1
|
Sperb N, Maksakova IA, Escano L, Abraham L, MacPhee L, Cabantog A, Kim D, Yu M, Krowiorz K, Im J, Grasedieck S, Pochert N, Ruess C, Rösler R, Flibotte S, Maetzig T, Calzia E, Palmqvist L, Wiese S, Fogelstrand L, Gold MR, Rouhi A, Kuchenbauer F. The proto-oncogenic miR-106a-363 cluster enhances adverse risk acute myeloid leukemia through mitochondrial activation. Leukemia 2025; 39:1090-1101. [PMID: 40097604 DOI: 10.1038/s41375-025-02558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/10/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
We investigated the clinical and functional role of the miR-106a-363 cluster in adult acute myeloid leukemia (AML). LAML miRNA-Seq TCGA analyses revealed that high expression of miR-106a-363 cluster members was associated with inferior survival, and miR-106a-5p and miR-20b-5p levels were significantly elevated in patients with adverse risk AML. Overexpression of the miR-106a-363 cluster and its individual members in a murine AML model significantly accelerated leukemogenesis. Proteomics analysis of leukemic bone marrow cells from these models emphasized the deregulation of proteins involved in intracellular transport, protein complex organization and mitochondrial function, driven predominantly by miR-106a-5p. These molecular alterations suggested mitochondrial activation as a potential mechanism for the observed increase in leukemogenicity. High-resolution respirometry and STED microscopy confirmed that miR-106a-5p enhances mitochondrial respiratory activity and increases mitochondrial volume. These findings demonstrate that the miR-106a-363 cluster, and particularly miR-106a-5p, contribute to AML progression through modulation of mitochondrial function and deregulation of mitochondria-coordinated pathways.
Collapse
Affiliation(s)
- Nadine Sperb
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
| | - Irina A Maksakova
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Leo Escano
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Libin Abraham
- Department. of Microbiology and Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Liam MacPhee
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Ariene Cabantog
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Dexter Kim
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Mansen Yu
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Kathrin Krowiorz
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
| | - Junbum Im
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Sarah Grasedieck
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
| | - Nicole Pochert
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
- Department for Gynecology and Obstetrics, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Christoph Ruess
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, 89081, Germany
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Enrico Calzia
- Institute for Anesthesiological pathophysiology and procedure development, Ulm University Hospital, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Lars Palmqvist
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, 41345, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, 41345, Sweden
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, 89081, Germany
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, 41345, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, 41345, Sweden
| | - Michael R Gold
- Department. of Microbiology and Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Florian Kuchenbauer
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Iyer P. Pediatric AML: state of the Art and Future Directions. Pediatr Hematol Oncol 2025; 42:126-145. [PMID: 39889807 DOI: 10.1080/08880018.2025.2453861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous and aggressive hematological malignancy. Despite advances in treatment, the survival rates remain unsatisfactory, emphasizing the need for innovative therapeutic approaches. This narrative review presents a comprehensive overview of the current approach and likely future directions for pediatric AML. The distinct genetic, epigenetic, and molecular features of pediatric AML contribute to its complex pathophysiology and impact on prognosis. Current treatment practices involve a multifaceted approach combining chemotherapy, molecularly targeted therapies, and hematopoietic stem cell transplantation. However, intensive treatment often leads to significant acute and long-term toxicity. Emerging strategies, including precision medicine, immunotherapy, and novel agents, hold promise for improving outcomes and minimizing adverse effects. Ongoing clinical trials are investigating the potential of these innovative approaches to transform pediatric AML care. By highlighting the evolving treatment paradigms and future perspectives, this review underscores the importance of continued research and development in pediatric AML to enhance the survival rates and quality of life of these young patients.
Collapse
Affiliation(s)
- Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore
- Duke NUS Medical School, Singapore
| |
Collapse
|
3
|
Sun C, Cheng X, Xu J, Chen H, Tao J, Dong Y, Wei S, Chen R, Meng X, Ma Y, Tian H, Guo X, Bi S, Zhang C, Kang J, Zhang M, Lv H, Shang Z, Lv W, Zhang R, Jiang Y. A review of disease risk prediction methods and applications in the omics era. Proteomics 2024; 24:e2300359. [PMID: 38522029 DOI: 10.1002/pmic.202300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Risk prediction and disease prevention are the innovative care challenges of the 21st century. Apart from freeing the individual from the pain of disease, it will lead to low medical costs for society. Until very recently, risk assessments have ushered in a new era with the emergence of omics technologies, including genomics, transcriptomics, epigenomics, proteomics, and so on, which potentially advance the ability of biomarkers to aid prediction models. While risk prediction has achieved great success, there are still some challenges and limitations. We reviewed the general process of omics-based disease risk model construction and the applications in four typical diseases. Meanwhile, we highlighted the problems in current studies and explored the potential opportunities and challenges for future clinical practice.
Collapse
Affiliation(s)
- Chen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Haiyan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junxian Tao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Yu Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Rui Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yingnan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Hongsheng Tian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xuying Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuo Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingxuan Kang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| |
Collapse
|
4
|
Ellson I, Martorell-Marugán J, Carmona-Sáez P, Ramos-Mejia V. MiRNA expression as outcome predictor in pediatric AML: systematic evaluation of a new model. NPJ Genom Med 2024; 9:40. [PMID: 39107334 PMCID: PMC11303725 DOI: 10.1038/s41525-024-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Accurately predicting patient outcomes is essential for optimizing treatment and improving outcomes in pediatric acute myeloid leukemia (AML). In recent years, microRNAs have emerged as a promising prognostic marker, with a growing body of evidence supporting their potential predictive value. We systematically reviewed all previous studies that have analyzed the expression of microRNAs as predictors of survival in pediatric AML and found 16 microRNAs and 4 microRNA signatures previously proposed as predictors of survival. We then used a public access cohort of 1414 pediatric AML patients from the TARGET project to develop a new predictive model using penalized lasso Cox regression based on microRNA expression. Here we propose a new score based on a 37-microRNA signature that is associated with AML and is able to predict survival more accurately than previous microRNA-based methods.
Collapse
Affiliation(s)
- Ivan Ellson
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016, Granada, Spain
| | - Jordi Martorell-Marugán
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016, Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero (FIBAO), 18012, Granada, Spain
| | - Pedro Carmona-Sáez
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016, Granada, Spain.
- Department of Statistics, University of Granada, 18071, Granada, Spain.
| | - Verónica Ramos-Mejia
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016, Granada, Spain.
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
5
|
Sun H, Xie Y, Wu X, Hu W, Chen X, Wu K, Wang H, Zhao S, Shi Q, Wang X, Cui B, Wu W, Fan R, Rao J, Wang R, Wang Y, Zhong Y, Yu H, Zhou BS, Shen S, Liu Y. circRNAs as prognostic markers in pediatric acute myeloid leukemia. Cancer Lett 2024; 591:216880. [PMID: 38621457 DOI: 10.1016/j.canlet.2024.216880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Circular RNAs (circRNAs) arise from precursor mRNA processing through back-splicing and have been increasingly recognized for their functions in various cancers including acute myeloid leukemia (AML). However, the prognostic implications of circRNA in AML remain unclear. We conducted a comprehensive genome-wide analysis of circRNAs using RNA-seq data in pediatric AML. We revealed a group of circRNAs associated with inferior outcomes, exerting effects on cancer-related pathways. Several of these circRNAs were transcribed directly from genes with established functions in AML, such as circRUNX1, circWHSC1, and circFLT3. Further investigations indicated the increased number of circRNAs and linear RNAs splicing were significantly correlated with inferior clinical outcomes, highlighting the pivotal role of splicing dysregulation. Subsequent analysis identified a group of upregulated RNA binding proteins in AMLs associated with high number of circRNAs, with TROVE2 being a prominent candidate, suggesting their involvement in circRNA associated prognosis. Through the integration of drug sensitivity data, we pinpointed 25 drugs that could target high-risk AMLs characterized by aberrant circRNA transcription. These findings underscore prognostic significance of circRNAs in pediatric AML and offer an alternative perspective for treating high-risk cases in this malignancy.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoqiao Shi
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Wu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Fan
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhong
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binbing S Zhou
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yu Liu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| |
Collapse
|
6
|
Kubota H, Ueno H, Tasaka K, Isobe T, Saida S, Kato I, Umeda K, Hiwatari M, Hasegawa D, Imamura T, Kakiuchi N, Nannya Y, Ogawa S, Hiramatsu H, Takita J. RNA-seq-based miRNA signature as an independent predictor of relapse in pediatric B-cell acute lymphoblastic leukemia. Blood Adv 2024; 8:1258-1271. [PMID: 38127276 PMCID: PMC10918494 DOI: 10.1182/bloodadvances.2023011583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
ABSTRACT Aberrant micro-RNA (miRNA) expression profiles have been associated with disease progression and clinical outcome in pediatric cancers. However, few studies have analyzed genome-wide dysregulation of miRNAs and messenger RNAs (mRNAs) in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). To identify novel prognostic factors, we comprehensively investigated miRNA and mRNA sequencing (miRNA-seq and mRNA-seq) data in pediatric BCP-ALL samples with poor outcome. We analyzed 180 patients, including 43 matched pairs at diagnosis and relapse. Consensus clustering of miRNA expression data revealed a distinct profile characterized by mainly downregulation of miRNAs (referred to as an miR-low cluster [MLC]). The MLC profile was not associated with any known genetic subgroups. Intriguingly, patients classified as MLC had significantly shorter event-free survival (median 21 vs 33 months; log-rank P = 3 ×10-5). Furthermore, this poor prognosis was retained even in hyperdiploid ALL. This poor prognostic MLC profiling was confirmed in the validation cohort. Notably, non-MLC profiling at diagnosis (n = 9 of 23; Fisher exact test, P = .039) often changed into MLC profiling at relapse for the same patient. Integrated analysis of miRNA-seq and mRNA-seq data revealed that the transcriptional profile of MLC was characterized by enrichment of MYC target and oxidative phosphorylation genes, reduced intron retention, and low expression of DICER1. Thus, our miRNA-mRNA integration approach yielded a truly unbiased molecular stratification of pediatric BCP-ALL cases based on a novel prognostic miRNA signature, which may lead to better clinical outcomes.
