypoxia: the radiomarkers and clinical applications. Oncol Rev 2009. [DOI: 10.1007/s12156-009-0001-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Kirkpatrick JP, Rabbani ZN, Bentley RC, Hardee ME, Karol S, Meyer J, Oosterwijk E, Havrilesky L, Secord AA, Vujaskovic Z, Dewhirst MW, Jones EL. Elevated CAIX Expression is Associated with an Increased Risk of Distant Failure in Early-Stage Cervical Cancer. Biomark Insights 2008. [PMID: 19578493 DOI: 10.1016/j.ijrobp.2005.07.364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor hypoxia is associated with adverse outcome in many malignancies. The goal of this study was to determine if elevated expression of carbonic anhydrase IX (CAIX), a biomarker of hypoxia, predicts for recurrence in early-stage cervical cancer. The charts of all patients with early-stage cervical cancer, primarily FIGO IB, treated by radical hysterectomy at our institution from 1988-2001 were reviewed. Adequate pathologic specimens from patients who recurred or who had at least three years follow-up and remained disease-free were stained for CAIX. An immunohistochemical score (IHC) was generated from the extent/intensity of staining. Outcome, as measured by freedom from recurrence (FFR), distant metastases (FFDM) and local recurrence (FFLR), was analyzed as a function of age, IHC, lymph node status (LN) and histology. Forty-two relapsing patients and 76 non-relapsing patients were evaluated. In univariate analysis, +LN, though not IHC or histology, was a significant predictor of any recurrence. Both +LN and higher IHC were associated with decreased FFDM but not FFLR. Patients with both +LN and elevated IHC more frequently exhibited distant metastases as first site of failure (5-year FFDM 50%) than patients with only +LN, elevated IHC or neither feature (70, 85 and 95%, respectively, p = 0.0004). In multivariable analysis, only +LN was significantly associated with poorer FFDM (hazard ratio 4.6, p = 0.0015) though there was a strong trend with elevated CAIX expression (p = 0.069). Elevated CAIX expression is associated with more frequent distant metastases in early-stage cervical cancer, suggesting that patients with this characteristic may benefit from more aggressive treatment.
Collapse
Affiliation(s)
- John P Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, U.S.A. 27710
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kirkpatrick JP, Rabbani ZN, Bentley RC, Hardee ME, Karol S, Meyer J, Oosterwijk E, Havrilesky L, Secord AA, Vujaskovic Z, Dewhirst MW, Jones EL. Elevated CAIX Expression is Associated with an Increased Risk of Distant Failure in Early-Stage Cervical Cancer. Biomark Insights 2008; 3:45-55. [PMID: 19578493 PMCID: PMC2688355 DOI: 10.4137/bmi.s570] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor hypoxia is associated with adverse outcome in many malignancies. The goal of this study was to determine if elevated expression of carbonic anhydrase IX (CAIX), a biomarker of hypoxia, predicts for recurrence in early-stage cervical cancer. The charts of all patients with early-stage cervical cancer, primarily FIGO IB, treated by radical hysterectomy at our institution from 1988–2001 were reviewed. Adequate pathologic specimens from patients who recurred or who had at least three years follow-up and remained disease-free were stained for CAIX. An immunohistochemical score (IHC) was generated from the extent/intensity of staining. Outcome, as measured by freedom from recurrence (FFR), distant metastases (FFDM) and local recurrence (FFLR), was analyzed as a function of age, IHC, lymph node status (LN) and histology. Forty-two relapsing patients and 76 non-relapsing patients were evaluated. In univariate analysis, +LN, though not IHC or histology, was a significant predictor of any recurrence. Both +LN and higher IHC were associated with decreased FFDM but not FFLR. Patients with both +LN and elevated IHC more frequently exhibited distant metastases as first site of failure (5-year FFDM 50%) than patients with only +LN, elevated IHC or neither feature (70, 85 and 95%, respectively, p = 0.0004). In multivariable analysis, only +LN was significantly associated with poorer FFDM (hazard ratio 4.6, p = 0.0015) though there was a strong trend with elevated CAIX expression (p = 0.069). Elevated CAIX expression is associated with more frequent distant metastases in early-stage cervical cancer, suggesting that patients with this characteristic may benefit from more aggressive treatment.
Collapse
Affiliation(s)
- John P Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, U.S.A. 27710
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Korkolopoulou P, Perdiki M, Thymara I, Boviatsis E, Agrogiannis G, Kotsiakis X, Angelidakis D, Rologis D, Diamantopoulou K, Thomas-Tsagli E, Kaklamanis L, Gatter K, Patsouris E. Expression of hypoxia-related tissue factors in astrocytic gliomas. A multivariate survival study with emphasis upon carbonic anhydrase IX. Hum Pathol 2007; 38:629-38. [PMID: 17367605 DOI: 10.1016/j.humpath.2006.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/21/2006] [Accepted: 07/27/2006] [Indexed: 01/12/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme involved in the reversible metabolism of carbon dioxide to carbonic acid and, hence, in physiological pH regulation. It also participates in cellular differentiation and proliferation, its expression being absent in most normal tissues. It has been recently postulated that the hypoxia-inducible factor (HIF-1) pathway up-regulated by hypoxia accounts for CAIX overexpression in most human tumors. In the present study, we examined the expression of this enzyme in diffuse gliomas of astrocytic origin in relation to vascular endothelial growth factor (VEGF) and HIF-1alpha expression, proliferation rate (as assessed with Ki-67 antigen), microvessel morphology, and survival. Of 84 cases analyzed, 61 cases (72.6%) displayed strong membrane and/or cytoplasmic expression of CAIX and were grouped as positive. Immunoreactivity tended to have a perinecrotic distribution and increased in parallel with the extent of necrosis (P < .001) and histologic grade (P < .001). A positive correlation was also noted with HIF-1alpha and VEGF expression (P < .001), proliferation rate (P = .010), microvessel density (P = .004), and microvessel caliber parameters (P = .014-.038). In univariate survival analysis, increased CAIX expression was associated with shortened survival in the entire cohort (P < .0001), along with VEGF (P = .0205) and HIF-1alpha levels (P = .0190). Multivariate analysis selected the interaction model of CAIX, with grade and age as the only parameters independently affecting survival. CAIX expression was also the only significant parameter for the survival of patients with grades II/III. We conclude that CAIX may be used as a prognostic indicator in diffuse astrocytomas to refine the information provided by grade. Given the role of CAIX in the acidification of tumor environment and its up-regulation by hypoxia, it is thought that CAIX expression may be linked to resistance of tumor cells to radiotherapy by allowing them to acclimatize to a hypoxic and acidic microenvironment.
Collapse
Affiliation(s)
- Penelope Korkolopoulou
- Department of Pathology, National and Kapodistrian University of Athens, GR 115 27 Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thorwarth D, Eschmann SM, Paulsen F, Alber M. A model of reoxygenation dynamics of head-and-neck tumors based on serial 18F-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 2007; 68:515-21. [PMID: 17398015 DOI: 10.1016/j.ijrobp.2006.12.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/27/2006] [Accepted: 12/27/2006] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop a model for reoxygenation dynamic and its relationship to local control after radiotherapy (RT), based on repeated dynamic [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) examinations in head-and-neck cancer patients. METHODS AND MATERIALS Ten head-and-neck cancer patients were examined with dynamic FMISO PET before RT with 70 Gy and after approximately 20 Gy. Two of these patients had two additional dynamic FMISO scans during treatment. Local recurrence was assessed by computed tomography-based follow-up 8-24 months after RT. Tumor-specific values for the level of FMISO retention R and the vascular perfusion efficiency P were determined with a kinetic compartment model. RESULTS Individual R-P scattergrams before and during therapy were analyzed, and significant therapy-induced changes in the characteristic R-P patterns were observed. A tumor control probability model was derived that involves the tissue parameters R and P and estimates the time to reoxygenation. On the basis of this model, a malignancy value M was introduced and calibrated by a fit to the observed outcome data. Reoxygenation is reflected by the model as a progression to less-malignant tumor types (i.e., smaller values of M). In 4 of 6 patients with severe hypoxia, M had decreased after 20 Gy, whereas 2 patients showed increasing M. Four patients showed no hypoxia in the pretreatment scan. CONCLUSION A tumor control probability model was developed based on repeated FMISO PET scans during RT. The model combines the local perfusion efficiency and the degree of hypoxia to estimate reoxygenation time. It constitutes a key for hypoxia image-guided dose escalation in RT.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Clinic for Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|
18
|
Lee K, Roth RA, LaPres JJ. Hypoxia, drug therapy and toxicity. Pharmacol Ther 2007; 113:229-46. [PMID: 17046066 DOI: 10.1016/j.pharmthera.2006.08.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 08/07/2006] [Indexed: 12/18/2022]
Abstract
Hypoxia is defined as a decrease in available oxygen reaching the tissues of the body. It is linked to the pathology of cancer, cardiovascular disease, and stroke, the leading causes of death in the United States. Cells under hypoxic stress either induce an adaptive response that includes increasing the rates of glycolysis and angiogenesis or undergo cell death by promoting apoptosis or necrosis. The ability of cells to maintain a balance between adaptation and cell death is regulated by a family of transcription factors called the hypoxia inducible factors (HIF). HIF1, the most widely studied HIF, is essential for regulating the expression of a battery of hypoxia-responsive genes involved in the adaptive and cell death responses. The ability of HIF1 to balance these 2 responses likely lies in the regulation of HIF1alpha stability and transcriptional activity by post-translational hydroxylation and its ability to respond to other cellular factors including key metabolites and growth factors. Targeting HIF1 signaling for therapeutics, therefore, requires an understanding of how these various signals converge upon HIF1 and regulate its role in maintaining the balance between adaptation and cell death. In addition, one must understand how this balance can be perturbed during toxicant-induced tissue damage. This review will summarize our current understanding of hypoxia signaling as it applies to drug therapy and toxicity and describe how these processes can influence the HIF-mediated balance between adaptation and cell death.
Collapse
Affiliation(s)
- KangAe Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
19
|
Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M. Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 2006; 66:9009-16. [PMID: 16982742 DOI: 10.1158/0008-5472.can-06-0101] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dimethylated histone H3 lysine 9 (H3K9me2) is a critical epigenetic mark for gene repression and silencing and plays an essential role in embryogenesis and carcinogenesis. Here, we investigated the effects of hypoxic stress on H3K9me2 at both global and gene-specific level. We found that hypoxia increased global H3K9me2 in several mammalian cell lines. This hypoxia-induced H3K9me2 was temporally correlated with an increase in histone methyltransferase G9a protein and enzyme activity. The increase in H3K9me2 was significantly mitigated in G9a-/- mouse embryonic stem cells following hypoxia challenge, indicating that G9a was involved in the hypoxia-induced H3K9me2. In addition to the activation of G9a, our results also indicated that hypoxia increased H3K9me2 by inhibiting H3K9 demethylation processes. Hypoxic mimetics, such as deferoxamine and dimethyloxalylglycine, were also found to increase H3K9me2 as well as G9a protein and activity. Finally, hypoxia increased H3K9me2 in the promoter regions of the Mlh1 and Dhfr genes, and these increases temporally correlated with the repression of these genes. Collectively, these results indicate that G9a plays an important role in the hypoxia-induced H3K9me2, which would inhibit the expression of several genes that would likely lead to solid tumor progression.