Collapse
Affiliation(s)
- Hirohito Kubota
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Tasaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoya Isobe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, School of Medicine, Teikyo University, Tokyo, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children Hospital, Hyogo, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Tao Y, Wei L, Shiba N, Tomizawa D, Hayashi Y, Ogawa S, Chen L, You H. Development and validation of a promising 5-gene prognostic model for pediatric acute myeloid leukemia. MOLECULAR BIOMEDICINE 2024; 5:1. [PMID: 38163849 PMCID: PMC10758381 DOI: 10.1186/s43556-023-00162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Risk classification in pediatric acute myeloid leukemia (P-AML) is crucial for personalizing treatments. Thus, we aimed to establish a risk-stratification tool for P-AML patients and eventually guide individual treatment. A total of 256 P-AML patients with accredited mRNA-seq data from the TARGET database were divided into training and internal validation datasets. A gene-expression-based prognostic score was constructed for overall survival (OS), by using univariate Cox analysis, LASSO regression analysis, Kaplan-Meier (K-M) survival, and multivariate Cox analysis. A P-AML-5G prognostic score bioinformatically derived from expression levels of 5 genes (ZNF775, RNFT1, CRNDE, COL23A1, and TTC38), clustered P-AML patients in training dataset into high-risk group (above optimal cut-off) with shorter OS, and low-risk group (below optimal cut-off) with longer OS (p < 0.0001). Meanwhile, similar results were obtained in internal validation dataset (p = 0.005), combination dataset (p < 0.001), two treatment sub-groups (p < 0.05), intermediate-risk group defined with the Children's Oncology Group (COG) (p < 0.05) and an external Japanese P-AML dataset (p = 0.005). The model was further validated in the COG study AAML1031(p = 0.001), and based on transcriptomic analysis of 943 pediatric patients and 70 normal bone marrow samples from this dataset, two genes in the model demonstrated significant differential expression between the groups [all log2(foldchange) > 3, p < 0.001]. Independent of other prognostic factors, the P-AML-5G groups presented the highest concordance-index values in training dataset, chemo-therapy only treatment subgroups of the training and internal validation datasets, and whole genome-sequencing subgroup of the combined dataset, outperforming two Children's Oncology Group (COG) risk stratification systems, 2022 European LeukemiaNet (ELN) risk classification tool and two leukemic stem cell expression-based models. The 5-gene prognostic model generated by a single assay can further refine the current COG risk stratification system that relies on numerous tests and may have the potential for the risk judgment and identification of the high-risk pediatric AML patients receiving chemo-therapy only treatment.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wei
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma and Institute of Physiology and Medicine, Gunma Children's Medical Center, Jobu University, Gunma, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, 17177, Stockholm, Sweden
| | - Li Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Cao C, Wang T, Luo Y, Zhang Y, Dai YY, Shen Y. Comprehensive analysis of cuproptosis-associated LncRNAs predictive value and related CeRNA network in acute myeloid leukemia. Heliyon 2023; 9:e22532. [PMID: 38058427 PMCID: PMC10696213 DOI: 10.1016/j.heliyon.2023.e22532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is characterized by a high recurrence and mortality rate. Cuproptosis is involved in cell death regulation in in a variety of solid tumors. Long non-coding RNAs that regulate cuproptosis genes in the pathogenesis of acute leukemia have yet to be explored. Methods First, cuproptosis genes with distinct expression levels were discovered by contrasting AML with normal samples from the TCGA and GTEx cohorts. Pearson correlation and univariate Cox-regression analysis were performed to identify cuproptosis-associated lncRNAs with significant prognostic values. Then the least absolute shrinkage and selection operator (LASSO) Cox regression was utilized to establish a multi-gene signature to predict AML prognosis. Next, Kaplan-Meier estimator, receiver operating characteristic curve, and a nomogram were performed to evaluate the predictive capacity of the risk signature. Functional enrichment analyses were employed to assess their function. Moreover, qRT-PCR testing of lncRNA expression in AML samples was conducted. The competing endogenous RNA (ceRNA) network was constructed to find the target genes. Results A risk model based on the signature of three cuproptosis-associated lncRNAs was developed. The results showed that the model possessed excellent prognostic potential. The nomogram raised the accuracy in predicting AML survival. In addition, functional enrichment analyses demonstrated an enrichment of inflammatory and immune-related pathways. Moreover, correlations between the risk signature and clinicopathological variables, tumor mutational burden, RNA stemness score, immune profile, and drug sensitivity were observed. Furthermore, we discovered that TRAF3IP2-AS1 may function as a ceRNA to regulate cuproptosis and ferroptosis gene expression. Conclusion The risk signature established in this study could serve as a reliable biosignature for AML prognosis. And the findings presented here may facilitate research on cuproptosis in AML.
Collapse
Affiliation(s)
- Chun Cao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Luo
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue-yu Dai
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Shen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Hoff FW, Qiu Y, Brown BD, Gerbing RB, Leonti AR, Ries RE, Gamis AS, Aplenc R, Kolb EA, Alonzo TA, Meshinchi S, Jenkins GN, Horton T, Kornblau SM. Valosin-containing protein (VCP/p97) is prognostically unfavorable in pediatric AML, and negatively correlates with unfolded protein response proteins IRE1 and GRP78: A report from the Children's Oncology Group. Proteomics Clin Appl 2023; 17:e2200109. [PMID: 37287368 PMCID: PMC10700663 DOI: 10.1002/prca.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE The endoplasmic reticulum (ER) is the major site of protein synthesis and folding in the cell. ER-associated degradation (ERAD) and unfolded protein response (UPR) are the main mechanisms of ER-mediated cell stress adaptation. Targeting the cell stress response is a promising therapeutic approach in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN Protein expression levels of valosin-containing protein (VCP), a chief element of ERAD, were measured in peripheral blood samples from in 483 pediatric AML patients using reverse phase protein array methodology. Patients participated in the Children's Oncology Group AAML1031 phase 3 clinical trial that randomized patients to standard chemotherapy (cytarabine (Ara-C), daunorubicin, and etoposide [ADE]) versus ADE plus bortezomib (ADE+BTZ). RESULTS Low-VCP expression was significantly associated with favorable 5-year overall survival (OS) rate compared to middle-high-VCP expression (81% versus 63%, p < 0.001), independent of additional bortezomib treatment. Multivariable Cox regression analysis identified VCP as independent predictor of clinical outcome. UPR proteins IRE1 and GRP78 had significant negative correlation with VCP. Five-year OS in patients characterized by low-VCP, moderately high-IRE1 and high-GRP78 improved after treatment with ADE+BTZ versus ADE (66% versus 88%, p = 0.026). CONCLUSION AND CLINICAL RELEVANCE Our findings suggest the potential of the protein VCP as biomarker in prognostication prediction in pediatric AML.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihua Qiu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brandon D. Brown
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alan S. Gamis
- Department of Hematology-Oncology, Children’s Mercy Hospitals and Clinics, Kansas City, MO
| | - Richard Aplenc
- Division of Pediatric Oncology/Stem Cell Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Todd A. Alonzo
- COG Statistics and Data Center, Monrovia, CA
- Keck School of Medicine, University of Southern California, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Gaye N Jenkins
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children’s Cancer Center, Houston, Texas
| | - Terzah Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children’s Cancer Center, Houston, Texas
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Xu J, Pandoh PK, Corbett RD, Smailus D, Bowlby R, Brooks D, McDonald H, Haile S, Chahal S, Bilobram S, Mungall KL, Mungall AJ, Coope R, Moore RA, Zhao Y, Jones SJ, Marra MA. A high-throughput pipeline for DNA/RNA/small RNA purification from tissue samples for sequencing. Biotechniques 2023; 75:47-55. [PMID: 37551834 DOI: 10.2144/btn-2023-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented. GRAB-ALL was benchmarked against existing nucleic acid purification workflows and GRAB-ALL efficiently purifies TNA, including small RNA, for next-generation sequencing applications in a plate-based format suitable for automated high-throughput sample preparation.
Collapse
Affiliation(s)
- Jing Xu
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Pawan K Pandoh
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Richard D Corbett
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Duane Smailus
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Denise Brooks
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Helen McDonald
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Simon Haile
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Sundeep Chahal
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Steve Bilobram
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Robin Coope
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, 570 W 7th Ave, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, Canada
| |
Collapse
|
11
|
Farrar JE, Smith JL, Othus M, Huang BJ, Wang YC, Ries R, Hylkema T, Pogosova-Agadjanyan EL, Challa S, Leonti A, Shaw TI, Triche TJ, Gamis AS, Aplenc R, Kolb EA, Ma X, Stirewalt DL, Alonzo TA, Meshinchi S. Long Noncoding RNA Expression Independently Predicts Outcome in Pediatric Acute Myeloid Leukemia. J Clin Oncol 2023; 41:2949-2962. [PMID: 36795987 PMCID: PMC10414715 DOI: 10.1200/jco.22.01114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Optimized strategies for risk classification are essential to tailor therapy for patients with biologically distinctive disease. Risk classification in pediatric acute myeloid leukemia (pAML) relies on detection of translocations and gene mutations. Long noncoding RNA (lncRNA) transcripts have been shown to associate with and mediate malignant phenotypes in acute myeloid leukemia (AML) but have not been comprehensively evaluated in pAML. METHODS To identify lncRNA transcripts associated with outcomes, we evaluated the annotated lncRNA landscape by transcript sequencing of 1,298 pediatric and 96 adult AML specimens. Upregulated lncRNAs identified in the pAML training set were used to establish a regularized Cox regression model of event-free survival (EFS), yielding a 37 lncRNA signature (lncScore). Discretized lncScores were correlated with initial and postinduction treatment outcomes using Cox proportional hazards models in validation sets. Predictive model performance was compared with standard stratification methods by concordance analysis. RESULTS Training set cases with positive lncScores had 5-year EFS and overall survival rates of 26.7% and 42.7%, respectively, compared with 56.9% and 76.3% with negative lncScores (hazard ratio, 2.48 and 3.16; P < .001). Pediatric validation cohorts and an adult AML group yielded comparable results in magnitude and significance. lncScore remained independently prognostic in multivariable models, including key factors used in preinduction and postinduction risk stratification. Subgroup analysis suggested that lncScores provide additional outcome information in heterogeneous subgroups currently classified as indeterminate risk. Concordance analysis showed that lncScore adds to overall classification accuracy with at least comparable predictive performance to current stratification methods that rely on multiple assays. CONCLUSION Inclusion of the lncScore enhances predictive power of traditional cytogenetic and mutation-defined stratification in pAML with potential, as a single assay, to replace these complex stratification schemes with comparable predictive accuracy.
Collapse
Affiliation(s)
- Jason E. Farrar
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Benjamin J. Huang
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | | | - Rhonda Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Sneha Challa
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Amanda Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Timothy I. Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Timothy J. Triche
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Alan S. Gamis
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Richard Aplenc
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Xiaotu Ma
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN
| | - Derek L. Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Todd A. Alonzo
- Children's Oncology Group, Monrovia, CA
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
12
|
Ghazaryan A, Wallace JA, Tang WW, Barba C, Lee SH, Bauer KM, Nelson MC, Kim CN, Stubben C, Voth WP, Rao DS, O’Connell RM. miRNA-1 promotes acute myeloid leukemia cell pathogenesis through metabolic regulation. Front Genet 2023; 14:1192799. [PMID: 37229187 PMCID: PMC10203238 DOI: 10.3389/fgene.2023.1192799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and deadly disease characterized by uncontrolled expansion of malignant blasts. Altered metabolism and dysregulated microRNA (miRNA) expression profiles are both characteristic of AML. However, there is a paucity of studies exploring how changes in the metabolic state of the leukemic cells regulate miRNA expression leading to altered cellular behavior. Here, we blocked pyruvate entry into mitochondria by deleting the Mitochondria Pyruvate Carrier (MPC1) gene in human AML cell lines, which decreased Oxidative Phosphorylation (OXPHOS). This metabolic shift also led to increased expression of miR-1 in the human AML cell lines tested. AML patient sample datasets showed that higher miR-1 expression correlates with reduced survival. Transcriptional and metabolic profiling of miR-1 overexpressing AML cells revealed that miR-1 increased OXPHOS, along with key metabolites that fuel the TCA cycle such as glutamine and fumaric acid. Inhibition of glutaminolysis decreased OXPHOS in miR-1 overexpressing MV4-11 cells, highlighting that miR-1 promotes OXPHOS through glutaminolysis. Finally, overexpression of miR-1 in AML cells exacerbated disease in a mouse xenograft model. Together, our work expands current knowledge within the field by uncovering novel connections between AML cell metabolism and miRNA expression that facilitates disease progression. Further, our work points to miR-1 as a potential new therapeutic target that may be used to disrupt AML cell metabolism and thus pathogenesis in the clinic.
Collapse
Affiliation(s)
- Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jared A. Wallace
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - William W. Tang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Soh-Hyun Lee
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Morgan C. Nelson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Carissa N. Kim
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Chris Stubben
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Warren P. Voth
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ryan M. O’Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Control of focal adhesion kinase activation by RUNX1-regulated miRNAs in high-risk AML. Leukemia 2023; 37:776-787. [PMID: 36788336 DOI: 10.1038/s41375-023-01841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
We recently described a 16-gene expression signature for improved risk stratification of acute myeloid leukemia (AML) patients called the AML Prognostic Score (APS). A subset of APS-high-risk AML patients showed increased levels of focal adhesion kinase (FAK), encoded by the Protein Tyrosine Kinase 2 (PTK2) gene, which was correlated with RUNX1 mutations. RUNX1 mutant cells are more sensitive to PTK2 inhibitors. As we were not able to detect RUNX1-binding sites in the PTK2 promoter, we hypothesized that RUNX1 might regulate micro(mi)RNAs that repress PTK2, such that loss-of-function RUNX1 mutations would result in reduced miRNA expression and derepression of PTK2. Examination of paired RNA-seq and miRNA-seq data from 301 AML cases revealed two miRNAs that positively correlated with RUNX1 expression, contained RUNX1-binding sites in their promoters and were predicted to target PTK2. We show that the hsa-let7a-2-3p and hsa-miR-135a-5p promoters are regulated by RUNX1, and that PTK2 is a direct target of both miRNAs. Even in the absence of RUNX1 mutations, hsa-let7a-2-3p and hsa-miR-135a-5p regulate PTK2 expression, and reduced expression of these two miRNAs sensitizes AML cells to PTK2 inhibition. These data explain how RUNX1 regulates PTK2, and identify potential miRNA biomarkers for targeting AML with PTK2 inhibitors.
Collapse
|
14
|
Zheng Y, Weng X, Hu D, He J. Identification of a signature based on non‐apoptotic regulatory cell death to improve prognosis prediction in acute myeloid leukaemia. Br J Haematol 2022; 201:95-105. [PMID: 36484284 DOI: 10.1111/bjh.18601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Although anti-apoptotic cell death is a common feature of cancer and non-apoptotic regulatory cell death (RCD) is highly correlated with cancer progression and response to therapy, its prognostic role in patients with acute myeloid leukaemia (AML) is unknown. The RNA sequence and clinical data from AML patients were downloaded from the TCGA and GEO databases. The prognostic characteristics of non-apoptotic RCD-related genes (NRGs) were determined by Cox and LASSO regression analysis. Thirteen NRG signatures were identified as independent prognostic parameters in patients with AML that outperformed other prognostic models. Higher NRG scores were associated with shorter survival and less retention of tumour mutations. Although patients with high NRG risk have abundant signalling pathways for cell adhesion, cytokine upregulation, and cellular defence responses, patients with low NRG risk may benefit the most from immunotherapy. Specifically, patients with high NRG score may benefit from treatment with anti-EGFR and CDK2 inhibitors, including erlotinib and roscovitine. The NPM1 and FLT3 mutant cell lines undergo alterations after multiple drug treatments. Our established NRG signature and scoring highlight its vital clinical significance, emphasize the inevitability of stratifying treatment for different mutation subtypes and provide new ideas to guide personalized immunotherapy strategies for AML patients.
Collapse
Affiliation(s)
- Yu Zheng
- Key State Laboratory of Medical Genomics, National Center for Translational Medicine in Shanghai, Institute of Hematology Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiangqin Weng
- Key State Laboratory of Medical Genomics, National Center for Translational Medicine in Shanghai, Institute of Hematology Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Dong Hu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jing He
- Institute of Hematology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
15
|
Leoncini P, Vitullo P, Reddel S, Tocco V, Paganelli V, Stocchi F, Mariggiò E, Massa M, Nigita G, Veneziano D, Fadda P, Scarpa M, Pigazzi M, Bertaina A, Rota R, Pagliara D, Merli P. MicroRNA profiling of paediatric AML with FLT-ITD or MLL-rearrangements: Expression signatures and in vitro modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors. Oncol Rep 2022; 48:221. [DOI: 10.3892/or.2022.8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Pier Leoncini
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Patrizia Vitullo
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Sofia Reddel
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Valeria Tocco
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Valeria Paganelli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Francesca Stocchi
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Elena Mariggiò
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Michele Massa
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1239, USA
| | - Dario Veneziano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1239, USA
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1239, USA
| | - Mario Scarpa
- Department of Biomedical Research, Urology Research laboratory, University of Bern, CH-3008 Bern, Switzerland
| | - Martina Pigazzi
- Department of Women's and Children's Health (SDB), Hematology-Oncology Laboratory, University of Padova, I-35128 Padova, Italy
| | - Alice Bertaina
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Daria Pagliara
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| | - Pietro Merli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy
| |
Collapse
|
16
|
Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy. BIOSENSORS 2022; 12:bios12050328. [PMID: 35624629 PMCID: PMC9138311 DOI: 10.3390/bios12050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
MicroRNAs (miRNAs) are regarded as a rising star in the biomedical industry. By monitoring slight increases in miRNA-21 levels, the possibilities of multi-type malignancy can be evaluated more precisely and earlier. However, the inconvenience and insensitivity of traditional methods for detecting miRNA-21 levels remains challenging. In this study, a partially complementary cDNA probe was designed to detect miRNA-21 with target-triggered dual amplification based on strand displacement amplification (SDA) and terminal deoxynucleotidyl transferase (TdT)-assisted amplification. In this system, the presence of miRNA-21 can hybridize with template DNA to initiate SDA, generating a large number of trigger molecules. With the assistance of TdT and dGTP, the released trigger DNA with 3′-OH terminal can be elongated to a superlong poly(guanine) sequence, and a notable fluorescence signal was observed in the presence of thioflavin T. By means of dual amplification strategy, the sensing platform showed a good response tomiRNA-21 with a detection limit of 1.7 pM (S/N = 3). Moreover, the specificity of this method was verified using a set of miRNA with sequence homologous to miRNA-21. In order to further explore its practical application capabilities, the expression of miRNA in different cell lines was quantitatively analyzed and compared with the qRT-PCR. The considerable results of this study suggest great potential for the application of the proposed approach in clinical diagnosis.