Collapse
Affiliation(s)
- Haobin Chen
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Radiotherapy continues to be a major treatment for solid tumours and is a cornerstone of modern oncology. The term 'radiation oncology' describes the integration of radiation therapy into the complexity of multi-modal therapy. Over the last ten years the crucial role of radiation therapy as part of multi-modality protocols in cancer care has been documented in numerous Phase III trials. Advances in treatment technology as well as the underlying biology of tumour resistance mechanisms will further strengthen the role of radiation oncology. The scientific role of radiation oncology is reflected by the increase in the number of papers related to radiation oncology in resources like Medline. In order to reflect the growing scientific importance of radiation oncology, radiation physics and radiation biology, we have initiated Radiation Oncology as the first open access journal in the field. Open access allows for a rapid and transparent publication process together with an unequalled opportunity to reach the widest reader spectrum possible.
Collapse
Affiliation(s)
- Claus Belka
- Department of Radiation Oncology, University Tübingen, Germany
| | - Kevin A Camphausen
- National Cancer Institute Bethesda, Radiation Oncology Branch, Bethesda, USA
| |
Collapse
|
21
|
Kelloff GJ, Krohn KA, Larson SM, Weissleder R, Mankoff DA, Hoffman JM, Link JM, Guyton KZ, Eckelman WC, Scher HI, O'Shaughnessy J, Cheson BD, Sigman CC, Tatum JL, Mills GQ, Sullivan DC, Woodcock J. The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 2006; 11:7967-85. [PMID: 16299226 DOI: 10.1158/1078-0432.ccr-05-1302] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As addressed by the recent Food and Drug Administration Critical Path Initiative, tools are urgently needed to increase the speed, efficiency, and cost-effectiveness of drug development for cancer and other diseases. Molecular imaging probes developed based on recent scientific advances have great potential as oncologic drug development tools. Basic science studies using molecular imaging probes can help to identify and characterize disease-specific targets for oncologic drug therapy. Imaging end points, based on these disease-specific biomarkers, hold great promise to better define, stratify, and enrich study groups and to provide direct biological measures of response. Imaging-based biomarkers also have promise for speeding drug evaluation by supplementing or replacing preclinical and clinical pharmacokinetic and pharmacodynamic evaluations, including target interaction and modulation. Such analyses may be particularly valuable in early comparative studies among candidates designed to interact with the same molecular target. Finally, as response biomarkers, imaging end points that characterize tumor vitality, growth, or apoptosis can also serve as early surrogates of therapy success. This article outlines the scientific basis of oncology imaging probes and presents examples of probes that could facilitate progress. The current regulatory opportunities for new and existing probe development and testing are also reviewed, with a focus on recent Food and Drug Administration guidance to facilitate early clinical development of promising probes.
Collapse
Affiliation(s)
- Gary J Kelloff
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu XH, Yu EZ, Li YY, Rollwagen FM, Kagan E. RNA interference targeting Akt promotes apoptosis in hypoxia-exposed human neuroblastoma cells. Brain Res 2006; 1070:24-30. [PMID: 16405925 DOI: 10.1016/j.brainres.2005.11.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/18/2005] [Accepted: 11/06/2005] [Indexed: 01/15/2023]
Abstract
Overactivation of the PI3 kinase/Akt pathway plays an essential role in the development and progression of various tumors. Akt is a key component of this pathway and hyperactivated in different tumors including neuroblastoma and glioma. In the present study, we tested the therapeutic efficacy of siRNA targeting Akt in inducing apoptotic cell death in NBFL cells (a human neuroblastoma cell line) subjected to anoxia/reoxygenation (A/R), a process that has been shown to modulate growth and progression of malignant tumors. We observed that siRNA targeting Akt effectively induced apoptotic cell death in NBFL cells (as determined by TUNEL assay and activated caspase-3 immunoreactivity) under normoxic conditions, an effect that was greatly enhanced under conditions of A/R. These findings underscore the importance of Akt signaling in promoting survival of neuroblastoma cells and may have potential therapeutic applications.