Collapse
|
17
|
Matou-Nasri S, Najdi M, AlSaud NA, Alhaidan Y, Al-Eidi H, Alatar G, AlWadaani D, Trivilegio T, AlSubait A, AlTuwaijri A, Abudawood M, Almuzzaini B. Blockade of p38 MAPK overcomes AML stem cell line KG1a resistance to 5-Fluorouridine and the impact on miRNA profiling. PLoS One 2022; 17:e0267855. [PMID: 35511922 PMCID: PMC9071118 DOI: 10.1371/journal.pone.0267855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022] Open
Abstract
Most of the AML patients in remission develop multidrug resistance after the first-line therapy and relapse. AML stem cells have gained attention for their chemoresistance potentials. Chemoresistance is a multifactorial process resulting from altered survival signaling pathways and apoptosis regulators such as MAPK, NF-κB activation and ROS production. We targeted the survival pathway p38 MAPK, NF-κB and ROS generation in human chemoresistant AML stem cell line KG1a, susceptible to enhance cell sensitivity to the chemotherapy drug 5-Fluorouridine, compared to the chemosensitive AML cell line HL60. After confirming the phenotypic characterization of KG1a and HL60 cells using flow cytometry and transcriptomic array analyses, cell treatment with the NF-κB inhibitor IKKVII resulted in a complete induction of apoptosis, and a few p38 MAPK inhibitor SB202190-treated cells underwent apoptosis. No change in the apoptosis status was observed in the ROS scavenger N-acetylcysteine-treated cells. The p38 MAPK pathway blockade enhanced the KG1a cell sensitivity to 5-Fluorouridine, which was associated with the upregulation of microribonucleic acid-(miR-)328-3p, as determined by the microarray-based miRNA transcriptomic analysis. The downregulation of the miR-210-5p in SB202190-treated KG1a cells exposed to FUrd was monitored using RT-qPCR. The miR-328-3p is known for the enhancement of cancer cell chemosensitivity and apoptosis induction, and the downregulation of miR-210-5p is found in AML patients in complete remission. In conclusion, we highlighted the key role of the p38 MAPK survival pathway in the chemoresistance capacity of the AML stem cells and potentially involved miRNAs, which may pave the way for the development of a new therapeutic strategy targeting survival signaling proteins and reduce the rate of AML relapse.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| | - Maria Najdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Postgraduate program, King Saud University, Riyadh, Saudi Arabia
| | - Nouran Abu AlSaud
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Ghada Alatar
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deemah AlWadaani
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Arwa AlSubait
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Abeer AlTuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| |
Collapse
|
18
|
Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther 2022; 7:121. [PMID: 35418578 PMCID: PMC9008121 DOI: 10.1038/s41392-022-00975-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
It is now well known that non-coding RNAs (ncRNAs), rather than protein-coding transcripts, are the preponderant RNA transcripts. NcRNAs, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely appreciated as pervasive regulators of multiple cancer hallmarks such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Despite recent discoveries in cancer therapy, resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy continue to be a major setback. Recent studies have shown that ncRNAs also play a major role in resistance to different cancer therapies by rewiring essential signaling pathways. In this review, we present the intricate mechanisms through which dysregulated ncRNAs control resistance to the four major types of cancer therapies. We will focus on the current clinical implications of ncRNAs as biomarkers to predict treatment response (intrinsic resistance) and to detect resistance to therapy after the start of treatment (acquired resistance). Furthermore, we will present the potential of targeting ncRNA to overcome cancer treatment resistance, and we will discuss the challenges of ncRNA-targeted therapy—especially the development of delivery systems.
Collapse
|
19
|
Wang J, Zhuo Z, Wang Y, Yang S, Chen J, Wang Y, Geng S, Li M, Du X, Lai P, Weng J. Identification and Validation of a Prognostic Risk-Scoring Model Based on Ferroptosis-Associated Cluster in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 9:800267. [PMID: 35127715 PMCID: PMC8814441 DOI: 10.3389/fcell.2021.800267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Emerging evidence has proven that ferroptosis plays an important role in the development of acute myeloid leukemia (AML), whereas the exact role of ferroptosis-associated genes in AML patients’ prognosis remained unclear. Materials and Methods: Gene expression profiles and corresponding clinical information of AML cases were obtained from the TCGA (TCGA-LAML), GEO (GSE71014), and TARGET databases (TARGET-AML). Patients in the TCGA cohort were well-grouped into two clusters based on ferroptosis-related genes, and differentially expressed genes were screened between the two clusters. Univariate Cox and LASSO regression analyses were applied to select prognosis-related genes for the construction of a prognostic risk-scoring model. Survival analysis was analyzed by Kaplan–Meier and receiver operator characteristic curves. Furthermore, we explored the correlation of the prognostic risk-scoring model with immune infiltration and chemotherapy response. Risk gene expression level was detected by quantitative reverse transcription polymerase chain reaction. Results: Eighteen signature genes, including ZSCAN4, ASTN1, CCL23, DLL3, EFNB3, FAM155B, FOXL1, HMX2, HRASLS, LGALS1, LHX6, MXRA5, PCDHB12, PRINS, TMEM56, TWIST1, ZFPM2, and ZNF560, were developed to construct a prognostic risk-scoring model. AML patients could be grouped into high- and low-risk groups, and low-risk patients showed better survival than high-risk patients. Area under the curve values of 1, 3, and 5 years were 0.81, 0.827, and 0.786 in the training set, respectively, indicating a good predictive efficacy. In addition, age and risk score were the independent prognostic factors after univariate and multivariate Cox regression analyses. A nomogram containing clinical factors and prognostic risk-scoring model was constructed to better estimate individual survival. Further analyses demonstrated that risk score was associated with the immune infiltration and response to chemotherapy. Our experiment data revealed that LGALS1 and TMEM56 showed notably decreased expression in AML samples than that of the normal samples. Conclusion: Our study shows that the prognostic risk-scoring model and key risk gene may provide potential prognostic biomarkers and therapeutic option for AML patients.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Cencer for Cancer Medicine, Guangzhou, China
| | - Shuo Yang
- Department of Cardiovascular Division, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Minming Li
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xin Du, ; Peilong Lai, ; Jianyu Weng,
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xin Du, ; Peilong Lai, ; Jianyu Weng,
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xin Du, ; Peilong Lai, ; Jianyu Weng,
| |
Collapse
|
20
|
Calcitonin receptor-like (CALCRL) is a marker of stemness and an independent predictor of outcome in pediatric AML. Blood Adv 2021; 5:4413-4421. [PMID: 34559198 PMCID: PMC8579256 DOI: 10.1182/bloodadvances.2021005236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
We have recently identified the G protein-coupled neuropeptide receptor calcitonin receptor-like (CALCRL) as an independent prognostic biomarker and a therapeutic target in more than 1500 adult patients with acute myeloid leukemia (AML). Here, we confirmed CALCRL expression as a prognostic factor in a cohort of 284 pediatric patients with AML. High CALCRL expression was independently associated with event-free survival (hazard ratio [HR], 1.87; 95% confidence interval [CI], 1.36-2.57; P = .0001), overall survival (HR, 1.55; 95% CI, 1.06-2.27; P = .025), and cumulative incidence of relapse (HR, 2.10; 95% CI, 1.49-1.96; P < .0001) when adjusting for age, white blood cell count, and genetic risk. Despite its association with leukemia stem cell signatures, CALCRL expression remained associated with all end points when compared with the 17-gene leukemic stem cell score. The strong association of CALCRL expression with the risk of relapse also in the pediatric population supports its role as novel age-independent master regulator of relapse-initiating, drug-tolerant AML cells in humans.
Collapse
|
21
|
Han L, Huang Z, Liu Y, Ye L, Li D, Yao Z, Wang C, Zhang Y, Yang H, Tan Z, Tang J, Yang Z. MicroRNA-106a regulates autophagy-related cell death and EMT by targeting TP53INP1 in lung cancer with bone metastasis. Cell Death Dis 2021; 12:1037. [PMID: 34718338 PMCID: PMC8557209 DOI: 10.1038/s41419-021-04324-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Bone metastasis is one of the most serious complications in lung cancer patients. MicroRNAs (miRNAs) play important roles in tumour development, progression and metastasis. A previous study showed that miR-106a is highly expressed in the tissues of lung adenocarcinoma with bone metastasis, but its mechanism remains unclear. In this study, we showed that miR-106a expression is dramatically increased in lung cancer patients with bone metastasis (BM) by immunohistochemical analysis. MiR-106a promoted A549 and SPC-A1 cell proliferation, migration and invasion in vitro. The results of bioluminescence imaging (BLI), micro-CT and X-ray demonstrated that miR-106a promoted bone metastasis of lung adenocarcinoma in vivo. Mechanistic investigations revealed that miR-106a upregulation promoted metastasis by targeting tumour protein 53-induced nuclear protein 1 (TP53INP1)-mediated metastatic progression, including cell migration, autophagy-dependent death and epithelial-mesenchymal transition (EMT). Notably, autophagy partially attenuated the effects of miR-106a on promoting bone metastasis in lung adenocarcinoma. These findings demonstrated that restoring the expression of TP53INP1 by silencing miR-106a may be a novel therapeutic strategy for bone metastatic in lung adenocarcinoma.
Collapse
Affiliation(s)
- Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Zeyong Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Cao Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Hang Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zunxian Tan
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Jiadai Tang
- Department of Gastrointestinal Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China.
| |
Collapse
|
22
|
Liu X, Liu X, Cai M, Luo A, He Y, Liu S, Zhang X, Yang X, Xu L, Jiang H. CircRNF220, not its linear cognate gene RNF220, regulates cell growth and is associated with relapse in pediatric acute myeloid leukemia. Mol Cancer 2021; 20:139. [PMID: 34702297 PMCID: PMC8549339 DOI: 10.1186/s12943-021-01395-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and have been confirmed to be critical in tumorigenesis and to be potential biomarkers or therapeutic targets. However, only a few circRNAs have been functionally characterized in pediatric acute myeloid leukemia (AML). Methods Here, we investigated the expression pattern of circRNAs in pediatric AML using a circRNA microarray. The characteristics, potential diagnostic value, and prognostic significance of circRNF220 were evaluated. A series of functional experiments were performed to investigate the role of circRNF220 in primary pediatric AML cells. Then we investigated the aberrant transcriptional networks regulated by circRNF220 in primary AML cells by RNA-seq. Furthermore, biotin RNA pulldown assays were implemented to verify the relationship between circRNF220 and miR-30a. Results We identified a circRNA, circRNF220, which was specifically abundant in and accumulated in the peripheral blood and bone marrow of pediatric patients with AML. It could distinguish AML from ALL and other hematological malignancies with high sensitivity and specificity. Significantly, circRNF220 expression independently predicted prognosis, while high expression of circRNF220 was an unfavorable prognostic marker for relapse. Furthermore, we characterized the function of circRNF220 and found that circRNF220 knockdown specifically inhibited proliferation and promoted apoptosis in AML cell lines and primary cells. Mechanistically, circRNF220 may act as an endogenous sponge of miR-30a to sequester miR-30a and inhibit its activity, which increases the expression of its targets MYSM1 and IER2 and implicated in AML relapse. Conclusions Collectively, these findings demonstrated that circRNF220 could be highly efficient and specific for the accurate diagnosis of pediatric AML, with implications for relapse prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01395-7.
Collapse
Affiliation(s)
- Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mansi Cai
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ailing Luo
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Sha Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xiaohong Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xu Yang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Xu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
23
|
Aung MMK, Mills ML, Bittencourt‐Silvestre J, Keeshan K. Insights into the molecular profiles of adult and paediatric acute myeloid leukaemia. Mol Oncol 2021; 15:2253-2272. [PMID: 33421304 PMCID: PMC8410545 DOI: 10.1002/1878-0261.12899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a clinically and molecularly heterogeneous disease characterised by uncontrolled proliferation, block in differentiation and acquired self-renewal of hematopoietic stem and myeloid progenitor cells. This results in the clonal expansion of myeloid blasts within the bone marrow and peripheral blood. The incidence of AML increases with age, and in childhood, AML accounts for 20% of all leukaemias. Whilst there are many clinical and biological similarities between paediatric and adult AML with continuum across the age range, many characteristics of AML are associated with age of disease onset. These include chromosomal aberrations, gene mutations and differentiation lineage. Following chemotherapy, AML cells that survive and result in disease relapse exist in an altered chemoresistant state. Molecular profiling currently represents a powerful avenue of experimentation to study AML cells from adults and children pre- and postchemotherapy as a means of identifying prognostic biomarkers and targetable molecular vulnerabilities that may be age-specific. This review highlights recent advances in our knowledge of the molecular profiles with a focus on transcriptomes and metabolomes, leukaemia stem cells and chemoresistant cells in adult and paediatric AML and focus on areas that hold promise for future therapies.
Collapse
Affiliation(s)
- Myint Myat Khine Aung
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | - Megan L. Mills
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | | | - Karen Keeshan
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| |
Collapse
|
24
|
Cacic D, Reikvam H, Nordgård O, Meyer P, Hervig T. Platelet Microparticles Protect Acute Myelogenous Leukemia Cells against Daunorubicin-Induced Apoptosis. Cancers (Basel) 2021; 13:cancers13081870. [PMID: 33919720 PMCID: PMC8070730 DOI: 10.3390/cancers13081870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
The role of platelets in cancer development and progression is increasingly evident, and several platelet-cancer interactions have been discovered, including the uptake of platelet microparticles (PMPs) by cancer cells. PMPs inherit a myriad of proteins and small RNAs from the parental platelets, which in turn can be transferred to cancer cells following internalization. However, the exact effect this may have in acute myelogenous leukemia (AML) is unknown. In this study, we sought to investigate whether PMPs could transfer their contents to the THP-1 cell line and if this could change the biological behavior of the recipient cells. Using acridine orange stained PMPs, we demonstrated that PMPs were internalized by THP-1 cells, which resulted in increased levels of miR-125a, miR-125b, and miR-199. In addition, co-incubation with PMPs protected THP-1 and primary AML cells against daunorubicin-induced cell death. We also showed that PMPs impaired cell growth, partially inhibited cell cycle progression, decreased mitochondrial membrane potential, and induced differentiation toward macrophages in THP-1 cells. Our results suggest that this altering of cell phenotype, in combination with decrease in cell activity may offer resistance to daunorubicin-induced apoptosis, as serum starvation also yielded a lower frequency of dead and apoptotic cells when treated with daunorubicin.
Collapse
Affiliation(s)
- Daniel Cacic
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Correspondence:
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.R.); (T.H.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Peter Meyer
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
| | - Tor Hervig
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.R.); (T.H.)
- Laboratory of Immunology and Transfusion Medicine, Haugesund Hospital, 5528 Haugesund, Norway
| |
Collapse
|
25
|
Balachandra S, Kusin SB, Lee R, Blackwell JM, Tiro JA, Cowell LG, Chiang CM, Wu SY, Varma S, Rivera EL, Mayo HG, Ding L, Sumer BD, Lea JS, Bagrodia A, Farkas LM, Wang R, Fakhry C, Dahlstrom KR, Sturgis EM, Day AT. Blood-based biomarkers of human papillomavirus-associated cancers: A systematic review and meta-analysis. Cancer 2021; 127:850-864. [PMID: 33270909 PMCID: PMC8135101 DOI: 10.1002/cncr.33221] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite the significant societal burden of human papillomavirus (HPV)-associated cancers, clinical screening interventions for HPV-associated noncervical cancers are not available. Blood-based biomarkers may help close this gap in care. METHODS Five databases were searched, 5687 articles were identified, and 3631 unique candidate titles and abstracts were independently reviewed by 2 authors; 702 articles underwent a full-text review. Eligibility criteria included the assessment of a blood-based biomarker within a cohort or case-control study. RESULTS One hundred thirty-seven studies were included. Among all biomarkers assessed, HPV-16 E seropositivity and circulating HPV DNA were most significantly correlated with HPV-associated cancers in comparison with cancer-free controls. In most scenarios, HPV-16 E6 seropositivity varied nonsignificantly according to tumor type, specimen collection timing, and anatomic site (crude odds ratio [cOR] for p16+ or HPV+ oropharyngeal cancer [OPC], 133.10; 95% confidence interval [CI], 59.40-298.21; cOR for HPV-unspecified OPC, 25.41; 95% CI, 8.71-74.06; cOR for prediagnostic HPV-unspecified OPC, 59.00; 95% CI, 15.39-226.25; cOR for HPV-unspecified cervical cancer, 12.05; 95% CI, 3.23-44.97; cOR for HPV-unspecified anal cancer, 73.60; 95% CI, 19.68-275.33; cOR for HPV-unspecified penile cancer, 16.25; 95% CI, 2.83-93.48). Circulating HPV-16 DNA was a valid biomarker for cervical cancer (cOR, 15.72; 95% CI, 3.41-72.57). In 3 cervical cancer case-control studies, cases exhibited unique microRNA expression profiles in comparison with controls. Other assessed biomarker candidates were not valid. CONCLUSIONS HPV-16 E6 antibodies and circulating HPV-16 DNA are the most robustly analyzed and most promising blood-based biomarkers for HPV-associated cancers to date. Comparative validity analyses are warranted. Variations in tumor type-specific, high-risk HPV DNA prevalence according to anatomic site and world region highlight the need for biomarkers targeting more high-risk HPV types. Further investigation of blood-based microRNA expression profiling appears indicated.
Collapse
Affiliation(s)
| | | | - Rebecca Lee
- Department of Otolaryngology–Head and Neck Surgery, UT Southwestern Medical Center, Dallas, Texas
| | | | - Jasmin A. Tiro
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Lindsay G. Cowell
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, Texas
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Sanskriti Varma
- Department of Internal Medicine, NewYork-Presbyterian Hospital–Columbia Campus, New York, New York
| | - Erika L. Rivera
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Helen G. Mayo
- Digital Library and Learning Center, UT Southwestern Medical Center, Dallas, Texas
| | - Lianghao Ding
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Baran D. Sumer
- Department of Otolaryngology–Head and Neck Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Jayanthi S. Lea
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, Texas
| | - Aditya Bagrodia
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Linda M. Farkas
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Richard Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - Carole Fakhry
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristina R. Dahlstrom
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erich M. Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew T. Day
- Department of Otolaryngology–Head and Neck Surgery, UT Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
26
|
Ikonomidou C. Cerebrospinal Fluid Biomarkers in Childhood Leukemias. Cancers (Basel) 2021; 13:cancers13030438. [PMID: 33498882 PMCID: PMC7866046 DOI: 10.3390/cancers13030438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Involvement of the central nervous system (CNS) in childhood leukemias remains a major cause of treatment failures. Analysis of the cerebrospinal fluid constitutes the most important diagnostic pillar in the detection of CNS leukemia and relies primarily on cytological and flow-cytometry studies. With increasing survival rates, it has become clear that treatments for pediatric leukemias pose a toll on the developing brain, as they may cause acute toxicities and persistent neurocognitive deficits. Preclinical research has demonstrated that established and newer therapies can injure and even destroy neuronal and glial cells in the brain. Both passive and active cell death forms can result from DNA damage, oxidative stress, cytokine release, and acceleration of cell aging. In addition, chemotherapy agents may impair neurogenesis as well as the function, formation, and plasticity of synapses. Clinical studies show that neurocognitive toxicity of chemotherapy is greatest in younger children. This raises concerns that, in addition to injury, chemotherapy may also disrupt crucial developmental events resulting in impairment of the formation and efficiency of neuronal networks. This review presents an overview of studies demonstrating that cerebrospinal fluid biomarkers can be utilized in tracing both CNS disease and neurotoxicity of administered treatments in childhood leukemias.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin Madison, 1685 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
27
|
Huang W, Yan YG, Wang WJ, Ouyang ZH, Li XL, Zhang TL, Wang XB, Wang B, Lv GH, Li J, Zou MX. Development and Validation of a 6-miRNA Prognostic Signature in Spinal Chordoma. Front Oncol 2020; 10:556902. [PMID: 33194623 PMCID: PMC7656123 DOI: 10.3389/fonc.2020.556902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Published data have suggested a critical role for microRNA (miRNA) expression in chordoma progression. However, most of these studies focus on single miRNA and no multi-miRNA prognostic signature has been currently established for chordoma. In this study, we sought to develop and validate a 6-miRNA risk score (miRscore) model for survival prediction. METHODS Medline, Embase, and Google scholar searches (from inception to July 20, 2018) were conducted to identify candidate miRNAs with prognostic value as per predefined criteria. Quantitative RT-PCR was used to measure miRNA levels in 114 spinal chordoma (54 in the training and 60 in the validation cohort) and 20 control specimens. Subsequently, the miRscore was built based on miRNAs data. RESULTS Literature searches identified six prognostic miRNAs (miR-574-3p, miR-1237-3p, miR-140-3p, miR-1, miR-155, and miR-1290) with differential expression in tumor tissues. Bioinformatical analysis revealed an important regulatory role for miR-574-3p/EGFR signaling in chordoma and showed that the target genes of these prognostic miRNAs were mainly enriched in transcription regulation, protein binding and cancer-related pathways. In both cohorts, the miRscore was associated with surrounding muscle invasion by tumor and/or other aggressive features. The miRscore model well predicted local recurrence-free survival and overall survival, which remained after adjusting for other relevant covariates. Further time-dependent receiver operating characteristics analysis in the two cohorts found that the miRscore classifier had stronger prognostic power than known clinical predictors and improved the ability of Enneking staging to predict outcomes. Importantly, recursive-partitioning analysis of both samples combined separated patients into four prognostically distinct risk subgroups for recurrence and survival (both P < 0.001). CONCLUSIONS These data suggest the miRscore as a useful prognostic stratification tool in spinal chordoma and may represent an important step toward future personalized treatment of patients.