Collapse
Affiliation(s)
- Xiu-Huai Liu
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | | | | | | | | |
Collapse
|
23
|
Thorwarth D, Eschmann SM, Scheiderbauer J, Paulsen F, Alber M. Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer. BMC Cancer 2005; 5:152. [PMID: 16321146 PMCID: PMC1325034 DOI: 10.1186/1471-2407-5-152] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 12/01/2005] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia compromises local control in patients with head-and-neck cancer (HNC). In order to determine the value of [18F]-fluoromisonidazole (Fmiso) with regard to tumor hypoxia, a patient study with dynamic Fmiso PET was performed. For a better understanding of tracer uptake and distribution, a kinetic model was developed to analyze dynamic Fmiso PET data. Methods For 15 HNC patients, dynamic Fmiso PET examinations were performed prior to radiotherapy (RT) treatment. The data was analyzed using a two compartment model, which allows the determination of characteristic hypoxia and perfusion values. For different parameters, such as patient age, tumor size and standardized uptake value, the correlation to treatment outcome was tested using the Wilcoxon-Mann-Whitney U-test. Statistical tests were also performed for hypoxia and perfusion parameters determined by the kinetic model and for two different metrics based on these parameters. Results The kinetic Fmiso analysis extracts local hypoxia and perfusion characteristics of a tumor tissue. These parameters are independent quantities. In this study, different types of characteristic hypoxia-perfusion patterns in tumors could be identified. The clinical verification of the results, obtained on the basis of the kinetic analysis, showed a high correlation of hypoxia-perfusion patterns and RT treatment outcome (p = 0.001) for this initial patient group. Conclusion The presented study established, that Fmiso PET scans may benefit from dynamic acquisition and analysis by a kinetic model. The pattern of distribution of perfusion and hypoxia in the tissue is correlated to local control in HNC.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Clinic for Radiation Oncology, University Hospital Tübingen, Germany
| | | | - Jutta Scheiderbauer
- Department of Radiation Therapy, Clinic for Radiation Oncology, University Hospital Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Therapy, Clinic for Radiation Oncology, University Hospital Tübingen, Germany
| | - Markus Alber
- Section for Biomedical Physics, Clinic for Radiation Oncology, University Hospital Tübingen, Germany
| |
Collapse
|
24
|
Zhu Q. Optical tomography with ultrasound localization: initial clinical results and technical challenges. Technol Cancer Res Treat 2005; 4:235-44. [PMID: 15896078 PMCID: PMC1533770 DOI: 10.1177/153303460500400302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Optical tomography with ultrasound localization utilizes co-registered ultrasound lesion structure information to guide optical imaging reconstruction. A hand-held probe consisting of a commercial ultrasound transducer and near infrared optical imaging sensors was used to simultaneously acquire ultrasound images and optical measurements. A dual-mesh scheme was used to map the ultrasound-visible lesions to finer-grid lesion regions and coarser-grid background regions for optical imaging reconstruction. As a result, optical imaging reconstruction was well-conditioned for inverse mapping of lesion hemoglobin concentration and blood oxygen saturation. Initial clinical results have shown that early stage invasive cancers may be distinguished by a two-fold greater total hemoglobin concentration compared with fibroadenomas and other benign lesions. Initial results of advanced cancers have shown that the hemoglobin distribution is highly distorted and heterogeneous and the distorted distributions correlate with histological microvessel density counts and could be used to assess chemotherapy response.
Collapse
Affiliation(s)
- Quing Zhu
- Bioengineering Program, Electrical and Computer Engineering Department, University of Connecticut, 371 Fairfield Rd, U2157, Storrs, CT 06269, USA.
| |
Collapse
|
25
|
Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O'shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005; 11:2785-808. [PMID: 15837727 DOI: 10.1158/1078-0432.ccr-04-2626] [Citation(s) in RCA: 463] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
2-[(18)F]Fluoro-2-deoxyglucose positron emission tomography (FDG-PET) assesses a fundamental property of neoplasia, the Warburg effect. This molecular imaging technique offers a complementary approach to anatomic imaging that is more sensitive and specific in certain cancers. FDG-PET has been widely applied in oncology primarily as a staging and restaging tool that can guide patient care. However, because it accurately detects recurrent or residual disease, FDG-PET also has significant potential for assessing therapy response. In this regard, it can improve patient management by identifying responders early, before tumor size is reduced; nonresponders could discontinue futile therapy. Moreover, a reduction in the FDG-PET signal within days or weeks of initiating therapy (e.g., in lymphoma, non-small cell lung, and esophageal cancer) significantly correlates with prolonged survival and other clinical end points now used in drug approvals. These findings suggest that FDG-PET could facilitate drug development as an early surrogate of clinical benefit. This article reviews the scientific basis of FDG-PET and its development and application as a valuable oncology imaging tool. Its potential to facilitate drug development in seven oncologic settings (lung, lymphoma, breast, prostate, sarcoma, colorectal, and ovary) is addressed. Recommendations include initial validation against approved therapies, retrospective analyses to define the magnitude of change indicative of response, further prospective validation as a surrogate of clinical benefit, and application as a phase II/III trial end point to accelerate evaluation and approval of novel regimens and therapies.
Collapse
Affiliation(s)
- Gary J Kelloff
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cervera AM, Apostolova N, Luna-Crespo F, Sanjuan-Pla A, Garcia-Bou R, McCreath KJ. An alternatively spliced transcript of the PHD3 gene retains prolyl hydroxylase activity. Cancer Lett 2005; 233:131-8. [PMID: 16473674 DOI: 10.1016/j.canlet.2005.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/04/2005] [Accepted: 03/06/2005] [Indexed: 11/22/2022]
Abstract
Cellular response to limiting oxygen levels is managed, in part, by the transcription factor hypoxia-inducible factor 1 (HIF-1), and the prolyl hydroxylase (PHD) family of oxygen-requiring enzymes. In the process of analyzing the expression of PHD3, we observed the presence of two alternatively processed PHD3 transcripts, designated PHD3Delta1 and PHD3Delta4 . The expression of both PHD3 and PHD3Delta1 was observed in all tissues and cell lines tested, although the expression of the novel PHD3Delta4 appeared to be restricted to primary cancer tissues. The function of PHD3Delta4 was assessed in transfection experiments showing a preserved prolyl hydroxylase activity. We would submit that PHD3 variants generated by alternative splicing may be intrinsically involved in the complex system of oxygen sensing.