Collapse
Affiliation(s)
- Wei Huang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
- Health Management Center, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zhi-Hua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xue-Lin Li
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Tao-Lan Zhang
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:7065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
29
|
Huang S, Huang Z, Chen P, Feng C. Aberrant Chloride Intracellular Channel 4 Expression Is Associated With Adverse Outcome in Cytogenetically Normal Acute Myeloid Leukemia. Front Oncol 2020; 10:1648. [PMID: 33014825 PMCID: PMC7507859 DOI: 10.3389/fonc.2020.01648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Methods: Acute myeloid leukemia (AML), which starts in the bone marrow, is a group of hematopoietic stem cell disorders. Chloride intracellular channel 4 (CLIC4) is regulated by p53, c-Myc, and TGF-β. It induces the NF-κB-dependent activation of HIF (hypoxia-inducible factor) and participates in tumor growth through its microenvironmental function. However, its prognostic value in AML remains unclear, as well as its co-expression biomarkers. In this study, we evaluated the prognostic significance of CLIC4 expression using two independent large cohorts of cytogenetically normal AML (CN-AML) patients. Multivariable analysis and multi-omics analysis with weighted correlation network analysis (WGCNA) in the CN-AML group were also presented. Based on CLIC4 and its related genes, microRNA-target gene interaction network analysis and downstream gene ontology analysis were performed to unveil the complex functions behind CLIC4. Results: We demonstrated that the overexpression of CLIC4 was notably associated with unfavorable outcome in the two independent cohorts of CN-AML patients [overall survival (OS) and event-free survival (EFS): P < 0.0001, n = 185; OS: P = 0.016, n = 232], as well as in the European LeukemiaNet (ELN) Intermediate-I group (OS: P = 0.015, EFS: P = 0.012, n = 115), the National Comprehensive Cancer Network Intermediate Risk AML group (OS and EFS: P < 0.0001, n = 225), and the non-M3 AML group (OS and EFS: P < 0.0001, n = 435). Multivariable analysis further validated CLIC4 as a high-risk factor in the CN-AML group. Multi-omics analysis presented the overexpression of CLIC4 as associated with the co-expression of the different gene sets in leukemia, up/downregulation of the immune-related pathways, dysregulation of microRNAs, and hypermethylation around the CpG islands, in open sea regions, and in different gene structural fragments including TSS1500, gene body, 5'UTR region, 3'UTR region, and the first exon. By further performing WGCNA on multi-omics data, certain biomarkers that are co-expressed with CLIC4 were also unveiled. Conclusion: We demonstrated that CLIC4 is a novel, potential unfavorable prognosticator and therapeutic target for CN-AML. As having a key role in CN-AML, the interactions between CLIC4 and other genomics and transcriptomics data were confirmed by performing microRNA-target gene interaction network analysis and gene ontology enrichment analysis. The experimental result provides evidence for the clinical strategy selection of CN-AML patients.
Collapse
Affiliation(s)
- Sai Huang
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | - Ping Chen
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cong Feng
- Department of Emergency, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Egyed B, Kutszegi N, Sági JC, Gézsi A, Rzepiel A, Visnovitz T, Lőrincz P, Müller J, Zombori M, Szalai C, Erdélyi DJ, Kovács GT, Semsei ÁF. MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J Transl Med 2020; 18:250. [PMID: 32571344 PMCID: PMC7310470 DOI: 10.1186/s12967-020-02415-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background Refractory central nervous system (CNS) involvement is among the major causes of therapy failure in childhood acute leukemia. Applying contemporary diagnostic methods, CNS disease is often underdiagnosed. To explore more sensitive and less invasive CNS status indicators, we examined microRNA (miR) expressions and extracellular vesicle (EV) characteristics. Methods In an acute lymphoblastic leukemia (ALL) discovery cohort, 47 miRs were screened using Custom TaqMan Advanced Low-Density Array gene expression cards. As a validation step, a candidate miR family was further scrutinized with TaqMan Advanced miRNA Assays on serial cerebrospinal fluid (CSF), bone marrow (BM) and peripheral blood samples with different acute leukemia subtypes. Furthermore, small EV-rich fractions were isolated from CSF and the samples were processed for immunoelectron microscopy with anti-CD63 and anti-CD81 antibodies, simultaneously. Results Regarding the discovery study, principal component analysis identified the role of miR-181-family (miR-181a-5p, miR-181b-5p, miR-181c-5p) in clustering CNS-positive (CNS+) and CNS-negative (CNS‒) CSF samples. We were able to validate miR-181a expression differences: it was about 52 times higher in CSF samples of CNS+ ALL patients compared to CNS‒ cases (n = 8 vs. n = 10, ΔFC = 52.30, p = 1.5E−4), and CNS+ precursor B cell subgroup also had ninefold higher miR-181a levels in their BM (p = 0.04). The sensitivity of CSF miR-181a measurement in ALL highly exceeded those of conventional cytospin in the initial diagnosis of CNS leukemia (90% vs. 54.5%). Pellet resulting from ultracentrifugation of CNS+ CSF samples of ALL patients showed atypical CD63−/CD81− small EVs in high density by immunoelectron microscopy. Conclusions After validating in extensive cohorts, quantification of miR-181a or a specific EV subtype might provide novel tools to monitor CNS disease course and further adjust CNS-directed therapy in pediatric ALL.
Collapse
Affiliation(s)
- Bálint Egyed
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - Nóra Kutszegi
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - András Gézsi
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.,Department of Measurements and Information Systems, Budapest University of Technology and Economics, 2 Magyar tudosok korutja, Budapest, 1117, Hungary
| | - Andrea Rzepiel
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, 1/c Pázmány Promenade, Budapest, 1117, Hungary
| | - Judit Müller
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Marianna Zombori
- Heim Pal National Pediatric Institute, 86 Üllői Str, Budapest, 1089, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.,Heim Pal National Pediatric Institute, 86 Üllői Str, Budapest, 1089, Hungary
| | - Dániel J Erdélyi
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Gábor T Kovács
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.
| |
Collapse
|
31
|
Panuzzo C, Jovanovski A, Pergolizzi B, Pironi L, Stanga S, Fava C, Cilloni D. Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. Int J Mol Sci 2020; 21:ijms21113928. [PMID: 32486249 PMCID: PMC7312164 DOI: 10.3390/ijms21113928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell’s type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new “hot spots” for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| | - Aleksandar Jovanovski
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|
32
|
Zhang X, Quan F, Xu J, Xiao Y, Li X, Li Y. Combination of multiple tumor-infiltrating immune cells predicts clinical outcome in colon cancer. Clin Immunol 2020; 215:108412. [PMID: 32278085 DOI: 10.1016/j.clim.2020.108412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
The infiltration of immune cells is highly associated with the development and progression of cancer. Thus, integrating the immune cell infiltrating profile into an immune cell infiltrating score may predict the survival of cancer patients. Here, by combining the infiltration proportion of 22 immune cells inferred from bulk tumor transcriptome of 879 patients, we identified an immune cell infiltrating indicator including five types of immune cells: resting T cells CD4 memory, macrophages M0-M2, and activated mast cells. The signature distinguished patients into two groups (high-risk and low-risk) with significantly different survival in the training cohort (HR = 1.96, 95% CI = 1.29-2.98, P = .0013) and two additional cohorts (HR = 1.78, 95%, CI = 1.16-2.75, P = .0079 and HR = 2.01, 95% CI = 1.28-3.14, P = .0019). The indicator remained as an independent prognostic factor after adjusting for clinicopathological factors by multivariable analysis in all cohorts. Stratification analysis showed that the signature consistently and significantly predicted survival of high-stage colon cancer patients in the training cohort (P = .00053) and validation cohorts (P = .017 and P = .0035). Moreover, we found that the low-risk patients were significantly correlated with deficient mismatch repair and the high-risk patients had a weak ability of trafficking of immune cells to tumors in the cancer immunity cycle. Overall, our results showed that integrating multiple tumor-infiltrating immune cells was an effective strategy for uncovering robust prognostic factor for tumor patients, and potentially was a promising response marker for precision oncology to be explored.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Yixue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
33
|
Han L, Zhao K, Li Y, Han H, Zhou L, Ma P, Fan Z, Sun H, Jin H, Jiang Z, Liu Q, Peng J. A gut microbiota score predicting acute graft-versus-host disease following myeloablative allogeneic hematopoietic stem cell transplantation. Am J Transplant 2020; 20:1014-1027. [PMID: 31605563 PMCID: PMC7154648 DOI: 10.1111/ajt.15654] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/25/2023]
Abstract
Although studies have reported that intestinal microbiota are associated with acute graft-versus-host disease (aGVHD), they lacked a satisfactory method for predicting aGVHD. We collected stool and blood samples at day 15 posttransplant from 150 patients from two centers who underwent myeloablative conditioning allogeneic hematopoietic stem cell transplantation (allo-HSCT). Stool microbiota were detected by 16S ribosomal RNA gene sequencing; inflammatory factors and T lymphocytes were detected by multiplex immunoassays and flow cytometry, respectively. A gut microbiota score (GMS) from a LASSO (least absolute shrinkage and selection operator) model was developed and validated to predict aGVHD. In the discovery cohort, the GMS could predict II-IV aGVHD (area under the receiver operating characteristic [ROC] curve [AUC] = 0.904, P < .0001). Furthermore, the validation model was consistent with the discovery set (AUC = 0.887, P < .0001). Regulatory T/T-helper 17 (Treg/Th17) cells ratio in the low GMS subgroup was higher compared with the high GMS (P = .012), and the validation set is consistent with the discovery set (P = .003). In addition, high cytokine levels were associated with high GMS. In conclusion, the GMS at neutrophil engraftment could predict aGVHD, and it was a potential and novel method. The GMS was associated with the inflammatory factor and Treg/Th17 balance.