Collapse
Affiliation(s)
- Ana M Cervera
- Unidad Mixta de Investigación Centro Nacional de Investigaciones Cardiovasculares Carlos III-Universitat de València, Avenida Blasco-Ibañez 15-17, 46.010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Seddon BM, Workman P. The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol 2004; 76 Spec No 2:S128-38. [PMID: 15572335 DOI: 10.1259/bjr/27373639] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Studies of pharmacokinetics (which is what the body does to the drug) and pharmacodynamics (which is what the drug does to the body) are essential components of the modern process of cancer drug discovery and development. Defining the precise relationship between pharmacokinetics and pharmacodynamics is critical. It is especially important to establish a well understood pharmacological "audit trail" that links together all of the essential parameters of drug action, from the molecular target to the clinical effects. The pharmacological audit trail allows us to answer two absolutely crucial questions: (1) how much gets there; and (2) what does it do? During the pre-clinical drug discovery phase, it is essential that pharmacokinetic/pharmacodynamic (PK/PD) properties are optimized, so that the best candidate can be selected for clinical development. As part of contemporary mechanistic, hypothesis-testing clinical trials, construction of the pharmacological PK/PD audit trail facilitates rational decision-making. However, PK/PD endpoints frequently require invasive sampling of body fluids and tissues. Non-invasive molecular measurements, e.g. using MRI or spectroscopy, or positron emission tomography, are therefore very attractive. This review highlights the need for PK/PD endpoints in modern drug design and development, illustrates the value of PK/PD endpoints, and emphasises the importance of non-invasive molecular imaging in drug development. Examples cited include the use of PK/PD endpoints in the development of molecular therapeutic drugs such as the Hsp90 molecular chaperone inhibitor 17AAG, as well as the development of SR-4554 as a non-invasive probe for the detection of tumour hypoxia.
Collapse
Affiliation(s)
- B M Seddon
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | |
Collapse
|
28
|
Thews O, Wolloscheck T, Dillenburg W, Kraus S, Kelleher DK, Konerding MA, Vaupel P. Microenvironmental adaptation of experimental tumours to chronic vs acute hypoxia. Br J Cancer 2004; 91:1181-9. [PMID: 15305198 PMCID: PMC2747687 DOI: 10.1038/sj.bjc.6602066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study investigated long-term microenvironmental responses (oxygenation, perfusion, metabolic status, proliferation, vascular endothelial growth factor (VEGF) expression and vascularisation) to chronic hypoxia in experimental tumours. Experiments were performed using s.c.-implanted DS-sarcomas in rats. In order to induce more pronounced tumour hypoxia, one group of animals was housed in a hypoxic atmosphere (8% O2) for the whole period of tumour growth (chronic hypoxia). A second group was acutely exposed to inspiratory hypoxia for only 20 min prior to the measurements (acute hypoxia), whereas animals housed under normal atmospheric conditions served as controls. Acute hypoxia reduced the median oxygen partial pressure (pO2) dramatically (1 vs 10 mmHg in controls), whereas in chronically hypoxic tumours the pO2 was significantly improved (median pO2=4 mmHg), however not reaching the control level. These findings reflect the changes in tumour perfusion where acutely hypoxic tumours show a dramatic reduction of perfused tumour vessels (maybe the result of a simultaneous reduction in arterial blood pressure). In animals under chronic inspiratory hypoxia, the number of perfused vessels increased (compared to acute hypoxia), although the perfusion pattern found in control tumours was not reached. In the chronically hypoxic animals, tumour cell proliferation and tumour growth were significantly reduced, whereas no differences in VEGF expression and vascular density between these groups were observed. These results suggest that long-term adaptation of tumours to chronic hypoxia in vivo, while not affecting vascularity, does influence the functional status of the microvessels in favour of a more homogeneous perfusion.
Collapse
Affiliation(s)
- O Thews
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, 55099 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Skov K, Adomat H, Bowden M, Dragowska W, Gleave M, Koch CJ, Woo J, Yapp DTT. Hypoxia in the Androgen-Dependent Shionogi Model for Prostate Cancer at Three Stages1. Radiat Res 2004; 162:547-53. [PMID: 15624309 DOI: 10.1667/rr3254] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of this study was to investigate a possible relationship between androgen status and hypoxia in the Shionogi murine prostate tumor model, which is widely used to study the effects of androgen withdrawal on hormone resistance and radiation response. Binding of the nitroimidazole hypoxia marker EF5 was assessed using the Cy3-tagged monoclonal antibody ELK3-51. Three hours after injection of EF5 (30 mg/kg), tumors from the following three stages were excised: androgen-dependent, regressed tumors 7 days after castration, and androgen-independent. Half of each tumor was disaggregated for analysis by flow cytometry and the remainder was flash frozen. Statistically significant differences (P < 0.01) were found between androgen-dependent, regressed and androgen-dependent tumors: approximately 30, approximately 2 and approximately 50% hypoxic cells, respectively. Frozen sections from androgen-dependent tumors exhibited highly variable EF5 binding; regressed tumors showed very little or no binding; each section from androgen-dependent tumors showed high levels and uniformly distributed binding of EF5. There was no correlation between the degree of hypoxia and tumor weight (P > 0.1). The results from this preliminary study indicate that hypoxia may play an important role with respect to the timing of irradiation in prostate cancer treatments and possibly may be a useful prognostic tool. In addition, hypoxia may also be relevant to progression in this disease after androgen ablation.
Collapse
Affiliation(s)
- Kirsten Skov
- Advanced Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Coleman CN. International Conference on Translational Research ICTR 2003 Conference Summary: marshalling resources in a complex time. Int J Radiat Oncol Biol Phys 2004; 58:307-19. [PMID: 14751498 DOI: 10.1016/j.ijrobp.2003.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The knowledge, tools, and environment for the practice of radiation oncology are changing rapidly. The National Cancer Institute has articulated the need for a balanced portfolio, including the interrelated components of discovery, development, and delivery. Underpinning practice is the emerging knowledge from molecular, cellular, and tumor biology that is the engine of discovery. The use of high-throughput technologies to analyze biochemical and molecular profiles will ultimately enable the individualization of cancer treatment requiring the appropriate integration of radiation with a range of systemic therapies, including chemotherapy, biologic therapy, and immunotherapy. Technological advances in treatment delivery using photons, brachytherapy, particle therapy, radioisotopes, and other forms of energy require an improved ability to localize the tumor and critical subregions and to ensure necessary tissue immobilization and/or real-time target adjustment. Functional imaging is helping to define tumor characteristics and response to treatment. The development of appropriate radiation oncology treatment requires a wide range of expertise, a multimodality approach, and multi-institutional collaboration to provide improved and cost-effective outcome. The delivery of appropriate cancer care to those who need it requires biology and technology but also reaching the underserved populations worldwide. ICTR 2003 demonstrated substantial progress in translational radiation oncology. Faced with financial constraints for research and patient care, the broad field of radiation oncology must continually examine and balance its research and development portfolio and invest in its future leaders to enable it be an important contributor to the future of cancer care.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Oncology Sciences Program, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute/NIH, Bldg. 10, B3-B69, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
31
|
Xu L, Pathak PS, Fukumura D. Hypoxia-Induced Activation of p38 Mitogen-Activated Protein Kinase and Phosphatidylinositol 3′-Kinase Signaling Pathways Contributes to Expression of Interleukin 8 in Human Ovarian Carcinoma Cells. Clin Cancer Res 2004; 10:701-7. [PMID: 14760093 DOI: 10.1158/1078-0432.ccr-0953-03] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Overexpression of interleukin 8 (IL-8) is associated with disease progression in human ovarian cancer. Hypoxia, a common feature in solid tumors, induces IL-8 expression in human ovarian carcinoma cells through activation of nuclear factor-kappa B and activating protein-1. Here we show the upstream components of these signal transduction pathways that lead to IL-8 expression under hypoxia. EXPERIMENTAL DESIGN We incubated Hey-A8 human ovarian carcinoma cells under hypoxic condition (1% O(2)) and determined hypoxia regulation of phosphatidylinositol 3'-kinase (PI3K)/Akt pathway, mitogen-activated protein kinases (MAPKs), and effects of ras and vascular endothelial growth factor by Western and Northern blots, the use of specific inhibitors, in vitro kinase assays, luciferase reporter genes, and ELISA. RESULTS While investigating the upstream signaling pathways, we found that Akt kinase and p38 MAPK are activated by hypoxia. Both hypoxia-induced Akt and p38 MAPK functional activity, and IL-8 mRNA and protein expression were reduced with the inhibition of PI3K and p38 MAPK. Oncogenic ras overexpression resulted in an increase in the hypoxia-induced IL-8 expression, whereas the inhibition of ras by transfection of dominant-negative ras inhibited the hypoxia-induced IL-8 expression. CONCLUSIONS These results show that hypoxia activates ras, PI3K/Akt pathway, and p38 MAPK pathway to enhance IL-8 gene transcription under hypoxia, and suggest these signaling pathways as potential targets for controlling IL-8 expression and angiogenesis by human ovarian carcinoma cells.
Collapse
Affiliation(s)
- Lei Xu
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Peter Vaupel
- Institute of Physiology and Pathophysiology, University of Mainz, Germany
| | | | | |
Collapse
|
33
|
Bottini A, Berruti A, Brizzi MP, Bersiga A, Generali D, Allevi G, Aguggini S, Bolsi G, Bonardi S, Bertoli G, Alquati P, Dogliotti L. Pretreatment haemoglobin levels significantly predict the tumour response to primary chemotherapy in human breast cancer. Br J Cancer 2003; 89:977-82. [PMID: 12966412 PMCID: PMC2376950 DOI: 10.1038/sj.bjc.6601216] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to evaluate whether tumour response to primary chemotherapy in human breast cancer is influenced by baseline haemoglobin (Hb) status. A total of 157 patients with T2-4, N0-1 M0 breast cancer were treated with chemotherapy consisting of either the CMF regimen + tamoxifen (the first 76 cases) or the single-agent epirubicin (the subsequent 81) before definitive surgery. In total, 144 patients were fully assessable. Ki67, p53, bcl-2, c-erbB2, steroid hormone receptor, and microvessel density were evaluated immunohistochemically in tumour specimens obtained before chemotherapy and at surgery. Tumour shrinkage >50% occurred in 72.1% of patients. Responding patients had higher baseline Hb levels and red blood cell counts than nonresponders (P<0.01 and <0.003, respectively). The distribution of disease response according to increasing cutoffs of baseline Hb status showed that from 12.5 mg l(-1) onwards, patients with Hb levels above the cutoff obtained a greater response rate than those with lower Hb values. The difference attained the statistical significance at 12.5 (76.1 vs 59.5%, P<0.05) and 13.0 g/dl(-1) (81.0 vs 57.6%, P<0.002) cutoffs, respectively. The predictive role of Hb levels was maintained in multivariate analysis after adjustment for clinical and biological characteristics and treatment regimen. Patients with baseline Hb levels </=13 g dl(-1) showed a lower treatment-induced reduction in Ki67 expression (P<0.04) and a higher Ki67 expression at postoperative evaluation (P<0.02) than their counterparts. In conclusion, low Hb levels may negatively influence the response rate of chemotherapy in breast cancer patients. Inhibition of antiproliferative activity could be a possible mechanism.