Collapse
Affiliation(s)
- Lijie Han
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Department of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ke Zhao
- Department of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuanyuan Li
- School of Foreign LanguagesHenan University of Chinese MedicineZhengzhouChina
| | - Haohao Han
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lizhi Zhou
- Department of BiostatisticsSchool of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Ping Ma
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhiping Fan
- Department of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hui Sun
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hua Jin
- Department of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongxing Jiang
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qifa Liu
- Department of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhouChina
| | - Jie Peng
- Department of Oncologythe Second Affiliated Hospital of Guizhou Medical UniversityKailiChina
| |
Collapse
|
34
|
Li LX, Zhang B, Gong RZ. Insights into the role of tumor abnormal protein in early diagnosis of cancer: A prospective cohort study. Medicine (Baltimore) 2020; 99:e19382. [PMID: 32176062 PMCID: PMC7220304 DOI: 10.1097/md.0000000000019382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate the clinical use of tumor abnormal protein (TAP) in the diagnosis of different cancers.Totally 394 patients were divided into 4 groups, namely 100 healthy volunteers, 167 patients with cancer, 20 subjects with precancerous lesions, and 107 subjects with benign lesions. TAP was detected in 4 groups of research subjects using a TAP testing kit and examination system. We correlated TAP levels with a wide variety of clinical indicators as well as established cancer markers, including alpha fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9). Besides, the changes of TAP level in 51 patients with liver cancer before and after surgery, and overall survival of patients with high or low TAP expression in pancreatic, gallbladder, bile duct, and liver cancers were analyzed.Statistically significant difference was observed in the TAP-positive ratio among subjects with cancer (79.6%) and precancerous lesions (45.0%) compared to the healthy volunteers (4.0%). TAP expression in different cancers was characterized by high sensitivity (79.64%), specificity (89.87%), positive and negative predictive value (85.25% and 85.71%), overall compliance rate (85.53%) but low omission and mistake diagnostic rate (20.36% and 10.13%), Youden index (0.6951). In addition, there was no significant difference among patients with different types of cancer (χ = 2.886, P = .410), and TAP expression was shown to be correlated with AFP in liver cancer (P = .034) but not with CA19-9 in pancreatic cancer (P = .241). Moreover, the overall survival of patients with low expression of TAP in pancreatic, gallbladder, bile duct, and liver cancers were significantly higher than of patients with high expression of TAP. Compared with the preoperative patients with cancer, TAP levels decreased dramatically among postoperative subjects (P < .001).In summary, TAP might hold promise in serving as universal indicator for the diagnosis of different cancers.
Collapse
Affiliation(s)
- Lu-Xi Li
- Department of Ophthalmology, Xi’an No 3 Hospital, The Affiliated Hospital of Northwest University
| | - Bin Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Air Force Medical University
| | - Rui-Zhi Gong
- Department of Oncology, Xi’an International Medical Center, Xi’an, Shaanxi, China
| |
Collapse
|
35
|
Sun Y, Wang H, Luo C. MiR-100 regulates cell viability and apoptosis by targeting ATM in pediatric acute myeloid leukemia. Biochem Biophys Res Commun 2020; 522:855-861. [PMID: 31801665 DOI: 10.1016/j.bbrc.2019.11.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is the most common pediatric malignancy and a major cause of morbidity and mortality in children. miR-100 is associated with progression of various diseases including AML. The aim of this study was to explore the underlying molecule mechanisms of miR-100 involved in AML. The expressions of miR-100 and ataxia telangiectasia mutated (ATM) in pediatric AML patients and cell lines were monitored using qRT-PCR and western blot assays. MTT assay was carried to evaluate cell viability. Cell apoptosis was measured by flow cytometry. The binding sites between miR-100 and ATM were predicted by mirtarbase database. Luciferase reporter assay was used to confirm the relationship between miR-100 and ATM. miR-100 expression was highly expressed in bone marrow of AML patients and cell lines. Moreover, Knockdown of miR-100 led to the inhibition of viability and promotion of apoptosis in Kasumi-1 and MV-4-11 cells. miR-100 harbored the 3'UTR of ATM. Meanwhile, the expression of ATM was downregulated in bone marrow of AML patients and AML cell lines. Subsequently, a negative correlation between miR-100 and ATM in bone marrow of AML patients was also observed. Furthermore, ectopic expression of ATM repressed cell viability while enhanced apoptosis. Notably, loss of ATM attenuated the effect of miR-100 depletion on cell viability and apoptosis in AML cells. miR-100 participates in cell viability and apoptosis by targeting ATM in pediatric AML.
Collapse
Affiliation(s)
- Yin Sun
- Department of Pediatrics, Tengzhou Central People's Hospital, Tengzhou, 277500, Shandong, China
| | - Hongxiang Wang
- Department of Pediatrics, Tengzhou Central People's Hospital, Tengzhou, 277500, Shandong, China
| | - Chibao Luo
- Department of Pediatrics, Tengzhou Central People's Hospital, Tengzhou, 277500, Shandong, China.
| |
Collapse
|
36
|
Abstract
Comprehensive cataloguing of the acute myeloid leukaemia (AML) genome has revealed a high frequency of mutations and deletions in epigenetic factors that are frequently linked to treatment resistance and poor patient outcome. In this review, we discuss how the epigenetic mechanisms that underpin normal haematopoiesis are subverted in AML, and in particular how these processes are altered in childhood and adolescent leukaemias. We also provide a brief summary of the burgeoning field of epigenetic-based therapies, and how AML treatment might be improved through provision of better conceptual frameworks for understanding the pleiotropic molecular effects of epigenetic disruption.
Collapse
Affiliation(s)
- Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Peter McCarthy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
37
|
Galardi A, Colletti M, Di Paolo V, Vitullo P, Antonetti L, Russo I, Di Giannatale A. Exosomal MiRNAs in Pediatric Cancers. Int J Mol Sci 2019; 20:ijms20184600. [PMID: 31533332 PMCID: PMC6770697 DOI: 10.3390/ijms20184600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have generated great attention in oncology as they play a fundamental role in the regulation of gene expression and their aberrant expression is present in almost all types of tumors including pediatric ones. The discovery that miRNAs can be transported by exosomes, which are vesicles of 40–120 nm involved in cellular communication, that are produced by different cell types, and that are present in different biological fluids, has opened the possibility of using exosomal miRNAs as biomarkers. The possibility to diagnose and monitor the progression and response to drugs through molecules that can be easily isolated from biological fluids represents a particularly important aspect in the pediatric context where invasive techniques are often used. In recent years, the idea of liquid biopsy as well as studies on the possible role of exosomal miRNAs as biomarkers have developed greatly. In this review, we report an overview of all the evidences acquired in recent years on the identification of exosomal microRNAs with biomarker potential in pediatric cancers. We discuss the following herein: neuroblastoma, hepatoblastoma, sarcomas (osteosarcoma, Ewing’s sarcoma and rhabdoid tumors, and non-rhabdomyosarcoma soft tissue sarcoma), brain tumors, lymphomas, and leukemias.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Virginia Di Paolo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Patrizia Vitullo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Loretta Antonetti
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Ida Russo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
38
|
Shi M, Xu G. Development and validation of GMI signature based random survival forest prognosis model to predict clinical outcome in acute myeloid leukemia. BMC Med Genomics 2019; 12:90. [PMID: 31242922 PMCID: PMC6595612 DOI: 10.1186/s12920-019-0540-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a disease with marked molecular heterogeneity and a high early death rate. Our aim was to investigate an integrated Gene expression, Mirna and miRNA-mRNA Interactions (GMI) signature for improving risk stratification of AML. Methods We identified differentially expressed genes by pooling a large number of 861 human AML patients and 75 normal cases. We then used miRWalk to identify the functional miRNA-mRNA regulatory module. The GMI signature based random survival forest (RSF) prognosis model was developed from training data set and evaluated in independent patient cohorts from The Cancer Genome Atlas (TCGA) dataset (N = 147). Univariate and multivariate Cox proportional hazards regression analyses were applied to evaluate the prognostic value of GMI signature. Results We identified 139 differentially expressed genes between normal and abnormal AML samples. We discovered the functional miRNA-mRNA regulatory module which participate in the network of cancer progression. We named 23 differentially expressed genes and 16 validated target miRNAs as the GMI signature. The RSF model-based scores separated independent patient cohorts into two groups with significantly different overall survival (C-index = 0.59, hazard ratio [HR], 2.12; 95% confidence interval [CI], 1.11–4.03; p = 0.019). Similar results were obtained with reversed training and testing datasets (C-index = 0.58, hazard ratio [HR], 2.08; 95% confidence interval [CI], 1.02–4.24; p = 0.038). The GMI signature score contributed more information about recurrence than standard clinical covariates. Conclusion The GMI signature based RSF prognosis model not only reflects regulatory relationships from identified miRNA-mRNA module but also informs patient prognosis. While in the TCGA data set the GMI signature score contributed additional information about recurrence in comparison to standard clinical covariates, further studies are needed to determine its clinical significance. Electronic supplementary material The online version of this article (10.1186/s12920-019-0540-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingguang Shi
- School of Electric Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Guofu Xu
- School of Electric Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui, China
| |
Collapse
|
39
|
Docking TR, Karsan A. Genomic testing in myeloid malignancy. Int J Lab Hematol 2019; 41 Suppl 1:117-125. [PMID: 31069982 DOI: 10.1111/ijlh.13022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Clinical genetic testing in the myeloid malignancies is undergoing a rapid transition from the era of cytogenetics and single-gene testing to an era dominated by next-generation sequencing (NGS). This transition promises to better reveal the genetic alterations underlying disease, but there are distinct risks and benefits associated with different NGS testing platforms. NGS offers the potential benefit of being able to survey alterations across a wider set of genes, but analytic and clinical challenges associated with incidental findings, germ line variation, turnaround time, and limits of detection must be addressed. Additionally, transcriptome-based testing may offer several distinct benefits beyond traditional DNA-based methods. In addition to testing at disease diagnosis, research indicates potential benefits of genetic testing both prior to disease onset and at remission. In this review, we discuss the transition from the era of cytogenetics and single-gene tests to the era of NGS panels and genome-wide sequencing-highlighting both the potential and drawbacks of these novel technologies.