Collapse
Affiliation(s)
- A Bottini
- Breast Unit, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - A Berruti
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Oncologia Medica, Azienda Ospedaliera San Luigi, Regione Gonzole 10 Orbassano, 10043, Italy
| | - M P Brizzi
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Oncologia Medica, Azienda Ospedaliera San Luigi, Regione Gonzole 10 Orbassano, 10043, Italy
| | - A Bersiga
- Anatomia Patologica, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - D Generali
- Breast Unit, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - G Allevi
- Breast Unit, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - S Aguggini
- Breast Unit, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - G Bolsi
- Anatomia Patologica, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - S Bonardi
- Breast Unit, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - G Bertoli
- Anatomia Patologica, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - P Alquati
- Breast Unit, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - L Dogliotti
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Oncologia Medica, Azienda Ospedaliera San Luigi, Regione Gonzole 10 Orbassano, 10043, Italy
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Oncologia Medica, Azienda Ospedaliera San Luigi, Regione Gonzole 10 Orbassano, 10043, Italy. E-mail:
| |
Collapse
|
34
|
Coleman CN. Linking radiation oncology and imaging through molecular biology (or now that therapy and diagnosis have separated, it's time to get together again!). Radiology 2003; 228:29-35. [PMID: 12832573 DOI: 10.1148/radiol.2281021567] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the areas defined by the National Cancer Institute as "Extraordinary Opportunities for Research Investment" that are highly relevant to the technology-oriented disciplines within the broad field of radiology are cancer imaging, defining the signatures (ie, underlying molecular features) of cancer cells, and molecular targets of prevention and treatment. In molecular target credentialing, a specific molecular target is imaged, the molecular signature is defined, a treatment is given, and the effect of the intervention on the image findings and the signature is then evaluated. Such an approach is used to validate the proposed target as a legitimate one for cancer therapy or prevention and to provide the opportunity to ultimately individualize therapy on the basis of both the initial characteristics of the tumor and the tumor's response to an intervention. Therapeutic radiation is focused biology (ie, radiation produces molecular events in the irradiated tissue). Radiation can (a) kill cancer cells by itself, (b) be combined with cytotoxic or cytostatic drugs, and (c) serve to initiate radiation-inducible molecular targets that are amenable to treatment with drugs and/or biologic therapies. Focused biology can be anatomically confined with various types of external beams and with brachytherapy, and it can be used systemically with targeted radioisotopes. These new paradigms link diagnostic imaging, radiation therapy, and nuclear medicine in unique ways by way of basic biology. It is timely to develop new collaborative research, training, and education agendas by building on one another's expertise and adopting new fields of microtechnology, nanotechnology, and mathematical analysis and optimization.
Collapse
Affiliation(s)
- C Norman Coleman
- National Cancer Institute, Radiation Oncology Branch, Bldg 10, B3-B69, National Institutes of Health, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
35
|
Dunst J, Kuhnt T, Strauss HG, Krause U, Pelz T, Koelbl H, Haensgen G. Anemia in cervical cancers: impact on survival, patterns of relapse, and association with hypoxia and angiogenesis. Int J Radiat Oncol Biol Phys 2003; 56:778-87. [PMID: 12788185 DOI: 10.1016/s0360-3016(03)00123-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The prognostic impact of anemia in cervical cancers is well established. We have investigated the impact of anemia on prognosis and patterns of relapse in cervical cancers. Furthermore, we analyzed the relationship between anemia, tumor hypoxia, and angiogenesis. METHODS AND MATERIALS Eighty-seven patients (mean age 58 years) with squamous cell cancer of the cervix (Stage IIB: n = 19; Stage IIIB: n = 59; Stage IVA: n = 9) were prospectively enrolled in the study from 1995 through 1999. Patients underwent definitive radiotherapy with a combination of external beam radiotherapy (45-50.4 Gy) and high-dose-rate brachytherapy (5 x 7 Gy). Tumor oxygenation was measured with the Eppendorf pO(2)-histograph before radiotherapy and after 19.8 Gy. Angiogenesis was determined by measuring the microvessel density in pretreatment biopsies in 46 patients. The impact of tumor oxygenation (at 0 Gy and 19.8 Gy), hemoglobin (hb) level (at 0 Gy and 19.8 Gy), angiogenesis and clinical parameters on survival and relapse was investigated. RESULTS The 3-year overall survival rate (after a median follow-up of 42 months) was 57% for the whole group of patients, 72% for Stage IIB, 60% for Stage IIIB, and 22% for Stage IVA. The presence of pretreatment anemia had a significant impact on the relapse rate. However, the midtherapy hb level (at 19.8 Gy) had the strongest impact on local failure rate and survival: 3-year local failure rate was 6% in 20 patients with a hb > 13 g/dL at 19.8 Gy, 15% in 47 patients with an hb between 11 and 13 g/dL, and 67% in 20 patients with an hb < 11 g/dL, p = 0.0001. This was associated with a significant impact on the 3-year overall survival, 79% vs. 64% vs. 32%. Twenty-three tumors were poorly oxygenated at both measurements (oxygen pressure [median pO(2)] < 15 mm Hg before therapy and at 19.8 Gy). This group had a significantly lower 3-year overall survival as compared with patients with high pO(2) before and/or at 19.8 Gy (38% vs. 68%, p = 0.02), and these poorly oxygenated tumors had also a significantly increased microvessel density. In a multivariate model, the midtherapy hb level maintained an overwhelming impact on local failure rate and survival. CONCLUSION Hemoglobin level during radiotherapy was the strongest prognostic factor for local control and survival. We could further identify a poor prognostic subgroup with persisting hypoxia during radiotherapy, low hb levels, and increased angiogenesis. According to these findings, an association between anemia, poor tumor oxygenation, and angiogenesis is likely.
Collapse
Affiliation(s)
- Juergen Dunst
- Department of Radiotherapy, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kunz M, Ibrahim SM. Molecular responses to hypoxia in tumor cells. Mol Cancer 2003; 2:23. [PMID: 12740039 PMCID: PMC155638 DOI: 10.1186/1476-4598-2-23] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 04/17/2003] [Indexed: 12/20/2022] Open
Abstract
Highly aggressive, rapidly growing tumors are exposed to hypoxia or even anoxia which occurs as a consequence of inadequate blood supply. Both hypoxia and consecutive hypoxia/reoxygenation exert a variety of influences on tumor cell biology. Among these are activation of certain signal transduction pathways and gene regulatory mechanisms, induction of selection processes for gene mutations, tumor cell apoptosis and tumor angiogenesis. Most of these mechanisms contribute to tumor progression. Therefore, tissue hypoxia has been regarded as a central factor for tumor aggressiveness and metastasis. In this review, we summarize the current knowledge about the molecular mechanisms induced by tumor cell hypoxia with a special emphasis on intracellular signal transduction, gene regulation, angiogenesis and apoptosis. Interfering with these pathways might open perspectives for future innovative treatment of highly aggressive metastasizing tumors.
Collapse
Affiliation(s)
- Manfred Kunz
- University of Rostock, Department of Dermatology and Venereology, Augustenstr. 80–84, 18055 Rostock, Germany
| | - Saleh M Ibrahim
- University of Rostock, Institute of Immunology, Schillingallee 70, 18055 Rostock, Germany
| |
Collapse
|
37
|
Vaupel P. Vasculature and microenvironmental gradients: the missing links in novel approaches to cancer therapy? Semin Radiat Oncol 1998; 14:198-206. [PMID: 15254862 DOI: 10.1016/j.semradonc.2004.04.008] [Citation(s) in RCA: 695] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This paper illustrates how the concept of the malignant cell per se as the prime and only target in cancer therapy may be erroneous. The micro-vasculature evoked to satisfy nutritional requirements of solid tumors, and the inadequacy of this nutrition for all tumor cells, provide novel targeting concepts. The vascular architecture and the microenvironmental gradients (VAMP) will differ from one tumor to another and may determine whether current therapies succeed or fail. Many agents have a different toxicity or mode of action at the pathophysiological oxygen tensions that prevail in solid tumors. This warrants more attention. The hypoxic cell or the immature proliferating endothelial cell may provide tumor specificity that is more general than, and greater than, that conferred by the process of malignant transformation. The poor vasculature of solid tumors is often regarded as a problem by the oncologist. It limits the access of cytotoxic drugs, monoclonal antibodies, cytokines, etc. It also leads to hypoxic radioresistance because of diffusion limited chronic hypoxia and perfusion limited intermittent hypoxia, resulting from transient vessel closure. However, it can also be seen as a potential target, since prolonged vessel occlusion can lead to an avalanche of cell death. Strategies to prevent further expansion of the vascular network (anti-angiogenesis) should stabilize tumors and prevent further growth. Vascular targeting, aiming to damage the microvascular function and cause occlusion, can lead to extensive cell death. The target may relate to the excessive proliferation of endothelial cells in tumors or to abnormal functional aspects, such as altered cell shape (influencing permeability) adhesiveness to leukocytes or steps in the coagulation cascade. These microvascular features and microenvironmental gradients, and the phenotypic consequences of them, have been relatively neglected. The altered milieu and inadequate neovasculature is a common feature of all types of solid tumor, whereas the genetic changes that can give rise to a malignancy are very variable, from tumor site to site and even within a site from individual to individual. It seems, therefore, that therapies that could be of widespread general applicability might more easily be found from the micro-environmental or anti-vascular approaches than from gene therapy targeted at specific oncogenes. This approach will require cross fertilisation between scientists from quite disparate backgrounds, whose paths seldom cross, and who may not read, or even scan, each other's literature. If the endothelium or the low oxygen tension in subsets of tumor cells are the key to successful cancer treatment in mice, there are considerable implications for screening methods in vitro and for predictive and prognostic tests made on homogenized tumor samples.
Collapse
Affiliation(s)
- Peter Vaupel
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|