Collapse
Affiliation(s)
- T Roderick Docking
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Wang Z, Fang Z, Lu R, Zhao H, Gong T, Liu D, Hong L, Ma J, Zhang M. MicroRNA-204 Potentiates the Sensitivity of Acute Myeloid Leukemia Cells to Arsenic Trioxide. Oncol Res 2019; 27:1035-1042. [PMID: 30982490 PMCID: PMC7848422 DOI: 10.3727/096504019x15528367532612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although arsenic trioxide (ATO) is a well-known antileukemic drug used for acute promyelocytic leukemia treatment, the development of ATO resistance is still a big challenge. We previously reported that microRNA-204 (miR-204) was involved in the regulation of acute myeloid leukemia (AML) cell apoptosis, but its role in chemoresistance is poorly understood. In the present study, we showed that miR-204 was significantly increased in AML cells after ATO treatment. Interestingly, the increased miR-204 level that was negatively correlated with ATO induced the decrease in cell viability and baculoviral inhibition of apoptosis protein repeat-containing 6 (BIRC6) expression. Overexpression of miR-204 potentiated ATO-induced AML cell growth inhibition and apoptosis. Furthermore, miR-204 directly targets to the 3′-UTR of BIRC6. Upregulation of miR-204 decreased BIRC6 luciferase activity and expression, which subsequently enhanced the expression of p53. Restoration of BIRC6 markedly reversed the effect of miR-204 on the regulation of AML cell sensitivity to ATO. Taken together, our study demonstrates that miR-204 decreases ATO chemoresistance in AML cells at least partially via promoting BIRC6/p53-mediated apoptosis. miR-204 represents a novel target of ATO, and upregulation of miR-204 may be a useful strategy to improve the efficacy of ATO in AML treatment.
Collapse
Affiliation(s)
- Zhiguo Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi Province, P.R. China
| | - Zehui Fang
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Runzhang Lu
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin Province, P.R. China
| | - Hongli Zhao
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Tiejun Gong
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin Province, P.R. China
| | - Dong Liu
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin Province, P.R. China
| | - Luojia Hong
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Jun Ma
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin Province, P.R. China
| | - Mei Zhang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi Province, P.R. China
| |
Collapse
|
41
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
42
|
Ying X, Zhang W, Fang M, Zhang W, Wang C, Han L. miR-345-5p regulates proliferation, cell cycle, and apoptosis of acute myeloid leukemia cells by targeting AKT2. J Cell Biochem 2019; 120:1620-1629. [PMID: 30278103 DOI: 10.1002/jcb.27461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant clonal hematopoietic disease, which is caused by hematopoietic stem cell abnormalities. Epigenetic regulation, especially of microRNAs (miRNAs), mostly results from external or environmental effects and is critical to AML. In this study, for the first time, we report that decreased expression of miR-345-5p facilitates the proliferation of leukemia cells in AML. Further study demonstrated that AKT1/2 was the target of miR-345-5p and was responsible for the dysregulation of leukemia cell proliferation and apoptosis. Inhibition of AKT1/2 ameliorated this malignant effect, which provides new insight into AML diagnosis, treatment, prognosis, and next-step translational investigations.
Collapse
Affiliation(s)
- Xiaoyang Ying
- Department of Clinical Hematology, Affiliated No. 2 Hospital School of Medicine, Xi'an Jiaotong University, China.,Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Wanggang Zhang
- Department of Clinical Hematology, Affiliated No. 2 Hospital School of Medicine, Xi'an Jiaotong University, China
| | - Meiyun Fang
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Weijun Zhang
- Department of Laboratory, Affiliated Zhongshan Hospital of Dalian University, China
| | - Chenchen Wang
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Li Han
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, China
| |
Collapse
|
43
|
Wang Y, Wu M, Lei Z, Huang M, Li Z, Wang L, Cao Q, Han D, Chang Y, Chen Y, Liu X, Xue L, Mao X, Geng J, Chen Y, Dai T, Ren L, Wang Q, Yu H, Chen C, Chu X. Dysregulation of miR-6868-5p/FOXM1 circuit contributes to colorectal cancer angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:292. [PMID: 30486864 PMCID: PMC6264626 DOI: 10.1186/s13046-018-0970-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 11/10/2022]
Abstract
Background Transcription factor forkhead box M1 (FOXM1) is a crucial regulator in colorectal cancer (CRC) progression. However, the regulatory mechanisms causing dysregulation of FOXM1 in CRC remain unclear. Methods Dual-luciferase reporter assay was conducted to determine FOXM1 as miR-6868-5p target. The function of miR-6868-5p and FOXM1 in CRC angiogenesis was verified in vitro. Intratumoral injection model was constructed to explore the effect of miR-6868-5p on angiogenesis in vivo. Chromatin immunoprecipitation assays were used to assess direct binding of H3K27me3 to the miR-6868 promoter. Results Through integrated analysis, we identified miR-6868-5p as the potent regulator of FOXM1. Overexpression of miR-6868-5p in CRC cells inhibited the angiogenic properties of co-cultured endothelial cells, whereas silencing of miR-6868-5p had opposite effects. In vivo delivery of miR-6868-5p blocked tumor angiogenesis in nude mice, resulting in tumor growth inhibition. Rescue of FOXM1 reversed the effect of miR-6868-5p on tumor angiogenesis. Further mechanistic study revealed that FOXM1 promoted the production of IL-8, which was responsible for the miR-6868-5p/FOXM1 axis-regulated angiogenesis. Reciprocally, FOXM1 inhibited miR-6868-5p expression through EZH2-mediated H3K27me3 on miR-6868-5p promoter, thus forming a feedback circuit. Clinically, the level of miR-6868-5p was downregulated in CRC tissues and inversely correlated with microvessel density as well as levels of FOXM1 and IL-8 in tumor specimens. Conclusions Together, these data identify miR-6868-5p as a novel determinant of FOXM1 expression and establish a miR-6868-5p/FOXM1 regulatory circuit for CRC angiogenesis, providing potential target for CRC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0970-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Wang
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhiping Li
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Liya Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qijun Cao
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Dong Han
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Yue Chang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaobei Mao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian Geng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yanan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tingting Dai
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lili Ren
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hongju Yu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Cheng Chen
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China. .,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Departments of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China. .,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
44
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|
45
|
Ren S, Rivard CJ, Yu H, Genova C, Rozenboom L, Gao D, Hinz TK, Rikke BA, Wynes MW, Caldwell C, Agustoni F, Kenichi Suda, Jiang T, Zhou C, Heasley LE, Hirsch FR. A miRNA Panel Predicts Sensitivity of FGFR Inhibitor in Lung Cancer Cell Lines. Clin Lung Cancer 2018; 19:450-456. [PMID: 30146263 DOI: 10.1016/j.cllc.2018.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE To test whether a microRNA (miRNA) panel may serve as an alternative biomarker of fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor sensitivity in lung cancer. METHODS Histologically diverse lung cancer cell lines were submitted to assays for ponatinib and AZD4547 sensitivity. miRNAs, FGFR1 messenger RNA, gene copy number, and protein expression were detected by real-time quantitative PCR, fluorescence in-situ hybridization, and immunoblotting in 34 lung cancer cell lines. RESULTS Among 34 cell lines, 14 exhibited ponatinib sensitivity and 20 exhibited AZD4547 sensitivity (drug concentration causing 50% inhibition values < 100 nmol/L). A total of 39 of the 377-miRNA set were initially identified from the 4 paired ponatinib-sensitive or -insensitive cell lines to have at least an 8-fold differential expression and then were detected in all the 34 cell lines. A predictive panel of 3 miRNAs (let-7c, miRNA155, and miRNA218) was developed that had an area under the curve (AUC) of 0.886 with a sensitivity of 71.4% and specificity of 77.3% to predict response to ponatinib. The miRNA panel performed similar to FGFR1 protein expression (AUC = 0.864) and messenger RNA expression (AUC = 0.939), and better than FGFR1 amplification (AUC = 0.696). Furthermore, we validated this panel using data for sensitivity to AZD4547 in the cell line cohort with an AUC of 0.931 and a sensitivity of 73.3% and specificity of 76.2%, respectively. CONCLUSION The developed miRNA panel (let-7c, miRNA155, and miRNA218) may be useful in predicting response to FGFR tyrosine kinase inhibitors, either ponatinib or AZD4547 in lung cancer cell lines, and warrants further validation in the clinical setting.
Collapse
Affiliation(s)
- Shengxiang Ren
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Christopher J Rivard
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hui Yu
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Leslie Rozenboom
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dexiang Gao
- Department of Medicine, Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Trista K Hinz
- Department of Medicine, Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brad A Rikke
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Murry W Wynes
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles Caldwell
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Francesco Agustoni
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kenichi Suda
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lynn E Heasley
- Department of Medicine, Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Fred R Hirsch
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO.
| |
Collapse
|